
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

SafeHidden: An Efficient and Secure Information
Hiding Technique Using Re-randomization

Zhe Wang and Chenggang Wu, State Key Laboratory of Computer Architecture, Institute of
Computing Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences;

Yinqian Zhang, The Ohio State University; Bowen Tang, State Key Laboratory of Computer
Architecture, Institute of Computing Technology, Chinese Academy of Sciences, University of Chinese

Academy of Sciences; Pen-Chung Yew, University of Minnesota at Twin-Cities; Mengyao Xie,
Yuanming Lai, and Yan Kang, State Key Laboratory of Computer Architecture, Institute of Computing

Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences; Yueqiang
Cheng, Baidu USA; Zhiping Shi, The Capital Normal University

https://www.usenix.org/conference/usenixsecurity19/presentation/wang

SafeHidden: An Efficient and Secure Information Hiding Technique
Using Re-randomization

Zhe Wang1,2, Chenggang Wu1,2∗, Yinqian Zhang3, Bowen Tang1,2, Pen-Chung Yew4,

Mengyao Xie1,2, Yuanming Lai1,2, Yan Kang1,2, Yueqiang Cheng5, and Zhiping Shi6

1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences,
2University of Chinese Academy of Sciences, 3The Ohio State University,

4University of Minnesota at Twin-Cities, 5Baidu USA, 6The Capital Normal University

Abstract

Information hiding (IH) is an important building block for
many defenses against code reuse attacks, such as code-
pointer integrity (CPI), control-flow integrity (CFI) and fine-
grained code (re-)randomization, because of its effectiveness
and performance. It employs randomization to probabilisti-
cally “hide” sensitive memory areas, called safe areas, from
attackers and ensures their addresses are not leaked by any
pointers directly. These defenses used safe areas to protect
their critical data, such as jump targets and randomization
secrets. However, recent works have shown that IH is vul-
nerable to various attacks.

In this paper, we propose a new IH technique called Safe-
Hidden. It continuously re-randomizes the locations of safe
areas and thus prevents the attackers from probing and in-
ferring the memory layout to find its location. A new thread-
private memory mechanism is proposed to isolate the thread-
local safe areas and prevent adversaries from reducing the
randomization entropy. It also randomizes the safe areas af-
ter the TLB misses to prevent attackers from inferring the
address of safe areas using cache side-channels. Existing
IH-based defenses can utilize SafeHidden directly without
any change. Our experiments show that SafeHidden not only
prevents existing attacks effectively but also incurs low per-
formance overhead.

1 Introduction

Information hiding (IH) is a software-based security tech-
nique, which hides a memory block (called “safe area”) by
randomly placing it into a very large virtual address space,
so that memory hijacking attacks relying on the data inside
the safe area cannot be performed. As all memory point-
ers pointing to this area are ensured to be concealed, at-
tackers could not reuse existing pointers to access the safe
area. Moreover, because the virtual address space is huge

∗To whom correspondence should be addressed.

and mostly inaccessible by attackers, the high randomiza-
tion entropy makes brute-force probing attacks [45, 47] very
difficult to succeed without crashing the program. Due to its
effectiveness and efficiency, IH technique has become an im-
portant building block for many defenses against code reuse
attacks. Many prominent defense methods, such as code-
pointer integrity (CPI), control-flow integrity (CFI) and fine-
grained code (re-)randomization, rely on IH to protect their
critical data. For example, O-CFI [40] uses IH to protect
all targets of indirect control transfer instructions; CPI [30]
uses IH to protect all sensitive pointers; RERANZ [57],
Shuffler [59], Oxymoron [4], Isomeron [15] and ALSR-
Guard [36] use IH to protect the randomization secrets.

For a long time, IH was considered very effective. How-
ever, recent advances of software attacks [20, 35, 19, 43, 22]
have made it vulnerable again. Some of these attacks use
special system features to avoid system crashes when scan-
ning the memory space [19, 35]; some propose new tech-
niques to gauge the unmapped regions and infer the location
of a safe area [43]; some exploit the thread-local implemen-
tation of safe areas, and propose to duplicate safe areas by
using a thread spraying technique to increase the probability
of successful probes [20]; others suggest that cache-based
side-channel attacks can be used to infer the location of safe
areas [22]. These attacks have fundamentally questioned the
security promises offered by IH, and severely threatened the
security defenses that rely on IH techniques.

To counter these attacks, this paper proposes a new infor-
mation hiding technique, which we call SafeHidden. Our
key observation is as follows: The security of IH techniques
relies on (1) a high entropy of the location of the safe ar-
eas, and (2) the assumption that no attacks can reduce the
entropy without being detected. Prior IH techniques have
failed because they solely rely on the program crashes to de-
tect attacks, but recent attacks have devised novel methods
to reduce entropy without crashing the programs.

SafeHidden avoids these design pitfalls. It mediates all
types of probes that may leak the locations of the safe areas,
triggers a re-randomization of the safe areas upon detecting

USENIX Association 28th USENIX Security Symposium 1239

legal but suspicious probes, isolates the thread-local safe ar-
eas to maintain the high entropy, and raises security alarms
when illegal probes are detected. To differentiate acciden-
tal accesses to unmapped memory areas and illegal probing
of safe areas, SafeHidden converts safe areas into trap areas
after each re-randomization, creating a number of trap areas
after a sequence of re-randomization operations. Accesses
to any of these trap areas are captured and flagged by Safe-
Hidden. SafeHidden is secure because it guarantees that any
attempt to reduce the entropy of the safe areas’ locations ei-
ther lead to a re-randomization (restoring the randomness)
or a security alarm (detecting the attack).

SafeHidden is designed as a loadable kernel module,
which is self-contained and can be transparently integrated
with existing software defense methods (e.g., CPI and CFI).
The design and implementation of SafeHidden entail sev-
eral unconventional techniques: First, to mediate all system
events that may potentially lead to the disclosure of safe area
locations, SafeHidden needs to intercept all system call inter-
faces, memory access instructions, and TLB miss events that
may be exploited by attackers to learn the virtual addresses
of the safe areas. Particularly interesting is how SafeHidden
traps TLB miss events: It sets the reserved bits of the page
table entries (PTE) of the safe area so that all relevant TLB
miss events are trapped into the page fault handler. However,
because randomizing safe areas also invalidates the corre-
sponding TLB entries, subsequent benign safe area accesses
will incur TLB misses, which may trigger another random-
ization. To address this challenge, after re-randomizing the
safe areas, SafeHidden utilizes hardware transactional mem-
ory (i.e., Intel TSX [2]) to determine which TLB entries were
loaded before re-randomization and preload these entries to
avoid future TLB misses.

Detecting TLB misses is further complicated by a new
kernel feature called kernel page table isolation (KPTI) [1].
Because KPTI separates kernel page tables from user-space
page tables, TLB entries preloaded in the kernel cannot be
used by the user-space code. To address this challenge, Safe-
Hidden proposes a novel method to temporarily use user-
mode PCIDs in the kernel mode. To prevent the Meltdown
attack (the reason that KPTI is used), it also flushes all kernel
mappings of newly introduced pages from TLBs.

Second, SafeHidden proposes to isolate the thread-local
safe area (by placing it in the thread-private memory) to pre-
vent the attackers from reducing its randomization entropy.
Unlike conventional approaches to achieve thread-private
memory, SafeHidden leverages hardware-assisted extended
page table (EPT) [2]. It assigns an EPT to each thread; the
physical pages in other threads’ thread-local safe area are
configured not accessible in current thread’s EPT. Compared
to existing methods, this method does not need any modifi-
cation of kernel source code, thus facilitating adoption.

To summarize, this paper makes the following contribu-
tions to software security:

• It proposes the re-randomization based IH technique to
protect the safe areas against all known attacks.

• It introduces the use of thread-private memory to iso-
late thread-local safe areas. The construction of thread-
private memory using hardware-assisted extended page
tables is also proposed for the first time.

• It devises a new technique to detect TLB misses, which
is the key trait of cache side-channel attacks against the
locations of the safe areas.

• It develops a novel technique to integrate SafeHidden
with KPTI, which may be of independent interest to sys-
tem researchers.

• It implements and evaluates a prototype of SafeHidden,
and demonstrates its effectiveness and efficiency through
extensive experiments.

The rest of the paper is organized as follows. Section 2
reviews information hiding techniques and existing attacks.
Section 3 explains the threat model. Section 4 presents the
core design of SafeHidden. Section 5 details the implemen-
tation of SafeHidden. Section 6 provides the security and
the performance evaluation. Discussion, related work, and
conclusion are provided in Section 7, 8 and 9.

2 Background and Motivation

2.1 Information Hiding
Information hiding (IH) technique is a simple and efficient
isolation defense to protect the data stored in a safe area. It
places the safe area at a random location in a very large vir-
tual address space. It makes sure that no pointer pointing to
the safe area exists in the regular memory space, hence, mak-
ing it unlikely for attackers to find the locations of the safe
areas through pointers. Instead, normal accesses to the safe
area are all done through an offset from a dedicated register.

Table 1 lists some of the defenses using the IH technique.
The column “TL” shows whether the safe area is used only
by its own thread or by all threads. The column “AF” shows
how frequent the code accesses the safe area. Because most
accesses to the safe area are through indirect/direct control
transfer instructions, their frequencies are usually quite high.
The column “Content in protected objects” shows the critical
data tried to protect in safe areas. The column “Reg” shows
the designated register used to store the (original) base ad-
dress of the safe area. Some of them use the x86 segmen-
tation register %fs/%gs. Others use the stack pointer reg-
ister on X86 64, %rsp, that originally points to the top of
the stack. They access a safe area via an offset from those
registers. For the %gs register, they often use the follow-
ing formats: %gs:0x10, %gs:(%rax), %gs:0x10(%rax), etc.
For the %rsp register, they often use the following formats:
0x10(%rsp), (%rsp, %rax, 0x8), pushq %rax 1, etc.

1It still conforms to the access model. The designated register is %rsp,

1240 28th USENIX Security Symposium USENIX Association

Defense Protected Objects Reg Content in Protected Objects AF TL
O-CFI [40] Bounds Lookup Table %gs The address boundaries of basic blocks targeted by an indirect branch instruction. High No
RERANZ [57] Real Return Address Table %gs The table that contains the return addresses pushed by call instructions. High Yes
Isomeron [15] Execution diversifier data %gs The mapping from the randomized code to the original code. Hign No

ASLR-Guard[36] AG-Stack %rsp Dynamic code locators stored on the stack, such as return addresses. High Yes
Safe-stack %gs ELF section remapping information and the key of code locator encryption. High No

Oxymoron [4]
Randomization-agnostic
translation table %fs

The translation table that contains the assigned indexes that are used to replace
all references to code and data. High No

Shuffler [59] Code pointer table %gs
The table that contains all indexes that are transformed from all function pointers
at their initialization points. High No

CFCI [61] Protected Memory %gs File name and descriptors, and the mapping between file names and file descriptors. Low No

CPI [30]
Safe Stack %rsp

Return address, spilled register, and objects accessed within the function
through the stack pointer register with a constant offset. High Yes

Safe Pointer Store %gs Sensitive pointers and the bounds of target objects pointed by these pointers. High No

Table 1: The list of defenses using information hiding (IH) techniques. AF is short for Access Frequency. TL is short for Thread Local.

A safe area is usually designed to be very small. For ex-
ample, the size of a safe area shown in Table 1 is usually lim-
ited to be within 8 MB in practice. On today’s mainstream
X86 64 CPUs, the randomization entropy of an 8 MB safe
area is 224. Such a high randomization entropy makes brute
force probing attacks [45, 47] hard to guess its location suc-
cessfully. A failed guess will result in a crash and detected
by administrators.

2.2 Attacks against Information Hiding
Recent researches have shown that the IH technique is vul-
nerable to attacks. To locate a safe area, attackers may either
improve the memory scanning technique to avoid crashes, or
trigger the defense’s legal access to the safe area and infer its
virtual address using side-channels.

2.2.1 Memory Scanning

The attackers could avoid crashes during their brute-force
probing. For example, some adversaries have discovered that
some daemon web servers have such features. The daemon
servers can fork worker processes that inherit the memory
layout. If a worker process crashes, a new worker process
will be forked. This enables the so-called clone-probing at-
tacks where an adversary repeatedly probes different clones
in order to scan the target memory regions [35]. CROP [19]
chooses to use the exception handling mechanism to avoid
crashes. During the probing, an access violation will occur
when an inadmissible address is accessed. But, it can be cap-
tured by an exception handler instead of crashing the system.

Attackers could also use memory management APIs to in-
fer the memory allocation information, and then locate the
safe area. In [43], it leverages the allocation oracles to ob-
tain the location of a safe area. In a user’s memory space,
there are many unmapped areas that are separated by code
and data areas. To gauge the size of the largest unmapped

and the offset is equal to 0. The only difference is that it will change the
value of the designated register.

area, it uses a binary search method to find the exact size
by allocating and freeing a memory region repeatedly. Af-
ter getting the exact size, it will allocate the memory in this
area through the persistent allocation oracle. It then uses the
same method to gauge the second largest unmapped area.
Because a safe area is mostly placed in an unmapped area,
an attacker can probe its surrounding areas to find its location
without causing exceptions or crashes.

All probing attacks need to use such covert techniques to
probe the memory many times without causing crashes be-
cause the size of a user’s memory space is very large. In
[20], it finds the safe area in many defenses is thread local
(see Table 1). So, it proposes to leverage the thread “spray-
ing” technique to “spray” a large number of safe areas to
reduce the number of probings. After spraying, the attackers
only need very few probes to locate the safe area.

2.2.2 Cache-based Side-Channel Attacks

To translate a virtual address to a physical address, the MMU
initiates a page table (PT) walk that visits each level of the
page table sequentially in the memory. To reduce the la-
tency, most-recently accessed page table entries are stored in
a special hardware cache, called translation lookaside buffer
(TLB). Because of the large virtual address space in 64-bit
architectures, a hierarchy of cache memories has been used
to support different levels of page-table lookup. They are
called the page table caches, or paging-structure caches by
Intel [2]. In addition, the accessed PT entries are also fetched
into the last level cache (LLC) during the page-table walk.

It has been demonstrated that cache-based side-channels
can break coarse-grained address space layout randomiza-
tion [22]. The location of the safe area can be deter-
mined through the following attack method: First, the at-
tacker triggers the defense system’s access to the safe area.
To ensure this memory access invokes a PT walk, the at-
tacker cleanses the corresponding TLB entries for the safe
area’s virtual address beforehand. Second, the attacker con-
ducts a Prime+Probe or Evict+Time cache side-channel

USENIX Association 28th USENIX Security Symposium 1241

attack [44] to monitor which cache sets are used during the
PT walk. As only certain virtual addresses map to a specific
cache set, the virtual address of the safe area can be inferred
using cache side-channel analysis.

However, it is worth mentioning that to successfully de-
termine the virtual address of one memory area, hundreds of
such Prime+Probe or Evict+Time tests are needed. It is also
imperative that the addresses of the PTEs corresponding to
this memory area are not changed during these tests. That
is, the cache entries mapped by these PTEs are not changed.
Our defense effectively invalidates such assumptions.

3 Threat Model

We consider an IH-based defense that protects a vulnerable
application against code reuse attacks. This application ei-
ther stands as a server that accepts and handles remote re-
quests (e.g., through a web interface), or executes a sand-
boxed scripting code such as JavaScript as done in a mod-
ern web browsers. Accordingly, we assume the attacker has
the permission to send malicious remote requests to the web
servers or lure the web browsers to visit attacker-controlled
websites and download malicious JavaScript code.

This IH-based defense has a safe area hidden in the vic-
tim process’s memory space. We assume the design of the
defense is not flawed: That is, before launching code reuse
attacks, the attacker must circumvent the defense by reveal-
ing the locations of the safe areas (e.g., using one of many
available techniques discussed in Section 2.2). We also as-
sume the implementation of defense system itself is not vul-
nerable, and it uses IH correctly. We assume the underlying
operating system is trusted and secured.

We assume the existence of some vulnerabilities in the ap-
plication that allows the attacker to (a) read and write arbi-
trary memory locations; (b) allocate or free arbitrary mem-
ory areas (e.g., by interacting with the application’s web in-
terface or executing script directly); (c) create any number of
threads (e.g., as a JavaScript program). These capabilities al-
ready represent the strongest possible adversary given in the
application scenarios. Given these capabilities, all known at-
tacks against IH can be performed.

3.1 Attack Vectors
Particularly, we consider the following attack vectors. All
known attacks employ one of the four vectors listed below to
disclose the locations of the safe areas.

• Vector-1: Gathering memory layout information to help
to locate safe areas, by probing memory regions to infer
if they are mapped (or allocated);
• Vector-2: Creating opportunities to probe safe areas

without crashing the system, e.g., by leveraging resum-
able exceptions;

safe area

trap area

code/data

unmapped area

move safe area
and leave a trap

probe 1

initial

probe 2

probe n

Figure 1: The high-level overview of the proposed re-
randomization with the dispersed trap areas.

• Vector-3: Reducing the entropy of the randomized safe
area locations to increase the success probability of
probes, by decreasing the size of unmapped areas or in-
creasing the size of safe areas;
• Vector-4: Monitoring page-table access patterns using

cache side-channels to infer the addresses of safe areas,
while triggering legal accesses to safe areas.

4 SafeHidden Design

We proposed SafeHidden, an IH technique that leverages re-
randomization to prevent the attackers from locating the safe
areas. It protects safe areas in both single-threaded programs
and multi-threaded programs. It is designed primarily for
Linux/X86 64 platform, as most of the defenses leveraging
IH are developed on this platform.

At runtime, SafeHidden detects all potential memory
probes. To avoid overly frequent re-randomization, it mi-
grates the safe area to a new randomized location only af-
ter the detection of a suspicious probing. It then leaves a
trap area of the same size behind. Figure 1 illustrates the
high-level overview of the re-randomization method. In the
figure, the memory layout is changed as the location of the
safe area is being moved continuously, and the unmapped
memory space becomes more fragmented by trap areas. The
ever-changing memory layout could block Vector-1.

As the attackers continue to probe, new trap areas will be
created. Gradually, it becomes more likely for probes to
stumble into trap areas. If the attacker touches a trap area
through any type of accesses, SafeHidden will trigger a se-
curity alarm and capture the attack. The design of trap areas
mitigates the attacks from Vector-2, and significantly lim-
its the attackers’ ability to probe the memory persistently.
While the attackers are still able to locate a safe area before
accessing the trap areas, the probability is proven to be very
small (see Section 4.4).

To block Vector-3, SafeHidden prevents unlimited shrink
of unmapped areas and unrestricted growth of safe areas:
(1) Unmapped areas. Because IH assumes that safe areas
are hidden in a very large unmapped area, SafeHidden must
prevent extremely large mapped areas. In our design, the

1242 28th USENIX Security Symposium USENIX Association

Events Interception Points Responses in SafeHidden
SA UA TA OA

memory management syscalls mmap, munmap, mremap, mprotect, brk, ... Alarm Rand Alarm –
syscalls that could return EFAULT read, write, access, send, ... Alarm Rand Alarm –
cloning memory space clone, fork, vfork Rand Rand Rand Rand
memory access instructions page fault exception – Rand Alarm –

Table 2: Summary of potential stealthy probings and SafeHidden’s responses. “SA”: safe areas, “UA”: unmapped areas, “TA”: trap areas,
“OA”: other areas. “Alarm”: triggering a security alarm. “Rand”: triggering re-randomization. “–”: do nothing.

maximum size of the mapped area allowed by SafeHidden
is 64 TB, which is half of the entire virtual address space
in the user space. Rarely do applications consume terabytes
of memory; even big data applications only use gigabytes
of virtual memory space; (2) Safe areas. Although safe ar-
eas in IH techniques are typically small and do not expand
at runtime, attackers could create a large number of threads
to increase the total size of the thread-local safe areas. To
defeat such attacks, SafeHidden uses thread-private mem-
ory space to store thread-local safe areas. It maintains strict
isolation among threads. When the thread-local safe area is
protected using such a scheme, the entropy will not be re-
duced by thread spraying because any thread sprayed by an
attacker can only access its own local safe area.

To mitigate Vector-4, SafeHidden also monitors legal ac-
cesses to the safe area that may be triggered by the attacker.
Once such a legal access is detected, SafeHidden randomizes
the location of the safe area. As the virtual address of the safe
area is changed during re-randomization, the corresponding
PTEs and their cache entries that are used by the attacker to
make inferences no longer reflects the real virtual address of
the safe area. Thus, Vector-4 is blocked. It is worth noting
that unlike the cases of detecting illegal accesses to the safe
area, no trap area is created after the re-randomization.

In the following subsections, we will detail how SafeHid-
den recognizes and responds to the stealthy memory probes
(see Section 4.1), how SafeHidden achieves the thread-
private memory (see Section 4.2) and how SafeHidden de-
feats cache-based side-channel analysis (see Section 4.3).

4.1 Stealthy Memory Probes

In order to detect potential stealthy memory probes, we list
all memory operations in the user space that can potentially
be used as probings from the attackers (see Table 2).

The first row of Table 2 lists system calls that are related
to memory management. The attackers could directly use
them to gauge the layout of the memory space by allocat-
ing/deallocating/moving the memory or changing the per-
mission to detect whether the target memory area is mapped
or not. The second row lists the system calls that could return
an EFAULT (bad address) error, such as “ssize t write

(int fd, void * buf, size t count)”. These system
calls have a parameter pointing to a memory address. If

the target memory is not mapped, the system call will fail
without causing a crash, and the error code will be set to
EFAULT. These system calls can be used to probe the mem-
ory layout without resulting in a crash. The third row lists
the system calls that can clone a memory space. The at-
tackers could use them to reason about the memory layout
of the parent process from a child process. The fourth row
lists memory access instructions that can trigger a page fault
exception when the access permission is violated. The at-
tackers could register or reuse the signal handler to avoid a
crash when probing an invalid address.

Four types of memory regions are considered separately:
safe areas, unmapped areas, trap areas, and other areas. Un-
mapped areas are areas in the address space that are not
mapped; trap areas are areas that were once safe areas; other
areas store process code and data. As shown in Table 2,
SafeHidden intercepts different types of memory accesses to
these areas and applies different security policy accordingly:

• If the event is an access to an unmapped area, SafeHid-
den will randomize the location of all safe areas. The
original location of a safe area become a trap area.

• If the event is a memory cloning, it will perform ran-
domization in the parent process after creating a child
process, in order to make the locations of their safe ar-
eas different.

• If the event is an access to safe areas through memory
management system calls or system calls with EFAULT
return value, SafeHidden will trigger a security alarm.

• If the event is an access to trap areas through memory
access instructions, memory management system calls,
or system calls with EFAULT return value, it will trig-
ger a security alarm.

• SafeHidden does not react to memory accesses to other
areas. Since they do not have pointers pointing to the
safe areas, probing other areas do not leak the locations.

To avoid excessive use of the virtual memory space, Safe-
Hidden sets an upper limit on the total size of all trap areas
(the default is 1 TB). Once the size of trap areas reaches the
upper limit, SafeHidden will remove some randomly chosen
trap area in each randomization round.

USENIX Association 28th USENIX Security Symposium 1243

The design of such a security policy is worth further dis-
cussion here. Trap areas are previous locations of safe areas,
which should be protected from illegal accesses in the same
way as safe areas. As normal application behaviors never
access safe areas and trap areas in an illegal way, accesses
to them should raise alarms. For accesses to unmapped ar-
eas, an immediate alarm may cause false positives because
the application may also issue memory management system
calls, system calls with an EFAULT return value, or a mem-
ory access that touches unmapped memory areas. Therefore,
accesses to unmapped areas only trigger re-randomization of
the safe area to restore the randomness (that could invali-
date the knowledge of previous probes), but no alarm will be
raised. An alternative design would be counting the num-
ber of accesses to unmapped areas and raising a security
alarm when the count exceeds a threshold. However, setting
a proper threshold is very difficult because different probing
algorithms could have different probing times. Therefore,
monitoring critical subsets of the unmapped areas—the safe
areas and trap areas—appears a better design choice.

4.2 Thread-private Memory
Thread-private memory technique was usually used in multi-
threaded record-and-replay techniques [25, 7, 31]. We pro-
pose to use thread-private memory to protect safe areas.
Conventional methods to implement thread-private memory
is to make use of thread-private page tables in the OS ker-
nel. As a separate page table is maintained for each thread,
a reference page table for the entire process is required to
keep track of the state of each page. The modification of
the kernel is too complex, which cannot be implemented as
a loadable kernel module: For example, to be compatible
with kswapd, the reference page table must be synchronized
with the private page tables of each thread, which requires
tracking of CPU accesses of each PTE (especially the setting
of the accessed and dirty bits2 by CPU). The need for ker-
nel source code modification and recompilation restricts the
practical deployment of this approach.

To address this limitation, we propose a new approach to
implement thread-private memory using the hardware vir-
tualization support. Currently, a memory access in a guest
VM needs to go through two levels of address translation: a
guest virtual address is first translated into a guest physical
address through the guest page table (GPT), which is then
translated to its host physical address through a hypervisor
maintained table, e.g., the extended page table (EPT) [38]
in Intel processors, or the nested page table (NPT) [56] in
AMD processors. Using Intel’s EPT as an example, multiple
virtual CPUs (VCPU) within a guest VM will share the same
EPT. For instance, when the two VCPUs of a guest VM run

2These flags are provided for use by memory-management software to
manage the transfer of pages into and out of physical memory. CPU is
responsible for setting these bits via the physical address directly.

The view of Thread0’s Memory Space

Guest
Page Table

Guest
Hypervisor

P
1

Machine Memory

P
1

P
2

EPT0
P
3

EPT1

EPTP
CR3

Core 0
EPTP
CR3

Core 1

Guest Physical Memory

P
0

P
0

The view of Thread1’s Memory Space

Figure 2: An example of the thread-private memory mechanism.
P0 and P1 is thread-private memory page of Thread0 and Thread1,
respectively.

two threads of the same program, both the virtual CR3 reg-
isters point to the page table of the program, and both EPT
pointers (EPTPs) of VCPUs are pointing to a shared EPT.

To implement a thread-private memory, we can instead
make each EPTP to point to a separate EPT to maintain its
own thread-private memory. In such a scheme, each thread
will have its own private EPT. The physical pages mapped
in a thread’s private memory in other threads’ private EPTs
will be made inaccessible. Figure 2 depicts an example of
our thread-private memory scheme. When Thread1 tries to
access its thread-private memory page P1, the hardware will
walk both GPT and EPT1 to get the P3 successfully. But
when Thread0 tries to access P1, it will trigger an EPT vi-
olation exception when the hardware walking EPT0 and be
captured by the hypervisor.

In such a scheme, when a thread is scheduled on a VCPU,
the hypervisor will set EPTP to point to its own EPT. In ad-
dition, SafeHidden synchronizes the EPTs by tracking the
updates of the entries for the thread-local safe areas. For
example, when mapping a guest physical page, SafeHidden
needs to add the protection of all threads’ EPTs for this page.

The thread-private memory defeats Vector-3 completely.
When thread-local safe areas are stored in such thread-
private memory, spraying thread-local safe areas is no
longer useful for the attackers because it will spray many
prohibited areas that are similar to trap areas, called shielded
areas (e.g., P1 is Thread0’s shielded area in Figure 2), and
be captured more easily.

4.3 Thwarting Cache Side-Channel Attacks
As discussed in Section 2.2.2, a key step in the cache side-
channel attack by Gras et al. [22] is to force a PT walk when
an access to the safe area is triggered. Therefore, a necessary
condition for such an attack is to allow the attacker to induce
TLB misses in a safe area. SafeHidden mitigates such at-
tacks by intercepting TLB misses when accessing safe areas.

To only intercept the TLB miss occurred in safe areas,

1244 28th USENIX Security Symposium USENIX Association

SafeHidden leverages a reserved bit in a PTE on X86 64 pro-
cessors. When the reserved bit is set, a page fault exception
with a specific error code will be triggered when the PTE
is missing in TLB. Using this mechanism, a TLB miss can
be intercepted and handled by the page fault handler. Safe-
Hidden sets the reserved bit in all of the PTEs for the safe
areas. Thus, when a TLB miss occurs, it is trapped into the
page fault handler and triggers the following actions: (1) It
performs one round of randomization for the safe area; (2) It
clears the reserved bit in the PTE of the faulting page; (3) It
loads the PTE (after re-randomization) of the faulting page
into the TLB; (4) It then sets the reserved bit of the PTE
again. It is worth noting that loading the TLB entry of the
faulting page is a key step. Without this step, the program’s
subsequent accesses to the safe area will cause TLB misses
again, which will trigger another randomization.

The re-randomization upon TLB miss effectively defeats
cache-based side-channel analysis. As mentioned in Section
2.2.2, a successful side-channel attack requires hundreds of
Prime+Probe or Evict+Time tests. However, as each test
triggers a TLB miss, the safe area is re-randomized after ev-
ery test. The PTEs used to translate the safe areas in each PT
levels are re-randomized. Thus, the cache entries mapped by
these PTEs are also re-randomized that completely defeating
cache-based side-channels [22].

Nevertheless, two issues may arise: First, the PTEs of a
safe area could be updated by OS (e.g., during a page mi-
gration or a reclamation), and thus clearing the reserved bits.
To avoid these unintended changes to the safe areas’ PTEs,
SafeHidden traps all updates to the corresponding PTEs to
maintain the correct values of the reserved bits. Second, as
the location of a safe area is changed after a randomization, it
will cause many TLB misses when the safe area is accessed
at the new location, which may trigger many false alarms
and re-randomizations. To address this problem, SafeHid-
den reloads the safe area’s PTEs that were already loaded in
the TLB back to the TLB after re-randomization. This, how-
ever, requires SafeHidden to know which PTEs were loaded
in the TLB before the re-randomization. To do so, Safe-
Hidden exploits an additional feature in Intel transactional
synchronization extensions (TSX), which is Intel’s imple-
mentation of hardware transactional memory [2]. During a
re-randomization, SafeHidden touches each page in the safe
area from inside of a TSX transaction. If there is a TLB
miss, a page fault exception will occur because the reserved
bit of its PTE is set. But this exception will be suppressed by
a TSX transaction and handled by its abort handler. There-
fore, SafeHidden can quickly find out all loaded PTEs before
the re-randomization and reload them for the new location in
the TLB without triggering any page fault exception.

Integrating SafeHidden with kernel page table isolation
(KPTI) [1] introduces additional challenges. KPTI is a de-
fault feature used in the most recent Linux kernels. It sep-
arates the kernel page tables from user-space page tables,

which renders the pre-loaded TLB entries of the safe areas
in kernel unusable by the user-space application. We will
detail our solution in section 5.

4.4 Security Analysis
SafeHidden by design completely blocks attacks through
Vector-1, Vector-3, and Vector-4. However, it only prob-
abilistically prevents attacks through Vector-2. As such, in
this section, we outline an analysis of SafeHidden’s security
guarantee. Specifically, we consider a defense system with
only one safe area hidden in the unmapped memory space.
We abstract the attackers’ behavior as a sequence of memory
probes, each of which triggers one re-randomization of the
safe area and creates a new trap area.

Pc ith =


(i ·Pt) ·

i−1
∏
j=1

(1−Ph− j ·Pt) i f i≤M

(M ·Pt) · (
M
∏
j=1

(1−Ph− j ·Pt)) · (1−Ph−M ·Pt)
i−1−M

i f i > M
(1)

The probability of detecting probes. Let the probability
of detecting the attacks within N probes be Pc n. Then the
cumulative probability Pc n = ∑

n
i=1 Pc ith, where Pc ith repre-

sents the probability that an attacker escapes all i−1 probes,
but is captured in the ith probe when it hits a trap area. An
escape means that the attacker’s probe is unsuccessful but re-
mains undetected. Pc ith is calculated in Equation (1), where
i denotes the number of probes, j denotes the number of ex-
isting trap areas, Ph denotes the probability that the attacker
hits the safe area in a probe, Pt represents the probability that
the attacker hits one of the trap areas in a probe, M denotes
the maximum number of trap areas. As an escape results in
one re-randomization and the creation of a trap area, we ap-
proximate the number of existing trap areas with the number
of escapes. But the number only increases up to M. So we
consider if i reaches M separately. In the equation, (i ·Pt)
or (M ·Pt) represents the probability that the probes are de-
tected in the ith probe and (1−Ph− j ·Pt) or (1−Ph−M ·Pt)
represents the probability of escaping the ith probe.

The attacker’s success probability. We denote the prob-
ability of the attacker’s successfully locating the safe area
within N probes as Ps n. Ps n = ∑

n
i=1 Ps ith, where Ps ith rep-

resents the probability that the attacker escapes in the first
i− 1 probes, but succeed in the ith probe. Ps ith is provided
in Equation (2).

Ps ith =


Ph ·

i−1
∏
j=1

(1−Ph− j ·Pt) i f i≤M

Ph · (
M
∏
j=1

(1−Ph− j ·Pt)) · (1−Ph−M ·Pt)
i−1−M

i f i > M
(2)

USENIX Association 28th USENIX Security Symposium 1245

0 5000 10000 15000 20000
Time of probings

0.0

0.2

0.4

0.6

0.8

1.0

p c
n

0.11

0.38

0.66

0.85
0.950.99

(a) The curve of pc n

0 5000 10000 15000 20000
Time of probings

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

p s
n

×10−4

0.0001

0.0002

0.0003
0.0003 0.0003

(b) The curve of ps n

Figure 3: The probability of being captured by SafeHidden within
N probes (a) and the probability of locating the safe areas within N
probes successfully (b).

Discussion. When the size of the safe area is set to 8 MB,
and the maximum size of all trap areas is set to 1 TB, as
shown in Figure 3(a), Pc n increases as the number of probes
grows. When the number of probes reaches 15K, SafeHid-
den detects the attack with a probability of 99.9%; Pc n ap-
proaches 100% as the number of probes reaches 20K. Fig-
ure 3(b) suggests the value of Ps n increases as the number
of probes increases, too. But even if the attacker can es-
cape in 15K probes (which is very unlikely given Figure
3(a)), the probability of successfully locating the safe area
is still only 0.03% (shown in Figure 3(b)), which is the max-
imum that could ever be achieved by the attacker. Notice
that our abstract model favors the attackers, for example: (1)
no shielded areas are considered in the analysis; (2) ran-
domization triggered by applications’ normal activities and
TLB misses is ignored in the analysis. Obviously, in the
real world situation, the attacker’s success probability will
be even lower, and the attack will be caught much sooner.

5 System Implementation

SafeHidden is designed as a loadable kernel module. Users
could deploy SafeHidden by simply loading the kernel mod-
ule, and specifying, by passing parameters to the module,
which application needs to be protected and which registers
point to the safe area. No modification of the existing de-
fenses or re-compiling the OS kernel is needed.

5.1 Architecture Overview of SafeHidden

As described in Section 4.2, SafeHidden needs the hardware
virtualization support. It can be implemented within a Vir-
tual Machine Monitor (VMM), such as Xen or KVM. How-
ever, the need for virtualization does not preclude its appli-
cation in non-virtualized systems. To demonstrate this, we
integrated a thin hypervisor into the kernel module for a non-
virtualized OS. The thin hypervisor virtualizes the running
OS as the guest without rebooting the system. The other
components inside the kernel module are collectively called
GuestKM, which runs in the guest kernel.

Hardware Hypervisor

OS Kernel

Protected
APP’s thread0

Other
Applications

Protected
APP’s thread1

Process
Sched

Randomizer

Syscall Interceptor

#0

#511
. . .
. . .

Page Tables

#0

#511
. . .
. . .

Extended page tables

EPT
Violation
Handler

Hypercall Handlers

Checker

Kernel Module

#PF Interceptor vmcall

Linux
Notifier

SafeHidden

Function
Module

Switch
EPT

Sync
EPT

Intercept
Events

Inject
Interrupt

Figure 4: Architecture overview of SafeHidden.

After loading the SafeHidden module, it first starts the
hypervisor and then triggers the initialization of GuestKM
to install hooks during the Initialization Phase. Figure 4
shows an overview of SafeHidden’s architecture. We can see
that SafeHidden is composed of two parts: the hypervisor
and the GuestKM. In the initialization phase, GuestKM in-
stalls hooks to intercept three kinds of guest events: context
switching, page fault exceptions, and certain system calls.

SafeHidden then starts to protect the safe areas by random-
izing their locations and isolating the thread-local safe ar-
eas during the Runtime Monitoring Phase. In the GuestKM,
the Syscall Interceptor and the #PF Interceptor modules
are used to intercept system calls and page fault exceptions.
When these two types of events are intercepted, they will re-
quest the Checker module to determine if SafeHidden needs
to raise a security alarm, or if it needs to notify the Random-
izer module to perform randomization. Meanwhile, Safe-
Hidden needs to maintain the thread-private EPT to isolate
the thread-local safe areas. The sync EPT module is used
to synchronize the protected threads’ page tables with their
EPTs. The switch EPT module will switch EPTs when a
protected thread is scheduled. Because both modules need
to operate EPTs, they are coordinated by the Hypercall Han-
dlers module. The EPT Violation Handler module is used to
monitor illegal accesses to the thread-local safe areas.

5.2 Initialization Phase

Task-1: starting hypervisor. When the kernel module is
launched, the hypervisor starts immediately. It configures
the EPT paging structures, enables virtualization mode, and
places the execution of the non-virtualized OS into the vir-
tualized guest mode (non-root VMX mode). At this time, it
only needs to create a default EPT for guest. Because the
guest is a mirror of the current running system, the default
EPT stores a one-to-one mapping that maps each guest phys-
ical address to the same host physical address.

1246 28th USENIX Security Symposium USENIX Association

Task-2: installing hooks in guest kernel. When the guest
starts to run, GuestKM will be triggered to install hooks
to intercept three kinds of events: 1) To intercept the sys-
tem calls, GuestKM modifies the system call table’s
entries and installs an alternative handler for each of
them; 2) To intercept the page fault exception, GuestKM
uses the ftrace framework in Linux kernel to hook the
do page fault function; 3) To intercept context switches,
GuestKM uses the standard preemption notifier in Linux,
preempt notifier register, to install hooks. It can be
notified through two callbacks, the sched in() and the
sched out(), when a context switch occurs.

5.3 Runtime Monitoring Phase

Recognizing safe areas. GuestKM intercepts the execve()
system call to monitor the startup of the protected process.
Based on the user-specified dedicated register, GuestKM can
monitor the event of setting this register to obtain the value.
In Linux kernel, the memory layout of a process is stored in a
list structure, called vm area struct. GuestKM can obtain
the safe area by searching the link using this value. Accord-
ing to Table 1, there are two kinds of registers that store the
pointer of a safe area: 1) The 64-bit Linux kernel only al-
lows a user process to set the %gs or %fs segmentation regis-
ters through the arch prctl() system call 3. So, GuestKM
intercepts this system call to obtain the values of these reg-
isters; 2) All existing methods listed in Table 1 use %rsp

pointed safe area to protect the stack. So, GuestKM analyzes
the execution result of the execve() and the clone() sys-
tem calls to obtain the location of the safe area, i.e., the stack,
of the created thread or process. Once a safe area is recog-
nized, its PTEs will be set invalid by setting the reserved bits.

To determine whether a safe area is thread-local or not,
GuestKM monitors the event of setting the dedicated register
in child threads. If the register is set to point to a different
memory area, it means that the child thread has created its
thread-local safe area, and the original safe area belongs to
the parent. Until the child thread modifies the register to
point to a different memory area, it shares the same safe area
with its parent.

Randomizing safe areas. As described in Section 4.1 and
4.3, when GuestKM needs to perform randomization, it in-
vokes the customized implementation of do mremap() func-
tion in the kernel with a randomly generated address (by
masking the output of the rdrand instruction with The
0x7ffffffff000) to change the locations of the safe ar-
eas. If the generated address has been taken, the process
is repeated until a usable address is obtained. It is worth
noting that GuestKM only changes the virtual address of

3Recent CPUs supporting the WRGSBASE/WRFSBASE instructions allow
setting the %gs and %fs base directly, but they are restricted by the Linux
kernel to use in user mode.

CR3[12] = 0

User Space

Kernel Space

User Space

Kernel Space

Kernel Mode User Mode

PGD
Kernel

PGD
User

… … … …

kPCID

uPCID

- 0x1000

+ 0x800

CR3[11] = 1

physical
memory

Figure 5: Overview of kernel page-table isolation.

the safe area, the physical pages are not changed. After
migrating each safe area (not triggered by the TLB miss
event), GuestKM will invoke do mmap() with the protec-
tion flag PROT NONE to set the original safe area to be a trap
area. For multi-threaded programs, when the execution of
a thread triggers a randomization (not triggered by the TLB
miss event), the safe areas of all threads need to be random-
ized. To ensure the correctness, GuestKM needs to block all
threads before randomizing all (or thread-shared) safe areas.

Although all safe areas used in existing defenses in Table
1 are position-independent, we do not rule out the possibility
that future defenses may store some position-dependent data
in the safe area. However, as any data related to an absolute
address can be converted to the form of a base address with
an offset, they can be made position independent. Therefore,
after randomizing all safe areas, SafeHidden just needs to
modify the values of the dedicated registers to point to the
new locations of the safe areas.

Loading TLB entries under KPTI. The kernel page table
isolation (KPTI) feature [1] was introduced into the main-
stream Linux kernels to mitigate the Meltdown attack [32].
For each procecss, it splits the page table into a user-mode
page table and a kernel-mode page table (as shown in Figure
5). The kernel-mode page table includes both kernel-space
and user-space addresses, but it is only used when the sys-
tem is running in the kernel mode. The user-mode page table
used in the user mode contains all user-space address map-
pings and a minimal set of kernel-space mappings for serv-
ing system calls, handling interrupts and exceptions. When-
ever entering or exiting the kernel mode, the kernel needs to
switch between the two page tables by setting the CR3 reg-
ister. To accelerate the page table switching, the roots of the
page tables (i.e., PGD kernel and PGD user in Figure 5) are
placed skillfully in the physical memory so that the kernel
only needs to set or clear the bit 12 of CR3.

Moreover, to avoid flushing TLB entries when switching
page tables, the kernel leverages the Process Context Identi-
fier (PCID) feature [2]. When PCID is enabled, the first 12
bits (bit 0 to bit 11) of the CR3 register represents the PCID
of the process which is used by the processor to identify the

USENIX Association 28th USENIX Security Symposium 1247

owner of a TLB entry. The kernel assigns different PCIDs to
the user and kernel modes (i.e., kPCID and uPCID in the fig-
ure). When entering or exiting the kernel mode, the kernel
needs to switch between kPCID and uPCID. To accelerate
this procedure, kPCID and uPCID of the same process only
differ in one bit. Therefore, the kernel only needs to set or
clear the bit 11 of CR3.

1 // .S file

2 .globl asm_load_pte_irqs_off

3 .align 0x1000

4 asm_load_pte_irqs_off:

5 /* 1. Get CR3 (kernel-mode page table with kPCID) */

6 mov %cr3, %r11

7 /* 2. Switch to kernel-mode page table with uPCID */

8 bts 63, %r11 // set noflush bit

9 bts 11, %r11 // set uPCID bit

10 mov %r11, %cr3 // set CR3

11 /* 3. Access user-mode pages to load pte into TLB */

12 stac // Allow user-mode pages accesses

13 movb (%rdi), %al // Read a byte from user-mode page

14 clac // Disallow user-mode pages accesses

15 /* 4. Get uPCID value */

16 mov %r11, %rax

17 and $0xfff, %rax

18 /* 5. Switch to kernel-mode page table with kPCID */

19 bts 63, %r11 // set noflush bit

20 btc 11, %r11 // clear uPCID bit

21 mov %r11, %cr3 //set CR3

22 retq //return uPCID

23 // .c file

24 void load_pte_into_TLB(unsigned long addr) {

25 unsigned long flags, uPCID;

26 // disable preemption and interrupts

27 get_cpu(); local_irq_save(flags);

28 uPCID = asm_load_pte_irqs_off(addr);

29 // flush the TLB entries for a given pcid and addr

30 invpcid_flush_one(uPCID, asm_load_pte_irqs_off);

31 // enable preemption and interrupts

32 local_irq_restore(flags); put_cpu();

33 }

Listing 1: The code snippet to load the TLB entries under KPTI.

As mentioned in Section 4.3, SafeHidden needs to load
PTEs of the safe areas into the TLB every time it randomizes
the safe areas. However, it is challenging to make SafeHid-
den compatible with KPTI. This is because SafeHidden only
runs in the kernel mode—it uses the kernel-mode page table
with kPCID, but the TLB entries of the safe areas must be
loaded from the user-mode page table using uPCID.

An intuitive solution is to map SafeHidden into the kernel
space portion of the user-mode page tables. Then the PTE
loading is performed with uPCID. However, this method in-
troduces more pages into the user-mode page tables and thus
increases the attack surface of the Meltdown attack.

We propose the following alternative solution: SafeHid-
den still runs in the kernel mode using the kernel-mode page
table. Before loading the TLB entries of the safe areas, it
switches from kPCID to uPCID temporarily. Then without
switching to the user-mode page table, it accesses the safe
area pages to load the target PTEs into the TLB with uPCID.

There is no need to switch to the user-mode page table for
two reasons: (1) TLB entries are only tagged with PCIDs
and virtual addresses; (2) the user-space addresses are also
mapped in the kernel-mode page table. After the PTE load-
ing, SafeHidden switches back to kPCID and then flushes
the TLBs of the instruction/data pages related to the loading
operation. This is to avoid these TLB entries (tagged with
uPCID) to be exploited by the Meltdown attack.

Listing 1 illustrates the details of how to load user PTEs
into the TLB from the kernel mode code under KPTI. Line
24 shows the function definition of this loading operation.
Line 27 disables interrupts and preemptions to avoid unin-
tended context switches. Line 28 invokes the assembly code
for the loading operation. Line 6 reads the current CR3 regis-
ter which contains the root of the kernel-mode page table and
the kPCID. Line 8-10 switch to use uPCID (but keeping the
kernel-mode page table unchanged). Line 8 sets the noflush
bit to avoid flushing the target PCID’s TLB entries when set-
ting the CR3 register. Line 12 enables data access to user
pages by disabling SMAP temporarily. Line 13-14 load the
target PTE into TLB with uPCID by reading a byte from this
page. Line 16-21 switch back to kPCID. Because line 12-21
code runs under the kernel-mode page table with uPCID, this
code page mapping will be loaded into the TLB that can be
accessed by user-mode code later. This page content could
be leaked from the malicious process using the Meltdown
attack. So line 30 flushes the mapping from the TLB.

Reloading TLB entries after randomization. SafeHidden
uses Intel TSX to test which PTEs of the safe areas are
loaded in the TLB. The implementation is very similar to
the method of loading the user-mode TLB entries. The only
difference is that SafeHidden encloses the code of line 13
(Listing 1) into a transaction (between xbegin and xend in-
structions). In fact, not all PTEs of the safe area need to be
tested. SafeHidden only tests the PTEs that were reloaded in
the last re-randomization.

Tracking GPT updates. The GPT entries of safe areas
will be updated dynamically. In order to track such up-
dates efficiently, we choose to integrate the Linux MMU
notifier mmu notifier register in GuestKM. The MMU
notifier provides a collection of callback functions to notify
two kinds of page table updates: invalidation of a physical
page and migration of a physical page. But it does not issue
a callback when OS maps a physical page to a virtual page.
To address this problem, we handle it in a lazy way by inter-
cepting the page fault exception to track this update. Once
GuestKM is notified about these updates, GuestKM makes
the modified entry invalid or valid, and then issues a hyper-
call to notify the hypervisor to synchronize all EPTs.

Creating and destructing thread-private EPT. If a thread
has no thread-local safe area, it shares its parent’s EPT. If
it is the main thread, it will be configured to use the default
EPT. If a thread has a thread-local safe area, GuestKM will

1248 28th USENIX Security Symposium USENIX Association

issue a hypercall to notify the hypervisor to initialize an EPT
for this thread. When initializing an EPT, SafeHidden will
configure the entries based on other threads’ local safe areas
by walking the GPT to find all physical pages in the safe ar-
eas. Meanwhile, SafeHidden will also modify the entries of
other thread’s EPT to make all thread-local safe areas iso-
lated from each other. Whenever SafeHidden changes other
thread’s EPT, it will block the other threads first. GuestKM
also intercepts the exit() system call to monitor a thread’s
destruction. Once a thread with a private EPT is killed,
GuestKM notifies the hypervisor to recycle its EPT.

Monitoring context switches. When a thread is switched
out, GuestKM will be notified through the sched out() and
it will switch to the default EPT assigned to the correspond-
ing VCPU. When GuestKM knows a new thread is switched
in through the sched in(), it will check whether the thread
has a private EPT or not, and switches to its EPT in if it does.

Monitoring illegal accesses. GuestKM intercepts all system
calls in Table 2 and checks their access areas by analyzing
their arguments. If there is an overlap between their access
areas with any of the trap areas, the safe areas, or the shielded
areas, GuestKM will trigger a security alarm. Because there
is no physical memory allocated to the trap areas, any mem-
ory access to those areas will be captured by intercepting the
page fault exception. With the isolation of the thread-local
safe area, any memory access to the shielded areas will trig-
ger an EPT violation exception, which will be captured by
the hypervisor (that notifies GuestKM). GuestKM triggers a
security alarm in cases of any of these events.

Handling security alarms. How these security alarms are
handled depends on the applications. For example, when
SafeHidden is applied in browsers to prevent exploitation us-
ing JS code, it could mark the website from which the JS
code is downloaded as malicious and prevent the users from
visiting the websites. When SafeHidden is used to protect
web servers, alarms can be integrated with application fire-
walls to block the intrusion attempts.

6 Evaluation

We implemented SafeHidden on Ubuntu 18.04 (Kernel
4.20.3 with KPTI enabled by default) that runs on a 3.4GHZ
Intel(R) Core(TM) i7-6700 CPU with 4 cores and 16GB
RAM. To evaluate the security and performance of SafeHid-
den, we implemented by ourselves two defenses that use safe
areas, OCFI and SS. OCFI is a prototype implementation of
O-CFI [40], which uses thread-shared safe areas (Table 1).
OCFI first randomizes the locations of all basic blocks and
then instruments all indirect control transfer instructions that
access the safe areas, i.e., indirect calls, indirect jumps, and
returns. Each indirect control transfer instruction has an en-
try in the safe areas, which contains the boundaries of possi-
ble targets. For each instrumented instruction, OCFI obtains

Figure 6: The distribution of probing times before being captured
(10,000 probes launched).

its jump target and checks if it is within the legal range.
SS is our implementation of a shadow stack, which is an

example of the thread-local safe areas (see Table 1). Shadow
stacks are used in Safe Stack [30], ASLR-Guard [36], and
RERANZ [57]. SS adopts a compact shadow stack scheme
[41] (in contrast to a parallel shadow stack scheme). In our
implementation, the pointer (i.e., offset) to the stack top is
stored at the bottom of the shadow stack. To be compatible
with uninstrumented libraries, SS instruments function pro-
logues and epilogues to access the shadow stacks (i.e., the
safe areas). Listing 2 shows the function prologue for oper-
ating shadow stacks. The epilogue is similar but in an inverse
order. The epilogue additionally checks if the return address
has been modified.

In both cases, the size of the safe area is set to be 8 MB. To
use SafeHidden with SS and OCFI, one only needs to specify
in SafeHidden that the %gs register points to the safe areas.
No other changes are needed.

1 mov (%rsp), %rax //get the return address

2 mov %gs:0x0, %r10 //get the shadow stack (ss) pointer

3 mov %rax, %gs:(%r10) //push the return address into ss

4 mov %rsp, %gs:0x8(%r10) //push the stack frame into ss

5 add $0x10, %gs:0x0//increment the shadow stack pointer

Listing 2: The shadow stack prologue.

6.1 Security Evaluation
We evaluated SafeHidden in four experiments. Each experi-
ment evaluates its defense against one attack vector.

In the first experiment, we emulated an attack that uses
the allocation oracles [43] to probe Firefox browsers un-
der OCFI’s protection. The prerequisite of this attack is the
ability to accurately gauge the size of the unmapped areas
around the safe areas. To emulate this attack, we inserted
a shared library into Firefox to gauge the size of the un-
mapped areas. When SafeHidden is not deployed, the at-
tack can quickly locate the safe area with only 104 attempts.
Then we performed 10,000 trials of this attack on Firefox
protected by OCFI and SafeHidden. The result shows that
all the 10,000 trials failed, but in two different scenarios:
In the first scenario (9,217 out of 10,000 trials), the attacks
failed to gauge the size of the unmapped areas even when the
powerful binary search method is used. The prerequisite of a

USENIX Association 28th USENIX Security Symposium 1249

Figure 7: Performance overhead of SPEC and Parsec-2.1 benchmarks brought by SafeHidden when applied to the SS and OCFI defenses.

binary search is that the location of the target object does not
change. However, SafeHidden’s re-randomization confuses
the binary search because the safe area moves continuously.
In the second scenario, even though the attacks can gauge
the exact size of an unmapped area, they always stumble into
one of the trap areas when accessing the surroundings of the
unmapped area, which triggers security alarms.

In the second experiment, we launched 10,000 trials of
CROP attacks [19] to probe a Firefox protected by OCFI.
The result shows that the attacks always successfully iden-
tified the location of the safe area when SafeHidden is not
deployed. The time required is less than 17 minutes with no
more than 81,472,151 probes. However, the attacks always
fail when SafeHidden is deployed. Figure 6 (a) shows the
distribution of the number of probes before an attack is de-
tected by hitting a trap area. We can see that the distribution
is concentrated in the range between [2000, 9000]. This ex-
periment shows that SafeHidden can prevent the continuous
probing attacks effectively.

In the third experiment, we launched 10,000 trials of the
CROP attack using thread spraying to probe Firefox pro-
tected by SS. We sprayed 214 (=16,384) threads with more
than 16,384 thread-local safe areas, and then scanned the
Firefox process with a CROP attack. The result shows that
when SafeHidden is not deployed, the attacks can probe the
locations of the safe areas successfully. The time taken is
0.16s, with only 2,310 probes. With SafeHidden deployed,
all probes are captured before succeeding. Figure 6 (b)
shows the distribution of the number of probes before be-
ing captured. The distribution is concentrated in the range
between [50, 300], which is much lower than those in the
second experiment. There are two reasons for that: 1) The
other threads’ local safe areas become the current thread’s
shielded areas, which increases the probability of the probes
being captured; 2) All safe areas will be randomized after
each probe, which increases the number of trap areas quickly.

In the fourth experiment, we emulated a cache side-
channel attack against page tables using Revanc [54], which
is a tool based on [46]. This tool allocates a memory buffer
and then measures the access time of different pages in this
buffer repeatedly. It could infer the base address of this

buffer. To utilize this attack method against IH, we kept this
memory buffer in a safe area by modifying the source code
to force any access to this memory buffer through an offset
from the %gs register. When SafeHidden is not deployed,
this attack can obtain the correct base address of this buffer.
The attack fails when SafeHidden is deployed.

6.2 Performance Evaluation
We evaluated SafeHidden’s impact on the application’s per-
formance in terms of CPU computation, network I/O, and
disk I/O, respectively. For the experiment of CPU compu-
tation, we ran SPEC CPU2006 benchmarks with ref input
and multi-threaded Parsec-2.1 benchmarks using native in-
put with 8 threads; For the experiment of network I/O, We
chose the Apache web server httpd-2.4.38 and Nginx-1.14.2
web server. Apache was configured to work in mpm-worker
mode, running in one worker process with 8 threads. Ng-
inx was configured to work with 4 worker processes; For
the experiment of disk I/O, we chose benchmark tool Bon-
nie++ (version 1.03e). For each benchmark, we prepared
two versions of the benchmark: (1) protected by SS, and (2)
protected by OCFI. We evaluated both the performance over-
head of protecting these benchmarks using SS and OCFI de-
fenses and the additional overhead of deploying SafeHidden
to enhance the SS and OCFI defenses.

6.2.1 CPU Intensive Performance Evaluation

Figure 7 shows the performance overhead of the OCFI and
SS defenses, and also the performance overhead of SafeHid-
den when applied to enhance the OCFI and SS defenses. For
SPEC benchmarks, we can see that the geometric mean per-
formance overhead incurred by OCFI and SS is 4.94% and
5.79%, respectively. For Parsec benchmarks, the geomet-
ric mean performance overhead incurred by OCFI and SS is
7.23% and 6.24%. The overhead of some applications (e.g.,
perlbench, povray, Xalancbmk and blacksholes) is higher be-
cause these applications frequently execute direct function
calls and indirect control transfer instructions, which trigger
accesses to safe areas. Note these overheads were caused by

1250 28th USENIX Security Symposium USENIX Association

Program
#randomization Details of #randomization

Program
#randomization Details of #randomization

SS OCFI #brk() #mmap() #tlb miss SS OCFI #brk() #mmap() #tlb miss
SS OCFI SS OCFI

SPEC CPU2006 benchmark

bzip2 3,260 4,816 36 100 3,124 4,680 calculix 40,914 37,319 32,095 139 8,680 5,085
gcc 150,550 148,649 6,816 194 143,540 141,639 hmmer 2,851 2,430 13 25 2,813 2,392
bwaves 757 764 701 45 11 18 sjeng 207,559 196,562 3 10 207,546 196,549
gamess 192 311 27 30 135 254 GemsFDTD 184 205 11 160 13 14
mcf 435,637 424,266 3 11 435,623 424,252 libquantum 373,904 201,652 14 39 373,851 201,599
milc 685,788 576,056 2,687 44 683,057 573,325 h264ref 6,650 2,496 545 60 6,045 1,891
zeusmp 108 425 3 10 95 412 tonto 327 335 298 20 9 17
gromacs 287 134 44 36 207 54 lbm 6,110 5,822 3 11 6,096 5,808
cactusADM 11,884 11,826 8,997 66 2,821 2,763 omnetpp 320,474 223,832 1,245 56 319,173 222,531
leslie3d 60 94 5 27 28 62 astar 872,397 667,817 3,928 46 868,423 663,843
namd 474 630 100 31 343 499 wrf 53,018 49,230 419 253 52,346 48,558
gobmk 10,062 64,491 59 594 9,409 63,838 sphinx3 3,572 2,790 144 146 3,282 2,500
dealII 53,113 53,618 40,103 53 12,957 13,462 xalancbmk 921,406 781,973 3,099 94 918,213 778,780
soplex 168,463 186,807 168 49 168,246 186,590 average 151,131 129,452 3,778 85 147,268 125,588
Parsec-2.1 benchmark

blackscholes 156,968 114,375 3 22 156,943 114,350 fluidanimate 168,896 175,816 231 23 168,642 175,562
bodytrack 11,205 10,426 2,486 6,558 2,161 1,382 vips 2,375 1,961 4 115 2,256 1,842
facesim 41,775 22,813 359 69 41,347 22,385 x264 5,768 8,055 42 162 5,564 7,851
ferret 93,815 62,870 222 39,032 54,561 23,616 canneal 244,669 251,238 5,917 24 238,728 245,297
freqmine 3,729 2,386 499 64 3,166 1,823 dedup 58,868 33,631 1,571 715 56,582 31,345
raytrace 27,510 22,859 1,279 57 26,174 21,523 streamcluster 273,684 219,572 7 23 273,654 219,542
swaptions 6,477 5,127 3 22 6,452 5,102 average 84,288 71,625 971 3,607 79,710 67,048
Table 3: Statistical data of SafeHidden when applied to the SS and OCFI defenses to protect SPEC CPU2006 and Parsec-2.1 benchmarks.

the adoption of OCFI and SS, but not SafeHidden.
For SPEC benchmarks, we can see that the geometric

mean performance overhead incurred by SafeHidden when
protecting OCFI and SS is 2.75% and 2.76%, respectively.
For Parsec benchmarks, the geometric mean performance
overhead incurred by SafeHidden is 5.78% and 6.44%, re-
spectively. It shows that SafeHidden is very efficient in pro-
tecting safe areas. Based on the experimental results, we
can also see that SafeHidden is more efficient in protect-
ing single-threaded applications. This is due to two rea-
sons: (1) All threads need to be blocked when randomizing
the thread-shared safe areas or the thread-local safe areas
(when not triggered by a TLB miss); (2) When protecting the
thread-local safe areas, SafeHidden needs to synchronize the
thread-private EPTs with the guest page table, which could
introduce VM-Exit events.

Table 3 details some statistical data of SafeHidden when
applied to the OCFI and SS defenses to protect SPEC and
Parsec benchmarks. The column “#randomization” shows
the number of re-randomization to safe areas. On SPEC and
Parsec benchmarks, there are three operations that can trig-
ger a re-randomization: (1) Using brk() to move the top of
the heap; (2) Using mmap() to allocate a memory chunk; (3)
TLB misses occurred in safe areas. Because OCFI and SS
did not introduce extra invocation of system calls, the num-
bers of brk() and mmap() are the same. Combined with Fig-
ure 7, we can see that for most of SPEC benchmarks (except
mcf, soplex, GemsFDTD and omnetpp), the performance
overhead is related to the total number of re-randomization.
The reason why those four benchmarks had different per-
formance overhead is the virtualization overhead incurred

by the hypervisor. For example, the hypervisor introduced
7.18% performance overhead for GemsFDTD. Except x264
using SS, canneal and streamcluster, the overhead of most
Parsec benchmarks is also related to the total number of re-
randomization. For canneal and streamcluster, most of per-
formance overhead is introduced by the virtualization. For
x264, it spawns child threads more frequently than other
benchmarks, which causes SafeHidden to frequently create
and initialize thread-private EPTs.

6.2.2 Network I/O Performance Evaluation

Figure 8 shows the performance degradation of Apache and
Nginx servers under the protection of SS and OCFI with and
without SafeHidden. We use ApacheBench (ab) to simulate
100 concurrent clients constantly sending 10,000 requests,
each request asks the server to transfer a file. We also var-
ied the size of the requested file, i.e., {1K, 5K, 20K, 100K,
200K, 500K}, to represent different configurations. From
the figure, we can see that SS only incurs 1.60% and 1.98%
overhead on average when protecting Apache and Nginx.
OCFI only incurs 1.45% and 2.13% overhead on average
when protecting Apache and Nginx. We can also see that
SafeHidden incurs 12.18% and 12.07% on average when ap-
plied to SS and OCFI to protect Apache. But SafeHidden
incurs only 5.51% and 5.35% on average when applied to SS
and OCFI to protect Nginx. So SafeHidden is more efficient
in protecting Nginx than Apache. This is due to two reasons:
(1) For each request to Nginx, Nginx will invoke several I/O
system calls, such as recvfrom(), write(), writev(),
etc., which only access the allocated memory space in the

USENIX Association 28th USENIX Security Symposium 1251

0%

5%

10%

15%

20%

25%

30%

0

5

10

15

20

25

File Size

O
ve

rh
ea

d
(%

)

La
te

nc
y

(m
s/

re
q)

baseline latency
SS latency
SS+SH latency
SS overhead
SH overhead

0%

5%

10%

15%

20%

25%

30%

0

5

10

15

20

25

File Size

O
ve

rh
ea

d
(%

)

La
te

nc
y

(m
s/

re
q)

baseline latency
OCFI latency
OCFI+SH latency
OCFI overhead
SH overhead

0%

5%

10%

15%

20%

25%

30%

0

2

4

6

8

10

12

14

File Size

O
ve

rh
ea

d
(%

)

La
te

nc
y

(m
s/

re
q)

baseline latency
SS latency
SS+SH latency
SS overhead
SH overhead

0%

5%

10%

15%

20%

25%

30%

0

2

4

6

8

10

12

14

File Size

O
ve

rh
ea

d
(%

)

La
te

nc
y

(m
s/

re
q)

baseline latency
OCFI latency
OCFI+SH latency
OCFI overhead
SH overhead

(a) Apache + SS + SafeHidden (b) Apache + OCFI + SafeHidden (c) Nginx + SS + SafeHidden (d) Nginx + OCFI + SafeHidden
Figure 8: Network I/O Performance overhead brought by SafeHidden (short for SH) when applied to the SS and OCFI defenses.

Nginx process. The system calls in Nginx will not trig-
ger randomization of the safe area. But for each request to
Apache, Apache will invoke the mmap() system call to map
the requested file into the virtual memory space which could
trigger the extra randomization of all safe areas compared
with Nginx; (2) Apache is a multi-threaded program. Safe-
Hidden needs to block all threads when performing random-
ization of safe areas triggered by the mmap() system call.

6.2.3 Disk I/O Performance Evaluation

-2%
0%
2%
4%
6%
8%

10%

O
ve

rh
ea

d
(%

)

SafeHidden when applied to OCFI
OCFI
SafeHidden when applied to SS
SS

Per Char Block Rewrite Per Char Block
Sequential Output Sequential Input

Random
Seeks

Figure 9: Disk I/O Performance overhead brought by SafeHidden
when applied to the SS and OCFI defenses.

The Bonnie++ sequentially reads/writes data from/to a
particular file in different ways. The read/write granularity
varies from a character to a block (i.e., 8192 Bytes). Fur-
thermore, we also test the time cost of the random seeking.
Figure 9 shows the disk I/O measurement results: SS and
OCFI defenses incur low performance overhead, i.e., 2.18%
overhead on average for SS and 1.76% overhead on average
for OCFI. SafeHidden brings only 1.58% overhead on aver-
age for SS and 3.08% overhead on average for OCFI. Com-
pared with SPEC and Parsec benchmarks, this tool invokes
the write() and read() system calls to write and read a very
large file frequently. But these system calls only access the
allocated memory space that does not trigger randomization
of safe areas.

7 Discussion

TLBleed attack. TLBleed [21] exploits the shared TLBs
between the hyper-threads on the same core to infer vic-

tim programs’ memory access patterns. Potentially, it could
be used to reduce the entropy of ASLR by triggering TLB
misses and observing into which TLB set the target object
is mapped. When TLBleed is used against SafeHidden, by
triggering only L1 DTLB misses without L2 TLB misses,
TLBleed may reduce the entropy of the safe area location
by 4 bits (in the case of a 16-set L1 DTLB), which leads
to roughly 20 bits entropy remaining for 8 MB safe area.
However, attempts to further reduce the entropy will trigger
re-randomization of safe areas with high probability. So, TL-
Bleed is not able to defeat SafeHidden.

Spectre attack. The Spectre attack [28] leverages specula-
tive execution and side-channels to read the restricted virtual
memory space. As the memory protection related exceptions
are suppressed in the speculatively executed code, SafeHid-
den could not detect Spectre attacks.

Resilience to attacks. SafeHidden is resilient to all known
attacks against safe areas. Variants of existing attacks would
also be prevented: (1) The attacker may try to fill up the
address space quickly by using the persistent allocation or-
acle [43] to avoid SafeHidden from creating too many trap
areas. But as SafeHidden sets an upper limit for the total
mapped memory regions, such attacks are prevented; (2) The
attacker could exploit the paging-structure caches to conduct
the side-channel analysis. However such attacks will also
trigger TLB misses, which will be detected by SafeHidden.
Although it is difficult to prove SafeHidden has eliminated
all potential threats, we believe it has considerably raised the
cost of attacks in this arms race.

The impact of NMI on the solution of integrating KPTI.
During the execution of the assembly code in listing 1, the
interrupts are disabled to avoid unintended context switches.
But the non-maskable interrupt (NMI) could break this pro-
tection. If a NMI occurs when the code is running, the NMI
handler will run on the kernel-mode page table with the uP-
CID. So the memory pages accessed in the NMI handler
could be leaked via the Meltdown attack. To avoid this, the
entry of the NMI handler could be instrumented (by rewrit-
ing the NMI entry in IDT) to switch back to the kPCID.

1252 28th USENIX Security Symposium USENIX Association

8 Related Work

Protecting safe areas. MemSentry [29], IMIX [16], Mi-
croStache [39], and ERIM [52] are the closest to our work.
MemSentry adopts a software-fault isolation (SFI) approach
to protecting frequently accessed safe areas by leveraging In-
tel’s memory protection extensions (MPX) technology. It
restricts the addresses of all memory accesses that can not
access the safe area. But it is still not practical because it
significantly increases the performance overhead [16]. The
main disadvantage of MemSentry is the SFI approach is not
safe, i.e., un-instrumented instructions can still access the
safe region [16]. By modifying the Intel’s simulation, IMIX
extends the x86 ISA with a new memory-access permission
to mark safe areas as security sensitive and allows accesses
to safe areas only using a newly introduced instruction. Sim-
ilarly, MicroStache achieves it by modifying the Gem5 simu-
lator. However, IMIX and MicroStache are not yet supported
by commodity hardware. ERIM protects safe areas by turn-
ing on access permission only when accesses are requested.
To quickly switch the access permission on and off, it adopts
the newly released Intel hardware feature memory protection
keys (MPK) [2]. But it is still not suitable to protect the fre-
quently accessed safe areas. For example, it incurs >1X per-
formance overhead when protecting the shadow stack [29].
Different from SafeHidden, all these methods require modi-
fication of the source code of both the defense and the pro-
tected applications. Please note that most defenses listed in
Table 1 (except two) work on COTS binaries. In particu-
lar, Shuffler [59] mentioned that defeats probing attacks by
moving the location of its code pointer table (i.e., the safe
area) continuously. But this method only blocks attacks from
Vector-1. For example, using Vector-2, persistent attacks
could always succeed. Different from Shuffler, SafeHidden
blocks all existing attack vectors against IH.

Protecting CFI metadata. CFI is an important defense
against code reuse attacks [3]. A CFI mechanism stores
control-flow restrictions in its metadata. Like other types
of safe areas, the metadata of CFI mechanisms needs to be
protected. However, many CFI metadata only needs write
protection without concerning about its secrecy. Therefore,
these CFI mechanisms do not need IH. In contrast, some
CFI metadata is writable, as it needs to be dynamically up-
dated [8, 41, 42, 37], and others need to be kept as se-
crets [40, 61, 53, 60]. These CFI mechanisms must protect
their metadata either by memory isolation [8, 53, 42, 41, 37]
or IH [40, 60, 61]. SafeHidden can be applied to improve the
security of IH for these CFI mechanisms.

Intra-process isolation. SFI is commonly used to re-
strict intra-process memory accesses [55]. However, both
software-only and hardware-assisted SFIs incur high perfor-
mance overhead [20, 43]. SeCage uses double-EPT to pro-
tect sensitive data, e.g., the session key and the private key

[34]. Shreds [11] utilizes the domain-based isolation sup-
port provided by the ARM platform to protect the thread-
sensitive data. Intel software guard extension (SGX) [2] pro-
tects the sensitive data using a secure enclave inside the ap-
plication which cannot be accessed by any code outside the
enclave. However, none of the approaches mentioned above
can be used to protect frequently accessed safe areas because
of their high switching overhead.

Tracking TLB misses. Intel performance monitoring units
(PMU) [2] can be used to profile the TLB miss, but it is not
precise enough. In contrast, setting reserved bits in PTE can
help to track the TLB miss precisely. Some works had used
this feature for performance optimization [17, 6, 5]. Safe-
Hidden extends this method to detect side-channel attacks
against the safe areas, which is the first time to our best
knowledge such a feature is used in security.

Trap areas as security defenses. Booby-traps [12] first pro-
poses to defeat code reuse attacks by inserting the trap gad-
gets in applications. CodeArmor [10] inserts the trap gad-
gets into the virtual (original loaded) code space. To protect
the secret table’s content against probing attacks, Readac-
tor++ [14] inserts trap entries into the PLT and vtable, and
Shuffler [59] inserts the trap entries into its code pointer ta-
ble. To defeat the JIT-ROP [49] attacks, Heisenbyte [51] and
NEAR [58] propose to trap the code after being read. Dif-
ferent from these works, SafeHidden uses the trap to capture
the probing attacks against IH.

TSX for Security. The TSX is proposed to improve the per-
formance of multi-threaded programs, but many studies have
utilized TSX to improve system security. For example, Mi-
mosa [23] uses TSX to protect private keys from memory
disclosure attacks. TxIntro leverages the strong atomicity to
ensure consistent and concurrent virtual machine introspec-
tion (VMI) [33]. In addition, TSX has been used to perform
or detect the side-channel attacks against the Kernel ASLR
[27] or the enclave in SGX [48, 9]. Different from these
works, SafeHidden uses the TSX to identify TLB entries.

EPT for Security. The EPT has been used to isolate
VMs [26], to protect processes from the malicious OS and/or
other processes [18, 50, 24], and to protect sensitive code/-
data within a process [34]. The EPT also supports more re-
strict memory permission check (i.e., the execute-only per-
mission), which has been used to prevent the JIT-ROP [49]
attacks [51, 13, 58]. Different from prior works, SafeHidden
uses the EPT to achieve the thread-private memory.

9 Conclusion

This paper presented a new IH technique, called SafeHidden,
which is transparent to existing defenses. It re-randomizes
the locations of safe areas at runtime to prevent attackers
from persistently probing and inferring the memory layout to

USENIX Association 28th USENIX Security Symposium 1253

locate the safe areas. A new thread-private memory mech-
anism is proposed to isolate the thread-local safe areas and
prevent the adversaries from reducing the randomization en-
tropy via thread spraying. It also randomizes the safe areas
after the TLB miss event to prevent the cache-based side-
channel attacks. The experimental results show that our pro-
totype not only prevents all existing attacks successfully but
also incurs low performance overhead.

Acknowledgments

We are grateful to our shepherd Mathias Payer for guiding
us in the final version of this paper. We would like to thank
the anonymous reviewers for their insightful suggestions and
comments. This research is supported by the National High
Technology Research and Development Program of China
under grant 2016QY07X1406 and the National Natural Sci-
ence Foundation of China (NSFC) under grant U1736208.
Pen-Chung Yew is supported by the National Science Foun-
dation under the grant CNS-1514444. Yinqian Zhang is sup-
ported in part by gifts from Intel and DFINITY foundation.

References

[1] Kernel page-table isolation.
https://www.kernel.org/doc/html/latest/x86/pti.html.

[2] Intel corporation. intel 64 and ia-32 architectures soft-
ware developer’s manual.

[3] ABADI, M., BUDIU, M., ERLINGSSON, U., AND
LIGATTI, J. Control-flow integrity. In Proceedings of
the 12th ACM Conference on Computer and Communi-
cations Security (2005), CCS ’05, ACM.

[4] BACKES, M., AND NÜRNBERGER, S. Oxymoron:
Making fine-grained memory randomization practical
by allowing code sharing. In Proceedings of the 23rd
USENIX Security Symposium, San Diego, CA, USA,
August 20-22, 2014.

[5] BASU, A., GANDHI, J., CHANG, J., HILL, M. D.,
AND SWIFT, M. M. Efficient virtual memory for
big memory servers. SIGARCH Comput. Archit. News
(2013).

[6] BHATTACHARJEE, A. Large-reach memory manage-
ment unit caches. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchi-
tecture (2013), MICRO-46.

[7] BITTAU, A., MARCHENKO, P., HANDLEY, M., AND
KARP, B. Wedge: Splitting applications into reduced-
privilege compartments. In the 5th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (2008).

[8] BUROW, N., MCKEE, D., A. CARR, S., AND PAYER,
M. Cfixx: Object type integrity for c++. In NDSSS
2018.

[9] CHEN, S., ZHANG, X., REITER, M. K., AND
ZHANG, Y. Detecting privileged side-channel attacks
in shielded execution with déjà vu. In Proceedings of
the 2017 ACM on Asia Conference on Computer and
Communications Security (2017), ASIA CCS ’17.

[10] CHEN, X., BOS, H., AND GIUFFRIDA, C. CodeAr-
mor: Virtualizing the Code Space to Counter Disclo-
sure Attacks. In 2017 IEEE European Symposium on
Security and Privacy (2017).

[11] CHEN, Y., REYMONDJOHNSON, S., SUN, Z., AND
LU, L. Shreds: Fine-grained execution units with pri-
vate memory. In IEEE Symposium on Security and Pri-
vacy (2016).

[12] CRANE, S., LARSEN, P., BRUNTHALER, S., AND
FRANZ, M. Booby trapping software. In NSPW
(2013), ACM, pp. 95–106.

[13] CRANE, S., LIEBCHEN, C., HOMESCU, A., DAVI,
L., LARSEN, P., SADEGHI, A. R., BRUNTHALER, S.,
AND FRANZ, M. Readactor: Practical code random-
ization resilient to memory disclosure. In 2015 IEEE
Symposium on Security and Privacy (2015).

[14] CRANE, S. J., VOLCKAERT, S., SCHUSTER, F.,
LIEBCHEN, C., LARSEN, P., DAVI, L., SADEGHI,
A.-R., HOLZ, T., DE SUTTER, B., AND FRANZ, M.
It’s a trap: Table randomization and protection against
function-reuse attacks. In ACM SIGSAC Conference on
Computer and Communications Security (2015).

[15] DAVI, L., LIEBCHEN, C., SADEGHI, A., SNOW,
K. Z., AND MONROSE, F. Isomeron: Code random-
ization resilient to (just-in-time) return-oriented pro-
gramming. In 22nd Annual Network and Distributed
System Security Symposium, NDSS (2015).

[16] FRASSETTO, T., JAUERNIG, P., LIEBCHEN, C., AND
SADEGHI, A.-R. IMIX: In-process memory isolation
extension. In 27th USENIX Security Symposium.

[17] GANDHI, J., BASU, A., HILL, M. D., AND SWIFT,
M. M. Badgertrap: A tool to instrument x86-64 tlb
misses. SIGARCH Comput. Archit. News (2014).

[18] GARFINKEL, T., PFAFF, B., CHOW, J., ROSENBLUM,
M., AND BONEH, D. Terra: A virtual machine-based
platform for trusted computing. In Proceedings of
the Nineteenth ACM Symposium on Operating Systems
Principles (2003), SOSP ’03.

1254 28th USENIX Security Symposium USENIX Association

[19] GAWLIK, R., KOLLENDA, B., KOPPE, P., GAR-
MANY, B., AND HOLZ, T. Enabling client-side crash-
resistance to overcome diversification and information
hiding. In 23nd Annual Network and Distributed Sys-
tem Security Symposium, NDSS (2016).

[20] GÖKTAS, E., GAWLIK, R., KOLLENDA, B.,
ATHANASOPOULOS, E., PORTOKALIDIS, G., GIUF-
FRIDA, C., AND BOS, H. Undermining information
hiding (and what to do about it). In 25th USENIX Se-
curity Symposium.

[21] GRAS, B., RAZAVI, K., BOS, H., AND GIUFFRIDA,
C. Translation leak-aside buffer: Defeating cache side-
channel protections with TLB attacks. In 27th USENIX
Security Symposium (USENIX Security 18).

[22] GRAS, B., RAZAVI, K., BOSMAN, E., BOS, H., AND
GIUFFRIDA, C. Aslr on the line: Practical cache at-
tacks on the mmu. In NDSS (2017).

[23] GUAN, L., LIN, J., LUO, B., JING, J., AND WANG,
J. Protecting private keys against memory disclosure
attacks using hardware transactional memory. In 2015
IEEE Symposium on Security and Privacy (2015).

[24] HOFMANN, O. S., KIM, S., DUNN, A. M., LEE,
M. Z., AND WITCHEL, E. Inktag: Secure applica-
tions on an untrusted operating system. In Conference
on Architectural Support for Programming Languages
and Operating Systems (2013).

[25] HSU, T. C.-H., HOFFMAN, K., EUGSTER, P., AND
PAYER, M. Enforcing least privilege memory views
for multithreaded applications. In the 2016 ACM Con-
ference on Computer and Communications Security.

[26] JAMES E. SMITH AND RAVI NAIR. Virtual machines -
versatile platforms for systems and processes. Elsevier,
2005.

[27] JANG, Y., LEE, S., AND KIM, T. Breaking kernel
address space layout randomization with intel tsx. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (2016).

[28] KOCHER, P., GENKIN, D., GRUSS, D., HAAS,
W., HAMBURG, M., LIPP, M., MANGARD, S.,
PRESCHER, T., SCHWARZ, M., AND YAROM, Y.
Spectre attacks: Exploiting speculative execution.
CoRR abs/1801.01203 (2018).

[29] KONING, K., CHEN, X., BOS, H., GIUFFRIDA, C.,
AND ATHANASOPOULOS, E. No need to hide: Protect-
ing safe regions on commodity hardware. In the Twelfth
European Conference on Computer Systems (2017).

[30] KUZNETSOV, V., SZEKERES, L., PAYER, M., CAN-
DEA, G., SEKAR, R., AND SONG, D. Code-pointer
integrity. In the 11th USENIX Conference on Operat-
ing Systems Design and Implementation (2014).

[31] LAADAN, O., VIENNOT, N., AND NIEH, J. Transpar-
ent, lightweight application execution replay on com-
modity multiprocessor operating systems. In Proceed-
ings of the ACM SIGMETRICS International Confer-
ence on Measurement and Modeling of Computer Sys-
tems (2010), SIGMETRICS ’10.

[32] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER,
T., HAAS, W., FOGH, A., HORN, J., MANGARD,
S., KOCHER, P., GENKIN, D., YAROM, Y., AND
HAMBURG, M. Meltdown: Reading kernel memory
from user space. In 27th USENIX Security Symposium
(USENIX Security 18) (2018).

[33] LIU, Y., XIA, Y., GUAN, H., ZANG, B., AND CHEN,
H. Concurrent and consistent virtual machine intro-
spection with hardware transactional memory. In IEEE
20th International Symposium on High Performance
Computer Architecture (HPCA’14) (2014).

[34] LIU, Y., ZHOU, T., CHEN, K., CHEN, H., AND
XIA, Y. Thwarting memory disclosure with effi-
cient hypervisor-enforced intra-domain isolation. In
the 22Nd ACM SIGSAC Conference on Computer and
Communications Security (2015).

[35] LU, K., LEE, W., NÜRNBERGER, S., AND BACKES,
M. How to make ASLR win the clone wars: Runtime
re-randomization. In 23nd Annual Network and Dis-
tributed System Security Symposium, NDSS 2016.

[36] LU, K., SONG, C., LEE, B., CHUNG, S. P., KIM,
T., AND LEE, W. Aslr-guard: Stopping address space
leakage for code reuse attacks. In Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and
Communications Security (2015), CCS ’15.

[37] MASHTIZADEH, A. J., BITTAU, A., BONEH, D., AND
MAZIÈRES, D. CCFI: cryptographically enforced con-
trol flow integrity. In ACM Conference on Computer
and Communications Security (2015), ACM.

[38] MERRIFIELD, T., AND TAHERI, H. R. Performance
implications of extended page tables on virtualized
x86 processors. In Proceedings of the12th ACM SIG-
PLAN/SIGOPS International Conference on Virtual
Execution Environments (2016), VEE ’16.

[39] MOGOSANU, L., RANE, A., AND DAUTENHAHN, N.
Microstache: A lightweight execution context for in-
process safe region isolation. In RAID (2018).

USENIX Association 28th USENIX Security Symposium 1255

[40] MOHAN, V., LARSEN, P., BRUNTHALER, S.,
HAMLEN, K. W., AND FRANZ, M. Opaque control-
flow integrity. In 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015.

[41] NATHAN BUROW, X. Z., AND PAYER, M. Shining
light on shadow stacks. In 2019 IEEE Symposium on
Security and Privacy (2019).

[42] NIU, B., AND TAN, G. Per-input control-flow in-
tegrity. In the 22Nd ACM SIGSAC Conference on Com-
puter and Communications Security (2015).

[43] OIKONOMOPOULOS, A., ATHANASOPOULOS, E.,
BOS, H., AND GIUFFRIDA, C. Poking holes in infor-
mation hiding. In 25th USENIX Security Symposium.

[44] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache
attacks and countermeasures: the case of AES. In 6th
Cryptographers’ Track at the RSA conference on Topics
in Cryptology (2006).

[45] ROGLIA, G. F., MARTIGNONI, L., PALEARI, R., AND
BRUSCHI, D. Surgically Returning to Randomized
lib(c). In ACSAC (2009).

[46] SCHAIK, S. V., RAZAVI, K., GRAS, B., BOS, H.,
AND GIUFFRIDA, C. Revanc: A framework for reverse
engineering hardware page table caches. In European
Workshop on Systems Security (2017).

[47] SHACHAM, H., PAGE, M., PFAFF, B., GOH, E.-J.,
MODADUGU, N., AND BONEH, D. On the Effec-
tiveness of Address-space Randomization. In the 11th
ACM Conference on Computer and Communications
Security (2004).

[48] SHIH, M.-W., LEE, S., KIM, T., AND PEINADO, M.
T-sgx: Eradicating controlled-channel attacks against
enclave programs. In NDSS (2017).

[49] SNOW, K. Z., MONROSE, F., DAVI, L.,
DMITRIENKO, A., LIEBCHEN, C., AND SADEGHI,
A. R. Just-In-Time Code Reuse: On the Effec-
tiveness of Fine-Grained Address Space Layout
Randomization. In Security and Privacy 2013 (2013).

[50] TA-MIN, R., LITTY, L., AND LIE, D. Splitting inter-
faces: Making trust between applications and operating
systems configurable. In the 7th Symposium on Oper-
ating Systems Design and Implementation (2006).

[51] TANG, A., SETHUMADHAVAN, S., AND STOLFO,
S. J. Heisenbyte: Thwarting memory disclosure at-
tacks using destructive code reads. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015).

[52] VAHLDIEK-OBERWAGNER, A., ELNIKETY, E.,
DUARTE, N. O., GARG, D., AND DRUSCHEL, P.
ERIM: Secure and Efficient In-process Isolation with
Memory Protection Keys. ArXiv e-prints (2018).

[53] VAN DER VEEN, V., ANDRIESSE, D., GÖKTAŞ, E.,
GRAS, B., SAMBUC, L., SLOWINSKA, A., BOS, H.,
AND GIUFFRIDA, C. Practical Context-Sensitive CFI.
In Proceedings of the 22nd Conference on Computer
and Communications Security (CCS’15).

[54] VUSEC. Reverse engineering page table caches in your
processor, 2017. https://github.com/vusec/revanc.

[55] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND
GRAHAM, S. L. Efficient software-based fault isola-
tion. In Proceedings of the Fourteenth ACM Sympo-
sium on Operating Systems Principles (1993).

[56] WANG, X., ZANG, J., WANG, Z., LUO, Y., AND LI,
X. Selective hardware/software memory virtualization.
In the 7th ACM Conference on Virtual Execution Envi-
ronments (2011).

[57] WANG, Z., WU, C., LI, J., LAI, Y., ZHANG, X.,
HSU, W.-C., AND CHENG, Y. Reranz: A light-weight
virtual machine to mitigate memory disclosure attacks.
In the 13th ACM Conference on Virtual Execution En-
vironments (2017).

[58] WERNER, J., BALTAS, G., DALLARA, R., OTTER-
NESS, N., SNOW, K. Z., MONROSE, F., AND POLY-
CHRONAKIS, M. No-execute-after-read: Preventing
code disclosure in commodity software. In Proceed-
ings of the 11th ACM on Asia Conference on Computer
and Communications Security (2016), ASIA CCS ’16.

[59] WILLIAMS-KING, D., GOBIESKI, G., WILLIAMS-
KING, K., BLAKE, J. P., YUAN, X., COLP, P.,
ZHENG, M., KEMERLIS, V. P., YANG, J., AND
AIELLO, W. Shuffler: Fast and deployable continuous
code re-randomization. In 12th USENIX Conference on
Operating Systems Design and Implementation.

[60] ZHANG, C., WEI, T., CHEN, Z., DUAN, L., SZEK-
ERES, L., MCCAMANT, S., SONG, D., AND ZOU, W.
Practical control flow integrity and randomization for
binary executables. In IEEE Symposium on Security
and Privacy (2013).

[61] ZHANG, M., AND SEKAR, R. Control flow and code
integrity for cots binaries: An effective defense against
real-world rop attacks. In the 31st Annual Computer
Security Applications Conference (2015).

1256 28th USENIX Security Symposium USENIX Association

