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Abstract
A smart home connects tens of home devices to the Inter-
net, where an IoT cloud runs various home automation ap-
plications. While bringing unprecedented convenience and
accessibility, it also introduces various security hazards to
users. Prior research studied smart home security from sev-
eral aspects. However, we found that the complexity of the
interactions among the participating entities (i.e., devices,
IoT clouds, and mobile apps) has not yet been systematically
investigated. In this work, we conducted an in-depth analy-
sis of five widely-used smart home platforms. Combining
firmware analysis, network traffic interception, and black-
box testing, we reverse-engineered the details of the interac-
tions among the participating entities. Based on the details,
we inferred three legitimate state transition diagrams for the
three entities, respectively. Using these state machines as a
reference model, we identified a set of unexpected state tran-
sitions. To confirm and trigger the unexpected state transi-
tions, we implemented a set of phantom devices to mimic a
real device. By instructing the phantom devices to intervene
in the normal entity-entity interactions, we have discovered
several new vulnerabilities and a spectrum of attacks against
real-world smart home platforms.

1 Introduction
With the development of the Internet of Things (IoT), smart
home technology has become widely used in many applica-
tions including safety and security [33], home appliances [5],
home healthcare [13], etc. According to Statista research,
more than 45 million smart home devices were installed in
2018, and the annual growth rate of home automation is
22% [51]. To manage the ever-increasing number of diverse
smart home devices in a consolidated way, many companies
have proposed their smart home platforms (e.g., Samsung
SmartThings [52]). With IoT clouds playing a central role in
building smart homes, real-world smart home platforms es-
sentially engage three (kinds of) entities that interact with
∗Corresponding author: zhangyq@nipc.org.cn

each other: an IoT cloud, smart home devices and a mo-
bile app. Briefly speaking, the mobile app provides users
with an interface to facilitate the initial setup of devices in-
cluding WiFi provision. After getting Internet access, each
device negotiates its login credential(s) with the IoT cloud.
In this way, it can build a connection with the IoT cloud to
routinely report its status and execute the received remote
control commands, which are usually generated by certain
home automation applications running in the IoT cloud. At
the same time, the mobile app is able to monitor and control
each device through the IoT cloud.

While bringing substantial convenience to our lives, smart
home technology also introduces potential security hazards.
Since smart home devices directly process user-generated
data, once compromised, they could introduce serious conse-
quences. For example, user privacy can be harmed [28, 42];
property can be destructed [22, 38]; life safety and psycho-
logical health are also threatened [26, 54]. Imagine a smart
home which is programmed in such a way that whenever the
home temperature rises to a given threshold, the windows
will be automatically opened. If an attacker obtains access
to a smart heater, he could easily break into the home by
keeping the heater at the highest temperature [21].

Although an increasing number of research studies have
focused on smart home security, we found that existing re-
search on the insecurity of interactions (e.g. inter-operations)
in smart home platforms is still quite limited. First, the exist-
ing studies usually focus on individual parts of smart home
platforms. For instance, there are studies disclosing the se-
curity problems with device firmware [44, 41, 28], commu-
nication protocols [14, 50, 27], and home automation appli-
cations [23, 40, 16]. Focusing on individual parts, the re-
vealed vulnerabilities have little to do with the interactions
among the three entities engaged in a smart home platform.
Second, the existing studies seem to pay most attention to
classic security issues such as privacy protection [24, 57],
authentication [44, 41] and permission models [25, 23, 40],
and leave the potential risks of the entity-entity interactions
largely uninvestigated.
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Third, one kind of interaction in the Samsung Smart-
Things platform has recently been studied in [17, 16], find-
ing that the interaction between multiple home automation
applications (i.e. IoT apps) can lead to unsafe device states.
While this finding is inspiring, other essential kinds of in-
teractions in smart home platforms have not yet been (sys-
tematically) studied in the literature. In this paper, when
we use the word “interactions”, we are specifically referring
to the inter-operations involved among the aforementioned
three entities, with a focus on high-level pairing of devices,
handshaking between IoT clouds and devices, etc.

To systematically discover and understand the security
hazards in the interactions involved in smart home plat-
forms, we have analyzed several widely-used smart home
platforms and conducted the following investigations in this
work. First, because all the communications among the
three entities are encrypted, we combined several tech-
niques including firmware reverse-engineering and man-in-
the-middle (MITM) monitoring (to break SSL) to work out
the details of the interactions among the three entities. Sec-
ond, based on the interactions among the three entities, we
inferred three legitimate state transition diagrams for the
three entities, respectively. Using the inferred state machines
as a reference model, we identified unexpected state transi-
tions in several widely-used smart home platforms. Finally,
to confirm and trigger unexpected state transitions, we im-
plemented a phantom device that mimics a real device. A
phantom device is essentially a computer program. By in-
structing the phantom device to intervene in the normal in-
teractions among legitimate smart home devices, IoT clouds,
and a mobile app, we have identified several new vulnerabil-
ities and attacks in major smart home platforms.

In summary, the main contributions are as follows:

New insights are provided: (a) Real-world smart home
platforms do not strictly guard the validity of the involved
state transitions. For example, we found that an IoT cloud
can accept some device requests without checking whether
such a request should be allowed or not in its current state.
(b) The three entities can sometimes stay in unexpected state
combinations, which brings potential risk. (c) IoT clouds
do not always perform adequate authorization checks on in-
teraction requests. We found that an IoT cloud sometimes
simply accepts and executes sensitive device-side commands
without any permission checking. (d) By carefully construct-
ing attacks that exploit a particular combination of the above
security flaws, we showed that serious new security hazards
can occur. This new finding proves that high risk attacks are
rarely caused by a single factor. Accordingly, stake holders
should conduct integrated insecurity analysis on interactions
among the three entities.

New hazards are discovered: (a) An adversary can re-
motely replace a victim’s real device with a non-existing
phantom device under his control. As a result, all the con-

trol commands from the victim user are exposed to the phan-
tom device and further to the adversary, leading to privacy
breaches. The adversary can also leverage the phantom de-
vice to manipulate the data to be sent to the victim user, thus
deceiving or misleading the victim user. (b) An adversary
can remotely take over a device. As a result, he can harvest
the sensor readings to monitor the victim’s home or even
manipulate the smart home devices, causing data breaches
and endangering the victim. (c) An adversary can remotely
unbind an authorised user through a phantom device. As a
result, the user can no longer control the device with his ac-
count. (d) An adversary can leverage a phantom device to
mislead an IoT cloud and occupy the identity of a real device
before the device is sold. When a consumer buys the device,
he cannot bind the device with his account. (e) An adversary
can utilize a phantom device to automatically send update re-
quests to an IoT cloud to steal various proprietary firmware
on a large scale.

The newly discovered hazards have significantly enlarged
the previously-known attack surface of smart home plat-
forms; they also provide essential new understandings about
the security and privacy hazards in smart homes.

Responsible Disclosure. All the vulnerabilities described
in this paper have been reported to the corresponding ven-
dors, and they have confirmed our disclosures. We have
shared the technical details with the vendors. And most of
the vulnerabilities have been fixed by them.

2 Background

2.1 Terminology

To make the presentation more clear, we first define several
key terminologies.

Device ID. The Device ID of an IoT device uniquely identi-
fies the device. Since device IDs are used to authenticate a
device, they should be kept secret at all time. The attacks dis-
covered in this study create fake IoT devices by occupying
the device ID of a real victim device.

Identity Information. By “identity information,” we mean
the information items whose values are used to generate (i.e.
calculate) a device ID. A typical use case of identity infor-
mation is as follows: a device first provides the IoT cloud
it belongs to with its identity information, then the cloud
generates and returns the corresponding device ID to the de-
vice. Frequently used identity information includes MAC
address and device model. Since device IDs should be kept
secret, identity information should also be kept secret. Un-
fortunately, we found that this rarely holds in practice and
attackers can easily obtain device identity information.

Legitimacy Information. By “legitimacy information,” we
mean the information items whose values are used to conduct
certain legitimacy checking of a device, but are not used to
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Figure 1: Smart Home Platform Architecture

generate any device IDs. We found that such information can
also be easily acquired by hackers.

Phantom Devices. A phantom device is used by us to ana-
lyze the smart home interactions and to launch attacks. It is
essentially a computer program that is instructed to intervene
in the normal interactions among legitimate smart home de-
vices, IoT clouds, and mobile apps.

2.2 Overview of Smart Home Platforms
The architecture shown in Figure 1 is widely adopted by ma-
jor cloud-based smart home platforms. There are three key
entities interacting with each other on a smart home plat-
form: the IoT devices, the mobile app, and the IoT cloud.

The IoT cloud is the brain of a smart home platform. It
is usually responsible for three kinds of services, denoted
as Device Identify Management, Device Control, and Home
Automation as shown in Figure 1. First, in order to ensure
that only the device owner and delegated users have access
to a device, the device identify management service needs to
maintain a one-to-one mapping between the owner’s account
and the device. This binding happens at the time when the
device is firstly deployed. As soon as the device is unde-
ployed, the binding relationship should be revoked. Second,
in order to allow authorized users to remotely control a de-
vice, the device control service serves as a “proxy” when
users send remote commands to the device. Lastly, most
smart home platforms provide home automation services, in
which users can customize automation rules that define the
interoperability behaviors of smart home devices. For exam-
ple, a home owner can craft an automation rule that turns
on the air conditioner if the indoor temperature goes above
70◦F. When a thermometer detects that the temperature ex-
ceeds the specified threshold, it sends the event to an in-cloud
home automation application, which then sends a command
to turn on the air conditioner.

The second type of entities in a smart home platform are
IoT devices. IoT devices are equipped with embedded sen-
sors and actuators that interact with the physical world and
send sensor readings to an IoT cloud. There are two typi-
cal mechanisms for devices to connect to an IoT cloud. (a)

Table 1: Two Types of Smart Home Platforms and Their Dif-
ferences

Platform Device Registration Device Binding/Unbinding

Type I Platform Alink, Joylink
Device ID

Generated by Cloud
Authorization Checking

Performed by Cloud

Type II Platform SmartThings
KASA, MIJIA Skipped

Authorization Checking
Performed by Device

WiFi-enabled devices can connect to the Internet and thus
directly communicate with the IoT cloud. We call these
devices cloud-connected devices. (b) Energy-economic de-
vices are not equipped with a WiFi interface to directly inter-
act with the IoT cloud. Instead, they first connect to a hub/-
gateway using energy-efficient protocols such as Z-Wave and
ZigBee. Then the hub connects to the IoT cloud on behalf of
the IoT devices. We call the devices connected to a hub as
hub-connected devices. It is worth noting that the hub itself
is one kind of cloud-connected device. Some platforms sup-
port both cloud-connected and hub-connected devices, while
some only support one kind. The third kind of entities on a
smart home platform are mobile apps. They provide users
with an interface for device management (e.g., binding a de-
vice with its owner’s account) and customization of the in-
cloud home automation services.

Deployment. To standardize and simplify the deployment
of IoT services, smart home platform providers often pro-
vide collaborating partners with software development kits
(SDKs). With SDKs, the adopting manufacturers only need
to focus on device-specific initialization procedures and core
application logic. Features such as over-the-air (OTA) up-
date are also integrated in the SDKs.

2.3 Overview of the Interactions on Smart
Home Platforms

In this section, we depict the interactions among the three
entities during the life-cycle of a smart home device from
the viewpoint of a consumer (rather than a manufacturer,
supplier or retailer). To make the description more clear,
the description focuses on cloud-connected devices. Hub-
connected devices follow a similar model except that they
use a hub as an intermediate node.

Type I vs. Type II: Depending on how the device ID of
a device is generated, we classify the smart home platforms
investigated in this work into two types. How a device ID
is generated further influences device registration and device
binding/unbinding. In Table 1, we list the investigated plat-
forms for each type and the key differences between the two
types. These differences lead to different attack precondi-
tions in attacking a smart home platform.

In the following, we try to abstract an interaction model
for Type I and Type II smart home platforms. When there is
a difference between the two types, we also explicitly report
it. In Appendix C, the complete interaction diagrams for all
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Waiting for 
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waits for device registration request.

Waiting for
Binding
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from the mobile app or device.

Waiting for
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After binding the device with user,
the cloud waits for device login
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The cloud handles user’s requests 
and syncs the device status.

(a) State Machine of an IoT Cloud
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 Cloud replies with the device ID.

 Cloud accepts device binding request.

 Cloud accepts device login request.
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     device.

  

 

  

    

States Description

Waiting for 
WiFi

Connection 

The device waits for discovery
message and WiFi credential from
app.

Waiting for
Device ID/

Binding

The device sends register request/
binding request to the cloud, and 
waits for cloud response.

Waiting for
Connection

Device keeps sending login request
to get connection from cloud.

Running
Device keeps a connection with 
cloud and waits for new commands.

(b) State Machine of a Device
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Searching for
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available device.

Waiting for 
Binding

The mobile app sends binding 
request to cloud or device, and 
waits for binding confirmation.

Waiting for 
Device Online

The mobile app waits for cloud to 
build connection with device. 
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After device logs into the cloud, the 
mobile app receives user's 
instructions to the device via UI.

(c) State Machine of a Mobile App

Note: The states and transitions specific to Type I platforms are shown in red; the states and transitions specific to Type II platforms are shown in blue; and the
shared states/transitions are in black.

Figure 2: High-Level State Machines of the Three Entities

the studied platforms are given.

1. Device Discovery: The life-cycle of a newly bought smart
home device starts with device discovery. After the home
owner (i.e. the customer) clicks the “Add Device” button
on the designated mobile app, the app establishes a local
connection with the device through broadcasting a discov-
ery message or through the device’s access point. Then, the
device reports its basic information, such as its MAC address
and device model, to the mobile app.

2. WiFi Provisioning: To access the Internet, the IoT device
needs to join the same LAN as the mobile app. To obtain
WiFi credentials, there are several mechanisms such as Ac-
cess Point Mode [18], WiFi direct [4] and SmartConfig [29].

3. Device Registration: After device registration, the IoT
device is given a unique device ID. Different types of plat-
forms provide device IDs in different ways. For Type I plat-
forms, the device sends its device identity information to the
IoT cloud it belongs to. The cloud then generates a device
ID and returns it to the device. The device then writes the
device ID to its persistent storage. The cloud also keeps a
record of the device ID for future authentication. For Type II
platforms, the device’s device ID is generated by the device’s
platform beforehand and hard-coded into the device during
fabrication. Therefore, device registration is skipped.

4. Device Binding: The IoT cloud binds the device’s device
ID with the user account of the home owner. As a result, only
authorized users can access the device via the cloud. The two
types of smart home platforms adopt different device binding
methods. For Type I platforms, the binding request is directly
sent by the mobile app to the IoT cloud, which is responsible
for maintaining the binding information and performing the
permission checks (i.e., whether a user account should have
access to a device). For Type II platforms, the mobile app
first sends the account information to the device. The device,
having the device ID and the user account, issues the binding
request to the IoT cloud. It is worth noting that here the
cloud unconditionally accepts the binding request from the
device. This design is based on the natural assumption that
the customer who physically owns a device should have full
control over it.

5. Device Login: The device uses its device ID to log into
the IoT cloud. Then it establishes a connection with the
cloud to keep the status updated and ready itself to execute
remote commands. In addition, when a device loses con-
nection with the cloud for a long time, it tries to re-login
automatically.

6. Device in Use: After successful registration and login, the
device performs designed functions. Specifically, the home
owner can monitor the real-time status of the device and ex-
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plicitly control the device locally or remotely via the “control
panel” on the mobile app.

7. Device Unbinding & Device Reset: When the home
owner no longer uses the device, she can unbind or reset it.
When the user requests for unbinding, for Type I platforms,
the cloud directly erases the binding information. For Type
II platforms, however, since the binding information is also
stored on the device locally, one additional command is sent
from the cloud to the device to erase the binding information.

In the life-cycle of an IoT device, although most of the
time is spent in the sixth phase, i.e., the device-in-use phase,
the interactions that occur during the other phases are the
most complex and critical. Any oversight in these phases
could lead to serious security problems and harm the normal
use of devices.

2.4 State Transitions
In this subsection, we describe the state transitions inferred
from our analysis of five widely-used smart home platforms
(i.e., Samsung SmartThings [52], TP-LINK KASA [53], Xi-
aoMi MIJIA [56], Ali Alink [2], and JD Joylink [31]). A
smart home platform is a special kind of distributed system.
In this viewpoint, the aforementioned interactions among
IoT devices, mobile apps, and IoT clouds unavoidably cause
state transitions. Based on our analysis of the aforemen-
tioned five platforms, we infer three state transition diagrams
for the three entities, respectively. The three state machines
are shown in Figure 2. In each sub-figure, an interaction with
other entities (denoted by an edge) causes a state transition.
The definitions for each state and each transition are anno-
tated in the corresponding sub-figure. Note that Type I and
Type II platforms behave slightly differently and we high-
light the differences using different colors. Specifically, the
states and transitions specific to Type I platforms are shown
in red while the states and transitions specific to Type II plat-
forms are shown in blue. The shared states and transitions
are shown in black. In addition, since Type II platforms use
hard-coded device ID, state 1 is absent in the state machine
of an IoT cloud.

State Correlation. The three state machines are closely re-
lated to one another. Whenever an interaction takes place,
the three entities as a whole may transfer from one 3-tuple
state combination (i.e., the current state of the IoT cloud, the
current state of the device, and the current state of the mo-
bile app) to another 3-tuple. We identify all the legitimate
3-tuple state combinations and show them in the table pre-
sented in Appendix A. If a 3-tuple does not appear in the ta-
ble, the corresponding state combination is illegal and might
be exploited. To avoid the potential attacks, the three entities
should always stay in a legitimate state combination. Unfor-
tunately, we found that none of the investigated smart home
platforms strictly maintain a three-entity state machine.

2.5 Scope of Empirical Vulnerability Analysis
Real-world cloud-based smart home platforms can be classi-
fied into two categories. The first category is the platforms
dedicated to building a smart home (e.g., Samsung Smart-
Things [52]). The second category is general-purpose IoT
platforms (e.g., Amazon Web Services IoT [6]) which could
be customized for smart home usage. Since smart home plat-
forms of the second category usually differ from each other
in terms of device management and interaction, we leave
studying common security issues with them as our future
work. In addition, smart home platforms that are not cloud-
based, such as HomeKit [8] and HomeAssistant [10], are out
of the scope of this study, although we will discuss the im-
plications of our research findings to platforms that are not
cloud-based in Section 7.2.

In this work, we focus on five leading cloud-based smart
home platforms. As mentioned earlier, they are Smart-
Things, KASA, MIJIA, Alink, and Joylink. To attract
more cooperative manufacturers, some smart home platform
providers such as Samsung, JD, and Ali make their plat-
forms open and even open-source the corresponding device-
side SDKs. Thus, the collaborative manufacturers can eas-
ily follow the documentation and assemble platform com-
pliant devices through proper use of the SDKs. Over 200
well-known smart home device manufacturers (e.g., Philips,
ECOVACS, and Media) are actually fabricating products
running on these platforms [3, 30].

Some other cloud-based smart home platform providers,
including TP-LINK and XiaoMi, adopt a closed “ecosys-
tem”. They fabricate smart home devices by themselves.
On North America and Europe markets, TP-LINK’s smart
home devices, such as smart WiFi plugs and smart LED
bulbs, rank in the top 10 in the category of home improve-
ment on Amazon [19]. XiaoMi is the world’s largest intelli-
gent smart home device manufacturer. More than 85 million
smart home devices have been sold under the brand of Xi-
aoMi all over the world [34], especially in Asia-Pacific [43].

3 Threat Model and Feasibility Assessment
3.1 Threat Model
In contrast to network-based exploits (e.g., MITM) and
firmware-based reverse-engineering, the adversary in our
threat model seeks to exploit the design flaws in the interac-
tions among the three entities. Therefore, we do not assume
any forms of software bugs or protocol vulnerabilities. The
targets of the attack are cloud-connected devices which di-
rectly communicate with IoT clouds. The adversary’s goal
is to take control of the device or to monitor/manipulate the
data collected/generated by the device.

We do assume that the adversary has the capability to col-
lect necessary information, including device identity infor-
mation and legitimacy information. For different platforms,
the difficulty levels of collecting these information items dif-
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Table 2: Device Identity/Legitimacy Information

Platform Identity Info Legitimacy Info

Type I Platform Alink
MAC (G), CID (P),
Device Model (P) Key (P), Sign (P)

Joylink
MAC (G), SN (H),
Device Model (P) NULL

Type II Platform
SmartThings Device ID (H) NULL

KASA Device ID (H) MAC (G), hwID (P)
MIJIA Device ID (H) TagKey (H)

P: Public information G: Guessable information H: Hard-coded information

fer. For example, for Type II platforms, we assume the ad-
versary has local access to the victim device beforehand,
whereas for Type I platforms, we do not have such an as-
sumption. As a result, the discovered exploits may exhibit
different levels of feasibility depending on which type of
platform is being attacked, who is the platform provider, etc.

In the following, for both types of platforms, we analyze
the feasibility of obtaining these information items case by
case. The reason is that different platforms may designate
and use individual information items in different ways. Cor-
respondingly, the adversary faces different challenges in col-
lecting them.

3.2 Prerequisites and Feasibility Assessment
In this subsection, we describe the specific identity and le-
gitimacy information items the adversary has to obtain, and
evaluate the feasibility of obtaining them in practice.

As mentioned earlier, a device is identified by a unique
device ID. In essence, the discovered exploits fake a phan-
tom device by using the victim device’s device ID. Thus, the
adversary needs to get the device ID of the victim device.
For Type I platforms, given that the device ID is determined
solely by the victim device’s identity information, the adver-
sary only needs to collect all the identity information.

For Type II platforms, the device ID is hard-coded in the
victim device. So the adversary has to have local access to
the victim device (e.g., connect to the same LAN or physi-
cally possess the device) to obtain the device ID. Although
this seems to be a strong assumption, we note that once the
hard-coded information is leaked, the victim device becomes
remotely vulnerable forever.

Furthermore, some platforms use pre-configured legiti-
macy information (e.g., a key) as additional authentication
requirements.

Depending on the way to obtain a particular identity/legit-
imacy information item, we classify these information items
into three categories: public information (P), guessable in-
formation (G) and hard-coded information (H). For each
platform investigated in this study, we list the needed identi-
ty/legitimacy information items plus their categories in Ta-
ble 2. Note that the same information item may be used
differently. For example, MAC addresses are used by Alink
devices as identity information, but are used by KASA de-

vices as legitimacy information.

Public information is the easiest to obtain. Information
items in this category are often publicly available or can be
easily inferred. For example, device model and device chip
id (CID) are public information. Moreover, legitimacy in-
formation items in this category are sometimes not uniquely
bound with a device but shared by multiple devices. For ex-
ample, in the Alink platform, the legitimacy information is a
tuple which consists of two “confidential” numerical strings,
namely Key and Sign. We found that obtaining the tuple is
extremely easy – a bunch of such credentials are available
in the official GitHub repositories of both the Ali company1

and the cooperative manufacturers2.

Guessable information is the information which can be
guessed by brute-force. MAC addresses are a typical kind of
guessable information, because the first three bytes in a MAC
address are usually fixed for a manufacturer [32]. Moreover,
manufacturers often allocate a block of consecutive MAC ad-
dresses to the products of the same device model. Thus, there
remains only two or three bytes for the attacker to brute-
force. We detail an experiment on Alink devices in Sec-
tion 6.1, in which we successfully guessed more than 7,181
valid MAC addresses. Moreover, if the adversary can be in
the WiFi-range of a victim device, he can simply eavesdrop
the MAC address of the device by sniffing wireless probe re-
quests [37]. Note that this is a fundamental drawback of the
WiFi protocol.

Hard-coded information is unpredictable, immutable, and
inherent to a device. For example, a long device ID embed-
ded in the device hardware is a typical kind of hard-coded in-
formation for Type II platforms. In addition, for some Type
I platforms, hard-coded information (e.g., a serial number
(SN)) is also incorporated in the generation of a device ID.
Although hard-coded information cannot be obtained easily,
it is immutable. Once this information is leaked, the victim
device becomes vulnerable forever.

To get this information, the adversary needs local access to
the victim device. For example, the adversary can get the de-
vice’s hard-coded device ID by sniffing the device-app traffic
in the device’s LAN during the device discovery phase (Sec-
tion 2.3). In case the adversary is using the device on behalf
of the home owner, he can find the hard-coded device ID in
a log maintained by the mobile app.

We now discuss the feasibility of physically accessing a
victim device and the adversary’s incentive to employ the
discovered exploits. First, the ownership of a device can be
changed if the device gets resold or decommissioned [36].
For example, increasingly popular smart home manufactur-
ers such as Samsung and Apple provide certified refurbished
devices on the on-line outlet stores or through Amazon. The

1 https://github.com/alibaba/AliOS-Things
2 https://github.com/espressif/esp8266-alink-v1.0
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previous owner can easily extract the hard-coded credentials
before re-selling the device. We have successfully obtained
the device ID of a Samsung POWERbot R7040 Robot Vac-
uum in our experiments. If we resell or return this device,
we can control this device remotely even after it is sold to
another user.

Second, a recent study shows that 60% of guests would ac-
tually pay more for a vacation rental home with smart home
features [15]. Thus, vacation rentals and hospitality service
providers like Airbnb.com and Ziroom.com have been col-
laborating with smart home providers to equip an increasing
number of smart home devices (e.g., smart locks, cameras
and TVs) in their apartments and hotels [7]. For instance,
JD has worked with Ziroom to deploy Joylink smart home
devices in Ziroom rental rooms [47]. If the adversary “legit-
imately” rents a vacation home for one night and extracts the
device ID of the home’s smart lock, he could remotely open
the lock at will in the future. This poses a serious threat to
the safety of other tenants. We have successfully conducted
such a remote hijacking attack against an Alink device (i.e.,
a KAADAS smart lock with model KDSLOCK001) in lab
environment.

4 Analysis Methodology
The discovered exploits leverage a set of design flaws in the
interactions among the three entities. This section elaborates
the vulnerability analysis methodology we used to identify
these design flaws.

4.1 Deciphering Communication
To protect user privacy, smart home platforms usually en-
crypt the communication among IoT devices, mobile apps,
and IoT clouds. We must decrypt the communication traf-
fic before we can study the interactions. This imposes sig-
nificant challenge for us because some platforms are close-
sourced (e.g., XiaoMi and TP-LINK).

Cloud-App Communication. A simple network sniffer
confirms that most platforms adopt TLS, and mobile apps
are required to verify the validity of the cloud (server) cer-
tificate. The MITM attack on the mobile app side is an obvi-
ous choice in deciphering the communication. However, to
launch a MITM attack, we must replace the cloud certificate
with one controlled by us. After analyzing a number of mo-
bile apps, we found that a mobile app usually hard-codes the
cloud certificate in its APK file without relying on the trust
store provided by Android [39] (a.k.a. certificate pinning). If
we replace the hard-coded certificate in an APK, the corre-
sponding app would fail to run due to integrity checking. We
have addressed this problem by rooting our test smartphone
and installing an Xposed module3. This Xposed module is
able to hook the certificate checking function so that we can

3 https://github.com/Fuzion24/JustTrustMe

dynamically manipulate the certificate without compromis-
ing the app integrity.

Device-App Communication. We have analyzed the APK
files of a number of mobile apps and found that some plat-
forms such as Joylink and MIJIA use a symmetric encryp-
tion algorithm to protect device-app communication. Thus,
we can easily extract the communication keys by analyzing
the APK files. Other platforms such as SmartThings adopt
TLS for device-app communication. To deal with TLS, we
have used the same method as used for deciphering cloud-
app communication.

Device-Cloud Communication. Again, device-cloud com-
munication is protected by TLS. However, we cannot easily
replace the cloud certificate embedded in the firmware on a
device to launch a MITM attack as is done in mobile apps.
We had to perform static analysis on the device firmware. In
particular, we have physically dumped the firmware images
of the target devices4. We have manually followed the data
and control flows of the cryptographic functions, and were
able to locate the hard-coded certificates in the firmware im-
ages. We then replaced the hard-coded certificates with a
set of certificates forged by us. However, we found that the
devices enforce firmware integrity verification which denies
executing any manipulated firmware. Fortunately, simple re-
verse engineering confirms that most devices only use the
simple cyclic redundancy check (CRC) algorithm to check
integrity. Therefore, we updated the CRC values to match the
manipulated firmware and successfully booted the firmware
images with the forged certificates. As a result, we were able
to launch the MITM attack to decrypt the communication.

1 {"system": {
2 "alink": "1.0", "jsonrpc": "2.0", "lang": "en",
3 "sign": "3 a07945eb6f453e6c0a4032c1184cc87",
4 "key": "5 gPFl8G4GyFZ1fPWk20m", "time": ""
5 },
6 "request": {
7 "cid": "000000000000000010671484", "uuid": ""
8 },
9 "method": "registerDevice",

10 "params": {
11 "model": "JIKONG_LIVING_OUTLET_00003",
12 "mac": "60:01:94:A2:D5:7C","
13 "version": "0.0.0; APP2 .0; OTA1 .0"
14 },
15 "id": 100
16 }

Code Listing 1: JSON Representation of Alink Device
Registration Message

1 {"result": {
2 "code": 1000, "msg": "success",
3 "data": {
4 "uuid": "D66FCB11A731CA2683A6C0DED6CD326D"
5 }
6 },
7 "id": 100
8 }

Code Listing 2: JSON Representation of Cloud-Side
Response to Alink Device Registration Message

4 https://www.youtube.com/watch?v=KlV3_HaBpbs
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4.2 Understanding the Interacting Messages
Using the aforementioned approaches, we were able to re-
veal plain-text network traffic among IoT devices, mobile
apps, and clouds. This greatly simplified our analysis. Al-
though different platforms adopt different communication
protocols, it is a common practice that messages are encoded
using the JSON (JavaScript Object Notation) format, which
is quite self-explanatory. For instance, we show a message
sent from a device to the cloud of the Alink platform in List-
ing 1. As indicated by the method field, this message is used
to register the device. The device legitimacy information be-
ing sent includes Sign and Key. The device identity informa-
tion being sent includes CID, model, and MAC. The respond
message is shown in Listing 2. As we can see, the device ID
is returned in the uuid field.

4.3 Phantom Devices
We investigated the interactions from three aspects. First,
we tested whether each entity strictly maintains its state ma-
chine, which means an entity should only accept interact-
ing requests acceptable in its current state. For example, as
shown in Figure 2a, when an IoT cloud is working in state
4, it should deny the request from a device to bind itself to
another user account. Second, we tested whether the three
entities always stay in a legitimate 3-tuple state combination
(see Appendix A). Third, we adjusted the parameters, espe-
cially those used in authentication, of the normal interacting
requests and observed the responses. Our goals is to discover
whether the receiving entity of each request conducts proper
authorization checking.

To make this happen, we need to be able to craft JSON
messages and send them to the receiving entities. However,
we cannot arbitrarily change the requests of a real device.
To cross this barrier, we created and ran a phantom device
(program) that mimics a real device to assist our analysis.
A phantom device is constructed as follows. Some smart
home platform providers like Samsung, JD and Ali open-
source their device-side SDKs and demo programs, which
include the same communication logic as a real product. We
simply reused them to build our phantom devices. On the
other hand, XiaoMi and TP-LINK use proprietary SDKs, and
we had to reverse-engineer the firmware we obtained from
real devices, and implement programs to imitate the original
communication functions.

With the help of phantom devices, we could arbitrarily
adjust the parameters of request messages. In this way, we
could trigger unexpected state transitions and manipulate/re-
move the authentication fields of a request to perform black-
box testing against an IoT cloud. We shortly report our find-
ings in Section 5.

The phantom devices not only facilitated interaction anal-
ysis, but also helped us figure out the relevant internal logic

Table 3: Device Identity/Legitimacy Information

Platform Identified Flaws Exploited Flaws Applicable Attacks

Type I
Platform

Alink
F1.1, F1.3
F2, F3, F4

F1.1, F1.3, F2, F3, F4
F1.1, F1.3, F3

F1.1, F1.3, F3, F4
F1.1

Remote Device Hijacking
Remote Device Substitution

Remote Device DoS
Illegal Device Occupation

Joylink∗
F1.1, F1.3

F2, F3
F1.1, F1.3 F3

F1.1
Remote Device Substitution
Illegal Device Occupation

Type II
Platform

KASA F1.2, F1.3, F3
F1.2, F3
F1.3, F3

F1.2

Remote Device Hijacking
Remote Device Substitution

Remote Device DoS

MIJIA F1.2, F1.3, F3
F1.2, F3
F1.3, F3

F1.2

Remote Device Hijacking
Remote Device Substitution

Remote Device DoS
SmartThings† F1.2, F1.3 F1.2 Remote Device DoS

*: Joylink platform does not support device-side unbinding request.
†: SmartThings cloud performs authorization checking on device login request.

of an IoT cloud, which was completely opaque to us. For in-
stance, we used a phantom device to test and confirm which
device identity information is used in the generation of a de-
vice ID. Specifically, for the Alink platform, we changed the
value of each field appeared in Listing 1 and recorded the
corresponding returned device IDs from cloud. Finally, we
compared the received device IDs to infer which fields influ-
ence the generation of a device ID. We concluded that the
fields model, MAC and CID uniquely determine a device ID.
In other words, there is a one-to-one mapping between the
(model, MAC, and CID) tuples and device IDs in the Alink
platform. We used a similar method to test all the studied
platforms and the results are summarized in Table 2.

5 Identified Design Flaws
Using the analysis methodology presented in Section 4, we
have discovered four kinds of design flaws, and we have
shared them with the providers of the five platforms we in-
vestigate. These design flaws are summarized in Table 3.

F1: Insufficient State Guard. We found that none of the
three entities correctly guard their state machines. This could
lead to severe consequences. Since IoT clouds are responsi-
ble for security-critical services such as device identify man-
agement, IoT clouds can be most affected. In the state ma-
chine of an IoT cloud (Figure 2a), when the cloud is working
in state 4 (running), ideally it should only accept status up-
load requests (edge 6) or device unbinding requests (edge
3). Unfortunately, we found that the IoT cloud also accepts
other requests. Depending on which request is accepted in-
correctly when the IoT cloud is in state 4, we break down
flaw F1 into three sub-flaws.

F1.1: This flaw is specific to Type I platforms. An at-
tacker, having all the device identify information, can use a
phantom device to send a registration request to the cloud,
which is fooled to return the corresponding device ID to the
attacker (Figure 3F1.1).

F1.2: This flaw is specific to Type II platforms. An at-
tacker can use a phantom device to send a binding request
that links the device (identified by device ID) with the at-
tacker’s account (Figure 3F1.2). Note that in Type II plat-
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Figure 3: Identified Design Flaws

forms, the binding request is sent from the device and the
cloud unconditionally accepts the binding request (see Sec-
tion 2.3). As a result, the phantom device can bind the at-
tacker’s account to the victim device.

F1.3: The IoT cloud accepts device login requests even if
it is in state 4. This flaw is a pre-condition of flaw F3 which
we will describe shortly.

F2: Illegal State Combination. We found that the three
entities sometimes stay in unexpected and illegal state com-
binations. One root cause is flawed synchronization among
them. When an illegal state combination is exploited, secu-
rity can be violated. For instance, ideally, when a user retires
a smart home device, he should reset and unbind the device,
making all of the three entities go back to their initial states
(i.e., state combination (S1, S1, S1)). However, for Type I
platforms, if the user unbinds the device without firstly re-
setting it, a connection with the cloud is still retained and the
state combination actually switches to (S1, S4, S1), which is
illegal based on our table in Appendix A. Since the device
is in this illegal state combination, we call it a dangling de-
vice (Figure 3F2). Now, since the IoT cloud is in state 1, if
the attacker remotely issues a request to register this device,
the request is allowed and the cloud transfers to state 2. For
the same reason, if the attacker continues to send a request
to bind the device, the cloud accepts the request and trans-
fers to state 4 (state 3 is skipped because a connection is still
maintained with the victim device). At this time, if the at-
tacker sends a control command to the device, the cloud will
mistakenly forward the command to the retired device. This
essentially causes a device hijacking attack.

F3: Unauthorized Device Login. A connection is main-
tained between the device and the IoT cloud after device lo-
gin. Ideally, the cloud should only allow a login request if the
request is issued from the device that is bound with the owner
account. However, we found that the IoT cloud does not per-
form any account-based authorization check during device
login. In other words, the connection is decoupled from the
user account. Consequently, when the attacker uses a phan-
tom device to login with the device ID of the victim device,
the cloud is fooled into establishing a connection with the
phantom device (Figure 3F3). As a necessary condition of
this flaw, the cloud must accept device login requests in state
4, which is exactly what Flaw f1.3 states.

F4: Unauthorized Device Unbinding. Ideally, only the

user who holds an account currently bound to a device has
the privilege to unbind the device. This is true if unbinding
operations are conducted on mobile apps, which indeed in-
clude user credentials in unbinding messages. Unfortunately,
for Type I platforms, device unbinding can also be achieved
on the device side. Based on our analysis, device-side un-
binding commands do not included any user credentials. As
a consequence, an attacker can build a phantom device to
forge an unbinding request using device-side API. The bind-
ing relationship between victim user’s account and the device
is then revoked without the user’s awareness (Figure 3F4).

6 Flaw Exploitation
Exploiting various combinations of the identified design
flaws, an attacker can launch a spectrum of attacks, including
remote device substitution, remote device hijacking, remote
device DoS, illegal device occupation, and firmware theft. In
the following, we first describe the experimental setup. Then
we detail two most severe attacks revealed in this paper –
how to remotely substitute and hijack a victim device, re-
spectively. We also discuss the other attacks. In Table 3, we
summarize the set of particular attacks, as well as the design
flaws exploited by each attack. To visually demonstrate some
of the discovered exploits, we also recorded two videos56.

6.1 Experimental Setup
All the PoC (Proof of Concept) attacks were conducted
within lab environment without influencing legitimate users.
The tested devices include smart plugs, IP cameras, WiFi
bulbs, cleaning robots and smart gateways, covering all the
studied platforms. These devices are shown in Figure 4 and
we also list them in Appendix B.

Obtaining Device Identity and Legitimate Information.
We need device identity and legitimacy information listed in
Table 2 to forge a phantom device. As mentioned earlier,
the difficulty of obtaining an information item differs. In the
following, we use an Alink device (Philips smart plug with
model SPS9011A) and a TP-LINK device (WiFi Bulb with
model LB110) to represent Type I and Type II devices, re-
spectively. We describe how to obtain their identity and legit-
imacy information. For other platforms, similar approaches
can be adopted.

5 https://youtu.be/MayExk_PKhs
6 https://youtu.be/fufEAtQq2_g
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Figure 4: Smart Home Devices Used in Our Experiments

For the Alink device, we collected its legitimacy informa-
tion (Key and Sign) very easily through the public repos-
itories mentioned in Section 3.2. The Alink device uses
model, MAC, and CID as its identity information. For model
and CID, which are fixed for a specific device type, we
extracted them from a log maintained by the correspond-
ing mobile app. For the MAC address, we obtained it by
brute-force attack. Specifically, we bought two test devices
(Philips smart-plugs) and recorded the MAC address of the
first one (“3C:2C:94:0B:56:69”) manually. The first device
served as the attacker’s device in our experimental setting.
Then we tried to guess the MAC address of the other device,
which played the “victim device” role in our experiments.
After 21,692 mutations to “3C:2C:94:0B:56:69”, we “hit”
the victim device’s MAC address, which turned out to be
“3C:2C:94:0B:AB:25”.

To further demonstrate that collecting MAC addresses of
real devices is not very difficult, we mutated the lower two
bytes of “3C:2C:94:0B:56:69” to get 65,536 different MAC
addresses. Then we used these MAC addresses with other
fixed identity/legitimacy information to register the victim
device. Every registration request returned us a device ID.
We further wrote a probing script running on the mobile to
automatically bind the returned device IDs to our test user
account. If a device ID has already been bound to an ac-
count, the cloud will refuse the corresponding binding re-
quest with an error message. We found that 7,181 device
IDs had already been taken by real users. It means the cor-
responding 7,181 MAC addresses were actively being used
by real devices and they could potentially become victims in
our attacks.

Ethical Consideration. In order to prevent potential influ-
ence on legitimate users, before we ran the script that tests
active MAC addresses, we first evaluated the impact on a
test device in lab environment. Specifically, we first simu-
lated a legitimate user by normally binding a tested device to
an account. Then we used a phantom device with the same
identity and legitimacy information as the test device and got
the same device ID from the cloud. We then used another
account to try to bind the device as was done by the prob-

ing script. During this process, we found that the test device
could still be operated normally and was not unbound.

For the TP-LINK device, since its identity information
(i.e., device ID) and legitimacy information (i.e., hwid and
MAC address) are hard-coded, we had to physically ex-
tract them. Specifically, we collected device IDs, hwid and
MAC address by launching a MITM attack that intercepts
the device-app communication.

Building Phantom Devices. With all the required infor-
mation available, we implemented phantom devices using
Python. As discussed in Section 4.3, when the device-side
SDK is available (e.g., on platforms provided by Samsung,
JD and Ali), we directly incorporated them into our pro-
gram. Otherwise, our Python program mimics the behavior
of a device. The behavior knowledge is obtained by reverse-
engineering the firmware extracted from real devices (Xi-
aoMi and TP-LINK). In total, we implemented five kinds of
phantom devices for Samsung, Joylink, Alink, XiaoMi and
TP-LINK, respectively. They were implemented by 22, 17,
14, 61 and 72 lines of code (excluding SDK functions if any),
respectively.

Network Configuration. We placed the target devices and
the phantom devices in two separate LANs behind NAT-
enabled routers. As a result, the target devices and the phan-
tom devices cannot communicate with each other directly.
This setting resembles real-world scenarios where a remote
attacker does not have access to the LAN of the victim.

6.2 Remote Device Substitution
In this subsection, we showcase how an attacker can re-
motely replace the victim’s device with a phantom device
under his control. To simplify the presentation, in the fol-
lowing, we use Alice to denote the victim/legitimate user and
Trudy to denote the attacker. We use sequence diagrams to
represent the interactions among the three entities. An attack
happens when Trudy interferes with the normal interaction
diagrams. In Appendix C, we show the normal interaction
diagrams for all the studied platforms.

Attack Workflow (Type I). On the top of Figure 5 (above
the highest dashed red line), we show the normal workflow
of how Alice uses her IoT device on a Type I platform. Af-
ter Alice provisions the device with a WiFi credential, the
device sends its legitimacy credential and device identity in-
formation to the cloud to get registered (Step A.1). Based on
the device identity information, the cloud registers the de-
vice with a device IDA and binds it to Alice’s account (Step
A.2). After the device logs in (Step A.3), Alice can control
the device with her account.

Then, the attacker, Trudy, kicks in as shown in the middle
of the figure (between the two dashed red lines). She first lets
the phantom device send the same device registration request
as used in step A.2 to the cloud (Step T.1). Due to F1.1, the
cloud accepts this request and registers the phantom device
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with the same device IDA, but still keeps device IDA bound
with Alice. At this moment, Alice actually binds the phantom
device and real device at the same time. Then Trudy could
leverage the flaw F1.3 and F3 to log in a phantom device
without Alice’s account information (Step T.2). Since the
phantom device has the same device ID as the real device,
the cloud disconnects the original connection with the real
device and establishes a new connection with the phantom
device. However, when the real device does not receive the
heartbeat message for a while, it automatically logs into the
cloud again and puts the phantom device offline. Now, the
real device and the phantom device are in fact competing for
connection with the cloud. To win the competition, Trudy
configures the phantom device to login very frequently. As a
result, the phantom device always wins. Alice now still ap-
pears to “control” a device through her mobile app, although
this device has actually been replaced by the phantom device
under the control of Trudy.

Attack Workflow (Type II). Similarly, the top part of Fig-
ure 6 (above the highest dashed red line) shows the normal
workflow of how Alice uses her device on a Type II plat-
form. After her mobile app sends her account information to
the device (Step A.1), the device sends the binding request
with device ID and legitimacy information, as well as the ac-
count information to the cloud (Step A.2). The cloud binds
the device ID A to Alice’s account. After the device logs in
the cloud (Step A.3), Alice can control/monitor the device
with her mobile app.

In the middle of the figure (between the two dashed red
lines), Trudy launches the remote device substitution attack.
Enabled by flaws F1.3 and F3, she lets the phantom device
successfully log into the cloud with the same device ID (Step
T.1). At this time, the device ID A is still bound to Alice’s
account. Like in the Type I platform, the phantom device
maintains a connection with the cloud by periodically log-
ging in. In this way, the attacker secretly substitutes Alice’s
device with a phantom device under her own control.

Attack Consequence: Privacy Breaches. In normal opera-
tions, when Alice uses her mobile app to send a remote con-
trol command to the cloud, the cloud forwards the command
to the “device”. Unfortunately, in the remote substitution at-
tack, the real device has been replaced by a phantom device
controlled by the attacker. As a result, all the control com-
mands from Alice are exposed to the phantom device and
further to Trudy, leading to a privacy breach. For example,
if Trudy substitutes a smart plug, he could know when Alice
turns on/off the smart plug. This information could be used
to infer whether Alice is at home.

Attack Consequence: Falsified Data. In normal opera-
tions, the real device updates its sensor readings to the cloud
and the result is reflected in Alice’s mobile app. Unfortu-
nately, in the remote substitution attack, the sensor readings
are sent from the phantom device. This gives Trudy an op-
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Figure 5: Remote Attacks on Type I Platforms

portunity to manipulate the sensor readings sent to Alice,
thus deceiving or misleading Alice. For example, we tested
a XiaoMi smoke alarm (model: Fire Alarm Detector) and a
Alink smart lock (model: KAADAS KDSLOCK001). If the
smoke alarm detects a thick smoke in the room, the smart
lock will be unlocked automatically to open the window/-
door. We used remote device substitution attack to manip-
ulate the sensor readings of smoke alarm and successfully
unlocked the smart lock. This leads to serious consequence
because Trudy can enter Alice’s room at will.

Our attack can also serve as a trigger for the flaws men-
tioned in previous works [17, 35]. Once a less-protected de-
vice is substituted by a phantom device and the device is
in the chain of a “routine”, the phantom device can further
influence other data sensitive devices. For example, as men-
tioned in [35], the Nest Cam monitor in a house will automat-
ically switch off when the global “away/home” state changes
from “away” to “home”. Trudy can take advantage of the
substitution attack to change this state variable to disable the
camera and burglarize the house without being recorded.

Stealthiness Analysis. Remote device substitution attack is
highly stealthy. This is because Alice always sees the de-
vice to be online in her smartphone (although it is a phan-
tom device). However, if Trudy feeds the phantom device
with sensor readings that excessively deviate from normal,
Alice (if she is security-savvy) might become suspicious of
the dramatic change.

6.3 Remote Device Hijacking
Trudy can further remotely control Alice’s device by exploit-
ing more flaws. We call this remote device hijacking attack.
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Attack Workflow (Type I). Continuing from Step T.2, de-
vice hijacking attack is depicted at the bottom of Figure 5
(below the lowest dashed red line). At this moment, the
phantom device has already logged in the cloud. Due to flaw
4, Trudy is able to send a device-side unbinding request via
her phantom device to the cloud (Step T.3), which puts the
real device in dangling status (due to F2). Finally, Trudy
binds the device with her account (Step T.4). As a conse-
quence, Alice’s device is connected with the cloud whereas
Trudy is able to control the device on her smartphone.

Attack Workflow (Type II). Unlike Type I platforms, to
carry out a hijacking attack against Type II platforms, Trudy
does not need to continue from the success of a remote sub-
stitution attack. Instead, she starts attacking from scratch,
as depicted at the bottom part of Figure 6 (below the low-
est dashed red line). Trudy starts by using her mobile app
to send her account information to the phantom device (Step
R.1). Next, the phantom device, which has Alice’s device
and other legitimacy information, will send a binding request
with Trudy’s account information (Step R.2) to the cloud.
Due to F1.2, the cloud is fooled into accepting the binding
request. Now, the ownership of the device has changed to
Trudy from the view point of the cloud. The cloud then
terminates the connection from the real device. However,
the real device has re-connecting mechanism that contin-
uously restores lost connection to the cloud. Due to F3,
the cloud does not verify whether the account information
(Alice) matches the current device owner (Trudy) or not.
Therefore, the re-connecting request from the real device can
be successful. At this point, Trudy could completely control
Alice’s device (Step R.3).

Attack Consequence. The remote device hijacking attack
allows Trudy to bind her account to Alice’s device. As a re-

sult, she can harvest the sensor readings in Alice’s home. She
can also send remote commands to control Alice’s device. In
our experiment, we successfully hijacked a Alink IP cam-
era (model: RIWYTH RW-821S-ALY). As a result, we can
view the victim’s IP video feeds secretly, greatly threatening
victim’s privacy.

Stealthiness Analysis. Since Alice’s device has been hi-
jacked, she can no longer talk to her device. It could raise
an alert for Alice if she is security-savvy. Average Joe may
simply regard it as a service failure and rebind his user ac-
count. It is worth mentioning that even for security-savvy
users, it is not easy to trace back to the attacker. Only the
IoT cloud has some clues to trace back to the attack origin.

6.4 Other Security Hazards
6.4.1 Remote Device DoS

As a basic security measure, IoT clouds only allows autho-
rized users to control a device. If an attacker can unbind a
target device from its legitimate user, the target device can-
not be operated anymore, essentially leading to device denial
of service (DoS) attack. To launch this attack, the attacker
does not need to exploit many flaws. In particular, for Type I
platforms, after the attacker sends the device-side unbinding
command (Step T.3), as shown in Figure 5, the cloud directly
revokes the binding relationship between the victim user and
the device. For Type II platforms, as shown in Figure 6, af-
ter the attacker leverages flaw F1.2 to bind a phantom device
with his account (Step R.2), the target device is unbound.

Note that since remote device DoS attacks require less
flaws, the attack is applicable to more platforms. For in-
stance, the Samsung SmartThings platform, which is im-
mune to remote device substitution/hijacking attacks, is vul-
nerable to remote device DoS attacks. This is because the
SmartThings platform is not subject to F3 which is essential
for remote device substitution/hijacking attacks. However,
F3 is not required in remote device DoS attacks. We will ex-
plain why SmartThings is not subject to F3 in Section 7.4.2.

6.4.2 Illegal Device Occupation

Although a device may be shared with multiple users, only
one user account is allowed to be bound to a smart home
device. If the attacker can predict the device IDs of unsold
devices and use phantom devices to bind them with valid
user accounts, these devices cannot be bound again after be-
ing sold. We call this attack illegal device occupation. In
essence, this attack makes new devices unavailable to legit-
imate consumers. Note that this attack only applies to Type
I platforms since attackers can predict device identity infor-
mation. In Type II platforms, long and unpredictable device
IDs are hard-coded in devices. Attacks can no longer learn
anything about device IDs until the device is sold.
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6.4.3 Firmware Theft
To protect intellectual property (IP), most IoT manufacturers
employ certain tamper-resistant techniques to protect their
products, including enforcing read-only property on flash
chips that store proprietary firmware. However, with leaked-
out firmware, the attacker can reverse-engineer it, causing
IP theft and harming the corresponding manufacturers. By
exploiting OTA updates available on most IoT devices, our
firmware theft attack is able to bypass the aforementioned
protections. By forging different kinds of phantom devices,
the attacker can issue OTA update requests in bulk, and thus
he can harvest hundreds of firmware images in seconds.

In the experiments, we created phantom devices to “em-
ulate” 1,355 kinds of Alink devices, 543 kinds of Joylink
devices, 118 kinds of XiaoMi devices, 23 kinds of Smart-
Things devices, and 18 kinds of TP-LINK devices. Eventu-
ally, we were able to collect 63 firmware images from the
Alink platform, 37 from the Joylink platform, 89 from the
MIJIA platform, and 16 from the KASA platform.

7 Discussion
Although we only studied five popular cloud-based smart
home platforms, our findings can be generalized to other
smart home devices (e.g., hub-connected devices), and have
implications to platforms that are non-cloud-based. We also
discuss the root causes of the identified vulnerabilities, and
suggest several potential defensive approaches to mitigating
the discovered exploits. Finally, we discuss the impact of the
discovered exploits on commercial competitions.

7.1 Impact on Hub-Connected Devices
In this paper, we focus on cloud-connected devices. How-
ever, the discovered exploits are also applicable to hub-
connected devices due to two reasons.

First, the attacker can leverage an already exploited hub
to control hub-connected devices. For example, a XiaoMi
smart gateway is a hub for MIJIA products. After hijacking
the gateway, the attacker can further control all its connected
devices. Note that Samsung SmartThings is not vulnerable to
this attack because a SmartThings hub unbinds all the con-
nected devices when the ownership of the hub is changed,
which is inevitable in this attack.

Second, by forging a phantom hub-connected device, it is
possible to launch firmware theft and illegal device occupa-
tion attacks. However, since the target devices are behind a
hub, it is impossible to remotely hijack or substitute them.

7.2 Implications to Cloud-Free Smart Home
Platforms

HomeKit. HomeKit [8] is Apple’s proprietary smart home
platform. Compatible devices run the HomeKit accessory
protocol to directly talk to mobile apps via WiFi or Blue-
tooth. Moreover, using the mobile app, users can access

home devices indirectly through a hub device (Apple TV,
HomePod or even iPad). In this case, the cloud relays com-
mands from the mobile app to the Apple TV or HomePod.
Then the Apple TV or HomePod issue commands to home
devices locally. Note outside the home LAN, there is no di-
rect link to home devices [49]. As a result, our attacks are
not applicable to HomeKit devices.

DIY Platforms. DIY smart home platforms such as Home
Assistant [10] and OpenHAB [48] are open-source projects
that focus on building local home automation. Due to con-
trollable privacy and low cost (as low as the price of a Rasp-
berry Pi), they are becoming more and more popular among
DIY enthusiasts. In essence, they build private hubs that in-
teract with different home devices. To support as many de-
vices as possible, these platforms can be extended with com-
ponents, which implement device specific logic [12]. While
some devices can work by connecting to the hub locally
(e.g., Philips Hue), others cannot work without relying their
own cloud backends. To this end, Home Assistant classifies
the smart devices into two types: devices that interact with
third-party clouds, and devices that respond to events that
happen within Home Assistant. For the former type, the hub
serves as a proxy of other third-party clouds. For example, if
a user wants to use a SmartThings device through Home As-
sistant, he first registers and binds the device with the Smart-
Things cloud. Then he needs to install a SmartThings plugin
for Home Assistant to connect the device to the hub [11].
The plugin stores the user’s SmartThings account token and
delegates all the device requests to the SmartThings cloud.

For smart home devices relying on their own cloud back-
ends, Home Assistant is actually transparent to the devices
and thus all the exploits discovered in this paper can be ap-
plied to them. However, our attacks cannot influence devices
that only work locally.

7.3 Root Cause Analysis
Some of the vulnerabilities revealed in this paper are asso-
ciated with inherent design flaws of smart home platforms.
Some are themselves caused by design challenges of smart
homes. Therefore, some of security flaws cannot be reme-
died in a straightforward way.

Ownership Transfer. A natural assumption that smart home
manufacturers make is that a user who physically owns a de-
vice should have full control over it. Thus, in Type II plat-
forms, each device takes charge of authorization checking
and sending device binding requests. This allows a legiti-
mate user to rebind a device with another account by phys-
ically resetting it. Note that the rebind operation unbinds
the previous account automatically and happens regardless
of whether the device has already been unbound or not. This
design directly leads to flaw F1.2, allowing an attacker to use
a phantom device to remotely unbind the original user.

Device Reconnection. Network congestion may cause ran-
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dom connection loss between a device and an IoT cloud.
The IoT cloud mitigates the problem by allowing the de-
vice to re-login itself automatically. However, at the time
of re-login, the cloud does not do any account-based authen-
tication checking on all the platforms we have investigated
except for SmartThings. This design gives raise to F3 which
allows an attacker to remotely control the device without user
awareness.

Cloud-Device State Inconsistency. To avoid problematic
state transitions, an IoT cloud should be aware of the status
of the devices it manages. Unfortunately, this is very hard
to achieve in practice. In the previous work, it has shown
that 22 of 24 studied devices suffer from design flaws that
lead to state inconsistency [45]. For one thing, intermittent
network conditions make it very difficult to keep the state of
a device and the state of the IoT cloud synchronized at all
time. For another, a user may reset a device by pushing the
physical reset button when the device’s Internet connection
is lost. As a result, the device binding information is cleared
on the device but not in the cloud. In all cases, the synchro-
nization between the cloud and the device is broken. This
causes flaws F1.1, F1.2, F1.3, and F2.

7.4 Mitigation
In this section, we propose several defensive design sugges-
tions to secure smart home platforms in the first place. It
should be noticed that adopting only a subset of our sug-
gestions is not enough, because the flaws involved in the in-
teractions are multi-faceted and tangled together (e.g., F1.3
and F3). Platform providers should consider all the potential
security issues introduced by the interactions, including au-
thentication, authorization and validity of working state ma-
chines.

7.4.1 Strict Device Authentication
We have clearly shown that existing authentication is not ad-
equate. By violating authentication, a phantom device is in-
distinguishable from a victim device. To ensure that every
device an IoT cloud talks to is a genuine device, we sug-
gest that the manufacturers embed a unique client certificate
into each device for high-end devices powered by Intel or
ARM Cortex-A processors. In addition, the IoT cloud should
always examine the client certificate before accepting any
device request. For resource-restricted devices powered by
a microcontroller, the manufacturers should embed a read-
only random number into each device. On the cloud side,
the cloud should always check whether the random number
matches the other identity or legitimacy information.

Because device IDs are used by IoT clouds to identify a
device, we also suggest that platform providers retrofit the
device ID provisioning mechanism so that the attacker can-
not easily obtain a valid device ID. Hard coding the device
IDs is a bad practice because once a device ID is leaked, the
corresponding device becomes vulnerable forever. The de-

vice ID of a device should be generated by the IoT cloud
during registration, and the generation algorithm should use
harder-to-guess information, such as user ID/passwords, ran-
dom numbers, etc.

7.4.2 Comprehensive Authorization Checking
Compared with mobile-side commands, we found that most
IoT clouds do not enforce strict authorization checking of
device-side commands and baselessly trust arbitrarily con-
nected devices. For Type I platforms, when a device talks to
an IoT cloud, the user account information is absent on the
device. Thus, the IoT cloud directly accepts unauthorized lo-
gins (F3) or unbind (F4) commands. For Type II platforms,
because the device takes charge of checking the binding re-
lationship, the cloud skips performing further authorization
checking on the requests from the device.

We suggest that both the device and the IoT cloud store
and maintain the binding relationship as well as perform
authorization checking. Moreover, on the cloud side, the
account-based authentication should be performed on every
device-side request, especially for critical operations such as
device login. Samsung SmartThings follows this practice
and thus is not vulnerable to flaw F3. In SmartThings, de-
vices must explicitly include user credentials for every login
request. This additional credential checking prevents the tar-
get device from reconnecting to the cloud.

7.4.3 Enforcing the Validity of State Transitions
As revealed by our findings, all the tested platforms failed to
enforce the validity of the involved state transitions. In order
to prevent the attacker from exploiting unexpected state tran-
sitions, smart home platforms should identify and formulate
every legitimate interaction request as a 3-tuple in the form
of (sender entity & its state, the request message, receiver
entity & its state). In addition to checking every request, the
sender entity should also verify if its current state allows the
request to be sent out; and the receiver entity should verify
if its current state is allowed to receive the request. For in-
stance, the IoT cloud shown in Figure 2 should only accept
a device registration request when it stays in state 1. Fur-
thermore, in order to prevent the three entities from staying
out of the set of legitimate state combinations, the three enti-
ties should formally define and maintain their own state ma-
chines. In the meantime, the IoT cloud of a platform should
synchronize the three entities so that they stay in a legitimate
state combination. Finally, if an unrecoverable system error
occurs, the three entities should roll back to their initial states
immediately.

7.5 Malignant Commercial Competitions
The discovered exploits could also be leveraged by un-
scrupulous merchants in commercial competitions.

IP Theft. As mentioned in Section 6.4.3, a company can
steal a rival’s firmware and reverse-engineer it to steal pro-
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prietary IP. This kind of behavior harms fair competition and
hinders technology advancement.

Statistics Manipulation. By churning out hundreds of thou-
sands of phantom devices, a malicious company could rig
the number of active devices in the market. This has two im-
plications. First, by increasing the market share of its own
products, the company can present an eye-catching year-end
report. Second, by increasing the number of activated de-
vices of its rival, its rival could be overcharged by the plat-
form provider. This is because some platform providers bill
cooperative manufacturers based on the number of activated
devices connected to their clouds. A unscrupulous manu-
facturer can use phantom devices to register a large number
of non-existing devices under the name of its rivals, causing
financial loss to them.

User Experience Disruption. Leveraging the illegal device
occupation attack, a unscrupulous manufacturer can poten-
tially take over a large number of its rival’s in-stock prod-
ucts. When these products are sold, the consumers will have
a terrible user experience.

8 Related Work
We review the related work on smart home security from
three perspectives: device security, communication security
and IoT application security.

Device Security. Device security research emphasizes the
vulnerabilities of individual devices. Ling et al. [41] stud-
ied a smart plug system and revealed a weak authentication
vulnerability. After dissecting the behavior of several IoT
devices such as Phillips Hue light bulbs and Nest smoke de-
tectors, Notra et al. [44] revealed that basic security mecha-
nisms such as encryption, authentication and integrity check-
ing are absent in these devices. Several currently available
smart hubs were investigated in [20] and [55], and numerous
security flaws were identified. In contrast to analyzing indi-
vidual devices, our study analyzes the complex interactions
among the three entities engaged in a smart home platform.

Communication Security. Communication security re-
search emphasizes the security and privacy issues in smart
home communication protocols such as BLE, ZigBee, and
Z-Wave [14, 1, 50, 27]. Agosta et al. [1] approached the se-
curity and privacy problems involved in the key derivation
algorithm adopted by the widespread Z-Wave home automa-
tion protocol. Ronen et al. [50] described a worm attack
which has the potential of massive spread by exploiting an
implementation bug in the ZigBee Light Link protocol. Re-
searchers also demonstrated that attackers can infer private
in-home activities by analyzing encrypted traffic from smart
home devices [9] or by extracting features of connection-
oriented application data unit exchanges [46]. Instead of fo-
cusing on a particular algorithm or protocol, this study con-
ducts comprehensive platform-wide vulnerability analysis.

IoT Application Security. Recently, increasing numbers
of researchers have paid their attention to smart home plat-
forms, but they usually focus only on in-cloud IoT applica-
tions (i.e. home automation applications). For instance, Fer-
nandes et al. [23] revealed that the capabilities implemented
in the SmartThings IoT application programming framework
are too coarse-grained, which allows malicious third-party
IoT applications to compromise the SmartThings platform.
Celik et al. [16] proposed SAINT, a static taint analysis tool
to find sensitive data flows in IoT applications. The same
authors further studied whether an IoT application and its
environment adhere to functional safety properties. They
found that 9 out of 65 SmartThings apps violate 10 out of 35
properties [17]. Kafle et al. [35] revealed the feasibility and
severity (e.g., privilege escalation) of misuse of smart home
routines. Moreover, Ding et al. [21] presented a tool named
IoTMon to discover risky interaction chains among IoT ap-
plications. Our work focuses on the interactions between the
participating entities engaged in a smart home platform, in-
stead of between home automation applications.

9 Conclusions
Smart home technology is playing a more and more im-
portant role in our digital lives. To seize a greater market
share, smart home platform providers shorten the time-to-
market by reusing existing architectures and incorporating
open-source projects without rigorous review (of the poten-
tial security and privacy issues). In this work, we conducted
an in-depth analysis of five widely-used smart home plat-
forms, and found that the complex interactions among the
participating entities (i.e., devices, IoT clouds, and mobile
apps), though not being systematically investigated in the
literature, are vulnerable to a spectrum of new attacks, in-
cluding remote device substitution, remote device hijacking,
remote device DoS, illegal device occupation, and firmware
theft. The discovered vulnerabilities are applicable to mul-
tiple major smart home platforms, and cannot be amended
via simple security patches. Accordingly, we propose several
defensive design suggestions to secure smart home platforms
in the first place.
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A Legitimate 3-tuple State Combinations

State of an IoT Cloud State of a Device State of a Mobile App

Type I
Platform

S1 S1 or S2 S1 or S2
S2 S3 S2
S3 S3 S3
S4 S4 S4

Type II
Platform

S2 S1 or S2 S1 or S2
S3 S3 S3
S4 S4 S4

B Tested Devices and Applicable Attacks

Tested Device Device Model Platform Applicable Attacks

Type I
Platform

Mobile Remote
HD Monitor

RIWYTH
RW-821S-ALY Alink

Remote Device Hijacking
Remote Device Substitution

Remote Device DoS
Illegal Device Occupation

WiFi Smart Adapter
Philips

SPS9011A/93 Alink

Remote Device Hijacking
Remote Device Substitution

Remote Device DoS
Illegal Device Occupation

Security
Smart Lock

KAADAS
KDSLOCK001 Alink

Remote Device Hijacking
Remote Device Substitution

Remote Device DoS
Illegal Device Occupation

WiFi Smart Plug
BULL

GN-Y2011 Joylink
Remote Device Substitution
Illegal Device Occupation

Smart Weighing Scale ZK321J Joylink
Remote Device Substitution
Illegal Device Occupation

Type II
Platform

WiFi Plug
TP-Link
HS100 KASA

Remote Device Hijacking
Remote Device Substitution

Remote Device DoS

WiFi LED Bulb
TP-Link
LB110 KASA

Remote Device Hijacking
Remote Device Substitution

Remote Device DoS

Smart Gateway
XiaoMi

Multifunctional Gateway MIJIA
Remote Device Hijacking

Remote Device Substitution
Remote Device DoS

Smoke Alarm
XiaoMi

Fire Alarm Detector MIJIA
Remote Device Hijacking

Remote Device Substitution
Remote Device DoS

Cleaning Robot
Samsung

POWERbot R7040 SmartThings Remote Device DoS

Hub
Samsung

Hub 3rd Generation SmartThings Remote Device DoS

Table 1: Tested devices and applicable attacks

C Sequence Diagrams
We show the complete sequence diagram of interactions with
concrete parameters for each of the studied platforms. Note
that some essential steps are omitted because they are irrele-
vant to our attack. In each figure, a box corresponds to one
phrase in the life-cycle of a device (Section 6.2).

Device

App

Server

ServerDevice

App

Load broadcast"method":"get DevInfo"

Plain(version, model, sn, mac)

Load broadcast {password,ssid}Discovery

/gw/mtop.alink.app.core.user.unbinddevice{uuid}

{"Success",errorcode} 

{"Success",errorcode} 

alink.tcp.aliyun.com{Sign,key,cid,uuid,"method":"unregisterDevice",
model,sn,mac}

Unbind

/gw/mtop.openalink.app.core.device.register.byuser{model,mac,sn,cid}

{errorcode,uuid}

/gw/mtop.alink.app.core.user.binddevice{uuid}

{"Success",errorcode} 

Bind

{"Success",errorcode} 

alink.tcp.aliyun.com{Sign,key,cid,uuid,"method":"loginDevice", sdkversion}

Login

alink.tcp.aliyun.com{Sign,key,cid,uuid(empty),
"method":"registerDevice",model,sn,mac}

errorcode,uuid

Register

Note: “uuid” is device ID in Alink platform.

Figure 1: Sequence Diagram of the Alink Platform
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Device

App

Server

ServerDevice

App

/f/service/unbindDevice {feedid}

{errorcode}

Unbind

AES_enc ({timestamp,firmware version}, sessionkey)

AES_enc({timestamp,rand,seessionkey},accesskey)

AES_enc({timestamp,rand},accesskey+Plaintext(feedid,rand)

AES_enc ({timestamp,errorcode},sessionkey)

AES _enc({timestamp,device_status},sessionkey)

AES_enc ({timestamp,errorcode},sessionkey)

Login

/f/service/bind{feedid,pid,accesskey}

{devicename,feedid,status=0,pin(user account)}

Bind

/f/service/activiateSig(pid,mac,dev_rand)

{feedid,accesskey,dev_rand_sig}

errorcode

Plaintext (app_pub) +AES({accesskey,localkey,feedid},secret)

Register

plaintext(mac,uuid,dev_pub,dev_rand)

Local broadcast Plaintext(pid)
Discovery

Note: “feeeid” is device ID in Joylink platform.

Figure 2: Sequence Diagram of the Joylink Platform

App ServerDevice

App ServerDevice

coap GET: oic/res?rt=x.com.samsung.provisioninginfo

di(deivceid), links

coap GET: /oic/sec/doxm  Query bound relationship

oxms,oxmsel,owned,deviceuuid,devowneruuid,rowneruuid,rt,i
f

Discovery

coaps+tcp DELETE /oic/account?di=XXXXXXXXX; accesstoken=Ct3cLTWrbey9zwng3cTJ4kM1s

Successfully removed

send close notify message

coaps+tcp POST /oic/account/session uid, di, 
accesstoken, login, coreversion, verticalversion

Unbind

coaps+tcp POST 
//18.218.32.104:443/oic/account/session (uid, di, 

accesstoken, login, coreversion, verticalversion)

expiresin, refreshtoken_expiresin

coaps+tcp POST /oic/rd?rt=oic.wk.rdpub (di, name, 
x.model, resources)

SUCCESS

Login

dtlsv1.2+coap POST /oic/sec/doxm 
(oxmsel,owned,devowneruuid,rowneruuid,rt)

changed response
coaps+tcp POST ocfconnect-shard-na03-

useast2.samsungiotcloud.com/oic/account (di, AuthCode, 
Accesstoken, Uid, AuthProvider, clientID, timeout_cnt)

accesstoken, refreshtoken, tokentype, uid, expiresin, 
refreshtoken_expiresin, redirecturi, certificate, sid, 

defaultgroup

Bind

Note: “di” is device ID in SmartThings platform.

Figure 3: Sequence Diagram of the SmartThings Platform

Device

App

Server

ServerDevice

App

XOR ("method":"bind", password, username)

XOR(err_code)

wap.tplinkcloud.com, {{"method":" unbindDevice", cloudUserName, deviceId}

{error_code}

devs.tplinkcloud.com{"method":"unbindDevice", accountId, 
isNewDomain, productLineCategory, deviceId, cloudUserName, id}

{error_code}

Unbind

devs.tplinkcloud.com{"method":" bindDevice", deviceId, 
cloudUserName, cloudPassword, id}

{error_code, msg}

devs.tplinkcloud.com{"method":"helloCloud", deviceId, 
cloudUserName, deviceName, mac, model, hwId, fwId, oemId, id}

{error_code, msg, result, illegalType, tcspStatus}

Login

Bind

Load broadcast XOR("method":"get_sysinfo")

XOR(model, mac, hwId, fwId, deviceId, oemId, err_code)

Discover
Note: “deviceId” is device ID in KASA platform.

Figure 4: Sequence Diagram of the KASA Platform

Device

App

Server

ServerDevice

App

Note: “did” is device ID in MIJIA platform.

ot.io.mi.com,{did, stamp}

{did, stamp}

ot.io.mi.com,{did, stamp, AES(("method":"_otc.login", id), key)

{did, stamp, AES((result), key)}

Login

api.io.mi.com, {"method":"del_owner_device_batch", devList, did, pid}

ot.io.mi.com,{did, stamp, AES(("method":"restore", id, from), key)

{did, stamp, AES((result, id), key)}

{code, message, result}

Unbind

Load broadcast plaintext(0xff)

plaintext(did, mac, counter, token)

Discovery

ot.io.mi.com,{did, stamp, AES(("method":"props", id), key)

{did, stamp, AES((result), key)}

ot.io.mi.com,{did, stamp, AES(("method":"_otc.info", token, mac, uid, 
ver, model), key)

{did, stamp, AES((otc_list, otc_test: ip, port, interval, firsttest), key)}

Bind

AES (("method":"config_router", ssid, passwd, uid), token)

AES((result), token)

Figure 5: Sequence Diagram of the MIJIA Platform
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