
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

Scattercache: Thwarting Cache Attacks via
Cache Set Randomization

Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel Gruss, and
Stefan Mangard, Graz University of Technology

https://www.usenix.org/conference/usenixsecurity19/presentation/werner

SCATTERCACHE: Thwarting Cache Attacks via Cache Set Randomization

Mario Werner, Thomas Unterluggauer, Lukas Giner,
Michael Schwarz, Daniel Gruss, Stefan Mangard

Graz University of Technology

Abstract
Cache side-channel attacks can be leveraged as a building
block in attacks leaking secrets even in the absence of soft-
ware bugs. Currently, there are no practical and generic miti-
gations with an acceptable performance overhead and strong
security guarantees. The underlying problem is that caches
are shared in a predictable way across security domains.

In this paper, we eliminate this problem. We present SCAT-
TERCACHE, a novel cache design to prevent cache attacks.
SCATTERCACHE eliminates fixed cache-set congruences and,
thus, makes eviction-based cache attacks unpractical. For this
purpose, SCATTERCACHE retrofits skewed associative caches
with a keyed mapping function, yielding a security-domain-
dependent cache mapping. Hence, it becomes virtually impos-
sible to find fully overlapping cache sets, rendering current
eviction-based attacks infeasible. Even theoretical statistical
attacks become unrealistic, as the attacker cannot confine con-
tention to chosen cache sets. Consequently, the attacker has
to resort to eviction of the entire cache, making deductions
over cache sets or lines impossible and fully preventing high-
frequency attacks. Our security analysis reveals that even in
the strongest possible attacker model (noise-free), the con-
struction of a reliable eviction set for PRIME+PROBE in an 8-
way SCATTERCACHE with 16384 lines requires observation
of at least 33.5 million victim memory accesses as compared
to fewer than 103 on commodity caches. SCATTERCACHE
requires hardware and software changes, yet is minimally in-
vasive on the software level and is fully backward compatible
with legacy software while still improving the security level
over state-of-the-art caches. Finally, our evaluations show that
the runtime performance of software is not curtailed and our
design even outperforms state-of-the-art caches for certain
realistic workloads.

1 Introduction

Caches are core components of today’s computing architec-
tures. They bridge the performance gap between CPU cores

and a computer’s main memory. However, in the past two
decades, caches have turned out to be the origin of a wide
range of security threats [10, 15, 27, 38, 39, 43, 44, 51, 76]. In
particular, the intrinsic timing behavior of caches that speeds
up computing systems allows for cache side-channel attacks
(cache attacks), which are able to recover secret information.

Historically, research on cache attacks focused on cryp-
tographic algorithms [10, 44, 51, 76]. More recently, how-
ever, cache attacks like PRIME+PROBE [44, 48, 51, 54, 62]
and FLUSH+RELOAD [27, 76] have also been used to attack
address-space-layout randomization [23, 25, 36], keystroke
processing and inter-keystroke timing [26, 27, 60], and gen-
eral purpose computations [81]. For shared caches on modern
multi-core processors, PRIME+PROBE and FLUSH+RELOAD
even work across cores executing code from different security
domains, e.g., processes or virtual machines.

The most simple cache attacks, however, are covert chan-
nels [46,48,72]. In contrast to a regular side-channel attack, in
a covert channel, the “victim” is colluding and actively trying
to transmit data to the attacker, e.g., running in a different
security domain. For instance, Meltdown [43], Spectre [38],
and Foreshadow [15] use cache covert channels to transfer
secrets from the transient execution domain to an attacker.
These recent examples highlight the importance of finding
practical approaches to thwart cache attacks.

To cope with cache attacks, there has been much research
on ways to identify information leaks in a software’s memory
access pattern, such as static code [19,20,41,45] and dynamic
program analysis [34, 71, 74, 77]. However, mitigating these
leaks both generically and efficiently is difficult. While there
are techniques to design software without address-based infor-
mation leaks, such as unifying control flow [17] and bitsliced
implementations of cryptography [37, 40, 58], their general
application to arbitrary software remains difficult. Hence,
protecting against cache attacks puts a significant burden on
software developers aiming to protect secrets in the view
of microarchitectural details that vary a lot across different
Instruction-Set Architecture (ISA) implementations.

A different direction to counteract cache attacks is to design

USENIX Association 28th USENIX Security Symposium 675

more resilient cache architectures. Typically, these architec-
tures modify the cache organization in order to minimize
interference between different processes, either by breaking
the trivial link between memory address and cache index [22,
55, 67, 69, 70] or by providing exclusive access to cache parti-
tions for critical code [53, 57, 69]. While cache partitioning
completely prevents cache interference, its rather static alloca-
tion suffers from scalability and performance issues. On the
other hand, randomized cache (re-)placement [69, 70] makes
mappings of memory addresses to cache indices random and
unpredictable. Yet, managing these cache mappings in lookup
tables inheres extensive changes to the cache architecture and
cost. Finally, the introduction of a keyed function [55, 67]
to pseudorandomly map the accessed memory location to
the cache-set index can counteract PRIME+PROBE attacks.
However, these solutions either suffer from a low number of
cache sets, weakly chosen functions, or cache interference for
shared memory and thus require to change the key frequently
at the cost of performance.

Hence, there is a strong need for a practical and effective
solution to thwart both cache attacks and cache covert chan-
nels. In particular, this solution should (1) make cache attacks
sufficiently hard, (2) require as little software support as pos-
sible, (3) embed flexibly into existing cache architectures, (4)
be efficiently implementable in hardware, and (5) retain or
even enhance cache performance.

Contribution. In this paper, we present SCATTERCACHE,
which achieves all these goals. SCATTERCACHE is a novel
and highly flexible cache design that prevents cache attacks
such as EVICT+RELOAD and PRIME+PROBE and severely
limits cache covert channel capacities by increasing the num-
ber of cache sets beyond the number of physically available
addresses with competitive performance and implementation
cost. Hereby, SCATTERCACHE closes the gap between previ-
ous secure cache designs and today’s cache architectures by
introducing a minimal set of cache modifications to provide
strong security guarantees.

Most prominently, SCATTERCACHE eliminates the
fixed cache-set congruences that are the cornerstone of
PRIME+PROBE attacks. For this purpose, SCATTERCACHE
builds upon two ideas. First, SCATTERCACHE uses a
keyed mapping function to translate memory addresses
and the active security domain, e.g., process, to cache set
indices. Second, similar to skewed associative caches [63],
the mapping function in SCATTERCACHE computes a
different index for each cache way. As a result, the number
of different cache sets increases exponentially with the
number of ways. While SCATTERCACHE makes finding fully
identical cache sets statistically impossible on state-of-the-art
architectures, the complexity for exploiting inevitable partial
cache-set collisions also rises heavily. The reason is in
part that the mapping of memory addresses to cache sets
in SCATTERCACHE is different for each security domain.
Hence, and as our security analysis shows, the construction

of a reliable eviction set for PRIME+PROBE in an 8-way
SCATTERCACHE with 16384 lines requires observation of at
least 33.5 million victim memory accesses as compared to
fewer than 103 on commodity caches, rendering these attacks
impractical on real systems with noise.

Additionally, SCATTERCACHE effectively prevents
FLUSH+RELOAD-based cache attacks, e.g., on shared
libraries, as well. The inclusion of security domains in
SCATTERCACHE and its mapping function preserves
shared memory in RAM, but prevents any cache lines to be
shared across security boundaries. Yet, SCATTERCACHE
supports shared memory for inter-process communication
via dedicated separate security domains. To achieve highest
flexibility, managing the security domains of SCATTER-
CACHE is done by software, e.g., the operating system.
However, SCATTERCACHE is fully backwards compatible
and already increases the effort of cache attacks even without
any software support. Nevertheless, the runtime performance
of software on SCATTERCACHE is highly competitive
and, on certain workloads, even outperforms cache designs
implemented in commodity CPUs.

SCATTERCACHE constitutes a comparably simple exten-
sion to cache and processor architectures with minimal hard-
ware cost: SCATTERCACHE essentially only adds additional
index derivation logic, i.e., a lightweight cryptographic primi-
tive, and an index decoder for each scattered cache way. More-
over, to enable efficient lookups and writebacks, SCATTER-
CACHE stores the index bits from the physical address in
addition to the tag bits, which adds < 5% storage overhead
per cache line. Finally, SCATTERCACHE consumes one bit
per page-table entry (≈ 1.5% storage overhead per page-table
entry) for the kernel to communicate with the user space.

Outline. This paper is organized as follows. In Section 2,
we provide background information on caches and cache
attacks. In Section 3, we describe the design and concept
of SCATTERCACHE. In Section 4, we analyze the security
of SCATTERCACHE against cache attacks. In Section 5, we
provide a performance evaluation. We conclude in Section 6.

2 Background

In this section, we provide background on caches, cache side-
channel attacks, and resilient cache architectures.

2.1 Caches
Modern computers have a memory hierarchy consisting of
many layers, each following the principle of locality, storing
data that is expected to be used in the future, e.g., based on
what has been accessed in the past. Modern processors have
a hierarchy of caches that keep instructions and data likely
to be used in the future near the execution core to avoid the
latency of accesses to the slow (DRAM) main memory. This
cache hierarchy typically consists of 2 to 4 layers, where the

676 28th USENIX Security Symposium USENIX Association

off
se

t

set[idx+2]

set[idx-2]

set[idx-1]

set[idx+1]

way 0 way 1 way 2 way 3

in
de

x
ta

g

Figure 1: Indexing cache sets in a 4-way set-associative cache.

lowest layer is the smallest and fastest, typically only a few
kilobytes. The last-level cache is the largest cache, typically
in the range of several megabytes. On most processors, the
last-level cache is shared among all cores. The last-level cache
is often inclusive, i.e., any cache line in a lower level cache
must also be present in the last-level cache.

Caches are typically organized into cache sets that are com-
posed of multiple cache lines or cache ways. The cache set is
determined by computing the cache index from address bits.
Figure 1 illustrates the indexing of a 4-way set-associative
cache. As the cache is small and the memory large, many
memory locations map to the same cache set (i.e., the ad-
dresses are congruent). The replacement policy (e.g., pseudo-
LRU, random) decides which way is replaced by a newly
requested cache line. Any process can observe whether data
is cached or not by observing the memory access latency
which is the basis for cache side-channel attacks.

2.2 Cache Side-Channel Attacks
Cache side-channel attacks have been studied for over the
past two decades, initially with a focus on cryptographic algo-
rithms [10, 39, 51, 52, 54, 68]. Today, a set of powerful attack
techniques enable attacks in realistic cross-core scenarios.
Based on the access latency, an attacker can deduce whether
or not a cache line is in the cache, leaking two opposite kinds
of information. (1) By continuously removing (i.e., evicting
or flushing) a cache line from the cache and measuring the ac-
cess latency, an attacker can determine whether this cache line
has been accessed by another process. (2) By continuously
filling a part of the cache with attacker-accessible data, the
attacker can measure the contention of the corresponding part,
by checking whether the attacker-accessible data remained in
the cache. Contention-based attacks work on different layers:

The Entire Cache or Cache Slices. An attacker can mea-
sure contention of the entire cache or a cache slice. Mau-
rice et al. [46] proposed a covert channel where the sender
evicts the entire cache to leak information across cores and
the victim observes the cache contention. A similar attack
could be mounted on a cache slice if the cache slice function
is known [47]. The granularity is extremely coarse, but with
statistical attacks can leak meaningful information [61].

Cache Sets. An attacker can also measure the contention
of a cache set. For this, additional knowledge may be required,

such as the mapping from virtual addresses to physical ad-
dresses, as well as the functions mapping physical addresses
to cache slices and cache sets. The attacker continuously fills
a cache set with a set of congruent memory locations. Filling
a cache set is also called cache-set eviction, as it evicts any
previously contained cache lines. Only if some other process
accessed a congruent memory location, memory locations
are evicted from a cache set. The attacker can measure this
for instance by measuring runtime variations in a so-called
EVICT+TIME attack [51]. The EVICT+TIME technique has
mostly been applied in attacks on cryptographic implemen-
tations [31, 42, 51, 65]. Instead of the runtime, the attacker
can also directly check how many of the memory locations
are still cached. This attack is called PRIME+PROBE [51].
Many PRIME+PROBE attacks on private L1 caches have been
demonstrated [3,14,51,54,80]. More recently, PRIME+PROBE
attacks on last-level caches have also been demonstrated in
various generic use cases [4, 44, 48, 50, 59, 79].

Cache Lines. At a cache line granularity, the attacker
can measure whether a memory location is cached or not.
As already indicated above, here the logic is inverted. Now
the attacker continuously evicts (or flushes) a cache line
from the cache. Later on, the attacker can measure the
latency and deduce whether another process has loaded
the cache line into the cache. This technique is called
FLUSH+RELOAD [28, 76]. FLUSH+RELOAD has been stud-
ied in a long list of different attacks [4–6,27,32,35,42,76,78,
81]. Variations of FLUSH+RELOAD are FLUSH+FLUSH [26]
and EVICT+RELOAD [27, 42].

Cache Covert Channels

Cache covert channels are one of the simplest forms of cache
attacks. Instead of an attacker process attacking a victim pro-
cess, both processes collude to covertly communicate using
the cache as transmission channel. Thus, in this scenario, the
colluding processes are referred to as sender and receiver, as
the communication is mostly unidirectional. A cache covert
channel allows bypassing all architectural restrictions regard-
ing data exchange between processes.

Cache covert channels have been shown using various
cache attacks, such as PRIME+PROBE [44, 48, 73, 75] and
FLUSH+RELOAD [26]. They achieve transmission rates of
up to 496 kB/s [26]. Besides native attacks, covert channels
have also been shown to work within virtualized environ-
ments, across virtual machines [44, 48, 75]. Even in these
restricted environments, cache-based covert channels achieve
transmission rates of up to 45 kB/s [48].

2.3 Resilient Cache Architectures

The threat of cache-based attacks sparked several novel cache
architectures designed to be resilient against these attacks.
While fixed cache partitions [53] lack flexibility, randomized

USENIX Association 28th USENIX Security Symposium 677

cache allocation appears to be more promising. The following
briefly discusses previous designs for a randomized cache.

RPCache [69] and NewCache [70] completely disrupt
the meaningful observability of interference by performing
random (re-)placement of lines in the cache. However, man-
aging the cache mappings efficiently either requires full as-
sociativity or content addressable memory. While optimized
addressing logic can lead to efficient implementations, these
designs differ significantly from conventional architectures.

Time-Secure Caches [67] is based on standard set-
associative caches that are indexed with a keyed function
that takes cache line address and Process ID (PID) as an input.
While this design destroys the obvious cache congruences
between processes to minimize cache interference, a compa-
rably weak indexing function is used. Eventually, re-keying
needs to be done quite frequently, which amounts to flushing
the cache and thus reduces practical performance. SCATTER-
CACHE can be seen as a generalization of this approach with
higher entropy in the indexing of cache lines.

CEASER [55] as well uses standard set-associative caches
with keyed indexing, which, however, does not include the
PID. Hence, inter-process cache interference is predictable
based on in-process cache collisions. As a result, CEASER
strongly relies on continuous re-keying of its index deriva-
tion to limit the time available for conducting an attack. For
efficient implementation, CEASER uses its own lightweight
cryptographic primitive designed for that specific application.

3 ScatterCache

As Section 2 showed, caches are a serious security concern in
contemporary computing systems. In this section, we hence
present SCATTERCACHE—a novel cache architecture that
counteracts cache-based side-channel attacks by skewed pseu-
dorandom cache indexing. After discussing the main idea
behind SCATTERCACHE, we discuss its building blocks and
system integration in more detail. SCATTERCACHE’s security
implications are, subsequently, analyzed in Section 4.

3.1 Targeted Properties
Even though contemporary transparent cache architectures
are certainly flawed from the security point of view, they
still feature desirable properties. In particular, for regular
computations, basically no software support is required for
cache maintenance. Also, even in the case of multitasking
and -processing, no dedicated cache resource allocation and
scheduling is needed. Finally, by selecting the cache size and
the number of associative ways, chip vendors can trade hard-
ware complexity and costs against performance as desired.

SCATTERCACHE’s design strives to preserve these features
while adding the following three security properties:

1. Between software defined security domains (e.g., differ-
ent processes or users on the same machine, different

Set 0 Set 1 Set 2 Set 3

Addr. A

Addr. B

Addr. A

Addr. B

Figure 2: Flattened visualization of mapping addresses to
cache sets in a 4-way set-associative cache with 16 cache lines.
Top: Standard cache where index bits select the cache set.
Middle: Pseudorandom mapping from addresses to cache sets.
The mapping from cache lines to sets is still static. Bottom:
Pseudorandom mapping from addresses to a set of cache lines
that dynamically form the cache set in SCATTERCACHE.

VMs, . . .), even for exactly the same physical addresses,
cache lines should only be shared if cross-context co-
herency is required (i.e., writable shared memory).

2. Finding and exploiting addresses that are congruent in
the cache should be as hard as possible (i.e., we want
to “break” the direct link between the accessed physical
address and the resulting cache set index for adversaries).

3. Controlling and measuring complete cache sets should
be hard in order to prevent eviction-based attacks.

Finally, to ease the adoption and to utilize the vast knowl-
edge on building efficient caches, the SCATTERCACHE hard-
ware should be as similar to current cache architectures as
possible.

3.2 Idea
Two main ideas influenced the design of SCATTERCACHE to
reach the desired security properties. First, addresses should
be translated to cache sets using a keyed, security-domain
aware mapping. Second, which exact nways cache lines form a
cache set in a nways-way associative cache should not be fixed,
but depend on the currently used key and security domain
too. SCATTERCACHE combines both mappings in a single
operation that associates each address, depending on the key
and security domain, with a set of up to nways cache lines.
In other words, in a generic SCATTERCACHE, any possible
combination of up to nways cache lines can form a cache set.

Figure 2 visualizes the idea and shows how it differs from
related work. Traditional caches as well as alternative designs
which pseudorandomly map addresses to cache sets statically
allocate cache lines to cache sets. Hence, as soon as a cache
set is selected based on (possibly encrypted) index bits, al-
ways the same nways cache lines are used. This means that all
addresses mapping to the same cache set are congruent and
enables PRIME+PROBE-style attacks.

In SCATTERCACHE, on the other hand, the cache set for
a particular access is a pseudorandom selection of arbitrary
nways cache lines from all available lines. As a result, there
is a much higher number of different cache sets and finding
addresses with identical cache sets becomes highly unlikely.

678 28th USENIX Security Symposium USENIX Association

IDF

cache line address

key

idx0-3

idx0 idx2 idx1 idx3

SDID offsettag index

Figure 3: Idea: For an nways associative cache, nways indices
into the cache memory are derived using a cryptographic IDF.
This IDF effectively randomizes the mapping from addresses
to cache sets as well as the composition of the cache set itself.

Instead, as shown at the bottom of Figure 2, at best, partially
overlapping cache sets can be found (cf. Section 4.3), which
makes exploitation tremendously hard in practice.

A straightforward concept for SCATTERCACHE is shown in
Figure 3. Here, the Index Derivation Function (IDF) combines
the mapping operations in a single cryptographic primitive.
In a set-associative SCATTERCACHE with set size nways, for
each input address, the IDF outputs nways indices to form the
cache set for the respective access. How exactly the mapping
is performed in SCATTERCACHE is solely determined by the
used key, the Security Domain Identifier (SDID), and the IDF.
Note that, as will be discussed in Section 3.3.1, hash-based as
well as permutation-based IDFs can be used in this context.

Theoretically, a key alone is sufficient to implement the
overall idea. However, separating concerns via the SDID
leads to a more robust and harder-to-misuse concept. The
key is managed entirely in hardware, is typically longer, and
gets switched less often than the SDID. On the other hand,
the SDID is managed solely by the software and, depend-
ing on the implemented policy, has to be updated quite fre-
quently. Importantly, as we show in Section 4, SCATTER-
CACHE alone already provides significantly improved se-
curity in PRIME+PROBE-style attack settings even without
software support (i.e., SDID is not used).

3.3 SCATTERCACHE Design
In the actual design we propose for SCATTERCACHE, the
indices (i.e., IDF output) do not address into one huge joint
cache array. Instead, as shown in Figure 4, each index ad-
dresses a separate memory, i.e., an independent cache way.

On the one hand, this change is counter-intuitive as
it decreases the number of possible cache sets from(nways·2bindices+nways−1

nways

)
to 2bindices·nways . However, this reduction

in possibilities is acceptable. For cache configurations with
up to 4 cache ways, the gap between both approaches is only
a few bits. For higher associativity, the exponential growth
ensures that sufficiently many cache sets exist.

On the other hand, the advantages gained from switching
to this design far outweigh the costs. Namely, for the original
idea, no restrictions on the generated indices exist. Therefore,
a massive nways-fold multi-port memory would be required to

off
se

t

idx0

way 3

in
de

x
ta

g

ID
F

cache line
addr.

key

idx1

idx2

idx3

way 1 way 2way 0
SDID

Figure 4: 4-way set-associative SCATTERCACHE where each
index addresses exclusively one cache way.

be able to lookup a nways-way cache-set in parallel. The de-
sign shown in Figure 4 does not suffer from this problem and
permits to instantiate SCATTERCACHE using nways instances
of simpler/smaller memory. Furthermore, this design guar-
antees that even in case the single index outputs of the IDF
collide, the generated cache always consists of exactly nways
many cache lines. This effectively precludes the introduction
of systematic biases for potentially “weak” address-key-SDID
combinations that map to fewer than nways cache lines.

In terms of cache-replacement policy, SCATTERCACHE
uses simple random replacement to ensure that no systematic
bias is introduced when writing to the cache and to simplify
the security analysis. Furthermore, and as we will show in
Section 5, the performance of SCATTERCACHE with random
replacement is competitive to regular set associative caches
with the same replacement policy. Therefore, evaluation of
alternative replacement policies has been postponed. Inde-
pendent of the replacement policy, it has to be noted that, for
some IDFs, additional tag bits have to be stored in SCATTER-
CACHE. In particular, in case of a non invertible IDF, the
original index bits need to be stored to facilitate write back of
dirty cache lines and to ensure correct cache lookups. How-
ever, compared to the amount of data that is already stored for
each cache line, the overhead of adding these few bits should
not be problematic (< 5% overhead).

In summary, the overall hardware design of SCATTER-
CACHE closely resembles a traditional set-associative archi-
tecture. The only differences to contemporary fixed-set de-
signs is the more complex IDF and the amount of required
logic which permits to address each way individually. How-
ever, both changes are well understood. As we detail in the
following section, lightweight (i.e., low area and latency) cryp-
tographic primitives are suitable building blocks for the IDF.
Similarly, duplication of addressing logic is already common
practice in current processors. Modern Intel architectures, for
example, already partition their Last-Level Cache (LLC) into
multiple smaller cache slices with individual addressing logic.

3.3.1 Suitable Index Derivation Functions

Choosing a suitable IDF is essential for both security and
performance. In terms of security, the IDF has to be an un-
predictable (but still deterministic) mapping from physical
addresses to indices. Following Kerckhoffs’s principle, even

USENIX Association 28th USENIX Security Symposium 679

for attackers which know every detail except the key, three
properties are expected from the IDF: (1) Given perfect con-
trol over the public inputs of the function (i.e., the physical
address and SDID) constructing colliding outputs (i.e., the
indices) should be hard. (2) Given colliding outputs, deter-
mining the inputs or constructing further collisions should be
hard. (3) Recovering the key should be infeasible given input
and output for the function.

Existing Building Blocks: Cryptographic primitives like
(tweakable) block ciphers, Message Authentication Codes
(MACs), and hash functions are designed to provide these
kind of security properties (e.g., indistinguishability of en-
cryptions, existential unforgeability, pre-image and collision
resistance). Furthermore, design and implementation of cryp-
tographic primitives with tight performance constraints is
already a well-established field of research which we want
to take advantage of. For example, with PRINCE [13], a
low-latency block cipher, and QARMA [8], a family of low-
latency tweakable block ciphers, exist and can be used as
building blocks for the IDF. Such tweakable block ciphers
are a flexible extension to ordinary block ciphers, which, in
addition to a secret key, also use a public, application-specific
tweak to en-/decrypt messages. Similarly, sponge-based MAC,
hash and cipher designs are a suitable basis for IDFs. These
sponge modes of operation are built entirely upon permuta-
tions, e.g., Keccak-p, which can often be implemented with
low latency [7, 11]. Using such cryptographic primitives, we
define the following two variants of building IDFs:

Hashing Variant (SCv1): The idea of SCv1 is to combine
all IDF inputs using a single cryptographic primitive with
pseudo random output. MACs (e.g., hash-based) are examples
for such functions and permit to determine the output indices
by simply selecting the appropriate number of disjunct bits
from the calculated tag. However, also other cryptographic
primitives can be used for instantiating this IDF variant.

It is, for example possible to slice the indices from the
ciphertext of a regular block cipher encryption which uses
the concatenation of cache line address and the SDID as the
plaintext. Similarly, tweakable block ciphers allow to use the
SDID as a tweak instead of connecting it to the plaintext.
Interestingly, finding cryptographic primitives for SCv1 IDFs
is comparably simple given that the block sizes do not have
to match perfectly and the output can be truncated as needed.

However, there are also disadvantages when selecting the
indices pseudo randomly, like in the case of SCv1. In par-
ticular, when many accesses with high spatial locality are
performed, index collisions get more likely. This is due to
the fact that collisions in SCv1 output have birthday-bound
complexity. Subsequently, performance can degrade when
executing many different accesses with high spatial locality.
Fortunately, this effect weakens with increasing way numbers,
i.e., an increase in associativity decreases the probability that
all index outputs of the IDF collide.

In summary, SCv1 translates the address without distin-

guishing between index and tag bits. Given a fixed key and
SDID, the indices are simply pseudo random numbers that
are derived using a single cryptographic primitive.

Permutation Variant (SCv2): The idea behind the permu-
tation variant of the IDF is to distinguish the index from the
tag bits in the cache line address during calculation of the
indices. Specifically, instead of generating pseudo random in-
dices from the cache line address, tag dependent permutations
of the input index are calculated.

The reason for preferring a permutation over pseudo ran-
dom index generation is to counteract the effect of birthday-
bound index collisions, as present in SCv1. Using a tag de-
pendent permutation of the input index mitigates this problem
by design since permutations are bijections that, for a specific
tag, cannot yield colliding mappings.

Like in the hashing variant, a tweakable block cipher can
be used to compute the permutation. Here, the concatenation
of the tag bits, the SDID and the way index constitutes the
tweak while the address’ index bits are used as the plaintext.
The resulting ciphertext corresponds to the output index for
the respective way. Note that the block size of the cipher has
to be equal to the size of the index. Additionally, in order to
generate all indices in parallel, one instance of the tweakable
block cipher is needed per cache way. However, as the block
size is comparably small, each cipher instance is also smaller
than an implementation of the hashing IDF (SCv1).

Independently of the selected IDF variant, we leave the
decision on the actually used primitive to the discretion of
the hardware designers that implement SCATTERCACHE.
They are the only ones who can make a profound decision
given that they know the exact instantiation parameters (e.g.,
SDID/key/index/tag bit widths, number of cache ways) as
well as the allocatable area, performance, and power bud-
get in their respective product. However, we are certain that,
even with the already existing and well-studied cryptographic
primitives, SCATTERCACHE implementations are feasible
for common computing platforms, ranging from Internet of
Things (IoT) devices to desktop computers and servers.

Note further that we expect that, due to the limited ob-
servability of the IDF output, weakened (i.e., round reduced)
variants of general purpose primitives are sufficient to achieve
the desired security level. This is because adversaries can only
learn very little information about the function output by ob-
serving cache collisions (i.e., no actual values). Subsequently,
many more traces have to be observed for mounting an attack.
Cryptographers can take advantage of this increase in data
complexity to either design fully custom primitives [55] or to
decrease the overhead of existing designs.

3.3.2 Key Management and Re-Keying

The key in our SCATTERCACHE design plays a central role in
the security of the entire approach. Even when the SDIDs are
known, it prevents attackers from systematically constructing

680 28th USENIX Security Symposium USENIX Association

eviction sets for specific physical addresses and thwarts the
calculation of addresses from collision information. Keeping
the key confidential is therefore of highest importance.

We ensure this confidentiality in our design by mandating
that the key of is fully managed by hardware. There must not
be any way to configure or retrieve this key in software. This
approach prevents various kinds of software-based attacks
and is only possible due to the separation of key and SDID.

The hardware for key management is comparably simple as
well. Each time the system is powered up, a new random key is
generated and used by the IDF. The simplicity of changing the
key during operation strongly depends on the configuration of
the cache. For example, in a write-through cache, changing the
key is possible at any time without causing data inconsistency.
In such a scenario, a timer or performance-counter-based re-
keying scheme is easily implementable. Note, however, that
the interval between key changes should not be too small as
each key change corresponds to a full cache flush.

On the other hand, in a cache with write-back policy, the
key has to be kept constant as long as dirty cache lines reside
in the cache. Therefore, before the key can be changed in this
scenario without data loss, all modified cache lines have to be
written back to memory first. The x86 Instruction-Set Archi-
tecture (ISA), for example, features the WBINVD instruction
that can be used for that purpose.

If desired, also more complex rekeying schemes, like way-
wise or cache-wide dynamic remapping [55], can be im-
plemented. However, it is unclear if adding the additional
hardware complexity is worthwhile. Even without changing
the key, mounting cache attacks against SCATTERCACHE is
much harder than on traditional caches (see Section 4). Sub-
sequently, performing an occasional cache flush to update the
key can be the better choice.

3.3.3 Integration into Existing Cache Architectures

SCATTERCACHE is a generic approach for building processor
caches that are hard to exploit in cache-based side channel
attacks. When hardening a system against cache attacks, inde-
pendent of SCATTERCACHE, we recommend to restrict flush
instructions to privileged software. These instruction are only
rarely used in benign userspace code and restricting them
prevents the applicability of the whole class of flush-based at-
tacks from userspace. Fortunately, recent ARM architectures
already support this restriction.

Next, SCATTERCACHES can be deployed into the system
to protect against eviction based attacks. While not inherently
limited to, SCATTERCACHES are most likely to be deployed
as LLCs in modern processor architectures. Due to their large
size and the fact that they are typically shared across multiple
processor cores, LLCs are simply the most prominent cache
attack target and require the most protection. Compared to
that, lower cache levels that typically are only accessible by a
single processor core, hold far less data and are much harder

to attack on current architectures. Still, usage of (unkeyed)
skewed [63] lower level caches is an interesting option that
has to be considered in this context.

Another promising aspect of employing a SCATTERCACHE
as LLC is that this permits to hide large parts of the IDF
latency. For example, using a fully unrolled and pipelined IDF
implementation, calculation of the required SCATTERCACHE
indices can already be started, or even performed entirely, in
parallel to the lower level cache lookups. While unneeded
results can easily be discarded, this ensures that the required
indices for the LLC lookup are available as soon as possible.

Low latency primitives like QARMA, which is also used
in recent ARM processors for pointer authentication, are
promising building blocks in this regard. The minimal la-
tency Avanzi [8] reported for one of the QARMA-64 variants
is only 2.2 ns. Considering that this number is even lower
than the time it takes to check the L1 and L2 caches on re-
cent processors (e.g., 3 ns on a 4 GHz Intel Kabylake [2], 9 ns
on an ARM Cortex-A57 in an AMD Opteron A1170 [1]),
implementing IDFs without notable latency seems feasible.

3.4 Processor Interaction and Software

Even without dedicated software support, SCATTERCACHE
increases the complexity of cache-based attacks. However, to
make full use of SCATTERCACHE, software assistance and
some processor extensions are required.

Security Domains. The SCATTERCACHE hardware per-
mits to isolate different security domains from each other
via the SDID input to the IDF. Unfortunately, depending
on the use case, the definition on what is a security domain
can largely differ. For example, a security domain can be a
chunk of the address space (e.g., SGX enclaves), a whole
process (e.g., TrustZone application), a group of processes
in a common container (e.g., Docker, LXC), or even a full
virtual machine (e.g., cloud scenario). Considering that it is
next to impossible to define a generic policy in hardware that
can capture all these possibilities, we delegate the distinction
to software that knows about the desired isolation properties,
e.g., the Operating System (OS).

SCATTERCACHE Interface. Depending on the targeted
processor architecture, different design spaces can be explored
before deciding how the current SDID gets defined and what
channels are used to communicate the identifier to the SCAT-
TERCACHE. However, at least for modern Intel and ARM
processors, binding the currently used SDID to the virtual
memory management via user defined bits in each Page Table
Entry (PTE) is a promising approach. In more detail, one or
more bits can be embedded into each PTE that select from a
list, via one level of indirection, which SDID should be used
when accessing the respective page.

Both ARM and Intel processors already support a similar
mechanism to describe memory attributes of a memory map-
ping. The x86 architecture defines so-called Page Attribute Ta-

USENIX Association 28th USENIX Security Symposium 681

bles (PATs) to define how a memory mapping can be cached.
Similarly, the ARM architecture defines Memory Attribute
Indirection Registers (MAIRs) for the same purpose. Both
PAT and MAIR define a list of 8 memory attributes which
are applied by the Memory Management Unit (MMU). The
MMU interprets a combination of 3 bits defined in the PTE as
index into the appropriate list, and applies the corresponding
memory attribute. Adding the SDID to these attribute lists
permits to use up to 8 different security domains within a sin-
gle process. The absolute number of security domains, on the
other hand, is only limited by the used IDF and them number
of bits that represent the SDID.

Such indirection has a huge advantage over encoding data
directly in a PTE. The OS can change a single entry within the
list to affect all memory mappings using the corresponding
entry. Thus, such a mechanism is beneficial for SCATTER-
CACHE, where the OS wants to change the SDID for all
mappings of a specific process.

Backwards Compatibility. Ensuring backwards compat-
ibility is a key factor for gradual deployment of SCATTER-
CACHE. By encoding the SDID via a separate list indexed by
PTE bits, all processes, as well as the OS, use the same SDID,
i.e., the SDID stored as first element of the list (assuming all
corresponding PTE bits are ‘0’ by default). Thus, if the OS is
not aware of the SCATTERCACHE, all processes—including
the OS—use the same SDID. From a software perspective,
functionally, SCATTERCACHE behaves the same as currently
deployed caches. Only if the OS specifies SDIDs in the list,
and sets the corresponding PTE bits to use a certain index,
SCATTERCACHE provides its strong security properties.

Implementation Example. In terms of capabilities, hav-
ing a single bit in each PTE, for example, is already sufficient
to implement security domains with process granularity and to
maintain a dedicated domain for the OS. In this case, SDID0
can always be used for the OS ID while SDID1 has to be
updated as part of the context switch and is always used for
the scheduled user space process. Furthermore, by reusing
the SDID of the OS, also shared memory between user space
processes can easily be implemented without security impact.

Interestingly, SCATTERCACHE fully preserves the capa-
bility of the OS to share read-only pages (i.e., libraries) also
across security domains as no cache lines will be shared. In
contrast, real shared memory has to always be accessed via
the same SDID in all processes to ensure data consistency.
In general, with SCATTERCACHE, as long as the respective
cache lines have not been flushed to RAM, data always needs
to be accessed with the same SDID the data has been written
with to ensure correctness. This is also true for the OS, which
has to ensure that no dirty cache lines reside in the cache, e.g.,
when a page gets assigned to a new security domain.

A case which has to be explicitly considered by the OS is
copying data from user space to kernel space and vice versa.
The OS can access the user space via the direct-physical map
or via the page tables of the process. Thus, the OS has to

select the correct SDID for the PTE used when copying data.
Similarly, if the OS sets up page tables, it has to use the same
SDID as the MMU uses for resolving page tables.

4 Security Evaluation

SCATTERCACHE is a novel cache design to efficiently thwart
cache-based side-channel attacks. In the following, we inves-
tigate the security of SCATTERCACHE in terms of state-of-
the-art side-channel attacks using both theoretical analysis
and simulation-based results. In particular, we elaborate on
the complexity of building the eviction sets and explore the
necessary changes to the standard PRIME+PROBE technique
to make it viable on the SCATTERCACHE architecture.

4.1 Applicability of Cache Attacks
While certain types of cache attacks, such as FLUSH+FLUSH,
FLUSH+RELOAD and EVICT+RELOAD, require a particular
cache line to be shared, attacks such as PRIME+PROBE have
less stringent constraints and only rely on the cache being
a shared resource. As sharing a cache line is the result of
shared memory, we analyze the applicability of cache attacks
on SCATTERCACHE with regard to whether the underlying
memory is shared between attacker and victim or not.

Shared, read-only memory. Read-only memory is fre-
quently shared among different processes, e.g., in case of
shared code libraries. SCATTERCACHE prevents cache at-
tacks involving shared read-only memory by introducing se-
curity domains. In particular, SCATTERCACHE maintains a
separate copy of shared read-only memory in cache for each
security domain, i.e., the cache lines belonging to the same
shared memory region are not being shared in cache across
security domains anymore. As a result, reloading data into or
flushing data out of the cache does not provide any informa-
tion on another security domain’s accesses to the respective
shared memory region. Note, however, that the cache itself is
shared, leaving attacks such as PRIME+PROBE still feasible.

Shared, writable memory. Exchanging data between pro-
cesses requires shared, writable memory. To ensure cache
coherency, writing shared memory regions must always use
the same cache line and hence the same security domain
for that particular memory region—even for different pro-
cesses. While attacks on these shared memory regions in-
volving flush instructions can easily be mitigated by mak-
ing these instructions privileged, EVICT+RELOAD remains
feasible. Still, SCATTERCACHE significantly hampers the
construction of targeted eviction sets by skewing, i.e., individ-
ually addressing, the cache ways. Moreover, its susceptibility
to EVICT+RELOAD attacks is constrained to the processes
sharing the respective memory region. Nevertheless, SCAT-
TERCACHE requires writable shared memory to be used only
as an interface for data transfer rather than sensitive computa-
tions. In addition, PRIME+PROBE attacks are still possible.

682 28th USENIX Security Symposium USENIX Association

Unshared memory. Unshared memory regions never
share the same cache line, hence making attacks such as
FLUSH+FLUSH, FLUSH+RELOAD and EVICT+RELOAD in-
feasible. However, as the cache component itself is shared,
cache attacks such as PRIME+PROBE remain possible.

As our analysis shows, SCATTERCACHE prevents a wide
range of cache attacks that exploit the sharing of cache lines
across security boundaries. While PRIME+PROBE attacks
cannot be entirely prevented as long as the cache itself is
shared, SCATTERCACHE vastly increases their complexity
in all aspects. The pseudorandom cache-set composition in
SCATTERCACHE prevents attackers from learning concrete
cache sets from memory addresses and vice versa. Even if
attackers are able to profile information about the mapping of
memory addresses to cache-sets in their own security domain,
it does not allow them infer the mapping of cache-sets to mem-
ory addresses in other security domains. To gain information
about memory being accessed in another security domain, an
attacker needs to profile the mapping of the attacker’s address
space to cache lines that are being used by the victim when
accessing the memory locations of interest. The effectiveness
of PRIME+PROBE attacks thus heavily relies on the complex-
ity of such a profiling phase. We elaborate on the complexity
of building eviction sets in Section 4.3.

4.2 Other Microarchitectural Attacks

Many other microarchitectural attacks are not fully miti-
gated but hindered by SCATTERCACHE. For instance, Melt-
down [43] and Spectre [38] attacks cannot use the cache
efficiently anymore but must resort to other covert channels.
Also, DRAM row buffer attacks and Rowhammer attacks are
negatively affected as they require to bypass the cache and
reach DRAM. While these attacks are already becoming more
difficult due to closed row policies in modern processors [24],
we propose to make flush instructions privileged, removing
the most widely used cache bypass. Cache eviction gets much
more difficult with SCATTERCACHE and additionally, spu-
rious cache misses will open DRAM rows during eviction.
These spurious DRAM row accesses make the row hit side
channel impractical and introduce a significant amount of
noise on the row conflict side channel. Hence, while these
attacks are not directly in the scope of this paper, SCATTER-
CACHE arguably has a negative effect on them.

4.3 Complexity of Building Eviction Sets

Cache skewing significantly increases the number of different
cache sets available in cache. However, many of these cache
sets will overlap partially, i.e., in 1 ≤ i < nways ways. The
complexity of building eviction sets for EVICT+RELOAD
and PRIME+PROBE in SCATTERCACHE thus depends on the
overlap of cache sets.

4.3.1 Full Cache-Set Collisions

The pseudorandom assembly of cache sets in SCATTER-
CACHE results in 2bindices·nways different compositions. For
a given target address, this results in a probability of
2−bindices·nways of finding another address that maps exactly to
the same cache lines in its assigned cache set. While dealing
with this complexity alone can be considered impractical in a
real-world scenario, note that it will commonly even exceed
the number of physical addresses available in current systems,
rendering full cache-set collisions completely infeasible. A
4-way cache, for example, with bindices = 12 index bits yields
248 different cache sets, which already exceeds the address
space of state-of-the-art systems.

4.3.2 Partial Cache-Set Collisions

While full cache-set collisions are impractical, partial colli-
sions of cache sets frequently occur in skewed caches such
as SCATTERCACHE. If the cache sets of two addresses over-
lap, two cache sets will most likely have a single cache line
in common. For this reason, we analyze the complexity of
eviction for single-way collisions in more detail.

Randomized Single-Set Eviction. Without knowledge of
the concrete mapping from memory addresses to cache sets,
the trivial approach of eviction is to access arbitrary mem-
ory locations, which will result in accesses to pseudoran-
dom cache sets in SCATTERCACHE. To elaborate on the
performance of this approach, we consider a cache with
nlines = 2bindices cache lines per way and investigate the evic-
tion probability for a single cache way, which contains a
specific cache line to be evicted. Given that SCATTERCACHE
uses a random (re-)placement policy, the probabilities of each
cache way are independent, meaning that each way has the
same probability of being chosen. Subsequently, the attack
complexity on the full SCATTERCACHE increases linearly
with the number of cache ways, i.e., the attack gets harder.

The probability of an arbitrary memory accesses to a certain
cache way hitting a specific cache line is p = n−1

lines. Perform-
ing naccesses independent accesses to this cache way increases
the odds of eviction to a certain confidence level α.

α = 1− (1−n−1
lines)

naccesses

Equivalently, to reach a certain confidence α in evicting the
specific cache line, attackers have to perform

E(naccesses) =
log(1−α)

log(1−n−1
lines)

independent accesses to this cache way, which amounts to
their attack complexity. Hence, to evict a certain cache set
from an 8-way SCATTERCACHE with 211 lines per way with
α = 99% confidence, the estimated attack complexity using
this approach is naccesses ·nways ≈ 216 independent accesses.

Randomized Multi-Set Eviction. Interestingly, eviction
of multiple cache sets using arbitrary memory accesses has

USENIX Association 28th USENIX Security Symposium 683

0 100 200 300 400

0.25

0.5

0.75

1

Eviction Set Size

Pr
ob

ab
ili

ty

4 ways 8 ways 16 ways 20 ways

Figure 5: Eviction probability depending on the size of the
eviction set and the number of ways.

similar complexity. In this regard, the coupon collector’s prob-
lem gives us a tool to estimate the number of accesses an at-
tacker has to perform to a specific cache way to evict a certain
percentage of cache lines in the respective way. In more detail,
the coupon collector’s problem provides the expected number
of accesses naccesses required to a specific cache way such that
nhit out of all nlines cache lines in the respective way are hit.

E(naccesses) = nlines · (Hnlines −Hnlines−hhit)

Hereby, Hn denotes the n-th Harmonic number, which can be
approximated using the natural logarithm. This approxima-
tion allows to determine the number of cache lines nhit that
are expected to be hit in a certain cache way when naccesses
random accesses to the specific way are performed.

E(nhit) = nlines · (1− e−
naccesses

nlines) (1)

Using nhit , we can estimate the number of independent ac-
cesses to be performed to a specific cache way such that a
portion β of the respective cache way is evicted.

E(naccesses) =−nlines · ln(1−β)

For the same 8-way SCATTERCACHE with 211 lines per way
as before, we therefore require roughly 216 independent ac-
cesses to evict β = 99% of the cache.

Profiled Eviction for PRIME+PROBE. As shown, rely-
ing on random eviction to perform cache-based attacks in-
volves significant effort and yields an overapproximation of
the eviction set. Moreover, while random eviction is suitable
for attacks such as EVICT+RELOAD, in PRIME+PROBE set-
tings random eviction fails to provide information related to
the concrete memory location that is being used by a victim.
To overcome these issues, attackers may profile a system to
construct eviction sets for specific memory addresses of the
victim, i.e., they try to find a set of addresses that map to cache
sets that partially overlap with the cache set corresponding
to the victim address. Eventually, such sets could be used to
speed up eviction and to detect accesses to specific memory
locations. In the following, we analyze the complexity of find-
ing these eviction sets. In more detail, we perform analysis
w.r.t. eviction addresses whose cache sets overlap with the
cache set of a victim address in a single cache way only.

0.25 0.5 0.75 1 1.5 2
106

107

108

109

Cache Size [MB]

V
ic

tim
A

cc
es

se
s

4 ways 8 ways 16 ways 20 ways

Figure 6: Number of required accesses to the target address
to construct a set large enough to achieve 99 % eviction
rate when no shared memory is available (cache line size:
32 bytes).

To construct a suitable eviction set for PRIME+PROBE, the
attacker needs to provoke the victim process to perform the
access of interest. In particular, the attacker tests a candidate
address for cache-set collisions by accessing it (prime), wait-
ing for the victim to access the memory location of interest,
and then measuring the time when accessing the candidate
address again (probe). In such a profiling procedure, after the
first attempt, we have to assume that the cache line belonging
to the victim access already resides in the cache. As a result,
attackers need to evict a victim’s cache line in their prime step.
Hereby, hitting the right cache way and index have probability
nways

−1 and 2−bindices , respectively. To be able to detect a col-
lision during the probe step, the victim access must then fall
into the same cache way as the candidate address, which has
a chance of nways

−1. In total, the expected number of memory
accesses required to construct an eviction set of t colliding
addresses hence is

E(naccesses) = nways
2 ·2bindices · t.

The number of memory addresses t needs to be chosen accord-
ing to the desired eviction probability for the victim address
with the given set. When the eviction set consists of addresses
that collide in the cache with the victim in exactly one way
each, the probability of evicting the victim with an eviction
set of size t is

p(Eviction) = 1−
(

1− 1
nways

) t
nways

.

Figure 5 depicts this probability for the size of the eviction set
and different numbers of cache ways. For an 8-way SCATTER-
CACHE with 211 cache lines per way, roughly 275 addresses
with single-way cache collisions are needed to evict the re-
spective cache set with 99% probability. Constructing this
eviction set, in the best case, requires profiling of approx-
imately 82 · 211 · 275 ≈ 225 (33.5 million) victim accesses.
Figure 6 shows the respective number of PRIME+PROBE
experiments needed to generate sets with 99% eviction prob-
ability for different cache configurations. We were able to
empirically confirm these numbers within a noise-free stan-
dalone simulation of SCATTERCACHE.

684 28th USENIX Security Symposium USENIX Association

For comparison, to generate an eviction set on a commodity
cache, e.g., recent Intel processors, for a specific victim mem-
ory access, an attacker needs fewer than 103 observations
of that access in a completely noise-free attacker-controlled
scenario. Hence, our cache increases the complexity for the
attacker by factor 325000. In a real-world scenario the com-
plexity is even higher.

Profiled Eviction for EVICT+RELOAD. For shared mem-
ory, such as in EVICT+RELOAD, the construction of eviction
sets, however, becomes easier, as shared memory allows the
attacker to simply access the victim address. Hence, to build
a suitable eviction set, the attacker first primes the victim ad-
dress, then accesses a candidate address, and finally probes
the victim address. In case a specific candidate address col-
lides with the victim address in the cache way the victim
access falls into , the attacker can observe this collision with
probability p = nways

−1. As a result, the expected number
of memory accesses required to build an eviction set of t
colliding addresses for EVICT+RELOAD is

E(naccesses) = nways ·2bindices · t.

For an 8-way SCATTERCACHE with 211 lines per way, con-
structing an EVICT+RELOAD eviction set of 275 addresses
(i.e., 99% eviction probability) requires profiling with roughly
8 · 211 · 275 = 222 memory addresses. Note, however, that
EVICT+RELOAD only applies to writable shared memory as
used for Inter Process Communication (IPC), whereas SCAT-
TERCACHE effectively prevents EVICT+RELOAD on shared
read-only memory by using different cache-set compositions
in each security domain. Moreover, eviction sets for both
PRIME+PROBE and EVICT+RELOAD must be freshly cre-
ated whenever the key or the SDID changes.

4.4 Complexity of PRIME+PROBE

As demonstrated, SCATTERCACHE strongly increases the
complexity of building the necessary sets of addresses for
PRIME+PROBE. However, the actual attacks utilizing these
sets are also made more complex by SCATTERCACHE.

In this section, we make the strong assumption that an
attacker has successfully profiled the victim process such that
they have found addresses which collide with the victim’s
target addresses in exactly 1 way each, have no collisions
with each other outside of these and are sorted into subsets
corresponding to the cache line they collide in.

Where in normal PRIME+PROBE an attacker can infer vic-
tim accesses (or a lack thereof) with near certainty after only 1
sequence of priming and probing, SCATTERCACHE degrades
this into a probabilistic process. At best, one PRIME+PROBE
operation on a target address can detect an access with a
probability of nways

−1. This is complicated further by the fact
that any one set of addresses is essentially single-use, as the
addresses will be cached in a non-colliding cache line with
a probability of 1−nways

−1 after only 1 access, where they

cannot be used to detect victim accesses anymore until they
themselves are evicted again.

Given the profiled address sets, we can construct general
probabilistic variants of the PRIME+PROBE attack. While
other methods are possible, we believe the 2 described in the
following represent lower bounds for either victim accesses
or memory requirement.

Variant 1: Single collision with eviction. We partition
our set of addresses, such that one PRIME+PROBE set con-
sists of nways addresses, where each collides with a different
way of the target address. To detect an access to the target,
we prime with one set, cause a target access, measure the
primed set and then evict the target address. We repeat this
process until the desired detection probability is reached. This
probability is given by p(naccesses) = 1− (1−nways

−1)naccesses .
The eviction of the target address can be achieved by either
evicting the entire cache or using preconstructed eviction sets
(see Section 4.3.2). After the use of an eviction set, a differ-
ent priming set is necessary, as the eviction sets only target
the victim address. After a full cache flush, all sets can be
reused. The amount of colliding addresses we need to find
during profiling depends on how often a full cache flush is
performed. This method requires the least amount of accesses
to the target, at the cost of either execution time (full cache
flushes) or memory and profiling time (constructing many
eviction sets).

Variant 2: Single collision without eviction. Using the
same method but without the eviction step, the detection prob-
ability can be recursively calculated as

p(nacc.) = p(nacc.−1)+(1− p(nacc.−1))(
2 ·nways −1

nways3)

with p(1) = nways
−1. This variant provides decreasing ben-

efits for additional accesses. The reason for this is that the
probability that the last step evicted the target address influ-
ences the probability to detect an access in the current step.
While this approach requires many more target accesses, it
has the advantage of a shorter profiling phase.

These two methods require different amounts of mem-
ory, profiling time and accesses to the target, but they can
also be combined to tailor the attack to the target. Which is
most useful depends on the attack scenario, but it is clear that
both come with considerable drawbacks when compared to
PRIME+PROBE in current caches. For example, achieving
a 99 % detection probability in a 2 MB Cache with 8 ways
requires 35 target accesses and 9870 profiled addresses in
308 MB of memory for variant 1 if we use an eviction set for
every probe step. Variant 2 would require 152 target accesses
and 1216 addresses in 38 MB of memory. In contrast, regular
PRIME+PROBE requires 1 target access and 8 addresses while
providing 100 % accuracy (in this ideal scenario). Detecting
non-repeating events is made essentially impossible; to mea-
sure any access with confidence requires either the knowledge
that the victim process repeats the same access pattern for
long periods of time or control of the victim in a way that

USENIX Association 28th USENIX Security Symposium 685

allows for repeated measurements. In addition to the large
memory requirements, variant 1 also heavily degrades the
temporal resolution of a classical PRIME+PROBE attack be-
cause of the necessary eviction steps. This makes trace-based
attacks like attacks on square-and-multiply in RSA [76] much
less practical. Variant 2 does not suffer from this drawback,
but requires one PRIME+PROBE set for each time step, for as
many high-resolution samples as one trace needs to contain.
This can quickly lead to an explosion in required memory
when thousands of samples are needed.

4.5 Challenges with Real-World Attacks

We failed at mounting a real-world attack (i.e., with even
the slightest amounts of noise) on SCATTERCACHE. Gener-
ally, for a PRIME+PROBE attack we need to (1) generate an
eviction set (cf. Section 4.3), and (2) use the eviction set to
monitor a victim memory access. If we assume step 1 to be
solved, we can mount a cache attack (i.e., step 2) with a com-
plexity increases by a factor of 152 (cf. Section 4.4). For some
real-world attacks this would not be a problem, in particular
if a small fast algorithm is attacked, e.g., AES with T-tables.
Gülmezoglu et al. [29] recovered the full AES key from an
AES T-tables implementation with only 30 000 encryptions
in a fully synchronized setting (that can be implemented with
PRIME+PROBE as well [26]), taking 15 seconds, i.e., 500 µs
per encryption. The same attack on SCATTERCACHE takes
4.56 · 106 encryptions, i.e., 38 minutes assuming the same
execution times, which is clearly viable.

However, the real challenge is solving step 1, which we did
not manage for any real-world example. In particular, even if
AES would only perform a single attacker-chosen memory
access (instead of 160 to the T-tables alone, plus additional
code and data accesses), which would be ideal for the attacker
in the profiling during step 1, we would need to observe 33.5
million encryptions. In addition to the runtime reported by
Gülmezoglu et al. [29] we also need a full cache flush after
each attack round (i.e., each encryption). For a 2 MB cache,
we need to iterate over a 6 MB array to have a high probability
of covering all cache lines. The time for an L3-cache access is
e.g., for Kaby Lake 9.5 ns [2]. The absolute minimum number
of cache misses here is 65536 (=4 MB), but in practice it will
be much higher. A cache miss takes around 50 ns, hence, the
full cache eviction will take at least 3.6 ms. Consequently,
with 33.5 million tests required to generate the eviction set
and a runtime of 4.1 ms per test, the total runtime to generate
the eviction set is 38 hours.

This number still only considers the theoretical setting of
a completely noise-free and idle system. The process doing
AES computations must not be restarted during these 38 hours.
The operating system must not replace any physical pages and,
most importantly, our hypothetical AES implementation only
performs a single memory access. In any realistic setting with
only the slightest amount of activity (noise) on the system, this

easily explodes to multiple weeks or months. With a second
memory access, these two memory accesses can already not
be distinguished anymore with the generated eviction set,
because the eviction set is generated for an invocation of the
entire victim computation, not for an address.

4.6 Noise Sampling

The previous analysis considered a completely noise-free
scenario, where the attacker performs PRIME+PROBE on a
single memory access executed by the victim. However, in a
real system, an attacker will typically not be able to perform
an attack on single memory accesses, but face different kinds
of noise. Namely, on real systems cache attacks will suffer
from both systematic and random noise, which reduces the
effectiveness of profiling and the actual attack.

Systematic noise is introduced, for example, by the victim
as it executes longer code sequences in between the attacker’s
prime and probe steps. The victim’s code execution intrin-
sically performs additional memory accesses to fetch code
and data that the attacker will observe in the cache deter-
ministically. In SCATTERCACHE, the mappings of memory
addresses to cache lines is unknown. Hence, without addi-
tional knowledge, the attacker is unable to distinguish the
cache collision belonging to the target memory access from
collisions due to systematic noise. Instead, the attacker can
only observe and learn both simultaneously. As a result, larger
eviction sets need to be constructed to yield the same confi-
dence level for eviction. Specifically, the size of an eviction
set must increase proportionally to the number of systematic
noise accesses to achieve the same properties. While this
significantly increases an attackers profiling effort, they may
be able to use clustering techniques to prune the eviction set
prior to performing an actual attack.

Random noise, on the other hand, stems from arbitrary
processes accessing the cache simultaneously or as they are
scheduled in between. Random noise hence causes random
cache collisions to be detected by an attacker during both pro-
filing and an actual attack, i.e., produces false positives. While
attackers cannot distinguish between such random noise and
systematic accesses in a single observation, these random
noise accesses can be filtered out statistically be repeating the
same experiment multiple times. Yet, it increases an attackers
effort significantly. For instance, when building eviction sets
an attacker can try to observe the same cache collision multi-
ple times for a specific candidate address to be certain about
its cache collision with the victim.

Random noise distributes in SCATTERCACHE according
to Equation 1 and hence quickly occupies large parts of the
cache. As a result, there is a high chance of sampling ran-
dom noise when checking a candidate address during the
construction of eviction sets. Also when probing addresses of
an eviction set in an actual attack, random noise is likely to
be sampled as attacks on SCATTERCACHE demand for large

686 28th USENIX Security Symposium USENIX Association

0 20 40 60 80 100 120

0.01

0.1

Cache Line Index

Pr
ob

ab
ili

ty

Way 0 Way 1 Way 2 Way 3

Figure 7: Example distribution of cache indices of addresses
in profiled eviction sets (nways = 4, bindices = 7).

0 2,000 4,000 6,000 8,000 10,000
0

20
40
60
80

100

Noise Accesses

N
oi

sy
Sa

m
pl

es
[%

] 4 Ways 8 Ways 16 Ways

Figure 8: Expected percentage of noisy samples in an eviction
set for a cache consisting of 212 cache lines.

eviction sets. As our analysis shows, for a single cache way the
distribution of cache line indices corresponding to the mem-
ory accesses of profiled eviction sets (cf. Section 4.3) adheres
to Figure 7. Clearly, due to profiling there is a high chance of
roughly 1/nways to access the index that collides with the vic-
tim address. However, with p = (nways −1)/nways the index
adheres to an uniformly random selection from all possible in-
dices and hence provides a large surface for sampling random
noise. Consequently, for a cache with nlines = 2bindices lines
per way and nnoise lines being occupied by noise in each way,
the probability of sampling random noise when probing an
eviction set address is

p(Noise)≈
nways −1

nways

nnoise

nlines
.

Figure 8 visualizes this effect and in particular the percentage
of noisy samples encountered in an eviction set for different
cache configurations and noise levels. While higher random
noise clearly increases an attackers effort, the actual noise
level strongly depends on the system configuration and load.

4.7 Further Remarks
In the previous analysis, the SDIDs of both attacker and victim
were assumed to be constant throughout all experiments for
statistical analysis to be applicable. Additionally, systematic
and random noise introduced during both profiling and attack
further increase the complexity of actual attacks, rendering
attacks on most real-world systems impractical.

Also note that the security analysis in this section focuses
on SCv1. In a noise-free scenario, SCv2 may allow to con-
struct eviction sets slightly more efficiently since its IDF is

a permutation. This means that, once a collision in a certain
cache way is found, there will not be any other colliding ad-
dress for that cache way in the same index range, i.e., for
the same address tag. Considering the expected time to find
the single collision in a given index range, this could give
an attacker a benefit of up to a factor of two in constructing
eviction sets. However, in practice multiple cache ways are
profiled simultaneously, which results in a high chance of
finding a collision in any of the cache ways independent of
the address index bits, i.e., the nways indices for a certain mem-
ory address will very likely be scattered over the whole index
range. Independent of that, the presence of noise significantly
hampers taking advantage of the permuting property of SCv2.

5 Performance Evaluation

SCATTERCACHE significantly increases the effort of attack-
ers to perform cache-based attacks. However, a countermea-
sure must not degrade performance to be practical as well.
This section hence analyzes the performance of SCATTER-
CACHE using the gem5 full system simulator and GAP [9],
MiBench [30], lmbench [49], and the C version of scimark2 1

as micro benchmarks. Additionally, to closer investigate the
impact of SCATTERCACHE on larger workloads, a custom
cache simulator is used for SPEC CPU 2017 benchmarks.
Our evaluations indicate that, in terms of performance, SCAT-
TERCACHE behaves basically identical to traditional set-
associative caches with the same random replacement policy.

5.1 gem5 Setup

We performed our cache evaluation using the gem5 full sys-
tem simulator [12] in 32-bit ARM mode. In particular, we
used the CPU model TimingSimpleCPU together with a cache
architecture such as commonly used in ARM Cortex-A9
CPUs: the cache line size was chosen to be 32 bytes, the 4-way
L1 data and instruction caches are each sized 32 kB, and the
8-way L2 cache is 512 kB large. We adapted the gem5 simula-
tor such as to support SCATTERCACHE for the L2 cache. This
allows to evaluate the impact of six different cache organiza-
tions. Besides SCATTERCACHE in both variants (1) SCv1 and
(2) SCv2 and standard set-associative caches with (3) LRU,
(4) BIP, and (5) random replacement, we also evaluated (6)
skewed associative caches [63] with random replacement as
we expect them to have similar performance characteristics
as SCv1 and SCv2.

On the software side, we used the Poky Linux distribution
from Yocto 2.5 (Sumo) with kernel version 4.14.67 after ap-
plying patches to run within gem5. We then evaluated the per-
formance of our micro benchmarks running on top of Linux.
In particular, we analyzed the cache statistics provided by

1https://math.nist.gov/scimark2/

USENIX Association 28th USENIX Security Symposium 687

https://math.nist.gov/scimark2/

gem5 after booting Linux and running the respective bench-
mark. Using this approach, we reliably measure the cache
performance and execution time for each single application,
i.e., without concurrent processes. Since only the L2-cache
architecture (i.e., replacement policy, skewed vs. fixed sets)
changed between the individual simulation runs, execution
performance is simply direct proportional to the resulting
cache hit rate. To enable easier comparison between the indi-
vidual benchmarks as well as with related work we therefore
mainly report L2-cache hit results.

SCATTERCACHE IDF Instantiations. Both SCATTER-
CACHE variants have been instantiated using the low-latency
tweakable block cipher QARMA-64 [8]. In particular, in the
SCv1 variant, the index bits for the individual cache ways
have been sliced from the ciphertext of encrypting the cache
line address under the secret key and SDID. On the other hand,
due to the lack of an off-the-shelf tweakable block cipher with
the correct block size, a stream cipher construction was used
in the SCv2 variant. Namely, the index is computed as the
XOR between the original index bits and the ciphertext of
the original tag encrypted using QARMA-64. Note, however,
that, although this construction for SCv2 is a proper permu-
tation and entirely sufficient for evaluating the performance
of SCv2, we do not recommend the construction as pads are
being reused for addresses having the same tag bits.

While the majority of the following results are latency
agnostic LLC hit rates, all following results are reported for
the zero cycle latency case. For QARMA-64 with 5 rounds,
ASIC implementation results with as little as 2.2 ns latency
have been reported [8]. We are therefore confident that, if
desired, hiding the latency of the IDF by computing it in
parallel to the lower level cache lookup is feasible.

However, we still also conducted simulations with la-
tency overheads between 1 and 5 cycles by increasing the
tag_latency of the cache in gem5. The acquired results
show that, even for IDFs which introduce 5 cycles of latency,
less than 2 % performance penalty are encountered on the
GAP benchmark suite. These numbers are also in line with
Qureshi’s results reported for CEASER [55].

5.2 Hardware Overhead Discussion

SCATTERCACHE is designed to be as similar to modern cache
architectures as possible in terms of hardware. Still, area and
power overheads have to be expected due to the introduction
of the IDF and the additional addressing logic. Unfortunately,
while probably easy for large processor and SoC vendors,
determining reliable overhead numbers for these two metrics
is a difficult task for academia that requires an actual ASIC
implementation of the cache. To the best of our knowledge,
even in the quite active RISC-V community, no open and
properly working LLC designs are available that can be used
as foundation. Furthermore, for merely simulating such a de-
sign with a reasonably large cache, commercial EDA tools,

access to state-of-the-art technology libraries, and large mem-
ory macros with power models are required. As the result,
secure cache designs typically fail to deliver hardware imple-
mentation results (see Table 6 in [18]).

Because of these problems, similar to related work, we can
also not provide concrete numbers for the area and power
overhead. However, due to the way we designed SCATTER-
CACHE and the use of lightweight cryptographic primitives,
we can assert that the hardware overhead is reasonable. For ex-
ample, the 8-way SCv1 SCATTERCACHE with 512 kB that is
simulated in the following section, uses two parallel instances
of QARMA-64 with 5 rounds as IDF. One fully unrolled
instance has a size of 22.6 kGE [8] resulting in an IDF size
of less then 50 kGE even in case additional pipeline registers
are added. The added latency of such an IDF is the same as
the latency of the used primitive which has been reported as
2.2 ns. However, this latency can (partially or fully) be hidden
by computing the IDF in parallel to the lower level cache
lookup. Interestingly, with similar size, also a sponge-based
SCv1 IDF (e.g., 12 rounds of Keccak[200] [11]) can be instan-
tiated. Finally, there is always the option to develop custom
IDF primitives [55] that demand even less resources.

For comparison, in the BROOM chip [16], the SRAM
macros in the 1 MB L2 cache already consume roughly 50 %
of the 4.86 mm2 chip area. Assuming an utilization of 75 %
and a raw gate density of merely 3 MGate/mm2 [21] for the
used 28 nm TSMC process, these 2.43 mm2 already corre-
spond to 5.5 MGE. Subsequently, even strong IDFs are orders
of magnitude smaller than the size of a modern LLC.

In terms of overhead for the individual addressing of the
cache ways, information is more sparse. Spjuth et al. [64]
observed a 17 % energy consumption overhead for a 2-way
skewed cache. They also report that skewed caches can be
built with lower associativity and still reach similar perfor-
mance as traditional fixed set-associative caches. Furthermore,
modern Intel architectures already feature multiple addressing
circuits in their LLC as they partition it into multiple smaller
caches (i.e., cache slices).

5.3 gem5 Results and Discussion

Figure 9 visualizes the cache hit rate of our L2 cache when
executing programs from the GAP benchmark suite. To ease
visualization, the results are plotted in percentage points (pp),
i.e., the differences between percentage numbers, using the
fixed set-associative cache with random replacement policy
as baseline. All six algorithms (i.e., bc, bfs, cc, pr, sssp, tc)
have been evaluated. Moreover, as trace sets, both syntheti-
cally generated kron (-g16 -k16) and urand (-u16 -k16)
sets have been used. As can be seen in the graph, the BIP and
LRU replacement policies outperform random replacement
on average by 4.6 pp and 4 pp respectively. Interestingly, how-
ever, all random replacement based schemes, including the
skewed variants, perform basically identical.

688 28th USENIX Security Symposium USENIX Association

bc
kro

n

bc
ura

nd

bfs
kro

n

bfs
ura

nd

cc
kro

n

cc
ura

nd

pr
kro

n

pr
ura

nd

sss
p kro

n

sss
p ura

nd

tc
kro

n

tc
ura

nd
mea

n

0

5

H
it

R
at

e
∆

[%
]

(h
ig

he
ri

s
be

tte
r)

BIP LRU SCv1 SCv2 Skewed

Figure 9: Cache hit rate, simulated with gem5, for the syn-
thetic workloads in the GAP benchmark suite with random
replacement policy as baseline.

Total iTB walker dTB walker Inst Data
0

50

100

19
.8

7

91
.6 98
.9

68
.0

9

2.
81

19
.8

2

92
.2 98
.8

2

73
.1

4

2.
75

20
.3

5

89
.6

2

98
.6

4

72
.0

9

3.
43

30
.1

4

88
.8

8

97
.7

7

68
.9

2

15
.5

630
.1

3

87
.2

2

97
.7

7

68
.8

4

15
.5

530
.2

88
.8

4

97
.9

8

69
.1

15
.5

9H
it

R
at

e
[%

]
(h

ig
he

ri
s

be
tte

r)

BIP LRU Rand SCv1 SCv2 Skewed

Figure 10: Cache hit rate, simulated with gem5, for scimark2.

The next benchmark, we visualized in Figure 10, is sci-
mark2 (-large 0.5). This benchmark shows an interesting
advantage of the skewed cache architectures over the fixed-
set architectures, independent of the replacement policy, of
approximately 10 pp for the total hit rate. This difference is
mainly caused by the 5x difference in hit rate for data accesses.
Comparing the achieved benchmark scores in Figure 11 fur-
ther reveals that the fft test within scimark2 is the reason for
the observed discrepancy in cache performance.

To investigate this effect in more detail, we measured the
memory read latency using using lat_mem_rd 8M 32 from
lmbench in all cache configurations. The respective results
in Figure 12 feature two general steps in the read latency
at 32 kB (L1-cache size) and at 512 kB (L2-cache size). No-
tably, configurations with random replacement policy feature
a smoother transition at the second step, i.e., when accesses
start to hit main memory instead of the L2 cache.

Even more intersting results, as shown in Figure 13, have
been acquired by increasing the stride size to four times the
cache line size. Skewed caches like SCATTERCACHE break
the strong alignment of addresses and cache set indices. As
a consequence, a sparse, but strongly aligned memory ac-
cess pattern such as in lat_mem_rd, which in a standard

composite fft sor monte carlo sparse
matmult

lu
0

50

100

150

58
.4

6

15

13
5.

29

45
.8

6

36
.0

6 60
.1

58
.4

5

15
.1

4

13
5.

34

45
.8

6

36
.0

8 59
.8

3

56
.9

2

14
.8

2

13
0.

46

45
.8

6

36
.0

4 57
.4

59
.7

5

20
.9

2

13
5.

75

45
.8

6

36
.0

2 60
.1

8

59
.8

20
.9

4

13
5.

9

45
.8

6

36
.0

2 60
.2

8

59
.7

20
.8

7

13
5.

51

45
.8

6

36
.0

4 60
.2

Sc
or

e
(h

ig
he

ri
s

be
tte

r)

BIP LRU Rand SCv1 SCv2 Skewed

Figure 11: Scimark2 score simulated with gem5.

0.001 0.01 0.1 1 10
0

50

100

Access Size [MB]

R
ea

d
L

at
en

cy
[n

s]
(l

ow
er

is
be

tte
r)

BIP
LRU
Rand
SCv1
SCv2

Skewed

Figure 12: Memory read latency, simulated with gem5, with
32 byte stride (i.e., one access per cache line).

set-associative caches only uses every 4th cache index, gives
high cache hit rates and low read latencies for larger memory
ranges due to less cache conflicts. This effect becomes visible
in Figure 13 as shift of the second step from 512 kB to 2 MB
for the skewed cache variants.

Finally, as last benchmark, MiBench has been evaluated
in small and large configuration. The individual results are
visualized in Figure 14 and Figure 15 respectively. On aver-
age, the achieved performance results in MiBench are very
similar to the results from the GAP benchmark suite. Again,
caches with BIP and LRU replacement policy outperform the
configurations with random replacement policy by a few per-
cent. However, in some individual benchmarks (e.g., qsort in
small, jpeg in large), skewed cache architectures like SCAT-
TERCACHE outmatch the fixed set appraoches.

In summary, our evaluations with gem5 in full system sim-
ulation mode show that the performance of SCATTERCACHE,
in terms of hit rate, is basically identical to contemporary
fixed set-associative caches with random replacement policy.
Considering that we employ the same replacement strategy,
this is an absolutely satifying result by itself. Moreover, no
tests indicated any notable performance degradation and in
some tests SCATTERCACHE even outperformed BIP and LRU
replacement policies.

USENIX Association 28th USENIX Security Symposium 689

0.001 0.01 0.1 1 10
0

50

100

Access Size [MB]

R
ea

d
L

at
en

cy
[n

s]
(l

ow
er

is
be

tte
r)

BIP
LRU
Rand
SCv1
SCv2

Skewed

Figure 13: Memory read latency, simulated with gem5, with
128 byte stride (i.e., one access in every fourth cache line).

CRC32FFT
ad

pc
m

ba
sic

math

bit
co

un
t

blo
wfish

dij
ks

trags
m

jpe
g
lam

e
mad

pa
tri

ciaqs
ort

rij
nd

ae
l

sh
a

str
ing

sea
rch

su
san

tif
f2b

w

tif
f2r

gb
a

tif
fdi

the
r

tif
fm

ed
ian

typ
ese

t
mea

n

0

2

4

H
it

R
at

e
∆

[%
]

(h
ig

he
ri

s
be

tte
r)

BIP LRU SCv1 SCv2 Skewed

Figure 14: Cache hit rate, simulated with gem5, for MiBench
in small configuration compared to random replacement.

5.4 Cache Simulation and SPEC Results

Lastly, we evaluated the performance of SCATTERCACHE
using the SPEC CPU 2017 [66] benchmark with both the
“SPECspeed 2017 Integer” and “SPECspeed 2017 Floating
Point” suites. We performed all benchmarks in these suites
with the exception of gcc, wrf and cam4, as these failed to
compile on our system. Because these benchmarks are too
large to be run in full system simulation, we created a software
cache simulator, capable of simulating different cache models
and replacement policies. Even so, the benchmarks proved
to be too large to run in full, so we opted to run segments of
250 million instructions from each, following the methodol-
ogy of Qureshi et al. [56]. We made an effort to select parts
of the benchmarks that are representative of their respective
core workloads. To be able to run the benchmarks with our
simulator, we recorded a trace of all instruction addresses
and memory accesses with the Intel PIN Tool [33]. We then
replayed this access stream for different cache configurations.
The simulator implements the set-associative replacement
policies Pseudo-LRU (Tree-PLRU), LRU (ideal), BIP as de-
scribed in [56], and random replacement, as well as the two

CRC32FFT
ad

pc
m

ba
sic

math

bit
co

un
t

blo
wfish

dij
ks

trags
m

jpe
g
lam

e
mad

pa
tri

ciaqs
ort

rij
nd

ae
l

sh
a

str
ing

sea
rch

su
san

tif
f2b

w

tif
f2r

gb
a

tif
fdi

the
r

tif
fm

ed
ian

typ
ese

t
mea

n

0

2

4

6

H
it

R
at

e
∆

[%
]

(h
ig

he
ri

s
be

tte
r)

BIP LRU SCv1 SCv2 Skewed

Figure 15: Cache hit rate, simulated with gem5, for MiBench
in large configuration compared to random replacement.

bw
av

es

ca
ctu

BSSN

de
ep

sje
ng

ex
ch

an
ge

2

fot
on

ik3
d

im
ag

ick lbm lee
la mcf na

b

om
ne

tpp

pe
rlb

en
ch

po
p2

rom
s

x2
64

xa
lan

cb
mk xz

mea
n

−4

−2

0

2

H
it

R
at

e
∆

[%
]

(h
ig

he
ri

s
be

tte
r)

BIP LRU SCv1 SCv2

Figure 16: Average cache hit rate for SPEC CPU 2017 bench-
marks compared to random replacement over 10 runs.

SCATTERCACHE variants. The number of ways per set, total
cache size, number of slices, and cache line size are fully con-
figurable. Additionally, the simulator supports multiple levels
of inclusive caches, as well as a cache that is split for data
and instructions. All simulations were run on an inclusive two
level cache, where the L1 was separated into instruction and
data caches, both of which use LRU replacement. Figure 16
shows results for the cache configuration, as described in Sec-
tion 5.1, as the difference in percentage points for last-level
hit rates when compared to random replacement. While we
can see large differences in individual tests, the mean shows
that both versions of SCATTERCACHE perform at least as
well as random replacement and very similar to LRU. Us-
ing the same cache configuration but with 64 B cache lines,
we actually observe a mean advantage of 0.23± 0.76 pp of
SCATTERCACHE over random replacement, where LRU sees
a marginally worse result of −0.21± 1.02 pp. On a larger
configuration with 64 B cache lines, 32 kB 8-way L1 and
2 MB 16-way LLC, the results show a slim improvement of
0.035±0.10 pp for SCATTERCACHE and 0.37±1.14 pp for
LRU over random replacement.

690 28th USENIX Security Symposium USENIX Association

6 Conclusion

In this paper, we presented SCATTERCACHE, a novel cache
design to eliminate cache attacks that eliminates fixed cache-
set congruences and, thus, makes eviction-based cache at-
tacks unpractical. We showed how skewed associative caches
when retrofitted with a keyed mapping function increase the
attack complexity so far that it exceeds practical scenarios
Furthermore, high-frequency attacks become infeasible. Our
evaluations show that the runtime performance of software
is not curtailed and SCATTERCACHE can even outperform
state-of-the-art caches for certain realistic workloads.

Acknowledgments

We want to thank the anonymous reviewers and especially
our shepherd, Yossi Oren, for their comments and suggestions
that substantially helped in improving the paper. This project
has received funding from the European Research Council
(ERC) under Horizon 2020 grant agreement No 681402. Ad-
ditional funding was provided by a generous gift from Intel.
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding parties.

References
[1] 7-cpu. ARM Cortex-A57. www.7-cpu.com/cpu/Cortex-A57.html.

[2] 7-cpu. Intel Skylake. www.7-cpu.com/cpu/Skylake.html.

[3] O. Aciiçmez, B. B. Brumley, and P. Grabher. New Results on Instruc-
tion Cache Attacks. In CHES, 2010.

[4] G. I. Apecechea, T. Eisenbarth, and B. Sunar. S$A: A Shared Cache
Attack That Works across Cores and Defies VM Sandboxing - and Its
Application to AES. In S&P, 2015.

[5] G. I. Apecechea, M. S. Inci, T. Eisenbarth, and B. Sunar. Wait a Minute!
A fast, Cross-VM Attack on AES. In RAID, 2014.

[6] G. I. Apecechea, M. S. Inci, T. Eisenbarth, and B. Sunar. Lucky 13
Strikes Back. In CCS, 2015.

[7] V. Arribas, B. Bilgin, G. Petrides, S. Nikova, and V. Rijmen. Rhythmic
Keccak: SCA Security and Low Latency in HW. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018.

[8] R. Avanzi. The QARMA Block Cipher Family. Almost MDS Matrices
Over Rings With Zero Divisors, Nearly Symmetric Even-Mansour Con-
structions With Non-Involutory Central Rounds, and Search Heuristics
for Low-Latency S-Boxes. IACR Trans. Symmetric Cryptol., 2017.

[9] S. Beamer, K. Asanovic, and D. A. Patterson. The GAP Benchmark
Suite. arXiv abs/1508.03619, 2015.

[10] D. J. Bernstein. Cache-Timing Attacks on AES. Technical report,
University of Illinois at Chicago, 2005.

[11] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, and R. V. Keer. Kec-
cak implementation overview, 2012.

[12] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G.
Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. S. B. Altaf, N. Vaish, M. D. Hill, and D. A. Wood. The
gem5 simulator. SIGARCH Comp. Arch. News, 39, 2011.

[13] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R.
Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts,
S. S. Thomsen, and T. Yalçin. PRINCE - A Low-Latency Block Ci-
pher for Pervasive Computing Applications - Extended Abstract. In
ASIACRYPT, 2012.

[14] B. B. Brumley and R. M. Hakala. Cache-Timing Template Attacks. In
ASIACRYPT, 2009.

[15] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution. In USENIX Security, 2018.

[16] C. Celio, P. Chiu, K. Asanovic, B. Nikolic, and D. A. Patterson.
BROOM: An Open-Source Out-of-Order Processor With Resilient
Low-Voltage Operation in 28-nm CMOS. MICRO, 39, 2019.

[17] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sutter. Prac-
tical Mitigations for Timing-Based Side-Channel Attacks on Modern
x86 Processors. In S&P, 2009.

[18] S. Deng, W. Xiong, and J. Szefer. Analysis of Secure Caches and
Timing-Based Side-Channel Attacks. ePrint 2019/167.

[19] G. Doychev, D. Feld, B. Köpf, L. Mauborgne, and J. Reineke. CacheAu-
dit: A Tool for the Static Analysis of Cache Side Channels. In USENIX
Security, 2013.

[20] G. Doychev and B. Köpf. Rigorous analysis of software countermea-
sures against cache attacks. In PLDI, 2017.

[21] Europractice. TSMC Standard cell libraries. http://www.
europractice-ic.com/libraries_TSMC.php.

[22] M. Gallagher, L. Biernacki, S. Chen, Z. B. Aweke, S. F. Yitbarek, M. T.
Aga, A. Harris, Z. Xu, B. Kasikci, V. Bertacco, S. Malik, M. Tiwari,
and T. M. Austin. Morpheus: A Vulnerability-Tolerant Secure Archi-
tecture Based on Ensembles of Moving Target Defenses with Churn.
In ASPLOS, 2019.

[23] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida. ASLR on
the Line: Practical Cache Attacks on the MMU. In NDSS, 2017.

[24] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom. Another Flip in the Wall of Rowhammer
Defenses. In S&P, 2018.

[25] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. Prefetch
Side-Channel Attacks: Bypassing SMAP and Kernel ASLR. In CCS,
2016.

[26] D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+Flush: A
Fast and Stealthy Cache Attack. In DIMVA, 2016.

[27] D. Gruss, R. Spreitzer, and S. Mangard. Cache Template Attacks:
Automating Attacks on Inclusive Last-Level Caches. In USENIX
Security, 2015.

[28] D. Gullasch, E. Bangerter, and S. Krenn. Cache Games - Bringing
Access-Based Cache Attacks on AES to Practice. In S&P, 2011.

[29] B. Gülmezoglu, M. S. Inci, G. I. Apecechea, T. Eisenbarth, and B. Sunar.
A Faster and More Realistic Flush+Reload Attack on AES. In COSADE,
2015.

[30] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. MiBench: A free, commercially representative embedded
benchmark suite. In WWC, 2001.

[31] R. Hund, C. Willems, and T. Holz. Practical Timing Side Channel
Attacks against Kernel Space ASLR. In S&P, 2013.

[32] M. S. Inci, B. Gülmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar.
Cache Attacks Enable Bulk Key Recovery on the Cloud. In CHES,
2016.

[33] Intel Corporation. Pin - A Dynamic Binary Instrumenta-
tion Tool. https://software.intel.com/en-us/articles/
pin-a-dynamic-binary-instrumentation-tool.

USENIX Association 28th USENIX Security Symposium 691

https://www.7-cpu.com/cpu/Cortex-A57.html
https://www.7-cpu.com/cpu/Skylake.html
https://doi.org/10.1007/978-3-642-15031-9_8
https://doi.org/10.1007/978-3-642-15031-9_8
https://doi.org/10.1109/SP.2015.42
https://doi.org/10.1109/SP.2015.42
https://doi.org/10.1109/SP.2015.42
https://doi.org/10.1007/978-3-319-11379-1_15
https://doi.org/10.1007/978-3-319-11379-1_15
https://doi.org/10.1145/2714576.2714625
https://doi.org/10.1145/2714576.2714625
https://doi.org/10.13154/tches.v2018.i1.269-290
https://doi.org/10.13154/tches.v2018.i1.269-290
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf
http://doi.acm.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-10366-7_39
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1109/MM.2019.2897782
https://doi.org/10.1109/MM.2019.2897782
https://doi.org/10.1109/SP.2009.19
https://doi.org/10.1109/SP.2009.19
https://doi.org/10.1109/SP.2009.19
https://eprint.iacr.org/2019/167
https://eprint.iacr.org/2019/167
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/doychev
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/doychev
https://doi.org/10.1145/3062341.3062388
https://doi.org/10.1145/3062341.3062388
http://www.europractice-ic.com/libraries_TSMC.php
http://www.europractice-ic.com/libraries_TSMC.php
https://doi.org/10.1145/3297858.3304037
https://doi.org/10.1145/3297858.3304037
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/aslrcache-practical-cache-attacks-mmu/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/aslrcache-practical-cache-attacks-mmu/
https://doi.org/10.1109/SP.2018.00031
https://doi.org/10.1109/SP.2018.00031
https://doi.org/10.1145/2976749.2978356
https://doi.org/10.1145/2976749.2978356
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://doi.org/10.1109/SP.2011.22
https://doi.org/10.1109/SP.2011.22
https://doi.org/10.1007/978-3-319-21476-4_8
https://ieeexplore.ieee.org/document/990739
https://ieeexplore.ieee.org/document/990739
https://doi.org/10.1109/SP.2013.23
https://doi.org/10.1109/SP.2013.23
https://doi.org/10.1007/978-3-662-53140-2_18
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

[34] G. Irazoqui, K. Cong, X. Guo, H. Khattri, A. K. Kanuparthi, T. Eisen-
barth, and B. Sunar. Did we learn from LLC Side Channel At-
tacks? A Cache Leakage Detection Tool for Crypto Libraries. arXiv
abs/1709.01552, 2017.

[35] G. Irazoqui, T. Eisenbarth, and B. Sunar. Cross Processor Cache At-
tacks. In CCS, 2016.

[36] Y. Jang, S. Lee, and T. Kim. Breaking Kernel Address Space Layout
Randomization with Intel TSX. In CCS, 2016.

[37] E. Käsper and P. Schwabe. Faster and Timing-Attack Resistant AES-
GCM. In CHES, 2009.

[38] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.
Spectre Attacks: Exploiting Speculative Execution. In S&P, 2019.

[39] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In CRYPTO, 1996.

[40] R. Könighofer. A Fast and Cache-Timing Resistant Implementation of
the AES. In CT-RSA, 2008.

[41] B. Köpf, L. Mauborgne, and M. Ochoa. Automatic Quantification of
Cache Side-Channels. In CAV, 2012.

[42] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. AR-
Mageddon: Cache Attacks on Mobile Devices. In USENIX Security,
2016.

[43] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Melt-
down: Reading Kernel Memory from User Space. In USENIX Security,
2018.

[44] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-Level Cache
Side-Channel Attacks are Practical. In S&P, 2015.

[45] H. Mantel, A. Weber, and B. Köpf. A Systematic Study of Cache Side
Channels Across AES Implementations. In ESSoS, 2017.

[46] C. Maurice, C. Neumann, O. Heen, and A. Francillon. C5: Cross-Cores
Cache Covert Channel. In DIMVA, 2015.

[47] C. Maurice, N. L. Scouarnec, C. Neumann, O. Heen, and A. Francil-
lon. Reverse Engineering Intel Last-Level Cache Complex Addressing
Using Performance Counters. In RAID, 2015.

[48] C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano,
S. Mangard, and K. Römer. Hello from the Other Side: SSH over
Robust Cache Covert Channels in the Cloud. In NDSS, 2017.

[49] L. W. McVoy and C. Staelin. lmbench: Portable tools for performance
analysis. In USENIX Annual Technical Conference, 1996.

[50] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis. The
Spy in the Sandbox: Practical Cache Attacks in JavaScript and their
Implications. In CCS, 2015.

[51] D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and Counter-
measures: The Case of AES. In CT-RSA, 2006.

[52] D. Page. Theoretical Use of Cache Memory as a Cryptanalytic Side-
Channel. ePrint 2002/169.

[53] D. Page. Partitioned Cache Architecture as a Side-Channel Defence
Mechanism. ePrint 2005/280.

[54] C. Percival. Cache missing for fun and profit. In BSDCan, 2005.

[55] M. K. Qureshi. CEASER: Mitigating Conflict-Based Cache Attacks
via Encrypted-Address and Remapping. In MICRO, 2018.

[56] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. S. Jr., and J. S. Emer. Adaptive
insertion policies for high performance caching. In ISCA, 2007.

[57] H. Raj, R. Nathuji, A. Singh, and P. England. Resource management
for isolation enhanced cloud services. In CCSW, 2009.

[58] C. Rebeiro, A. D. Selvakumar, and A. S. L. Devi. Bitslice Implementa-
tion of AES. In CANS, 2006.

[59] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds. In CCS, 2009.

[60] M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer,
and S. Mangard. KeyDrown: Eliminating Software-Based Keystroke
Timing Side-Channel Attacks. In NDSS, 2018.

[61] M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss. NetSpectre: Read
Arbitrary Memory over Network. arXiv abs/1807.10535, 2018.

[62] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. Malware
Guard Extension: Using SGX to Conceal Cache Attacks. In DIMVA,
2017.

[63] A. Seznec. A Case for Two-Way Skewed-Associative Caches. In ISCA,
1993.

[64] M. Spjuth, M. Karlsson, and E. Hagersten. Skewed caches from a
low-power perspective. In Computing Frontiers – CF, 2005.

[65] R. Spreitzer and T. Plos. Cache-Access Pattern Attack on Disaligned
AES T-Tables. In COSADE, 2013.

[66] Standard Performance Evaluation Corporation. SPEC CPU 2017.
https://www.spec.org/cpu2017/.

[67] D. Trilla, C. Hernández, J. Abella, and F. J. Cazorla. Cache side-channel
attacks and time-predictability in high-performance critical real-time
systems. In DAC, 2018.

[68] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi. Crypt-
analysis of DES Implemented on Computers with Cache. In CHES,
2003.

[69] Z. Wang and R. B. Lee. New cache designs for thwarting software
cache-based side channel attacks. In ISCA, 2007.

[70] Z. Wang and R. B. Lee. A novel cache architecture with enhanced
performance and security. In MICRO, 2008.

[71] S. Weiser, A. Zankl, R. Spreitzer, K. Miller, S. Mangard, and G. Sigl.
DATA - Differential Address Trace Analysis: Finding Address-based
Side-Channels in Binaries. In USENIX Security, 2018.

[72] Z. Wu, Z. Xu, and H. Wang. Whispers in the Hyper-space: High-speed
Covert Channel Attacks in the Cloud. In USENIX Security, 2012.

[73] Z. Wu, Z. Xu, and H. Wang. Whispers in the Hyper-Space: High-
Bandwidth and Reliable Covert Channel Attacks Inside the Cloud.
IEEE/ACM Trans. Netw., 23, 2015.

[74] Y. Xiao, M. Li, S. Chen, and Y. Zhang. STACCO: Differentially Ana-
lyzing Side-Channel Traces for Detecting SSL/TLS Vulnerabilities in
Secure Enclaves. In CCS, 2017.

[75] Y. Xu, M. Bailey, F. Jahanian, K. R. Joshi, M. A. Hiltunen, and R. D.
Schlichting. An exploration of L2 cache covert channels in virtualized
environments. In CCSW, 2011.

[76] Y. Yarom and K. Falkner. FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack. In USENIX Security, 2014.

[77] A. Zankl, J. Heyszl, and G. Sigl. Automated Detection of Instruction
Cache Leaks in Modular Exponentiation Software. In CARDIS, 2016.

[78] X. Zhang, Y. Xiao, and Y. Zhang. Return-Oriented Flush-Reload Side
Channels on ARM and Their Implications for Android Devices. In
CCS, 2016.

[79] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter. HomeAlone: Co-
residency Detection in the Cloud via Side-Channel Analysis. In S&P,
2011.

[80] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-VM side
channels and their use to extract private keys. In CCS, 2012.

[81] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-Tenant
Side-Channel Attacks in PaaS Clouds. In CCS, 2014.

692 28th USENIX Security Symposium USENIX Association

http://arxiv.org/abs/1709.01552
http://arxiv.org/abs/1709.01552
https://doi.org/10.1145/2897845.2897867
https://doi.org/10.1145/2897845.2897867
https://doi.org/10.1145/2976749.2978321
https://doi.org/10.1145/2976749.2978321
https://doi.org/10.1007/978-3-642-04138-9_1
https://doi.org/10.1007/978-3-642-04138-9_1
https://spectreattack.com/spectre.pdf
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-540-79263-5_12
https://doi.org/10.1007/978-3-540-79263-5_12
https://doi.org/10.1007/978-3-642-31424-7_40
https://doi.org/10.1007/978-3-642-31424-7_40
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1007/978-3-319-62105-0_14
https://doi.org/10.1007/978-3-319-62105-0_14
https://doi.org/10.1007/978-3-319-20550-2_3
https://doi.org/10.1007/978-3-319-20550-2_3
https://doi.org/10.1007/978-3-319-26362-5_3
https://doi.org/10.1007/978-3-319-26362-5_3
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/hello-other-side-ssh-over-robust-cache-covert-channels-cloud/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/hello-other-side-ssh-over-robust-cache-covert-channels-cloud/
https://doi.org/10.1145/2810103.2813708
https://doi.org/10.1145/2810103.2813708
https://doi.org/10.1145/2810103.2813708
https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/11605805_1
http://eprint.iacr.org/2002/169
http://eprint.iacr.org/2002/169
http://eprint.iacr.org/2005/280
http://eprint.iacr.org/2005/280
https://papers.freebsd.org/2005/cperciva-cache_missing.files/cperciva-cache_missing-paper.pdf
https://doi.org/10.1109/MICRO.2018.00068
https://doi.org/10.1109/MICRO.2018.00068
https://doi.org/10.1145/1250662.1250709
https://doi.org/10.1145/1250662.1250709
https://doi.org/10.1145/1655008.1655019
https://doi.org/10.1145/1655008.1655019
https://doi.org/10.1007/11935070_14
https://doi.org/10.1007/11935070_14
https://doi.org/10.1145/1653662.1653687
https://doi.org/10.1145/1653662.1653687
https://doi.org/10.1145/1653662.1653687
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_04B-1_Schwarz_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_04B-1_Schwarz_paper.pdf
http://arxiv.org/abs/1807.10535
http://arxiv.org/abs/1807.10535
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1145/165123.165152
https://doi.org/10.1145/1062261.1062289
https://doi.org/10.1145/1062261.1062289
https://doi.org/10.1007/978-3-642-40026-1_13
https://doi.org/10.1007/978-3-642-40026-1_13
https://www.spec.org/cpu2017/
http://doi.acm.org/10.1145/3195970.3196003
http://doi.acm.org/10.1145/3195970.3196003
http://doi.acm.org/10.1145/3195970.3196003
https://doi.org/10.1007/978-3-540-45238-6_6
https://doi.org/10.1007/978-3-540-45238-6_6
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1109/MICRO.2008.4771781
https://doi.org/10.1109/MICRO.2008.4771781
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu
https://doi.org/10.1109/TNET.2014.2304439
https://doi.org/10.1109/TNET.2014.2304439
https://doi.org/10.1145/3133956.3134016
https://doi.org/10.1145/3133956.3134016
https://doi.org/10.1145/3133956.3134016
https://doi.org/10.1145/2046660.2046670
https://doi.org/10.1145/2046660.2046670
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://doi.org/10.1007/978-3-319-54669-8_14
https://doi.org/10.1007/978-3-319-54669-8_14
https://doi.org/10.1145/2976749.2978360
https://doi.org/10.1145/2976749.2978360
https://doi.org/10.1109/SP.2011.31
https://doi.org/10.1109/SP.2011.31
https://doi.org/10.1145/2382196.2382230
https://doi.org/10.1145/2382196.2382230
https://doi.org/10.1145/2660267.2660356
https://doi.org/10.1145/2660267.2660356

	Introduction
	Background
	Caches
	Cache Side-Channel Attacks
	Resilient Cache Architectures

	ScatterCache
	Targeted Properties
	Idea
	ScatterCache Design
	Suitable Index Derivation Functions
	Key Management and Re-Keying
	Integration into Existing Cache Architectures

	Processor Interaction and Software

	Security Evaluation
	Applicability of Cache Attacks
	Other Microarchitectural Attacks
	Complexity of Building Eviction Sets
	Full Cache-Set Collisions
	Partial Cache-Set Collisions

	Complexity of Prime+Probe
	Challenges with Real-World Attacks
	Noise Sampling
	Further Remarks

	Performance Evaluation
	gem5 Setup
	Hardware Overhead Discussion
	gem5 Results and Discussion
	Cache Simulation and SPEC Results

	Conclusion

