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Abstract

One of the defining features of a cryptocurrency is that its
ledger, containing all transactions that have ever taken place,
is globally visible. As one consequence of this degree of
transparency, a long line of recent research has demonstrated
that — even in cryptocurrencies that are specifically designed
to improve anonymity — it is often possible to track money
as it changes hands, and in some cases to de-anonymize users
entirely. With the recent proliferation of alternative cryptocur-
rencies, however, it becomes relevant to ask not only whether
or not money can be traced as it moves within the ledger
of a single cryptocurrency, but if it can in fact be traced as
it moves across ledgers. This is especially pertinent given
the rise in popularity of automated trading platforms such
as ShapeShift, which make it effortless to carry out such
cross-currency trades. In this paper, we use data scraped from
ShapeShift over a thirteen-month period and the data from
eight different blockchains to explore this question. Beyond
developing new heuristics and creating new types of links
across cryptocurrency ledgers, we also identify various pat-
terns of cross-currency trades and of the general usage of these
platforms, with the ultimate goal of understanding whether
they serve a criminal or a profit-driven agenda.

1 Introduction

For the past decade, cryptocurrencies such as Bitcoin have
been touted for their transformative potential, both as a new
form of electronic cash and as a platform to “re-decentralize”
aspects of the Internet and computing in general. In terms of
their role as cash, however, it has been well established by
now that the usage of pseudonyms in Bitcoin does not achieve
meaningful levels of anonymity [1,11,17,18,21], which casts
doubt on its role as a payment mechanism. Furthermore, the
ability to track flows of coins is not limited to Bitcoin: it ex-
tends even to so-called “privacy coins” like Dash [10, 12],
Monero [4,7,13,24], and Zcash [6, 16] that incorporate fea-
tures explicitly designed to improve on Bitcoin’s anonymity
guarantees.

Traditionally, criminals attempting to cash out illicit funds
would have to use exchanges; indeed, most tracking tech-
niques rely on identifying the addresses associated with these
exchanges as a way to observe when these deposits hap-
pen [11]. Nowadays, however, exchanges typically imple-
ment strict Know Your Customer/Anti-Money Laundering
(KYC/AML) policies to comply with regulatory requirements,
meaning criminals (and indeed all users) risk revealing their
real identities when using them. Users also run risks when
storing their coins in accounts at custodial exchanges, as ex-
changes may be hacked or their coins may otherwise become
inaccessible [9, 19]. As an alternative, there have emerged
in the past few years frictionless trading platforms such as
ShapeShift' and Changelly,” in which users are able to trade
between cryptocurrencies without having to store their coins
with the platform provider. Furthermore, while ShapeShift
now requires users to have verified accounts [22], this was
not the case before October 2018.

Part of the reason for these trading platforms to exist is the
sheer rise in the number of different cryptocurrencies: accord-
ing to the popular cryptocurrency data tracker CoinMarketCap
there were 36 cryptocurrencies in September 2013, only 7 of
which had a stated market capitalization of over 1 million
USD,? whereas in January 2019 there were 2117 cryptocur-
rencies, of which the top 10 had a market capitalization of
over 100 million USD. Given this proliferation of new cryp-
tocurrencies and platforms that make it easy to transact across
them, it becomes important to consider not just whether or
not flows of coins can be tracked within the transaction ledger
of a given currency, but also if they can be tracked as coins
move across their respective ledgers as well. This is especially
important given that there are documented cases of criminals
attempting to use these cross-currency trades to obscure the
flow of their coins: the WannaCry ransomware operators, for
example, were observed using ShapeShift to convert their
ransomed bitcoins into Monero [3]. More generally, these

Thttps://shapeshift.io
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services have the potential to offer an insight into the broader
cryptocurrency ecosystem and the thousands of currencies it
now contains.

In this paper, we initiate an exploration of the usage of these
cross-currency trading platforms, and the potential they offer
in terms of the ability to track flows of coins as they move
across different transaction ledgers. Here we rely on three
distinct sources of data: the cryptocurrency blockchains, the
data collected via our own interactions with these trading plat-
forms, and — as we describe in Section 4 — the information
offered by the platforms themselves via their public APIs.

We begin in Section 5 by identifying the specific on-chain
transactions associated with an advertised ShapeShift trans-
action, which we are able to do with a relatively high degree
of success (identifying both the deposit and withdrawal trans-
actions 81.91% of the time, on average). We then describe
in Section 6 the different transactional patterns that can be
traced by identifying the relevant on-chain transactions, focus-
ing specifically on patterns that may be indicative of trading
or money laundering, and on the ability to link addresses
across different currency ledgers. We then move in Section 7
to consider both old and new heuristics for clustering together
addresses associated with ShapeShift, with particular atten-
tion paid to our new heuristic concerning the common social
relationships revealed by the usage of ShapeShift. Finally, we
bring all the analysis together by applying it to several case
studies in Section 8. Again, our particular focus in this last sec-
tion is on the phenomenon of trading and other profit-driven
activity, and the extent to which usage of the ShapeShift plat-
form seems to be motivated by criminal activity or a more
general desire for anonymity.

2 Related Work

We are not aware of any other research exploring these cross-
currency trading platforms, but consider as related all research
that explores the level of anonymity achieved by cryptocur-
rencies. This work is complementary to our own, as the tech-
niques it develops can be combined with ours to track the
entire flow of cryptocurrencies as they move both within and
across different ledgers.

Much of the earlier research in this vein focused on Bit-
coin [1,11,17,18,21], and operates by adopting the so-called
“multi-input” heuristic, which says that all input addresses in
a transaction belong to the same entity (be it an individual or
a service such as an exchange). While the accuracy of this
heuristic has been somewhat eroded by privacy-enhancing
techniques like CoinJoin [8], new techniques have been de-
veloped to avoid such false positives [12], and as such it has
now been accepted as standard and incorporated into many
tools for Bitcoin blockchain analytics.*> Once addresses are

“https://www.chainalysis.com/
Shttps://www.elliptic.co/

clustered together in this manner, the entity can then further
be identified using hand-collected tags that form a ground-
truth dataset. We adopt both of these techniques in order to
analyze the clusters formed by ShapeShift and Changelly in a
variety of cryptocurrency blockchains, although as described
in Section 7 we find them to be relatively unsuccessful in this
setting.

In response to the rise of newer “privacy coins”, a recent
line of research has also worked to demonstrate that the de-
ployed versions of these cryptocurrencies have various prop-
erties that diminish the level of anonymity they achieve in
practice. This includes work targeting Dash [10, 12], Mon-
ero [4,7,13,24], and Zcash [6, 16].

In terms of Dash, its main privacy feature is similar to Coin-
Join, in which different senders join forces to create a single
transaction representing their transfer to a diverse set of re-
cipients. Despite the intention for this to hide which recipient
addresses belong to which senders, research has demonstrated
that such links can in fact be created based on the value being
transacted [10, 12]. Monero, which allows senders to hide
which input belongs to them by using “mix-ins” consisting
of the keys of other users, is vulnerable to de-anonymization
attacks exploiting the (now-obsolete) case in which some
users chose not to use mix-ins, or exploiting inferences about
the age of the coins used as mix-ins [4, 7, 13, 24]. Finally,
Zcash is similar to Bitcoin, but with the addition of a privacy
feature called the shielded pool, which can be used to hide the
values and addresses of the senders and recipients involved
in a transaction. Recent research has shown that it is possi-
ble to significantly reduce the anonymity set provided by the
shielded pool, by developing simple heuristics for identifying
links between hidden and partly obscured transactions [6, 16].

3 Background

3.1 Cryptocurrencies

The first decentralized cryptocurrency, Bitcoin, was created by
Satoshi Nakamoto in 2008 [14] and deployed in January 20009.
At the most basic level, bitcoins are digital assets that can be
traded between sets of users without the need for any trusted
intermediary. Bitcoins can be thought of as being stored in a
public key, which is controlled by the entity in possession of
the associated private key. A single user can store their assets
across many public keys, which act as pseudonyms with no
inherent link to the user’s identity. In order to spend them, a
user can form and cryptographically sign a transaction that
acts to send the bitcoins to a recipient of their choice. Beyond
Bitcoin, other platforms now offer more robust functionality.
For example, Ethereum allows users to deploy smart contracts
onto the blockchain, which act as stateful programs that can be
triggered by transactions providing inputs to their functions.

In order to prevent double-spending, many cryptocurren-
cies are UTXO-based, meaning coins are associated not with
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an address but with a uniquely identifiable UTXO (unspent
transaction output) that is created for all outputs in a given
transaction. This means that one address could be associated
with potentially many UTXOs (corresponding to each time
it has received coins), and that inputs to transactions are also
UTXOs rather than addresses. Checking for double-spending
is then just a matter of checking if an input is in the current
UTXO‘set, and removing it from the set once it spends it
contents.

3.2 Digital asset trading platforms

In contrast to a traditional (custodial) exchange, a digital
asset trading platform allows users to move between different
cryptocurrencies without storing any money in an account
with the service; in other words, users keep their own money
in their own accounts and the platform has it only at the time
that a trade is being executed. To initiate such a trade, a user
approaches the service and selects a supported input currency
curln (i.e., the currency from which they would like to move
money) and a supported output currency curOut (the currency
that they would like to obtain). A user additionally specifies
a destination address addr, in the curOut blockchain, which
is the address to which the output currency will be sent. The
service then presents the user with an exchange rate rate
and an address addrs in the curln blockchain to which to
send money, as well as a miner fee fee that accounts for the
transaction it must form in the curOut blockchain. The user
then sends to this address addrs the amount amt in curln they
wish to convert, and after some delay the service sends the
appropriate amount of the output currency to the specified
destination address addr,. This means that an interaction with
these services results in two transactions: one on the curln
blockchain sending amt to addrs, and one on the curOut
blockchain sending (roughly) rate - amt — fee to addr,,.

This describes an interaction with an abstracted platform.
Today, the two best-known examples are ShapeShift and
Changelly. Whereas Changelly has always required account
creation, ShapeShift introduced this requirement only in Oc-
tober 2018. Each platform supports dozens of cryptocurren-
cies, ranging from better-known ones such as Bitcoin and
Ethereum to lesser-known ones such as FirstBlood and Clams.
In Section 4, we describe in more depth the operations of
these specific platforms and our own interactions with them.

4 Data Collection and Statistics

In this section, we describe our data sources, as well as
some preliminary statistics about the collected data. We be-
gin in Section 4.1 by describing our own interactions with
Changelly, a trading platform with a limited personal APL
We then describe in Section 4.2 both our own interactions
with ShapeShift, and the data we were able to scrape from
their public API, which provided us with significant insight

into their overall set of transactions. Finally, we describe in
Section 4.3 our collection of the data backing eight different
cryptocurrencies.

4.1 Changelly

Changelly offers a simple API° that allows registered users
to carry out transactions with the service. Using this API, we
engaged in 22 transactions, using the most popular ShapeShift
currencies (Table 1) to guide our choices for curln and
curOut.

While doing these transactions, we observed that they
would sometimes take up to an hour to complete. This is
because Changelly attempts to minimize double-spending
risk by requiring users to wait for a set number of confirma-
tions (shown to the user at the time of their transaction) in the
curln blockchain before executing the transfer on the curOut
blockchain. We used this observation to guide our choice of
parameters in our identification of on-chain transactions in
Section 5.

4.2 ShapeShift

ShapeShift’s API’ allows users to execute their own trans-
actions, of which we did 18 in total. As with Changelly, we
were able to gain some valuable insights about the opera-
tion of the platform via these personal interactions. Whereas
ShapeShift did not disclose the number of confirmations they
waited for on the curln blockchain, we again observed long
delays, indicating that they were also waiting for a sufficient
number.

Beyond these personal interactions, the API provides in-
formation on the operation of the service as a whole. Most
notably, it provides three separate pieces of information: (1)
the current trading rate between any pair of cryptocurrencies,
(2) alist of up to 50 of the most recent transactions that have
taken place (across all users), and (3) full details of a spe-
cific ShapeShift transaction given the address addrg in the
curln blockchain (i.e., the address to which the user sent their
coins).

For the trading rates, ShapeShift provides the following
information for all cryptocurrency pairs (curln,curOut): the
rate, the limit (i.e., the maximum that can be exchanged), the
minimum that can be exchanged, and the miner fee (denom-
inated in curOut). For the 50 most recent transactions, in-
formation is provided in the form: (curln,curOut,amt,z,id),
where the first three of these are as discussed in Section 3.2,
t is a UNIX timestamp, and id is an internal identifier for
this transaction. For the transaction information, when
provided with a specific addr, ShapeShift provides the
tuple  (status,address,withdraw,inCoin,inType,outCoin,
outType, tx,txURL,error). The status field is a flag that is

https://api-docs.changelly.com/
Thttps://info.shapeshift.io/api
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Figure 1: The total number of transactions per day reported via
ShapeShift’s API, and the numbers broken down by cryptocurrency
(where a transaction is attributed to a coin if it is used as either curln
or curOut). The dotted red line indicates the BTC-USD exchange
rate, and the horizontal dotted black line indicates when KYC was
introduced into ShapeShift.

either complete, to mean the transaction was successful;
error, to mean an issue occurred with the transaction
or the queried address was not a ShapeShift address; or
no_deposits, to mean a user initiated a transaction but did
not send any coins. The error field appears when an error is
returned and gives a reason for the error. The address field is
the same address addrs used by ShapeShift, and withdraw
is the address addr, (i.e., the user’s recipient address in the
curOut blockchain). inType and outType are the respective
curln and curOut currencies and inCoin is the amt received.
outCoin is the amount sent in the curOut blockchain. Finally,
tx is the transaction hash in the curOut blockchain and
txURL is a link to this transaction in an online explorer.

Using a simple Web scraper, we downloaded the transac-
tions and rates every five seconds for close to thirteen months:
from November 27 2017 until December 23 2018. This re-
sulted in a set of 2,843,238 distinct transactions. Interestingly,
we noticed that several earlier test transactions we did with the
platform did not show up in their list of recent transactions,
which suggests that their published transactions may in fact
underestimate their overall activity.

4.2.1 ShapeShift currencies

In terms of the different cryptocurrencies used in ShapeShift
transactions, their popularity was distributed as seen in Fig-
ure 1. As this figure depicts, the overall activity of ShapeShift
is (perhaps unsurprisingly) correlated with the price of Bitcoin
in the same time period. At the same time, there is a decline
in the number of transactions after KYC was introduced that
is not clearly correlated with the price of Bitcoin (which is
largely steady and declines only several months later).
ShapeShift supports dozens of cryptocurrencies, and in our
data we observed the use of 65 different ones. The most com-
monly used coins are shown in Table 1. It is clear that Bitcoin

Currency Abbr. Total curln curOut
Ethereum ETH 1,385,509 892,971 492,538
Bitcoin BTC 1,286,772 456,703 830,069
Litecoin LTC 720,047 459,042 261,005
Bitcoin Cash BCH 284,514 75,774 208,740
Dogecoin DOGE 245,255 119,532 125,723
Dash DASH 187,869 113,272 74,597
Ethereum Classic ETC 179,998 103,177 76,821
Zcash ZEC 154,142 111,041 43,101

Table 1: The eight most popular coins used on ShapeShift, in terms
of the total units traded, and the respective units traded with that
coin as curln and curOut.

and Ethereum are the most heavily used currencies, which
is perhaps not surprising given the relative ease with which
they can be exchanged with fiat currencies on more traditional
exchanges, and their rank in terms of market capitalization.

4.3 Blockchain data

For the cryptocurrencies we were interested in exploring fur-
ther, it was also necessary to download and parse the respec-
tive blockchains, in order to identify the on-chain transac-
tional behavior of ShapeShift and Changelly. It was not feasi-
ble to do this for all 65 currencies used on ShapeShift (not to
mention that given the low volume of transactions for many
of them, it would likely not yield additional insights anyway),
so we chose to focus instead on just the top 8, as seen in
Table 1. Together, these account for 95.7% of all ShapeShift
transactions if only one of curln and/or curOut is one of the
eight, and 60.5% if both are.

For each of these currencies, we ran a full node in order
to download the entire blockchain. For the ones supported
by the BlockSci tool [5] (Bitcoin, Dash and Zcash), we used
it to parse and analyze their blockchains. BlockSci does not,
however, support the remaining five currencies. For these we
thus parsed the blockchains using Python scripts, stored the
data as Apache Spark parquet files, and analyzed them using
custom scripts. In total, we ended up working with 654 GB of
raw blockchain data and 434 GB of parsed blockchain data.

5 Identifying Blockchain Transactions

In order to gain deeper insights about the way these trading
platforms are used, it is necessary to identify not just their
internal transactions but also the transactions that appear on
the blockchains of the traded currencies. This section presents
heuristics for identifying these on-chain transactions, and the
next section explores the additional insights these transactions
can offer.

Recall from Section 3.2 that an interaction with ShapeShift
results in the deposit of coins from the user to the service on
the curln blockchain (which we refer to as ‘“Phase 1), and
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the withdrawal of coins from the service to the user on the
curOut blockchain (“Phase 2”). To start with Phase 1, we thus
seek to identify the deposit transaction on the input (curln)
blockchain. Similarly to Portnoff et al. [15], we consider two
main requirements for identifying the correct on-chain trans-
action: (1) that it occurred reasonably close in time to the
point at which it was advertised via the API, and (2) that the
value it carried was identical to the advertised amount.

For this first requirement, we look for candidate transac-
tions as follows. Given a ShapeShift transaction with times-
tamp ¢, we first find the block b (at some height 4) on the
curln blockchain that was mined at the time closest to r. We
then look at the transactions in all blocks with height in the
range [h— 8, h+ J,], where 8, and §, are parameters specific
to curln. We looked at both earlier and later blocks based
on the observation in our own interactions that the times-
tamp published by ShapeShift would sometimes be earlier
and sometimes be later than the on-chain transaction.

For each of our eight currencies, we ran this heuristic for
every ShapeShift transaction using curln as the currency in
question, with every possible combination of 8, and J, rang-
ing from O to 30. This resulted in a set of candidate transac-
tions with zero hits (meaning no matching transactions were
found), a single hit, or multiple hits. To rule out false posi-
tives, we initially considered as successful only ShapeShift
transactions with a single candidate on-chain transaction, al-
though we describe below an augmented heuristic that is able
to tolerate multiple hits. We then used the values of J;, and
d, that maximized the number of single-hit transactions for
each currency. As seen in Table 2, the optimal choice of these
parameters varies significantly across currencies, according to
their different block rates; typically we needed to look further
before or after for currencies in which blocks were produced
more frequently.

In order to validate the results of our heuristic for Phase 1,
we use the additional capability of the ShapeShift API de-
scribed in Section 4.2. In particular, we queried the API on the
recipient address of every transaction identified by our heuris-
tic for Phase 1. If the response of the API was affirmative,
we flagged the recipient address as belonging to ShapeShift
and we identified the transaction in which it received coins as
the curln transaction. This also provided a way to identify the
corresponding Phase 2 transaction on the curOut blockchain,
as it is just the tx field returned by the API. As we proceed
only in the case that the API returns a valid result, we gain
ground-truth data in both Phase 1 and Phase 2. In other words,
this method serves to not only validate our results in Phase 1
but also provides a way to identify Phase 2 transactions.

The heuristic described above is able to handle only single
hits; i.e., the case in which there is only a single candidate
transaction. Luckily, it is easy to augment this heuristic by
again using the API. For example, assume we examine a
BTC-ETH ShapeShift transaction and we find three candi-
date transactions in the Bitcoin blockchain after applying the

Currency Parameters Basic % Augmented %
8b Sa
BTC 0 1 65.76 76.86
BCH 9 4 76.96 80.23
DASH 5 5 84.77 88.65
DOGE 1 4 76.94 81.69
ETH 5 0 72.15 81.63
ETC 5 0 76.61 78.67
LTC 1 2 71.61 76.97
ZEC 1 3 86.94 90.54

Table 2: For the selected (optimal) parameters and for a given cur-
rency used as curln, the percentage of ShapeShift transactions for
which we found matching on-chain transactions for both the basic
(time- and value-based) and the augmented (API-based) Phase 1
heuristic. The augmented heuristic uses the API and thus also repre-
sents our success in identifying Phase 2 transactions.

basic heuristic described above. To identify which of these
transactions is the right one, we simply query the API on all
three recipient addresses and check that the status field is
affirmative (meaning ShapeShift recognizes this address) and
that the outType field is ETH. In the vast majority of cases
this uniquely identifies the correct transaction out of the can-
didate set, meaning we can use the API to both validate our
results (i.e., we use it to eliminate potential false positives, as
described above) and to augment the heuristic by being able
to tolerate multiple candidate transactions. The augmented
results for Phase 1 can be found in the last column of Ta-
ble 2 and clearly demonstrate the benefit of this extra usage
of the API. In the most dramatic example, we were able to
go from identifying the on-chain transactions for ShapeShift
transactions involving Bitcoin 65.75% of the time with the
basic heuristic to identifying them 76.86% of the time with
the augmented heuristic.

5.1 Accuracy of our heuristics

False negatives can occur for both of our heuristics when there
are either too many or too few matching transactions in the
searched block interval. These are more common for the basic
heuristic, as described above and seen in Table 2, because it
is conservative in identifying an on-chain transaction only
when there is one candidate. This rate could be improved by
increasing the searched block radius, at the expense of adding
more computation and potentially increasing the false positive
rate.

False positives can occur for both of our heuristics if some-
one sends the same amount as the ShapeShift transaction at
roughly the same time, but this transaction falls within our
searched interval whereas the ShapeShift one doesn’t. In the-
ory, this should not be an issue for our augmented heuristic,
since the API will make it clear that the candidate transaction
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is not in fact associated with ShapeShift. In a small number
of cases (fewer than 1% of all ShapeShift transactions), how-
ever, the API returned details of a transaction with different
characteristics than the one we were attempting to identify;
e.g., it had a different pair of currencies or a different value
being sent. This happened because ShapeShift allows users to
re-use an existing deposit address, and the API returns only
the latest transaction using a given address.

If we blindly took the results of the API, then this would
lead to false positives in our augmented heuristic for both
Phase 1 and Phase 2. We thus ensured that the transaction
returned by the API had three things in common with the
ShapeShift transaction: (1) the pair of currencies, (2) the
amount being sent, and (3) the timing, within the interval
specified in Table 2. If there was any mismatch, we discarded
the transaction. For example, given a ShapeShift transaction
indicating an ETH-BTC shift carrying 1 ETH and occurring at
time ¢, we looked for all addresses that received 1 ETH at time
t or up to 5 blocks earlier. We then queried the API on these
addresses and kept only those transactions which reported
shifting 1 ETH to BTC. While our augmented heuristic still
might produce false positives in the case that a user quickly
makes two different transactions using the same currency pair,
value, and deposit address, we view this as unlikely, especially
given the relatively long wait times we observed ourselves
when using the service (as mentioned in Section 4.2).

5.2 Alternative Phase 2 identification

Given that our heuristic for Phase 2 involved just querying the
API for the corresponding Phase 1 transaction, it is natural
to wonder what would be possible without this feature of
the API, or indeed if there are any alternative strategies for
identifying Phase 2 transactions. Indeed, it is possible to use a
similar heuristic for identifying Phase 1 transactions, by first
looking for transactions in blocks that were mined close to
the advertised transaction time, and then looking for ones in
which the amount was close to the expected amount. Here
the amount must be estimated according to the advertised
amt, rate, and fee. In theory, the amount sent should be amt -
rate — fee, although in practice the rate can fluctuate so it is
important to look for transactions carrying a total value within
a reasonable error rate of this amount.

When we implemented and applied this heuristic, we found
that our accuracy in identifying Phase 2 transactions de-
creased significantly, due to the larger set of transactions that
carried an amount within a wider range (as opposed to an
exact amount, as in Phase 1) and the inability of this type of
heuristic to handle multiple candidate transactions. More im-
portantly, this approach provides no ground-truth information
at all: by choosing conservative parameters it is possible to
limit the number of false positives, but this is at the expense
of the false negative rate (as, again, we observed in our own
application of this heuristic) and in general it is not guaran-

teed that the final set of transactions really are associated with
ShapeShift. As this is the exact guarantee we can get by using
the API, we continue in the rest of the paper with the results
we obtained there, but nevertheless mention this alternative
approach in case this feature of the API is discontinued or
otherwise made unavailable.

6 Tracking Cross-Currency Activity

In the previous section, we saw that it was possible in many
cases to identify the on-chain transactions, in both the curln
and curOut blockchains, associated with the transactions ad-
vertised by ShapeShift. In this section, we take this a step
further and show how linking these transactions can be used
to identify more complex patterns of behavior.

As shown in Figure 2, we consider these for three main
types of transactions. In particular, we look at (1) pass-
through transactions, which represent the full flow of money
as it moves from one currency to the other via the deposit
and withdrawal transactions; (2) U-turns, in which a user who
has shifted into one currency immediately shifts back; and (3)
round-trip transactions, which are essentially a combination
of the first two and follow a user’s flow of money as it moves
from one currency to another and then back to the original
one. Our interest in these particular patterns of behavior is
largely based on the role they play in tracking money as it
moves across the ledgers of different cryptocurrencies. In
particular, our goal is to test the validity of the implicit as-
sumption made by criminal usage of the platform — such as
we examine further in Section 8 — that ShapeShift provides
additional anonymity beyond simply transacting in a given
currency.

In more detail, identifying pass-through transactions allows
us to create a link between the input address(es) in the deposit
on the curln blockchain and the output address(es) in the
withdrawal on the curOut blockchain.

Identifying U-turns allows us to see when a user has in-
teracted with ShapeShift not because they are interested in
holding units of the curOut cryptocurrency, but because they
see other benefits in shifting coins back and forth. There are
several possible motivations for this: for example, traders may
quickly shift back and forth between two different cryptocur-
rencies in order to profit from differences in their price. We
investigate this possibility in Section 8.3. Similarly, people
performing money laundering or otherwise holding “dirty”
money may engage in such behavior under the belief that
once the coins are moved back into the curln blockchain, they
are “clean” after moving through ShapeShift regardless of
what happened with the coins in the curOut blockchain.

Finally, identifying round-trip transactions allows us to cre-
ate a link between the input address(es) in the deposit on
the curln blockchain with the output address(es) in the later
withdrawal on the curln blockchain. Again, there are many
reasons why users might engage in such behavior, including
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Figure 2: The different transactional patterns, according to how they interact with ShapeShift and which phases are required to identify them.
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Figure 3: For each pair of currencies, the number of transactions
we identified as being a pass-through from one to the other, as a
percentage of the total number of transactions between those two
currencies.
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the trading and money laundering examples given above. As
another example, if a curln user wanted to make an anony-
mous payment to another curln user, they might attempt to do
so via a round-trip transaction (using the address of the other
user in the second pass-through transaction), under the same
assumption that ShapeShift would sever the link between their
two addresses.

6.1 Pass-through transactions

Given a ShapeShift transaction from curln to curOut, the
methods from Section 5 already provide a way to identify
pass-through transactions, as depicted in Figure 2a. In par-
ticular, running the augmented heuristic for Phase 1 transac-
tions identifies not only the deposit transaction in the curln
blockchain but also the Phase 2 transaction (i.e., the with-
drawal transaction in the curOut blockchain), as this is ex-
actly what is returned by the APIL. As discussed above, this has
the effect on anonymity of tracing the flow of funds across
this ShapeShift transaction and linking its two endpoints;
i.e., the input address(es) in the curln blockchain with the
output address(es) in the curOut blockchain. The results, in
terms of the percentages of all possible transactions between
a pair (curln, curOut) for which we found the corresponding
on-chain transactions, are in Figure 3.

The figure demonstrates that our success in identifying
these types of transactions varied somewhat, and depended —
not unsurprisingly — on our success in identifying transac-

tions in the curln blockchain. This means that we were typ-
ically least successful with curln blockchains with higher
transaction volumes, such as Bitcoin, because we frequently
ended up with multiple hits (although here we were still able
to identify more than 74% of transactions). In contrast, the
dark stripes for Dash and Zcash demonstrate our high level
of success in identifying pass-through transactions with those
currencies as curln, due to our high level of success in their
Phase 1 analysis in general (89% and 91% respectively). In
total, across all eight currencies we were able to identify
1,383,666 pass-through transactions.

6.2 U-turns

As depicted in Figure 2b, we consider a U-turn to be a pattern
in which a user has just sent money from curln to curOut,
only to turn around and go immediately back to curln. This
means linking two transactions: the Phase 2 transaction used
to send money to curOut and the Phase 1 transaction used to
send money back to curln. In terms of timing and amount, we
require that the second transaction happens within 30 minutes
of the first, and that it carries within 1% of the value that
was generated by the first Phase 2 transaction. This value is
returned by the ShapeShift API in the outCoin field.

While the close timing and amount already give some in-
dication that these two transactions are linked, it is of course
possible that this is a coincidence and they were in fact carried
out by different users. In order to gain additional confidence
that it was the same user, we have two options. In UTXO-
based cryptocurrencies (see Section 3.1), we could see if the
input is the same UTXO that was created in the Phase 2
transaction, and thus see if a user is spending the coin imme-
diately. In cryptocurrencies based instead on accounts, such as
Ethereum, we have no choice but to look just at the addresses.
Here we thus define a U-turn as seeing if the address that was
used as the output in the Phase 2 transaction is used as the
input in the later Phase 1 transaction.

Once we identified such candidate pairs of transactions
(tx1,txz), we then ran the augmented heuristic from Sec-
tion 5 to identify the relevant output address in the curOut
blockchain, according to tx;. We then ran the same heuristic
to identify the relevant input address in the curOut blockchain,
this time according to tx;.

In fact though, what we really identified in Phase 2 was
not just an address but, as described above, a newly created
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Currency # (basic) # (addr) # (utxo)
BTC 36,666 565 314
BCH 2864 196 81
DASH 3234 2091 184
DOGE 546 75 75
ETH 53,518 5248 -
ETC 1397 543 -
LTC 8270 1429 244
ZEC 772 419 222

Table 3: The number of U-turns identified for each cryptocurrency,
according to our basic heuristic concerning timing and value, and
both the address-based and UTXO-based heuristics concerning iden-
tical ownership. Since Ethereum and Ethereum Classic are account-
based, the UTXO heuristic cannot be applied to them.
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Figure 4: The total number of U-turns over time, as identified by our
basic heuristic.

UTXO. If the input used in tx, was this same UTXO, then
we found a U-turn according to the first heuristic. If instead
it corresponded just to the same address, then we found a
U-turn according to the second heuristic. The results of both
of these heuristics, in addition to the basic identification of
U-turns according to the timing and amount, can be found
in Table 3, and plots showing their cumulative number over
time can be found in Figures 4 and 5. In total, we identified
107,267 U-turns according to our basic heuristic, 10,566 U-
turns according to our address-based heuristic, and 1,120 U-
turns according to our UTXO-based heuristic.

While the dominance of both Bitcoin and Ethereum should
be expected given their overall trading dominance, we also
observe that both Dash and Zcash have been used extensively
as “mixer coins” in U-turns, and are in fact more popular
for this purpose than they are overall. Despite this indica-
tion that users may prefer to use privacy coins as the mixing
intermediary, Zcash has the highest percentage of identified
UTXO-based U-turn transactions. Thus, these users not only
do not gain extra anonymity by using it, but in fact are easily
identifiable given that they did not change the address used
in 419 out of 772 (54.24%) cases, or—even worse — im-
mediately shifted back the exact same coin they received in
222 (28.75%) cases. In the case of Dash, the results suggest
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Figure 5: The total number of U-turns over time, as identified by our
address-based (in red) and UTXO-based (in blue) heuristics.

something a bit different. Once more, the usage of a privacy
coin was not very successful since in 2091 out of the 3234
cases the address that received the fresh coins was the same
as the one that shifted it back. It was the exact same coin in
only 184 cases, however, which suggests that although the
user is the same, there is a local Dash transaction between the
two ShapeShift transactions. We defer a further discussion of
this asymmetry to Section 8.4, where we also discuss more
generally the use of anonymity features in both Zcash and
Dash.

Looking at Figure 5, we can see a steep rise in the number
of U-turns that used the same address in December 2017,
which is not true of the ones that used the same UTXO or
in the overall number of U-turns in Figure 4. Looking into
this further, we observed that the number of U-turns was
particularly elevated during this period for four specific pairs
of currencies: DASH-ETH, DASH-LTC, ETH-DASH, and
LTC-ETH. This thus affected primarily the address-based
heuristic due to the fact that (1) Ethereum is account-based
so the UTXO-based heuristic does not apply, and (2) Dash
has a high percentage of U-turns using the same address,
but a much smaller percentage using the same UTXO. The
amount of money shifted in these U-turns varied significantly
in terms of the units of the input currency, but all carried
between 115K and 138K in USD. Although the ShapeShift
transactions that were involved in these U-turns had hundreds
of different addresses in the curln blockchain, they used only
a small number of addresses in the curOut blockchain: 4
addresses in Ethereum, 13 in Dash, and 9 in Litecoin. As we
discuss further in Section 7.2, the re-use of addresses and the
fact that the total amount of money (in USD) carried by the
transactions was roughly the same indicates that perhaps a
small group of people was responsible for creating this spike
in the graph.

6.3 Round-trip transactions

As depicted in Figure 2c, a round-trip transaction requires
performing two ShapeShift transactions: one out of the initial
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currency and one back into it. To identify round-trip transac-
tions, we effectively combine the results of the pass-through
and U-turn transactions; i.e., we tagged something as a round-
trip transaction if the output of a pass-through transaction
from X to Y was identified as being involved in a U-turn
transaction, which was itself linked to a later pass-through
transaction from Y to X (of roughly the same amount). As
described at the beginning of the section, this has the power-
ful effect of creating a link between the sender and recipient
within a single currency, despite the fact that money flowed
into a different currency in between.

In more detail, we looked for consecutive ShapeShift trans-
actions where for a given pair of cryptocurrencies X and Y:
(1) the first transaction was of the form X-Y; (2) the second
transaction was of the form Y-X; (3) the second transaction
happened relatively soon after the first one; and (4) the value
carried by the two transaction was approximately the same.
For the third property, we required that the second transaction
happened within 30 minutes of the first. For the fourth prop-
erty, we required that if the first transaction carried x units of
curln then the second transaction carried within 0.5% of the
value in the (on-chain) Phase 2 transaction, according to the
outCoin field provided by the APL

As with U-turns, we considered an additional restriction
to capture the case in which the user in the curln blockchain
stayed the same, meaning money clearly did not change hands.
Unlike with U-turns, however, this restriction is less to pro-
vide accuracy for the basic heuristic and more to isolate the
behavior of people engaged in day trading or money launder-
ing (as opposed to those meaningfully sending money to other
users). For this pattern, we identify the input addresses used in
Phase 1 for the first transaction, which represent the user who
initiated the round-trip transaction in the curln blockchain.
We then identify the output addresses used in Phase 2 for
the second transaction, which represent the user who was the
final recipient of the funds. If the address was the same, then
it is clear that money has not changed hands. Otherwise, the
round-trip transaction acts as a heuristic for linking together
the input and output addresses.

The results of running this heuristic (with and without the
extra restriction) are in Table 4. In total, we identified 95,547
round-trip transactions according to our regular heuristic, and
identified 10,490 transactions where the input and output ad-
dresses were the same. Across different currencies, however,
there was a high level of variance in the results. While this
could be a result of the different levels of accuracy in Phase 1
for different currencies, the more likely explanation is that
users indeed engage in different patterns of behavior with
different currencies. For Bitcoin, for example, there was a
very small percentage (1.2%) of round-trip transactions that
used the same address. This suggests that either users are
aware of the general lack of anonymity in the basic Bitcoin
protocol and use ShapeShift to make anonymous payments, or
that if they do use round-trip transactions as a form of money

Currency # (regular) # (same addr)
BTC 35,019 437
BCH 1780 84
DASH 3253 2353
DOGE 378 0
ETH 45,611 4085
ETC 1122 626
LTC 6912 2733
ZEC 472 172

Table 4: The number of regular round-trip transactions identified for
each cryptocurrency, and the number that use the same initial and
final address.

laundering they are at least careful enough to change their
addresses. More simply, it may just be the case that generating
new addresses is more of a default in Bitcoin than it is in other
currencies.

In other currencies, however, such as Dash, Ethereum Clas-
sic, Litecoin, and Zcash, there were relatively high percent-
ages of round-trip transactions that used the same input and
output address: 72%, 56%, 40%, and 36% respectively. In
Ethereum Classic, this may be explained by the account-based
nature of the currency, which means that it is common for
one entity to use only one address, although the percentage
for Ethereum is much lower (9%). In Dash and Zcash, as
we have already seen in Section 6.2 and explore further in
Section 8.4, it may simply be the case that users assume they
achieve anonymity just through the use of a privacy coin, so
do not take extra measures to hide their identity.

7 Clustering Analysis

7.1 Shared ownership heuristic

As described in Sections 4.1 and 4.2, we engaged in transac-
tions with both ShapeShift and Changelly, which provided
us with some ground-truth evidence of addresses that were
owned by them. We also collected three sets of tagging data
(i.e., tags associated with addresses that describe their real-
world owner): for Bitcoin we used the data available from
WalletExplorer, which covers a wide variety of different
Bitcoin-based services; for Zcash we used hand-collected
data from Kappos et al. [6], which covers only exchanges;
and for Ethereum we used the data available from Etherscan,’
which covers a variety of services and contracts.

In order to understand the behavior of these trading plat-
forms and the interaction they had with other blockchain-
based services such as exchanges, our first instinct was to
combine these tags with the now-standard “multi-input” clus-

$https://www.walletexplorer.com/
Shttps://etherscan.io/

USENIX Association

28th USENIX Security Symposium 845


https://www.walletexplorer.com/
https://etherscan.io/

tering heuristic for cryptocurrencies [11, 17], which states
that in a transaction with multiple input addresses, all inputs
belong to the same entity. When we applied this clustering
heuristic to an earlier version of our dataset [23], however,
the results were fairly uneven. For Dogecoin, for example,
the three ShapeShift transactions we performed revealed only
three addresses, which each had done a very small number of
transactions. The three Changelly transactions we performed,
in contrast, revealed 24,893 addresses, which in total had re-
ceived over 67 trillion DOGE. These results suggest that the
trading platforms operate a number of different clusters in
each cryptocurrency, and perhaps even change their behavior
depending on the currency, which in turns makes it clear that
we did not capture a comprehensive view of the activity of
either.

More worrying, in one of our Changelly transactions, we
received coins from a Ethereum address that had been tagged
as belonging to HitBTC, a prominent exchange. This suggests
that Changelly may occasionally operate using exchange ac-
counts, which would completely invalidate the results of the
clustering heuristic, as their individually operated addresses
would end up in the same cluster as all of the ones operated
by HitBTC. We thus decided not to use this type of clustering,
and to instead focus on a new clustering heuristic geared at
identifying common social relationships.

7.2 Common relationship heuristic

As it was clear that the multi-input heuristic would not yield
meaningful information about shared ownership, we chose
to switch our focus away from the interactions ShapeShift
had on the blockchain and look instead at the relationships
between individual ShapeShift users. In particular, we defined
the following heuristic:

Heuristic 7.1. If two or more addresses send coins to the
same address in the curOut blockchain, or if two or more
addresses receive coins from the same address in the curln
blockchain, then these addresses have some common social
relationship.

The definition of a common social relationship is (inten-
tionally) vague, and the implications of this heuristic are in-
deed less clear-cut than those of heuristics around shared
ownership. Nevertheless, we consider what it means for two
different addresses, in potentially two different blockchains,
to have sent coins to the same address; we refer to these ad-
dresses as belonging in the input cluster of the output address
(and analogously refer to the output cluster for an address
sending to multiple other addresses). In the case in which the
addresses are most closely linked, it could represent the same
user consolidating money held across different currencies into
a single one. It could also represent different users interacting
with a common service, such as an exchange. Finally, it could
simply be two users who do not know each other directly but

happen to be sending money to the same individual. What can-
not be the case, however, is that the addresses are not related
in any way.

To implement this heuristic, we parsed transactions into
a graph where we defined a node as an address and a di-
rected edge (u,v) as existing when one address u initiated a
ShapeShift transaction sending coins to v, which we identified
using the results of our pass-through analysis from Section 5.
(This means that the inputs in our graph are restricted to those
for which we ran Phase 1 to find the address, and thus that our
input clusters contain only the top 8 currencies. In the other
direction, however, we obtain the address directly from the
API, which means output clusters can contain all currencies.)
Edges are further weighted by the number of transactions sent
from u to v. For each node, the cluster centered on that ad-
dress was then defined as all nodes adjacent to it (i.e., pointing
towards it).

Performing this clustering generated a graph with
2,895,445 nodes (distinct addresses) and 2,244,459 edges.
Sorting the clusters by in-degree reveals the entities that re-
ceived the highest number of ShapeShift transactions (from
the top 8 currencies, per our caveat above). The largest cluster
had 12,868 addresses — many of them belonging to Ethereum,
Litecoin, and Dash — and was centered on a Bitcoin address
belonging to CoinPayments.net, a multi-coin payment pro-
cessing gateway. Of the ten largest clusters, three others
(one associated with Ripple and two with Bitcoin addresses)
are also connected with CoinPayments, which suggests that
ShapeShift is a popular platform amongst its users.

Sorting the individual clusters by out-degree reveals instead
the users who initiated the highest number of ShapeShift trans-
actions. Here the largest cluster (consisting of 2314 addresses)
was centered on a Litecoin address, and the second largest
cluster was centered on an Ethereum address that belonged
to Binance (a popular exchange). Of the ten largest clusters,
two others were centered on Binance-tagged addresses, and
three were centered on other exchanges (Freewallet, Gemini,
and Bittrex). While it makes sense that exchanges typically
dominate on-chain activity in many cryptocurrencies, it is
somewhat surprising to also observe that dominance here,
given that these exchanges already allow users to shift be-
tween many different cryptocurrencies. Aside from the poten-
tial for better rates or the perception of increased anonymity, it
is thus unclear why a user wanting to shift from one currency
to another would do so using ShapeShift as opposed to using
the same service with which they have already stored their
coins.

Beyond these basic statistics, we apply this heuristic to sev-
eral of the case studies we investigate in the next section. We
also revisit here the large spike in the number of U-turns that
we observed in Section 6.2. Our hypothesis then was that this
spike was caused by a small number of parties, due to the sim-
ilar USD value carried by the transactions and by the re-use of
a small number of addresses across Dash, Ethereum, and Lite-

846 28th USENIX Security Symposium

USENIX Association



coin. Here we briefly investigate this further by examining
the clusters centered on these addresses.

Of the 13 Dash addresses, all but one of them formed small
input and output clusters that were comprised of addresses
solely from Litecoin and Ethereum. Of the 9 Litecoin ad-
dresses, 6 had input clusters consisting solely of Dash and
Ethereum addresses, with two of them consisting solely of
Dash addresses. Finally, of the 4 Ethereum addresses, all of
them had input clusters consisting solely of Dash and Lite-
coin addresses. One of them, however, had a diverse set of
addresses in its output cluster, belonging to Bitcoin, Bitcoin
Cash, and a number of Ethereum-based tokens. These results
thus still suggest a small number of parties, due to the tight
connection between the three currencies in the clusters, al-
though of course further investigation would be needed to get
a more complete picture.

8 Patterns of ShapeShift Usage

In this section, we examine potential applications of the anal-
ysis developed in previous sections, in terms of identifying
specific usages of ShapeShift. As before, our focus is on
anonymity, and the potential that such platforms may offer
for money laundering or other illicit purposes, as well as for
trading. To this end, we begin by looking at two case studies
associated with explicitly criminal activity and examine the
interactions these criminals had with the ShapeShift platform.
We then switch in Section 8.3 to look at non-criminal activity,
by attempting to identify trading bots that use ShapeShift and
the patterns they may create. Finally, in Section 8.4 we look at
the role that privacy coins (Monero, Zcash, and Dash) play, in
order to identify the extent to which the usage of these coins
in ShapeShift is motivated by a desire for anonymity.

8.1 Starscape Capital

In January 2018, an investment firm called Starscape Capital
raised over 2,000 ETH (worth 2.2M USD at the time) during
their Initial Coin Offering, after promising users a 50% return
in exchange for investing in their cryptocurrency arbitrage
fund. Shortly afterwards, all of their social media accounts
disappeared, and it was reported that an amount of ETH worth
517,000 USD was sent from their wallet to ShapeShift, where
it was shifted into Monero [20].

We confirmed this for ourselves by observing that the ad-
dress known to be owned by Starscape Capital participated in
192 Ethereum transactions across a three-day span (January
19-21), during which it received and sent 2,038 ETH; in total
it sent money in 133 transactions. We found that 109 of these
transactions sent money to ShapeShift, and of these 103 were
shifts to Monero conducted on January 21 (the remaining 6
were shifts to Ethereum). The total amount shifted into Mon-
ero was 465.61 ETH (1388.39 XMR), and all of the money
was shifted into only three different Monero addresses, of

which one received 70% of the resulting XMR. Using the
clusters defined in Section 7.2, we did not find evidence of
any other addresses (in any other currencies) interacting with
either the ETH or XMR addresses associated with Starscape
Capital.

8.2 Ethereum-based scams

EtherScamDB! is a website that, based on user reports that
are manually investigated by its operators, collects and lists
Ethereum addresses that have been involved in scams. As
of January 30 2019, they had a total of 6374 scams listed,
with 1973 associated addresses. We found that 194 of these
addresses (9% of those listed) had been involved in 853 trans-
actions to ShapeShift, of which 688 had a status field of
complete. Across these successful transactions, 1797 ETH
was shifted to other currencies: 74% to Bitcoin, 19% to Mon-
ero, 3% to Bitcoin Cash, and 1% to Zcash.

The scams which successfully shifted the highest volumes
belonged to so-called trust-trading and MyEtherWallet scams.
Trust-trading is a scam based on the premise that users who
send coins prove the legitimacy of their addresses, after which
the traders “trust” their address and send back higher amounts
(whereas in fact most users send money and simply receive
nothing in return). This type of scam shifted over 918 ETH,
the majority of which was converted to Bitcoin (691 ETH,
or 75%). A MyEtherWallet scam is a phishing/typosquatting
scam where scammers operate a service with a similar name
to the popular online wallet MyEtherWallet,'" in order to trick
users into giving them their account details. These scammers
shifted the majority of the stolen ETH to Bitcoin (207 ETH)
and to Monero (151 ETH).

Given that the majority of the overall stolen coins was
shifted to Bitcoin, we next investigated whether or not these
stolen coins could be tracked further using our analysis. In
particular, we looked to see if they performed a U-turn or a
round-trip transaction, as discussed in Section 6. We identified
one address, associated with a trust-trading scam, that partici-
pated in 34 distinct round-trip transactions, all coming back
to a different address from the original one. All these trans-
actions used Bitcoin as curOut and used the same address
in Bitcoin to both receive and send coins; i.e., we identified
the U-turns in Bitcoin according to our address-based heuris-
tic. In total, more than 70 ETH were circulated across these
round-trip transactions.

8.3 Trading bots

ShapeShift, like any other cryptocurrency exchange, can be
used by traders who wish to take advantage of the volatility
in cryptocurrency prices. The potential advantages of doing
this via ShapeShift, as compared with other platforms that

10https://etherscamdb.info/
Uhttps://www.myetherwallet.com/

USENIX Association

28th USENIX Security Symposium 847



focus more on the exchange between cryptocurrencies and
fiat currencies, are that (1) ShapeShift transactions can be
easily automated via their API, and (2) a single ShapeShift
transaction acts to both purchase desired coins and dump
unwanted ones. Such trading usually requires large volumes
of transactions and high precision on their the timing, due
to the constant fluctuation in cryptocurrency prices. We thus
looked for activity that involved large numbers of similar
transactions in a small time period, on the theory that it would
be associated primarily with trading bots.

We started by searching for sets of consecutive ShapeShift
transactions that carried approximately the same value in
curln (with an error rate of 1%) and involved the same curren-
cies. When we did this, however, we found thousands of such
sets. We thus added the extra conditions that there must be at
least 15 transactions in the set that took place in a span of five
minutes; i.e., that within a five-minute block of ShapeShift
transactions there were at least 15 involving the same cur-
rencies and carrying the same approximate USD value. This
resulted in 107 such sets.

After obtaining our 107 trading clusters, we removed trans-
actions that we believed were false positives in that they hap-
pened to have a similar value but were clearly the odd one out.
For example, in a cluster of 20 transactions with 19 ETH-BTC
transactions and one LTC-ZEC transaction, we removed the
latter. We were thus left with clusters of either a particular
pair (e.g., ETH-BTC) or two pairs where the curOut or the
curln was the same (e.g., ETH-BTC and ZEC-BTC), which
suggests either the purchase of a rising coin or the dump of
a declining one. We sought to further validate these clusters
by using our heuristic from Section 7.2 to see if the clusters
shared common addresses. While we typically did not find
this in UTXO-based currencies (as most entities operate using
many addresses), in account-based currencies we found that
in almost every case there was one particular address that was
involved in the trading cluster.

We summarize our results in Figure 6, in terms of the most
common pairs of currencies and the total money exchanged by
trading clusters using those currencies. It is clear that the most
common interactions are performed between the most popular
currencies overall, with the exception of Monero (XMR) and
SALT. In particular, we found six clusters consisting of 17-20
transactions that exchanged BTC for XMR, and 13 clusters
that exchanged BTC for SALT, an Ethereum-based token. The
sizes of each trading cluster varied between 16 and 33 trans-
actions and in total comprise 258 transactions, each of which
shifted exactly 0.1 BTC. In total they originated from 514 dif-
ferent Bitcoin addresses, which may make it appear as though
different people carried out these transactions. After applying
our pass-through heuristic, however, we found that across all
the transactions there were only two distinct SALT addresses
used to receive the output. It is thus instead likely that this
represents trading activity involving one or two entities.
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Figure 6: Our 107 clusters of likely trading bots, categorized by the
pair of currencies they trade between and the total amount transacted
by those clusters (in USD).

8.4 Usage of anonymity tools

Given the potential usage of ShapeShift for money laundering
or other criminal activities, we sought to understand the extent
to which its users seemed motivated to hide the source of their
funds. While using ShapeShift is already one attempt at doing
this, we focus here on the combination of using ShapeShift
and so-called “privacy coins” (Dash, Monero, and Zcash) that
are designed to offer improved anonymity guarantees.

In terms of the effect of the introduction of KYC into
ShapeShift, the number of transactions using Zcash as curln
averaged 164 per day the month before, and averaged 116 per
day the month after. We also saw a small decline with Zcash
as curOut: 69 per day before and 43 per day after. Monero
and Dash, however, saw much higher declines, and in fact
saw the largest declines across all eight cryptocurrencies. The
daily average the month before was 136 using Monero as
curln, whereas it was 47 after. Similarly, the daily average
using it as curOut was 316 before and 62 after. For Dash, the
daily average as curln was 128 before and 81 after, and the
daily average as curOut was 103 before and 42 after.

In terms of the blockchain data we had (according to the
most popular currencies), our analysis in what follows is re-
stricted to Dash and Zcash, although we leave an exploration
of Monero as interesting future work.

8.4.1 Zcash

The main anonymity feature in Zcash is known as the shielded
pool. Briefly, transparent Zcash transactions behave just like
Bitcoin transactions in that they reveal in the clear the sender
and recipient (according to so-called t-addresses), as well as
the value being sent. This information is hidden to various de-
grees, however, when interacting with the pool. In particular,
when putting money into the pool the recipient is specified
using a so-called z-address, which hides the recipient but still
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Figure 7: The three types of interactions we investigated between
ShapeShift and the shielded pool in Zcash.

reveals the sender, and taking money out of the pool hides
the sender (through the use of zero-knowledge proofs [2]) but
reveals the recipient. Finally, Zcash is designed to provide
privacy mainly in the case in which users transact within the
shielded pool, which hides the sender, recipient, and the value
being sent.

We considered three possible interactions between
ShapeShift and the shielded pool, as depicted in Figure 7: (1)
a user shifts coins directly from ShapeShift into the shielded
pool, (2) a user shifts to a t-address but then uses that t-address
to put money into the pool, and (3) a user sends money directly
from the pool to ShapeShift.

For the first type of interaction, we found 29,003 transac-
tions that used ZEC as curOut. Of these, 758 had a z-address
as the output address, meaning coins were sent directly to
the shielded pool. The total value put into the pool in these
transactions was 6,707.86 ZEC, which is 4.3% of all the ZEC
received in pass-through transactions. When attempting to use
z-addresses in our own interactions with ShapeShift, however,
we consistently encountered errors or were told to contact
customer service. It is thus not clear if usage of this feature is
supported at the time of writing.

For the second type of interaction, there were 1309 where
the next transaction (i.e., the transaction in which this UTXO
spent its contents) involved putting money into the pool.
The total value put into the pool in these transactions was
12,534 ZEC, which is 8.2% of all the ZEC received in pass-
through transactions.

For the third type of interaction, we found 111,041 pass-
through transactions that used ZEC as curln. Of these, 3808
came directly from the pool, with a total value of 22,490 ZEC
(14% of all the ZEC sent in pass-through transactions).

Thus, while the usage of the anonymity features in Zcash
was not necessarily a large fraction of the overall usage of
Zcash in ShapeShift, there is clear potential to move large
amounts of Zcash (representing over 10 million USD at the
time it was transacted) by combining ShapeShift with the
shielded pool.

8.4.2 Dash

As in Zcash, the “standard” transaction in Dash is similar to
a Bitcoin transaction in terms of the information it reveals.
Its main anonymity feature — PrivateSend transactions — are
a type of CoinJoin [8]. A CoinJoin is specifically designed

to invalidate the multi-input clustering heuristic described in
Section 7, as it allows multiple users to come together and
send coins to different sets of recipients in a single transac-
tion. If each sender sends the same number of coins to their
recipient, then it is difficult to determine which input address
corresponds to which output address, thus severing the link
between an individual sender and recipient.

In a traditional CoinJoin, users must find each other in
some offline manner (e.g., an IRC channel) and form the
transaction together over several rounds of communication.
This can be a cumbersome process, so Dash aims to sim-
plify it for users by automatically finding other users for them
and chaining multiple mixes together. In order to ensure that
users cannot accidentally de-anonymize themselves by send-
ing uniquely identifiable values, these PrivateSend transac-
tions are restricted to specific denominations: 0.01, 0.1, 1,
and 10 DASH. As observed by Kalodner et al. [5], however,
the CoinJoin denominations often contain a fee of 0.0000001
DASH, which must be factored in when searching for these
transactions. Our parameters for identifying a CoinJoin were
thus that (1) the transaction must have at least three inputs,
(2) the outputs must consist solely of values from the list of
possible denominations (modulo the fees), and (3) and all out-
put values must be the same. In fact, given how Dash operates
there is always one output with a non-standard value, so it was
further necessary to relax the second and third requirements
to allow there to be at most one address that does not carry
the specified value.

We first looked to see how often the DASH sent to
ShapeShift had originated from a CoinJoin, which meant
identifying if the inputs of a Phase 1 transaction were out-
puts from a CoinJoin. Out of 100,410 candidate transac-
tions, we found 2,068 that came from a CoinJoin, carrying
a total of 11,929 DASH in value (6.5% of the total value
across transactions with Dash as curln). Next, we looked at
whether or not users performed a CoinJoin after receiving
coins from ShapeShift, which meant identifying if the outputs
of a Phase 2 transaction had been spent in a CoinJoin. Out
of 50,545 candidate transactions, we found only 33 CoinJoin
transactions, carrying a total of 187 DASH in value (0.1% of
the total value across transactions using Dash as curOut).

If we revisit our results concerning the use of U-turns in
Dash from Section 6.2, we recall that there was a large asym-
metry in terms of the results of our two heuristics: only 5.6%
of the U-turns used the same UTXO, but 64.6% of U-turns
used the same address. This suggests that some additional
on-chain transaction took place between the two ShapeShift
transactions, and indeed upon further inspection we identified
many cases where this transaction was a CoinJoin. There thus
appears to have been a genuine attempt to take advantage
of the privacy that Dash offers, but this was completely inef-
fective due to the use of the same address that both sent and
received the mixed coins.
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9 Conclusions

In this study, we presented a characterization of the usage of
the ShapeShift trading platform over a thirteen-month period,
focusing on the ability to link together the ledgers of multiple
different cryptocurrencies. To accomplish this task, we looked
at these trading platforms from several different perspectives,
ranging from the correlations between the transactions they
produce in the cryptocurrency ledgers to the relationships
they reveal between seemingly distinct users. The techniques
we develop demonstrate that it is possible to capture com-
plex transactional behaviors and trace their activity even as it
moves across ledgers, which has implications for any crimi-
nals attempting to use these platforms to obscure their flow
of money.
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