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Abstract

Smart home IoT devices have increasingly become a fa-
vorite target for the cybercriminals due to their weak security
designs. To identify these vulnerable devices, existing ap-
proaches rely on the analysis of either real devices or their
firmware images. These approaches, unfortunately, are diffi-
cult to scale in the highly fragmented IoT market due to the
unavailability of firmware images and the high cost involved
in acquiring real-world devices for security analysis.

In this paper, we present a platform that accelerates vul-
nerable device discovery and analysis, without requiring the
presence of actual devices or firmware. Our approach is based
on two key observations: First, IoT devices tend to reuse and
customize others’ components (e.g., software, hardware, pro-
tocol, and services), so vulnerabilities found in one device
are often present in others. Second, reused components can
be indirectly inferred from the mobile companion apps of
the devices; so a cross analysis of mobile companion apps
may allow us to approximate the similarity between devices.
Using a suite of program analysis techniques, our platform
analyzes mobile companion apps of smart home IoT devices
on market and automatically discovers potentially vulnerable
ones, allowing us to perform a large-scale analysis involving
over 4,700 devices. Our study brings to light the sharing of
vulnerable components across the smart home IoT devices
(e.g., shared vulnerable protocol, backend services, device
rebranding), and leads to the discovery of 324 devices from
73 different vendors that are likely to be vulnerable to a set of
security issues.

1 Introduction

Smart home IoT devices have become favored targets for at-
tackers [41] as much for the lack of user awareness [35] as for
their poor security design [46]. As the motivation for attackers
grows (e.g. IoT botnets, personal data theft), security incidents
for smart home devices are only expected to increase. Secur-
ing these devices is challenging on several fronts. First, a good

fraction of vendors in this space are small and medium-sized
businesses that lack the budget for software quality control
and security best practices, resulting in numerous insecure
devices in the market. Second, many of these devices are rel-
atively inexpensive (often less than $100) and cannot afford
to have support for expensive security infrastructure, such as
monitoring agents, encryption and authentication hardware,
etc. Consequently, when a device is found vulnerable, there is
very little incentive and capability for the vendor to release a
fix. Third, high vendor fragmentation makes it hard to manage
and distribute software/firmware patches.

One way to address this issue is to identify vulnerable
devices before they get deployed and take appropriate mea-
sures to protect the device. Examples of such measures
may include upgrading the device firmware, identifying and
blocking traffic that can exploit the vulnerability, or quar-
antining the device completely. To identify the vulnera-
ble devices beforehand, multiple approaches have been pro-
posed [10, 14, 16, 17, 19, 20, 24, 25, 27, 34, 42, 47, 49, 58]. One
line of research [19, 27] focused on launching an Internet-
scale scan to detect trivially vulnerable devices (e.g., de-
vices with weak passwords, certificates, and keys) that are
publicly accessible. However, these approaches often can-
not help identify devices with more sophisticated vulnera-
bilities or devices hidden behind NAT. Another line of re-
search [10, 14, 16, 17, 20, 24, 25, 34, 42, 47, 49, 58] focused on
statically and/or dynamically analyzing an IoT device or its
firmware to evaluate its security. Although these approaches
tend to yield more comprehensive and accurate results for
individual devices, they do not scale well for a large-scale
analysis. First, getting physical access to all the devices on the
market is not a viable option because of restricted availabil-
ity of devices in certain geographies and their prohibitively
high acquisition cost. Similarly, device firmware is not always
available due to the highly fragmented market that involves
a lot of small integration and distribution vendors 1. Second,

1Integration vendors are the ones that integrate components, tools, and
SDKs, provided by OEMs. Distribution vendors simply acquire the device
from an OEM and re-brand with their own before selling in the market.
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even with a device or its firmware, the analysis itself is often
tedious, error-prone and difficult, especially considering the
“device shell” that is often put in place by the device vendors
(e.g., packing, obfuscation and encryption). As a result, the
market would benefit from an approach where vulnerable
devices can be quickly identified at scale and the scope of
analysis can be narrowed down.

Approach. In this paper, we present a platform that acceler-
ates vulnerable device discovery and analysis without requir-
ing access to a physical device or its firmware. Our approach
is based on two observations. First, smart home IoT device
vendors, especially small and medium-sized ones, often rely
on same components (e.g., software built from open source
projects, hardware components from common suppliers) to
build their devices. Consequently, the same vulnerabilities or
bad security practices often transfer from one IoT device to
another. We can thus propagate vulnerability information to
an unknown device by evaluating its similarity with devices
known to be vulnerable. Second, similarities of devices are
often reflected in their mobile companion apps, which are
widely accessible. Combining these two observations enables
us to build a platform that identifies vulnerable devices in
a scalable way without requiring the physical devices them-
selves or their firmware images.

In our platform, we try to expedite the process of identify-
ing vulnerable devices by providing two functions: (1) app
analysis: find the characteristics of a device by analyzing its
companion app, and (2) cross-app analysis: find device fami-
lies, i.e. cluster of devices, that have similarity in some of the
characteristics found in app analysis by analyzing multiple
apps. Clustering helps identify apps that have a similar set of
vulnerabilities based on shared components [8].

Results Overview. For our experiments, we crawled Google
Play Store [3] to search for potential IoT companion apps and
downloaded 3,094 of them. After filtering out some noise,
we were left with a dataset of 2,081 apps (see Section 2.2 for
more details). These apps were then analyzed by our platform.

First, we found the device clusters, i.e., device families,
containing devices that are similar in various aspects such
as software or hardware components, back-end services, and
network protocols. For instance, in our analysis, we found 19
device families covering 139 apps from 122 different vendors
where devices in a family shared similar software components.
As another example, we found 48 different families covering
460 devices that shared similar back-end services.

Second, we tried to identify devices that are impacted by a
given vulnerability using the device families already identi-
fied. In one case, we were able to discover devices from four
different vendors (apps of which is estimated to be installed
by more than 215,000 users) that were previously not known
to be vulnerable to a software vulnerability and independently
confirm the existence of the vulnerability on 45 devices from
four different vendors that were previously confirmed by other

sources. In another case, we were able to identify 67 devices
from 16 different vendors that are impacted by a hardware
security issue. In total, our platform has identified 324 poten-
tially vulnerable devices from 73 different vendors. During
the process of validation, we could reach a decision (confirm
or disapprove) about 179 devices from 43 vendors, among
which 164 (91.6%) are confirmed to be vulnerable.

Contributions. This paper makes the following contribu-
tions:

• It demonstrates how companion mobile apps for IoT de-
vices can provide insights into the security of the devices
themselves.

• It shows the effectiveness by using this approach to as-
sess the security posture of IoT devices when neither the
physical devices nor their firmware images are available.

• It proposes a platform to perform mobile app collec-
tion, filtering, analysis, and clustering at a large scale. It
demonstrates its use by analyzing more than 2000 apps
and clustering them in multiple dimensions.

• It reports the discovery of 324 devices from 73 distinct
vendors that are likely to be vulnerable to a set of security
issues.

2 System Design

2.1 Overview
Figure 1 presents an overview of our platform. The first com-
ponent of our platform is the IoT App Database, which stores
the companion apps of smart home IoT devices crawled from
the Google Play Store [3]. The database is extended con-
stantly by fetching more apps (e.g., when new IoT devices
are on market or old apps get updated).

The apps stored in IoT App Database are then analyzed
by the App Analysis Engine. The goal of the App Analysis
Engine is to estimate the profile of an IoT device (i.e., what
the device is like) based on code analysis. Specifically, the
App Analysis Engine computes three things: the network
interfaces of a device, the unique strings (called imprints) that
a device may include, and code signature of the companion
app. The results of App Analysis Engine are stored in the App
Analysis Database.

A Cross-App Analysis Engine queries the App Analysis
Database and identifies correlations across different devices
in order to build a device family. A device family groups
together different devices from different vendors based on
their similarity. The similarity can be in terms of different
dimensions (e.g., similar software, similar hardware, similar
protocols, and similar cloud back-end services). The device
family allows propagation of vulnerability information among
similar devices. Specifically, it allows evaluation of IoT device
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Figure 1: An overview of the platform

security from the perspective of either a device or a threat: 1)
for a specific device, the similarity allows to quickly assess
whether or not the device is vulnerable and if so to which
vulnerabilities, and 2) for a specific vulnerability, find the
set of devices on the market that might be affected by the
vulnerability.

To facilitate vulnerability confirmation, our platform con-
tains an additional component called Device Firmware Col-
lector. It leverages the code analysis results output by the App
Analysis Engine (e.g., Firmware URLs) as well as Internet
search results to download firmware images into a Device
Firmware Database. These firmware images later enable us
to further confirm the vulnerabilities found by the Cross-App
Analysis Engine. Note that the Device Firmware Collector
is not an essential or required component of our platform.
Rather, it is utilized as one of several means to help confirm
the findings from the platform (See Section 3.2 for more
details).

In the remainder of this section, we describe each compo-
nent of our platform in detail.

2.2 App Collection

The first step of our platform is to gather mobile companion
apps of smart home IoT devices for analysis. To achieve this
goal, we crawled Google Play Store2. In total, we downloaded
3,094 Android apps, out of which 2,081 were included in the
final dataset and analyzed by our platform.

The challenge during app collection is to identify apps that
are mobile companion apps of IoT devices. To address this
problem, we initialized the crawler with 281 seed apps manu-
ally selected from the online smart home products database
SmartHomeDB [5], and used snowball sampling to collect
more apps via the connections between the seed apps and
other apps on Google Play (e.g., keywords, suggestions and
categories). As a result, 3,094 candidate apps are initially
downloaded. However, we observed that snowball sampling
may sometimes introduce noise. For example, apps that man-
age phone camera are confused with the apps that manage

2We based our analysis primarily on Android but most IoT device vendors
provide mobile companion apps in both iOS and Android.

home security cameras. Apps that lock phone’s screen are con-
fused with smart home locks. To eliminate such noise from
the dataset, we performed filtering. The filtering is based on
a clustering model (Affinity Propagation [26]) that clusters
apps based on the permissions that the apps request on in-
stallation and the sensitive Android APIs that the apps may
invoke at runtime. We deploy the filtering on apps that are
nominated by the same seed sample and remain the largest
cluster. This approach turns out to be effective: a random
manual inspection of 200 apps after filtering shows that 98.5%
of them are real mobile IoT companion apps. After further
deduplication, 2,081 apps are left in the dataset and fed into
the App Analysis Engine for analysis. Note at the first phase
of the research, we worked with a relatively small dataset and
focused more on validating the approach. Our platform is
constantly running to collect more apps for future analysis at
a larger scale.

2.3 App Analysis Engine
The App Analysis Engine analyzes mobile companion apps
collected in order to build a device profile for individual de-
vices. Unlike previous works [12, 32, 48, 60] that focused on
apps themselves, the goal here is to compute what the de-
vice is like, indirectly from the app. We achieved this goal
by independently applying three methods: a device interface
analysis that computes the network interfaces of a device, an
imprint analysis that computes unique strings a device might
be related to, and a fuzzy hash analysis that computes code
signature of a mobile companion app. In practice, we found
that the first method is more comprehensive and informative.
Nevertheless, the rest two methods are still useful in filling in
gaps where the first method cannot easily apply.

2.3.1 Device Interface Analysis

The device interfaces are often a good reflection of what the
device is like, e.g., the protocol that the device speaks, the ser-
vice that the device runs, the function that the device supports,
and sometimes the hardware components in use by the device.
Without directly examining a device or its firmware, we es-
timate the device interfaces based on analysis of its mobile
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companion app, as the app and the device complement each
other in their network interfaces. A peer-to-peer connection
between the app and the device can benefit this estimation,
as the app interfaces, in this case, are direct reflections of the
device interfaces; however, this is not a necessary condition.
For devices where a cloud or backend service is involved,
popular backend services like Microsoft Azure IoT Hub [40]
are often generic: they tend to relay the connection between
the app and the device without much meddling. Such devices
also work well with our approach since their app interfaces
still closely reflect that of the devices. We performed a study
over the online IoT device database (SmartHomeDB), and
found that majority of the devices (76.3%) produced by small
and medium-sized vendors support a peer-to-peer connection
between the app and the device. Even large vendors like TP-
Link support both cloud and peer-to-peer mode for network
outage and privacy reasons. This enables us to have a good es-
timation of the device interfaces for many of the IoT devices,
especially vulnerable ones, that are sold on the market.

We used a backward approach to compute the network
interfaces of an app, starting from the network response mes-
sages that the app may receive, as these messages are informa-
tion output by the device. We first identify message handling
functions in the app and statically decide what the response
message may look like. We then identify the request that may
trigger the response. Finally, we partially instantiate and exe-
cute the app code to reconstruct the request [12, 56]. Figure 2
shows an example of the request and response extracted from
the mobile companion app com.Zengge.LEDWifiMagicColor
of Zengge Wi-Fi Bulb. With many different pairs of requests
and responses (e.g., with UDP/48899, TCP/5577 of the bulb
and also the cloud server *.magichue.net), we obtain a good
estimation of the device interfaces.

Figure 2: Interfaces of Zengge Wi-Fi Bulb

Response Extraction. We rely on symbolic execution [33]
to estimate what the response messages from a device may
look like, without actually running the device. We first
built a Control Dependency Graph (CDG) and Data De-
pendency Graph (DDG) of a mobile companion app using
Soot [51]. We then start from standard network receiving
functions in Android (e.g., <java.net.DatagramSocket: void

receive(java.net.DatagramPacket)>) and forward execute the
mobile companion app symbolically. Whenever we encounter
a branch that is dependent on the content of a response mes-
sage (e.g., fields of the response are checked against a value),
we capture the check as a symbolic constraint and fork the
execution. After all executions terminate, the conjunction of
the symbolic constraints is stored as a “description” of the
response message. In order for response messages from two
devices to be similar, they have to satisfy the same set of
symbolic constraints.

One practical issue is to decide when to terminate a sym-
bolic execution. In our experience, we found that a valid
response from the device (i.e., the response passes checks
performed by the app) often triggers state changes of the app.
Such state changes could be either UI element changes (e.g.,
updating device status displayed to the user) or modifications
to the local registry (e.g., storing device information to con-
figuration files, shared preferences or databases). To confirm
this heuristic, we randomly sampled 200 response handling
procedures that exist in 179 apps from our app set and eval-
uated manually the impact of valid responses. Among these
responses, 162 of them had an influence on UI elements, and
76 of them resulted in modifications to the local registry (with
some overlapping cases where responses changed both); only
eight of them would not trigger such changes, but the app
stored response content (e.g., login token) in global variables.
This study shows that state changes can be a good approxima-
tion for the termination of valid response handling. We thus
mark such state changes as the point where we terminate the
symbolic execution and produce the conjunction of the sym-
bolic constraints. In addition, we supplement this method with
the observation that invalid responses are discarded quickly
by the apps (i.e., within few lines of code). We thus also set
a threshold on the number of procedures to execute before
we terminate the execution. Utilizing these two heuristics,
we could produce a small but meaningful set of constraints
that closely describe a valid response that an IoT device may
produce.

Pairing Request and Responses. The next step is to identify
the request sent by the app that will trigger the response from
the device. In many cases, the request is straightforward to
identify: it co-locates with the response message handling
functions. In other cases, however, it is trickier as the request
can be located in a different procedure or class, especially
when the communication between app and device is asyn-
chronous. In these cases, static code analysis can be limited
in identifying the matching request.

Fortunately, we observe that a matching pair of request
and response often share a large code base of their handling
functions (i.e., classes and methods used to process the re-
quest and response). Such similarities are reflected in the
stack at runtime. To confirm this observation, we examined
the paired requests and responses for the same set of 200
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Figure 3: Cumulative Distribution Function (CDF) of request
and response similarity

response handling procedures, and evaluated the similarities
between stack traces of the responses and the requests. Fig-
ure 3 shows the Cumulative Distribution Function (CDF) of
the Jaccard Similarity: 81% pairs of request and response
share over 61% of their stack frames, and more than half
(53%) of the request-response pairs have over 88% frames in
common. For unpaired requests and responses, the similarity
reduces to almost zero. Thus, by recording and comparing the
execution stack of the app when the app is making requests
(i.e., via concrete execution) and processing responses (i.e.,
via program dependence graph), we can pinpoint with good
accuracy, among multiple request sending functions, the one
that most likely will trigger the target response. As an exam-
ple, Figure 4 shows the stack traces of a request and response
that are used by Chuango Wi-Fi alarm system. The request
and response are matched based on the common stack frames
(e.g., those triggered by the same user click) despite being
located in different classes that run in different threads.

Figure 4: A matching asynchronous request and response in
cn.chuango.e5_wifi

Request Reconstruction. After identifying a matching pair
of request and response, the next step is to reconstruct the
request string. Unlike responses, requests are produced by
the app. Therefore, we may reconstruct a complete request
string as compared to a set of symbolic constraints for re-
sponses. A number of techniques have been developed for

reconstructing program values via program slicing and exe-
cution [12, 29, 48, 56]. We adopted the Instantiated Partial
Execution (IPE) technique developed in Tiger [12] in our
platform. The advantage of using IPE is that it evaluates and
instantiates variables to concrete values if they are found to be
irrelevant to the request string thereby dramatically reducing
the number of paths need to be explored. In addition, IPE
also caches outputs of code slices and reuses the results if
applicable, further reducing the analysis complexity. By using
IPE, we were able to reduce the time needed to reconstruct a
request to under a minute.

The result produced by device interface analysis is a set
of request and response pairs. The requests are fully or par-
tially3 reconstructed request strings and responses are sets
of symbolic constraints. A device is said to have a similar
interface as another device if they both accept similar requests
and output similar responses.

2.3.2 Imprints Analysis

Device imprints (i.e., unique strings) found in an app can
help correlate different devices. We are particularly interested
in imprints that show up in the communication between the
app and the device, as they are indicative of the uniqueness
of the device. In contrast, there are also app imprints, such as
app developer emails or special class names, that identify an
app or library. However, they are less indicative of the device.

Table 1: Examples of device imprints
Type Imprints Device

device keywords

“20140930073702357” Homeboy Wi-Fi
(dir. name in firmawre) Security Camera
“0622707c-da97-4286-cafe-”* SensingTEK
(UUID of the device family) Cameras

cert and comm. keys “Ztwy518518puy518” Zhongteng Smart
(AES key) Home Devices

user & pwd “P0rtal@123!” (account pwd) Pro1 Thermostats

special URLs “qjg7ec”.internetofthings Max Smart
.ibmcloud.com (MQTT orgID) Home Devices

Inspired by previous work done by Costin et al. [16] that di-
rectly extracts imprints from embedded firmware images, we
also focus on four types of device imprints: device (backdoor)
keywords, certificates and keys, non-trivial usernames and
passwords, and special URLs. The method we used to iden-
tify imprints is simple: we build a Data Dependence Graph
of an app and check backward from network APIs to find
constant strings in the app that affect parameters of those
APIs. Note that these APIs are used to communicate with
the device. In other words, we only use unique strings as
imprints if they are related to the device (i.e., they are part
of either requests to or responses from the device). A parser
later decides which category the constant strings fall into and

3Certain requests require user input (e.g., login request). In these cases, we
partially reconstruct the request with <NONE> string replacing the missing
user input.
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whether or not they are commonly seen (e.g., admin for both
username and password is ignored). Table 1 shows an ex-
ample of a few imprints we collected in our dataset. When
two apps have the same imprints (and both imprints affect the
communication with devices), it serves as a strong indicator of
the similarity between devices. For instance, by using imprint
"OBJ-000165-PBKMW", we were able to correlate VStarcam
and OUSKI IP Cameras (the latter is later confirmed to be a
rebranding of the former).

Although imprints can serve as strong evidence of cor-
relation, imprint analysis as a method is less applicable
in general since many times imprints of a device do not
manifest themselves in the app. For example, we were not
able to spot the existence of any magic keyword, like the
"xmlset_roodkcableoj28840ybtide" (i.e., edit by 04882 joel
backdoor in reverse) keyword used by a number of devices
for debugging purposes reported by Constin et al. [16].
This makes sense since the magic keyword is built into the
firmware images for debugging purposes, and device debug-
ging is generally not a critical functionality required for cus-
tomer facing apps. However, it highlights the limitation of
imprint analysis, and the reason why we need a fully fledged
device interface analysis.

2.3.3 Fuzzy Hash Analysis

Another method we used is to assess code similarity via fuzzy
hash. Similar mobile companion apps often indicate simi-
lar devices. We thus compute ssdeep of objects found in an
app, including classes, libraries, and other types of resources
(e.g., texts), and compare the results across apps. The ben-
efit of using fuzzy hash as compared to traditional hashing
algorithm (e.g., SHA1) is that we can relate objects that are
similar but are not exactly the same. Through this way, we
were able to identify a few similar devices. For example, the
companion apps of CHITCO and EDUP smart switches are
found to have 50.7% objects matched with 80/100 similarity,
and these two devices are later confirmed to share similar
software. Note, however, similarities between devices do not
necessarily mean similarities in the apps. We observed in
many cases that similar devices have different apps (e.g., apps
are developed independently), and therefore cause failures
to fuzzy hash analysis. Code similarity is more useful for
identifying obvious correlations as well as for cases where
other analysis methods have some difficulties to apply (e.g.,
for native libraries).

2.3.4 Modularity

A special consideration we made while building the App
Analysis Engine is the modularity of the analysis. The reason
we took this extra step as compared with generating analy-
sis result per app is to accommodate the modular similarity
that often appear across IoT devices. It is common that IoT

device vendors, especially smaller ones, comprise their prod-
ucts from a number of existing modules on market, such as
hardware components from common suppliers, software built
from open source projects, binary driver code for protocols
and etc. For example, the HiFlying Wi-Fi module is used by
a number of vendors to manage Wi-Fi connectivity for their
devices. Thus it is important for our analysis to be modular
as well, in order to track device similarities and detect vulner-
ability propagation at a finer granularity of individual device
components (Refer to Section 2.4 and Section 3.3 for more
details of the components that we can track).

We based our design on the observation that device compo-
nents are often managed by different code modules in the app
(e.g., class, package). Taking the previous HiFlying Wi-Fi
module as an example, devices such as BeSMART thermo-
stat that uses the module often have two separate classes,
com.hiflying.smartlink.v3.SnifferSmartLinkerSendAction and
com.besmart.thermostat.MyHttp, for handling Wi-Fi connec-
tion and user interaction over HTTP, respectively. We thus
infer such modularity from the app (e.g., based on class hi-
erarchy and invocation stack) and apply the above analysis
method on individual modules.

2.4 Cross-App Analysis Engine

The analysis results output by the App Analysis Engine are
stored into the App Analysis Database, which is then queried
by the Cross-App Analysis Engine. The Cross-App Analysis
Engine is designed to detect modular similarities between
different devices. In particular, the comparison is made to
detect four types of similarities: similar software components,
similar hardware components, similar protocol, and similar
backend services.

Similar Software Components. Similar device interfaces,
especially application interfaces, are indicative of strong con-
nections between software components of different devices.
For example, we were able to correlate 72 different smart
home IoT devices from 16 distinct vendors that might have
used the same version of GoAhead web server4. Such cor-
relation is powerful, as in many times security weaknesses
manifest them in software and security weakness found in one
device can directly impact the security of others. For example,
we were able to identify seven previously unreported devices
that are vulnerable to a known vulnerability, as detailed in
Section 3.3.

Another interesting phenomenon detected is device re-
branding. In the smart home IoT industry, smaller vendors
sometimes do not develop their own products. Instead, they
customize IoT devices from OEMs and resell with their own
branding. As reflected in the app analysis results, rebranded
devices have almost identical device interfaces across multi-

4GoAhead is a simple web server specifically designed for embedded
devices.
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ple modules as the original OEM devices. Although device
rebranding itself is not an issue, it complicates the security
practices in firmware update and patching. In some cases, for
example as shown in Section 3.3, a vulnerability is inherited
by the rebranded devices from the OEM but the security patch
that fixes the vulnerability is not.

Similar Hardware Component. Smart home IoT devices
may be built upon similar hardware (e.g., Wi-Fi module).
Such similarities in hardware components are sometimes re-
flected in device companion apps due to the need for the app
to configure or interact with the hardware component. Due to
the specialty of the hardware, such device-app interfaces can
be unique, allowing a strong correlation of different devices
using the same hardware. For example, we found that two
Wi-Fi modules with a known security weakness of credential
leakage are potentially being used by 166 devices from 35
different device vendors. The total downloads of these apps
together are over 278,000 times.

Similar Protocol and Backend Service. A specific protocol
often has its own request and response format. Similarly, a spe-
cific backend service often exposes standard APIs. Cross-App
Analysis Engine can detect similarities in network interfaces
and thus correlate devices that speak the same protocol or
speak with the same backend service, even if such protocols
or backend services are not documented. For example, we
found that 39 different devices from 11 vendors are very likely
to speak the SSDP protocol, which was known to be vulnera-
ble as a reflector for DDoS attacks. As another example, we
found that 32 devices from 10 vendors relied on the same
cloud service to manage their devices, and the cloud service
has a reported security weakness that allows attackers to take
full control of the IoT devices by device ID and password
enumeration.

Future Work. There are additional dimensions that secu-
rity evaluation of an IoT device can benefit from similarity
analysis. For example, previous works [16, 28] have shown
that same developers or sub-contractor may follow a similar
way of coding thus having the same set of bad security prac-
tices or vulnerabilities built into their devices. Similarly, the
same development toolchain (e.g., compiler) may transform
code in a similar way that leads to the same set of security
issues [7, 52, 54]. As a future work, we plan to extend our
analysis to cover more dimensions of similarities in order
to obtain a more accurate and complete evaluation of smart
home IoT devices.

2.5 Device Firmware Collector
Our platform features an additional component called De-
vice Firmware Collector which enriches the Device Firmware
Database through downloading firmware images of devices
corresponding to the apps being analyzed. The purpose of the
firmware images is to help us confirm the findings from the

cross-app analysis phase. In our current platform, we collect
device firmware in two ways. First, we utilize the firmware
downloading links that are embedded in the mobile com-
panion apps. As IoT devices are usually headless (i.e., no
keyboard or screen for user interaction), they often deploy
firmware updates via the companion apps. As a result, links
are sometimes built into the app by the vendor. Such links are
often special URLs that can be extracted through imprint anal-
ysis. Second, we follow the app pages on Google Play, which
often direct to device vendors, to crawl potential firmware
files. Specifically, we used Google Custom Search API to pro-
grammatically search through vendor websites for firmware
image files.

For the files collected, we filter out non-firmware files by
checking their format using Binwalk [2]. Binwalk is a well-
known firmware unpacking tool which extracts various data
from a binary blob through pattern matching. Once a file is
decided to be a firmware, a special effort is made to correlate
firmware version with app version. As we will discuss in Sec-
tion 3.3, this helps us to decide at which version a particular
vulnerability is fixed and whether or not that fix has an impact
on the app.

Note that not all device firmware could be downloaded.
Even for the ones that we collected, there is still a considerable
amount of firmware encrypted or obfuscated that renders the
analysis difficult. This is a limitation yet to overcome in
vulnerability confirmation, as discussed in Section 4.2.

3 Dataset and Results

3.1 Dataset and Platform Statistics

Dataset. In total, our dataset comprises of 2,081 apps col-
lected through the method described in Section 2.2. The aver-
age size of the apps is 13MB (Min. 23KB and Max. 142MB).
These apps spread globally (271 languages) and have a total
download exceeding 1.2 billion. The apps cover 1,345 differ-
ent device vendors and, by our estimate, about 4,720 different
device models. We note that this dataset is still incomplete:
by comparing certain types of devices in our dataset (e.g., IP
camera) against online lists of devices [13,21–23] of the same
type, we estimate the dataset to cover ∼5-20% of the total
IoT companion apps.

Testbed and App Processing. Our app analysis platform ran
on a 4 Core, 3.33GHz Ubuntu 16.04 server with 16 GB RAM
and 1TB hard drive. The Android emulator is compiled from
Android Open Source Project, AOSP 4.4.4.

In total, our platform needed ∼68.3 hours to process the
2,081 apps, with an average processing time of 118.2 seconds
per app. In our experiment, we set the maximum processing
time to 10 minutes and the majority of the apps are processed
successfully within this time frame. The platform was not
able to fully analyze 73 (3.5%) apps within the timeout win-
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dow and therefore only partial analysis results are available
for them. In addition, 43 (2.1%) apps were not analyzed by
the platform because the tool we used (i.e., Soot) to build
CDG and DDG failed to handle the app bytecode during in-
terpretation. Overall, about 98% of the apps were either fully
or partially analyzed.

One practical concern is the obfuscation of the app and
its impact on the analysis. As reported in previous study, the
majority (85.8%) of the device companion apps are produced
by the standard tool in Android SDK (i.e., Proguard) [53],
which mangles the apps by renaming classes, methods and
fields. While Proguard introduces skews to the fuzzy hash
analysis, it does not affect our main analysis method (i.e., net-
work interface analysis) since it does not obfuscate network
APIs, data-flow and control-flow. Another concern is the pack-
ing of the app—some developers use packers to encrypt their
code, which would also have an impact on the network inter-
face analysis. However, consistent with observations made by
prior research [53], packers are often seen in malware, and
less adopted by benign apps. In our dataset, only a handful of
apps used commercial packers. Currently, we did not apply
any special processing to these apps. There is an orthogonal
line of research on developing better unpacking tools(e.g.,
DexHunter [59] and PackerGrind [57]) and our platform can
be supplemented by these tools.

Table 2: IoT device families
Type Number Covered Covered

of Families Apps Vendors
Software 19 139 122

Rebranding 28 156 104
Hardware 14 61 51
Protocol 40 271 210
Backend 48 460 422

Device Family. Table 2 shows all the device families de-
tected via our cross-app analysis. For example, we were able
to identify 19 distinct device families covering 122 different
vendors and 139 apps that were using similar software within
the family. As another example, we were able to detect 14
distinct device families covering 51 different vendors that
were using similar hardware components within the family.
Note that these families are not mutually exclusive; a device
might share software components with one device and hard-
ware components with another. The largest device family we
identified includes 31 device vendors and the smallest device
family includes only 2 device vendors. Figure 5 shows a more
intuitive illustration of the device family map.

3.2 Results Validation
Our platform is solely based on code analysis of mobile com-
panion apps, without requiring the physical devices or their
firmware images. This is the key to a large-scale security
analysis of smart home IoT devices. However, the drawback

Figure 5: Device family map. Circle size indicates the number
of device vendors in the family (the largest circle covers 31
vendors, while the smallest covers two).

of such approach is the accuracy of the result: the output from
this analysis (e.g., a family of devices impacted by a particular
vulnerability) is a conjecture that points to potential security
issues that need to be validated with real devices.

In this paper, we validate and report some of the results we
obtained from our analysis to demonstrate the value of the
approach. We took a hybrid validation route, taking into con-
sideration practical limitations such as the budget. First, we
try to acquire the real device and test it in a local environment
(Figure 6 shows the devices we purchased for validation).
Second, if we do not have the device, we try to simulate, or in
some cases statically analyze, device firmware stored in the
Device Firmware Database (built from the method discussed
in Section 2.5). Third, if neither of the first two methods
applies, we search through online reports including vendor
manuals and websites, bug reporting forums, IoT hacking
communities and so on. Fourth, we work with the vendor
and request their help in validating the results. We primarily
used the second and third method, as the first method is very
expensive and the fourth method is often a black hole (i.e., no
responses from vendor). Upon confirming our findings, we
also try to estimate the impact of the finding by searching the
online presence of the device on Shodan [4].

Ethics. Testing vulnerabilities and scanning real-world de-
vices often bring up serious ethical concerns. In our study, we
pay special attention to not cross legal and ethical boundaries.
For both real and simulated devices, we evaluate the device in
a local network that only allows outbound connections. The
device is brought offline immediately after the experiment
to avoid being exploited and used as a bot. To evaluate the
impact of a particular security issue, we collect data from
existing results of Shodan, instead of scanning vulnerable
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Figure 6: Smart home IoT devices for vulnerability validation

devices directly. In this way, we don’t introduce extra net-
work scans. Most importantly, we release our findings to all
affected vendors, and refrain from including the real name of
any device that is still un-patched or under investigation.

3.3 Results Overview
We present our findings from the perspective of threats, by
showing how many smart home IoT devices are potentially
impacted by a given vulnerability or security weakness. How-
ever, it is also possible to look at the findings from a device’s
perspective, i.e., for a specific device, what kind of vulnera-
bility or security weakness it may suffer from. The results
are encouraging: we identified 324 device models from 73
vendors that are potentially vulnerable to a number of security
issues. For the devices that we can confirm or disapprove,
about 91% are confirmed to be vulnerable. The total number
of users of these devices is estimated to be over 11.1 million.

3.3.1 Vulnerable Software

To demonstrate how software vulnerabilities propagate across
devices, we applied our analysis to five high profile vulner-
abilities (shown in Table 3) that were reported in GoAhead
web server which many smart home IoT devices utilize to
provide a web-based interface. These vulnerabilities range
from authentication bypass to backdoor account to remote
code execution. We started from mobile companion app ob-
ject.liouzx.client of NEO Coolcam IP Camera, which was
known to be vulnerable to these vulnerabilities, and utilized
the cross-app analysis to identify devices that might be similar
in their software. Since these are relatively old vulnerabili-
ties (reported in 2017), we expected fewer results. However,
in total we still identified 72 device models belonging to 16
distinct vendors that share similar software as the vulnerable
device. To validate the results, we utilized the methodology
discussed in Section 3.2. We were able to confirm through
online reports that 45 device models from four vendors are

indeed vulnerable. Since these results are already publicly
disclosed, we included them in Table 3. Additionally, we
confirmed through manual firmware analysis that six device
models from three IP camera vendors, Vendor A, Vendor B
and Vendor C, are also impacted by these vulnerabilities. We
have informed those vendors about the vulnerabilities but no
patch is released yet. Furthermore, we confirmed through real
device that one baby monitor device from Vendor D is also
impacted by the vulnerabilities. Vendor D has asked us to
refrain from including their names until further investigation
is done on their side. In total, we confirmed the existence of
the vulnerabilities on 52 device models from eight different
device vendors, with seven device models from four vendors
newly discovered.

While validating the results, we also encountered one case
where our platform mistakenly flagged a device as vulner-
able. The analysis results output by the platform show that
three device models produced by KGUARD have very sim-
ilar interfaces with other vulnerable devices. However, our
manual validation on the real device as well as emulated
firmware shows that the KGUARD devices are not vulnera-
ble. We inspected the firmware, and found that the software
configuration of KGUARD is indeed very similar to the vul-
nerable devices. Specifically, we found that 26 out of 31 CGI
programs and web pages are in common. But the vulnerable
code was removed. Our hypothesis is that since these devices
are relatively new on market (i.e., after the vulnerability was
reported), KGUARD may have customized the software con-
figuration and patched the vulnerability before releasing the
product to the market.

We also want to highlight two observations we made during
the process of results validation. First, although the vulner-
abilities are old, we are still seeing a large set of devices to
be potentially vulnerable. A Shodan search shows that there
are potentially 58,456 devices running in the wild still being
vulnerable and the total number of app downloads is more
than 282,000 times. This is the result of a dataset with merely
∼2K apps. With a large-scale analysis covering more device
models and vendors, the problem can be even worse. This
demonstrates a common issue in the smart home IoT market:
the market is highly fragmented and many smaller vendors
never bother taking care of the device after selling the device.

Another observation to highlight is the difficulty to validate
the results, or rather the general challenge of evaluating the
security of an IoT device. We were not able to validate find-
ings on 17 device models from seven out of the 16 vendors,
despite that the cross-app analysis tells us they might also be
vulnerable. The validation was not successful for a number
of reasons: some devices are not targeting U.S. market there-
fore we could not easily acquire, some devices do not provide
firmware download therefore we could not evaluate, for de-
vices that we could download firmware the encryption and
packing render analysis difficult. In addition, the collabora-
tion with device vendors have been very difficult. Many times,
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Table 3: IoT devices impacted by vulnerable software and device rebanding

CVE Impacted Vendor Device Validation Mobile App App Confirmation
Models Method Downloads Status

CVE-2017-8221
CVE-2017-8222
CVE-2017-8223
CVE-2017-8224
CVE-2017-8225

IP Camera Vendor A 4 Firmware App A 100,000+
Newly

Discovered
IP Camera Vendor B 1 Firmware App B 5,000+
IP Camera Vendor C 1 Firmware App C 100,000+

Baby Monitor Vendor D 1 Device App D 10,000+
Instar 2 Reports camviewer.mobi.for_instar 1,000+

Independently
Reconfirmed

VStarcam 35 Reports vstc.GENIUS.client 1,000+

Sricam 6 Reports object.shazx1.client.yi
object.smartmom.client 55,000+

Conceptronic 2 Reports/Firmware camviewer.p2pwificam.client 10,000+
KGUARD 3 Device object.kguard.client 10,000+ FP
7 Vendors 17 N/A 7 apps 146,000+ Pending Confirmation

our email request about potential security issues went into a
black hole (i.e., no responses ever received from the vendor).
We believe this is also an artifact of market fragmentation as
smaller vendors tend to care less about the security of their
products.

3.3.2 Device Rebranding

Investigation of a more recent vulnerability, CVE-2018-11560,
leads to another interesting finding of device rebranding. This
vulnerability was initially reported in Insteon IP Camera 2864-
222 (firmware 1.4.1.9), where the embedded web server on
the device had a missing bounds check when parsing CGI
parameters, resulting in a stack buffer overflow. We used the
companion app of Insteon IP camera as the input to our Cross-
App Analysis Engine to detect if any other devices might
be vulnerable to the same vulnerability. To our surprise, we
found that almost identical device interfaces are provided by a
major IP camera vendor, Foscam. We initially suspected that
the same web server might be used by both vendors, but later
through research we found that Insteon IP camera 2864-222 is
actually a rebranded version of Foscam IP Camera FI8918W—
it is based on the exact same hardware and software but with
a different brand name. Not surprisingly, early versions of
Foscam IP camera also suffer from the same vulnerability,
but no one has reported that.

The interesting part, however, is that Foscam actually
patched the vulnerability before the vulnerability was reported
in Insteon IP camera. We examined the firmware history of
Foscam IP camera and found that the vulnerable code was
shipped in over eight Foscam firmware versions before Jul.
2017, impacting at least 15 Foscam models. In firmware up-
dates (2.x.1.120) of Jul. 2017, the vulnerability was patched.
However, this patch never made it to the Insteon IP camera
until the vulnerability was reported in 2018. We contacted
Foscam about this issue, but their response neither confirmed
nor denied the finding. Instead, we were advised to update
to the newest version of firmware. This highlights another
interesting issue about smart home IoT devices. Due to the
fragmented market, smaller IoT vendors sometimes do not
develop their own products. Instead, they customize IoT de-
vices from OEMs and resell with their own branding. This

complicates the security management of the product and puts
customers in danger, as vulnerabilities in upstream vendors
tend to propagate to a broader set of downstream vendors but
security patches are not. Indeed, a Shodan search with the
IP camera fingerprints (e.g., server type, time stamps) shows
that although Foscam released patches as early as Jul. 2017,
there are still 30.7% (10,210 out of 33,230) devices that are
not patched to the secure version.

Additionally, our analysis shows that re-branding is indeed
not uncommon. With a dataset of ∼2K apps, we identified
27 other re-branded device families not including Foscam
example. Examples of these devices include smart plugs from
Bayit and Orvibo, Wi-Fi sockets from CHITCO and EDUP
and so on. Further validation is needed to confirm if these
devices inherit any vulnerabilities from upstream vendors.

3.3.3 Vulnerable Hardware

Different IoT device vendors may rely on a common hard-
ware module (e.g., Wi-Fi, Bluetooth), which, if vulnerable,
could impact multiple devices. The challenge, however, is
that IoT device vendors often do not publicize the hardware
components in use. As a result, it is often difficult to decide if
a device is vulnerable due to a vulnerable hardware compo-
nent without tearing apart the physical device or unpacking
the firmware to examine the driver code.

Through cross-app analysis, we identified a total of 166
devices belonging to 35 different vendors that are poten-
tially impacted by two recent security weaknesses found in
hardware. In one example, a recent study [36] demonstrated
that Hi-Flying Wi-Fi module (HF-LPB100, HF-LPT100, HF-
LPB200) can be leveraged by an adversary to steal home
network Wi-Fi credentials. The Hi-Flying Wi-Fi module is
a self-contained 802.11b/g/n module used by a number of
IoT devices to provide wireless interfaces. As an important
feature, the module supports credential (e.g., SSID, password)
provisioning from device companion app to IoT device via
SmartLink. As reported by the study [36], the provisioning
process may leak Wi-Fi credentials: an adversary could pas-
sively listen to the traffic and gather the home Wi-Fi network
credentials without much effort. Through our cross-app anal-
ysis, we identified that 26 apps, covering 108 devices from 21
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vendors are potentially impacted by this security weakness.
These apps have been downloaded more than 158,000 times.
In another example, ESP8622, a low-cost Wi-Fi microchip
that appears in many cheap IoT devices (e.g., Wi-Fi controller,
smart plug), was reported to have a similar vulnerability in its
ESP-Touch provisioning protocol. In our analysis, we identi-
fied that 21 apps covering 58 devices from 14 distinct vendors
are potentially impacted by the security weakness. In total,
these apps have been downloaded more than 120,000 times.

Among the devices flagged by the platform, we were able
to confirm that 67 devices from 16 vendors are indeed im-
pacted by the security weaknesses (43 devices from eight
vendors are confirmed through vendor response. 24 devices
from eight vendors are confirmed through firmware emula-
tion, real device or online reports.). Through vendor response,
we were also able to identify that seven devices from two ven-
dors were mistakenly flagged by the platform as vulnerable
(i.e., ∼9% false positive rate). We manually examined the
two apps to analyze the reason for the false positive. For one
case, 14 devices supported by the Revogi app were flagged by
the platform as potentially vulnerable. However, four of them
(Power Plug SOW324, Power Strip SOW321 and SOW323,
and Smart Light LTW311) were not actually using the vul-
nerable hardware. The issue was due to the imprecision of
the static analysis performed by the platform. Since the app
supports multiple devices from the same vendor, the code
modules that control individual devices are not clearly dis-
tinguishable (i.e., some modules are shared across devices
but others are independent). As a result, the platform was not
able to attribute the network interfaces that correspond to the
vulnerable hardware to a specific device. Instead, the platform
outputs all the devices supported by the app as potentially
vulnerable. For another case, three devices supported by the
smanos app were flagged by the platform by mistake. The
devices were found not to be using the vulnerable hardware,
but the code module and the corresponding network inter-
faces that control the hardware was included in the app. This
may be due to that the app developer built the app upon some
open source templates that contain the hardware module, or
maybe the device vendor changed their hardware configura-
tion during the device development process, but the app code
was never cleaned up. Nevertheless, the IPE method used by
the platform is guided by static analysis to construct network
interfaces as long as a code snippet is reachable from an An-
droid activity, even though that activity may never be actually
triggered by the real device.

3.3.4 Vulnerable Protocol

Similar to hardware components, IoT device vendors often
do not publicize the protocols that a device speaks. These
protocols range from more open and standard ones such as
UPnP, mDNS and SSDP to proprietary ones such as TDDP5

5TDDP stands for TP-Link Device Debug Protocol.

used for debugging, penetrating private networks and various
other purposes. Not knowing which protocol a device can
speak creates a great security challenge of managing the de-
vice, especially when the protocols are found to be vulnerable
or can be leveraged by an adversary to launch attacks.

Through cross-app analysis, we can identify devices that
speak the same protocol, thus may suffer from similar secu-
rity problems. For example, previous research [37] showed
that SSDP protocol can be abused by adversaries in order to
launch DDoS attacks. SSDP queries such as "ssdp:all" and
"upnp:rootdevice" may result in a response size orders of
magnitude larger, thus if openly accessible to the Internet may
serve as a reflector to amplify requests sent by the attacker.
Through cross-app analysis, we identified 39 devices from 11
different vendors that speak SSDP, despite that few of them
clearly documented the protocol that their devices speak. As
a result, once these devices are activated in the environment
where a firewall is not configured to block incoming queries,
they may act as reflectors for DDoS attacks. It’s difficult to tell
the exact number of devices that are exposed and vulnerable,
but the total app downloads (over 10.2 million) indicate that
a massive number of devices could possibly be harnessed by
attackers.

We validated the results output by the platform. In total,
we were able to confirm that 18 devices from six vendors are
indeed speaking the SSDP protocol. One device, Bixi gesture
controller, was mistakenly flagged by the platform. The case
with Bixi gesture controller is interesting: the device itself
does not speak SSDP, but its companion app does, therefore
causing false positive for the platform. The reason is that the
gesture controller is a device that allows users to control other
devices via gesture. It does not speak SSDP but relies on its
companion app to use SSDP to discover subsidiary devices
for it to control. In this case, the network interface of the app
is not an exact mirror of the device interface, causing false
positives in the platform.

3.3.5 Vulnerable Backend Service

IoT devices may rely on the same IoT cloud backend ser-
vice to relay command and control (e.g., to penetrate private
home networks). When the backend service contains a secu-
rity weakness, multiple IoT devices using the same service
are impacted at the same time. However, without detailed
knowledge of the registered customers of the cloud service,
many of these impacted devices are left vulnerable until the
problems are independently discovered.

Our cross-app analysis can help address this issue. In a
particular case, the security weakness was initially reported
on DeepSec 2017 [38], where an IoT cloud backend service is
found to be using very short device IDs (i.e., only six digits)
to register IoT devices. Consequently, any IoT device that is
using the service to relay commands and control is vulnerable
to device ID and password enumeration attacks. A successful
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attack may enable attackers to authenticate to the device and
abuse the device as a bot. We used the vulnerable device re-
ported in DeepSec, Yoosee, as the seed for cross-app analysis
and found 32 devices from 10 different vendors also rely on
the same vulnerable backend to relay command and control.
While it is hard to estimate the actual number of devices in
the wild that are vulnerable, the total amount of downloads
of these apps is over 226,000 times.

Among the 32 devices flagged by the platform, we were
able to confirm that 12 devices from seven vendors are in-
deed sending requests to the specific backend server, and the
device IDs are indeed enumerable (i.e., 6-digits). We also
found that four devices from one vendor, namely secrui, were
mistakenly flagged by the platform. The reason is similar to
the "dead code" issue we encountered while validating results
for devices with vulnerable hardware: we found that secrui
app embedded a self-contained app com/jwkj that talks to
the problematic backend server and thus the app interfaces
exhibit similarity with those that are vulnerable. However, the
embedded app was never actually executed nor did the de-
vices supported by secrui app actually talk to the problematic
backend server.

3.4 Accuracy of Results

In total, the platform flagged 324 devices from 73 vendors as
potentially vulnerable, and we were able to confirm that 164
devices from 38 vendors are indeed vulnerable. This accounts
for roughly 50.6% of all the devices flagged by the platform.
During the process of validation, we were also able to iden-
tify that 15 devices from 5 vendors were mistakenly flagged
by the platform as vulnerable. This accounts for 8.4% of all
the devices that we could either confirm or disapprove (i.e.,
false positives). Table 4 enumerates the reasons for the false
positives and the number of instances of each reason. The
first reason for the false positive is the existence of the patch.
After vulnerabilities were disclosed, vendors may patch the
device. In this case, the app-device interface may stay largely
the same, but the device is no longer vulnerable. This is a
fundamental limitation of the approach, as the platform is
designed to only extract information from the app, not the
device. Thus, if the patch does not have any impact on the app,
the approach cannot differentiate a vulnerable device from a
patched one. The second reason for false positive is the “dead
code” inside of the apps. Sometimes the apps may contain
code that was not actually being used by the device (legacy
code, code adopted from elsewhere without cleaning and etc.).
Statically, it is difficult to decide if the code will ever be trig-
gered and executed at runtime. Our platform currently may
mistakenly include analysis results from such "dead code"
if the "dead code" exhibit similarities with other vulnerable
devices, thus causing false positives. The third reason for the
false positive is the imprecision of the static analysis. Cur-
rently, the static analysis techniques used by the platform are

not precise enough to attribute network interfaces to individ-
ual devices if a single app supports multiple devices and these
devices share much common control logic inside of the app.
This issue, as well as the “dead code” issue listed above, are
not a fundamental problem with the approach. Rather, they
are an artifact of the static analysis techniques we used to
analyze the apps in the platform. We are currently working
on improvements to the techniques to improve the accuracy
and precision of the static analysis. Finally, we encountered
an exception case to our approach where the app interface is
not an exact reflection of the device interface (i.e., the Bixi
gesture controller). However, due to the nature of the device
(i.e., a device that controls other devices), it is uncommon
among the IoT devices. We are exploring the Google Play
store to identify if there are any more devices of the similar
kind.

Table 4: Reasons for the false positives

Reason # of
Devices

# of
Vendors

Existence of the patch 3 1
Dead code inside of the apps 7 2

Fail to attribute interfaces to individual devices 4 1
Difference in device and app interface 1 1

4 Discussion

4.1 Miscellaneous Findings

During the process of analyzing the interfaces between apps
and devices, we have some interesting observations, which
are presented here.

Confusing Trust Model. We observed that IoT device devel-
opers sometimes have a confusing, if not conflicting, trust
assumption regarding the local environment that their devices
will run in. On one hand, they seem to assume that the local
environment (i.e., consumer’s home network) is not trustwor-
thy. They apply encryption and authentication to protect the
communication between the app and the device. On the other
hand, they place an excessive amount of trust on the app, e.g.
they would embed the encryption keys and authentication cre-
dentials into the app. In such a scenario, an adversary within
the local environment can easily bypass the protections that
the device developer built, as long as the adversary has access
to the Google Play Store and has a basic knowledge of re-
verse engineering an app. As an example, TP-Link Smart Plug
(HS110) accepts commands from its mobile companion app
(and potentially anywhere else from within the LAN) without
authentication. The vendor seems to be concerned about local
threats to this design and, therefore, encrypts the communi-
cation. However, the encryption key in use (i.e., integer 171
XOR message) is simple and static, and most importantly built
into the app. Anyone with access to the app can thus forge the
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communication easily. This problem is also reported by [50].
Another example is the D-Link water sensor. D-Link water
sensor requires authentication from its mobile companion app.
However, the credentials used to authenticate the app is fixed
(i.e., not configurable by user) and built into the app. These
examples highlight the confusing mindset of many IoT device
developers and the lack of general understanding of security.
While in this paper we do not intend to give solutions to the
problem, we believe a more standard architecture developed
with security in mind can help limit the freedom offered to
developers thus improving the security.

“Convenient” Provisioning. Smart home IoT devices are of-
ten headless—they do not provide direct user interfaces (e.g.,
touch screen, keyboard). As a result, they often rely on mo-
bile companion apps to provision the credentials of home
Wi-Fi network, in order for them to join the network. Our
observation through studying the device interfaces is that the
provisioning method is evolving from more user interactive
approaches (e.g., AP Mode, WPS and out-of-band channels
such as Bluetooth) to a more automated and hands-off ap-
proach where users do not need to do anything except provid-
ing the credentials. This presumably provides convenience,
but many times at the cost of security. These newer methods
such as Smart Config [30] and Sound Wave6 often artificially
create a side channel between the app and the device, and rely
on these channels to transfer Wi-Fi credentials. Unfortunately,
these side channels are publicly observable therefore allow-
ing the credentials to be leaked. In addition, even without
considering the openness of side channels, securing a side
channel can often be much more difficult than normal means
of communication. This highlights the long-lasting problem
of balancing usability with security.

4.2 Limitations and Future Work
The major limitation of the approach discussed in this pa-
per is the accuracy of the analysis results. As we based our
analysis solely on mobile companion apps, we are inherently
limited to the information we can obtain from the app, and
sometimes the information we can obtain may not be an ac-
curate reflection of the device. For example, a device may
have patched a vulnerability and the patch did not change
the device interfaces at all. In this case, our analysis will still
output the device as potentially vulnerable since our platform
would have no clue about the existence of the patch by just
inspecting the app. This, however, is a trade-off we have to
make in order to study IoT device security at scale. We believe
a multi-stage solution can help address this limitation where
the first stage (i.e., our platform) narrows down the scope
of analysis by identifying the potentially vulnerable devices,
and the second stage automates the vulnerability confirmation

6Wi-Fi credentials are encoded in the sound wave and sent out directly by
the phone. This method is being used by devices such as 360 and Securenet
IP Cameras.

with more targeted but rigorous analysis, e.g., dynamic/static
analysis of firmware, device fuzzing.

Another limitation of the approach is that the network inter-
face analysis can be rendered less effective in scenarios where
IoT backend servers or cloud significantly decouple device
interfaces from app interfaces. An example is the Google
and Amazon devices where much of the management is done
through the cloud. In this case, our approach can glean less
information about the device software. However, information
such as the Wi-Fi credential provisioning module and the
backend services in-use are still available in the app, which
allows the platform to predict security issues of these compo-
nents.

This work could also benefit greatly from an automatic
vulnerability collection system. Currently, this is a manual
process: we manually collect the vulnerabilities and impacted
devices that were reported publicly. We then propagate the
vulnerability information to more devices through our plat-
form. An automatic vulnerability collection system can help
label the initial seed devices as well as evaluating security
from a device’s perspective (i.e., to find the set of security
issues that a given device may have).

Another aspect to improve on is the dimension and granu-
larity of the similarity analysis, as mentioned in Section 2.4.
Further improvements to the App Analysis Engine may allow
the platform to detect similarities in finer components of a
device software stack (e.g., web server, PHP interpreter, web
application, OS, driver) as well as other dimensions (e.g., sim-
ilar developer, similar development toolchain). This would
enable us to track vulnerability propagation more compre-
hensively and accurately. We leave the refinement of the App
Analysis Engine for future work.

The general methodology, i.e., utilizing companion app
analysis to study the device, also enables a number of in-
teresting applications that we plan to explore for the future
work. For example, from app analysis, we could potentially
tell what types of sensors are on a device and what types of
network traffic a device may produce. This would allow a
home security gateway, which is shipped as a default com-
ponent of many Wi-Fi routers on the market, to enforce an
accurate protection profile and detect anomalous behaviors
of IoT devices in real time. As another example, instead of
similarities, the Cross-App Analysis Engine in our platform
can detect differences between devices. Such differences may
enable a more accurate fingerprinting method of the device.

5 Related Work

IoT device vulnerabilities. IoT devices are affecting increas-
ing number of users in every aspect of their life. Meanwhile,
various studies revealed that firmware of many devices is
filled with vulnerabilities. For instance, Paleari [44, 45] re-
ported that D-Link DIR-645 routers expose critical web pages
to unauthenticated remote attackers, allowing them to extract
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root credentials and take full control of the device; also multi-
ple web interfaces are affected by stack-buffer overflow that
leads to remote code execution. Cui et al. [18] found that
attackers may inject malicious firmware modifications to a
device while it’s updated. With the vulnerabilities and the
huge amount of insecure devices [31], there arise a series of
large-scale attacks, such as Mirai [35], BASHLITE [1], etc. To
better understand the events, researchers have conducted com-
prehensive study on both features of the known vulnerabilities
(and malware) [15] and their propagation [6, 39].

Various analysis approaches have been proposed to identify
vulnerable IoT devices. For instance, with a network scanner
(i.e., nmap), Cui et al. [19] found that over 13% devices are
publicly accessible by default credentials. Similarly, using an
Internet-wide scanning, Heninger et al. [27] showed that a
large amount of TLS and SSH servers on embedded devices
are affected by weak certificates and keys. Online services,
Shodan [4] for example, allow security researchers to identify
vulnerable online web services and devices. Such works are
effective to find devices with known vulnerabilities and eval-
uate their impacts, but in many cases fail to catch problems
that also appear in other devices.

Further, researchers are utilizing different techniques [16,
20,24,25,47,49,55] to statically identify vulnerabilities in the
device firmware. A majority of the approaches fall into the
broader category of vulnerability search: derive signatures
from known vulnerabilities, and then use them to search in
other firmware images. To name a few, Costin et al. [16] con-
ducted a large-scale study by scanning 32k firmware images
with simple signatures (e.g., certificates, unique keyword),
which is difficult to cover vulnerabilities that are not bound to
specific strings. To address the problem, following works that
collect robust features from such as I/O behavior of the image
binary [47] and control flow graphs [24, 25] were proposed.
Instead of extracting signatures from firmware image, Xiao
et al. [55] presented an approach that discovers unknown vul-
nerabilities based on the study of existing security patches.
In addition, Davidson et al. [20] built a symbolic execution
framework on top of KLEE [9] for detecting vulnerabilities
in MSP430 microcontroller family, which is difficult to scale
as it needs to customize for specific architectural features of
an IoT device. Similarly, Shoshitaishvili et al. [49] showed
how symbolic execution and other techniques (e.g., program
slicing) work to find authentication bypass vulnerabilities in
a firmware image. Corteggiani et al. [14] improved symbolic
execution of firmware by incorporating source code seman-
tics, etc. While these approaches are effective, they rely on
the static analysis of the firmware images, and therefore are
limited in cases where the images are not publicly available or
cannot be unpacked. In contrast, our work focuses on finding
potential vulnerabilities using analysis of the IoT companion
apps, which turns to be scalable, especially for IoT devices of
smaller companies.

Another effective approach is dynamic firmware analy-

sis [10, 17, 42, 58]. Zaddach et al. [58] performed dynamic
analysis by forwarding I/O access from an emulator to the ac-
tual hardware, and further, Muench et al. [42] presented how to
orchestrate execution between multiple testing environments.
Koscher et al. [34] used an FPGA bridge to allow the emu-
lator full and real-time access to the hardware. While these
approaches are accurate, they are not applicable to large-scale
analysis because of the lack of budget to obtain the device,
and the required effort to figure out the hardware interfaces.
To address the problem, Costin et al. [17] built a QEMU-based
emulation framework to discover vulnerabilities in web inter-
faces of an IoT device; Chen et. al [10] presented a full system
emulation tool, FIRMADYNE, for Linux-based firmware in
order to identify vulnerabilities. These works, however, also
rely on feasibility of the firmware, and tend to be affected by
the heterogeneous architectures of the firmware. Given the
difficulty of fuzzing IoT devices directly [43], Chen et al. [11]
proposed a testing method to detect memory corruptions in
the device with the assistance from app analysis. Similarly,
it requires presence of the physical device, and also fuzzing
each individual device is time-consuming. Again, our work is
more scalable since it is only based on static analysis of the
companion apps, and leverages cross-app similarities as an
indicator to find other potentially vulnerable devices.
Mobile app analysis. Dozens of static and dynamic tech-
niques have been presented to analyze mobile apps. Among
them, most related to our work are those [12, 32, 48, 60] pro-
posed to collect runtime values in an Android app. These
techniques may serve different purposes, e.g., collecting devel-
oper credentials [60], harvesting obfuscated/encrypted values
for malware detection [48], extracting application imprints
from network request [12] and reconstructing format of a
protocol [32]. However, they have a basic idea in common:
extracting parts of the application code (i.e., slices) that are
related to the target (e.g., APIs, variables), and generating
target value by only executing the slices. In this study, we
designed the request construction with a similar Instantiated
Partial Execution (IPE) as in [12]. Another related work is Au-
toprobe [56], which collects request probes from the malware,
and then using the probes to fingerprint a remote malware
server. Autoprobe is not applicable in our settings for several
unique challenges. For instance, requests of an IoT device
would not be triggered automatically because of the absence
of the device; mobile companion apps often serve multiple
devices, and thus it’s difficult to pair the request and response
and collect telemetry for each individual device. In our work,
the interface analysis engine leverages several techniques that
not only triggered the request, but also conducted a modularity
analysis after locating the request/response pair.

6 Conclusion

In this paper, we present a platform to accelerate vulnerable
device discovery in smart home IoT device market. Different
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from previous approaches that examine real IoT devices or
firmware images, our platform analyzes mobile companion
apps of devices to indirectly detect device similarity and vul-
nerability propagation across devices, thus making it practical
for large-scale analyses. By analyzing 2,081 mobile compan-
ion apps, our platform was able to discover 324 devices from
73 vendors that are potentially vulnerable to a number of se-
curity issues, out of which 164 devices from 38 vendors are
confirmed to be indeed vulnerable.
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