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Abstract

Much attention has been paid to passwords chosen by
English speaking users, yet only a few studies have
examined how non-English speaking users select pass-
words. In this paper, we perform an extensive, empirical
analysis of 73.1 million real-world Chinese web pass-
words in comparison with 33.2 million English coun-
terparts. We highlight a number of interesting struc-
tural and semantic characteristics in Chinese password-
s. We further evaluate the security of these passwords
by employing two state-of-the-art cracking techniques.
In particular, our cracking results reveal the bifacial-
security nature of Chinese passwords. They are weaker
against online guessing attacks (i.e., when the allowed
guess number is small, 1~10%) than English passwords.
But out of the remaining Chinese passwords, they are
stronger against offline guessing attacks (i.e., when the
guess number is large, >10°) than their English coun-
terparts. This reconciles two conflicting claims about
the strength of Chinese passwords made by Bonneau
(IEEE S&P’12) and Li et al. (Usenix Security’ 14 and
IEEE TIFS’16). At 107 guesses, the success rate of
our improved PCFG-based attack against the Chinese
datasets is 33.2%~49.8%, indicating that our attack can
crack 92% to 188% more passwords than the state of the
art. We also discuss the implications of our findings for
password policies, strength meters and cracking.

1 Introduction

Textual passwords are the dominant form of access con-
trol in almost every web service today. Although their
security pitfalls were revealed as early as four decades
ago [39] and various alternative authentication methods
(e.g., graphical passwords and multi-factor authentica-
tion) have been proposed since then, passwords are still
widely used. For one reason, passwords offer many
advantages, such as low deployment cost, easy recovery,
and remarkable simplicity, which cannot always be of-

fered by other authentication methods [6]. For another
reason, there is a lack of effective tools to quantify the
less obvious costs of replacing passwords [8] because
the marginal gains are often insufficient to make up for
the significant transition costs. Furthermore, users also
favor passwords. A recent survey on 1,119 US users [49]
showed that 58% of the participants prefer passwords
as their online login credentials, while only 16% prefer
biometrics, and 10% prefer other ways. Thus, passwords
are likely to persist in the foreseeable future.

Despite its ubiquity, password authentication is con-
fronted with a challenge [62]: truly random password-
s are difficult for users to memorize, while easy-to-
remember passwords tend to be highly predictable. To
eliminate this notorious ‘“security-usability” dilemma,
researchers have put a lot of effort [12,17,36,46,47] into
the following two types of studies.

Type-1 research aims at evaluating the strength of a
password dataset (distribution) by measuring its statisti-
cal properties (e.g., Shannon entropy [10], o-guesswork
[71, A-success-rate [53]) or by gauging its “guessability”
[24,59]. Guessability characterizes the fraction of pass-
words that, at a given number of guesses, can be cracked
by cracking algorithms such as Markov-Chains [36] and
probabilistic context-free grammars (PCFG) [58]. As
with most of these previous studies, we mainly consider
trawling guessing [55], while other attacking vectors
(e.g., phishing, shoulder-surfing and targeted guessing
[56]) are outside of our focus. Hereafter, whenever the
term “guessing” is used, it means trawling guessing.

Type-2 research attempts to reduce the use of weak
passwords. Two approaches have been mainly utilized:
proactive password checking [25, 32] and password
strength meter [13, 59]. The former checks the user-
selected passwords and only accepts those that comply
with the system policy (e.g., at least 8 characters long).
The latter is typically a visual feedback of password
strength, often presented as a colored bar to help users
create stronger passwords [17]. Most of today’s leading
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sites employ a combination of these two approaches to
prevent users from choosing weak passwords. In this
work, though we mainly focus on type-1 research, our
findings are also helpful for type-2 research.

Existing work (e.g., [14,17,27,37,42]) mainly focuses
on passwords chosen by English speaking users. Rela-
tively little attention has been paid to the characteristics
and strength of passwords chosen by those who speak
other native languages. For instance, “woaini1314” is
currently deemed “Strong” by password strength meters
(PSMs) of many leading services like AOL, Google,
IEEE, and Sina weibo. However, this password is highly
popular and prone to guessing [56]: “woaini” is a Chi-
nese Pinyin phrase that means “I love you”, and “1314”
has a similar pronunciation of “for ever” in Chinese.
Failing to catch this would overlook the weaknesses
of Chinese passwords, thus posing high risks to the
corresponding web accounts.

1.1 Motivations

There have been 802 million Chinese netizens by June,
2018 [1], which account for over 20% (and also the
largest fraction) of the world’s Internet population. How-
ever, to the best of our knowledge, there has been no
satisfactory answer to the key questions: (1) Are there
structural or semantic characteristics that differentiate
Chinese passwords from English ones? (2) How will
Chinese passwords perform against the foremost attack-
s? (3) Are they weaker or stronger than English ones?
It is imperative to address these questions to provide
both security engineers and Chinese users with necessary
security guidance. For instance, if the answer to the first
question is affirmative, then it indicates that the password
policies (e.g., length-8* [25] and 2ClassI2 [44]) and
strength meters (e.g., RNN-PSM [38] and Zxcvbn [59])
originally designed for English speaking users cannot be
readily applied to Chinese speaking users.

A few password studies (e.g., [30,36,52,53,56]) have
employed some Chinese datasets, yet they mainly deal
with the effectiveness of various probabilistic cracking
models. Relatively little attention has been given to
the above three questions. As far as we know, Li et
al’s work [26, 34] may be the closest to this paper,
but our work differs from it in several aspects. First,
we explore a number of fundamental characteristics not
covered in [26, 34], such as the extent of language de-
pendence, length distribution, frequency distribution and
various semantics. Second, our improved PCFG-based
algorithm can achieve success rates from 29.41% to
39.47% at just 107 guesses, while the best success rate of
their improved PCFG-based algorithm is only 17.3% at
10'0 guesses (i.e., significantly underestimate attackers).
Third, based on more comprehensive experiments, we
outline the need for pairing passwords in terms of site

service type when comparing password strength, which
is overlooked by Li et al.’s [26, 34] and Bonneau’s [7]
work. Fourth, as shown in Sec. 3.2, two of Li et al.’s
five Chinese datasets are improperly pre-processed when
they perform data cleaning,' which impairs their results.

1.2 Contributions

We perform a large-scale empirical analysis by lever-
aging 73.1 million passwords from six popular Chinese
sites and 33.2 million passwords from three English sites.
Particularly, we seek for fundamental properties of user-
generated passwords and systematically measure their
structural patterns, semantic characteristics and strength.
In summary, we make the following key contributions:

* An empirical analysis. By leveraging 73.1 million
real-life Chinese passwords, for the first time, we:
(1) provide a quantitative measurement of to what
extent user passwords are influenced by their native
language; (2) systematically explore the common
semantics (e.g., date, name, place and phone #) in
passwords; and (3) show that passwords of these
two distinct user groups follow quite similar Zipf
frequency distributions, despite being created under
diversified password policies.

* A reversal principle. We employ two state-of-the-
art password-cracking algorithms (i.e., PCFG-based
and Markov-based [36]) to measure the strength
of Chinese web passwords. We also improve the
PCFG-based algorithm to more accurately capture
passwords that are of a monotonically long structure
(e.g., “1qa2ws3ed”). At 107 guesses, our algorith-
m can crack 92% to 188% more passwords than
the best results in [34]. Particularly, we reveal
a “reversal principle”, i.e. the bifacial-security
nature of Chinese passwords: when the guess num-
ber allowed is small, they are much weaker than
their English counterparts, yet this relationship is
reversed when the guess number is large, thereby
reconciling the contradictory claims made in [7,34].

* Some insights. We highlight some insights for
password policies, strength meters and cracking.
We provide a large-scale empirical evidence that
supports the hypothesis raised in the HCI com-
munity [17,46]: users self-reported to rationally
choose stronger passwords for accounts associated
with a higher value, and knowingly select weaker
passwords for a lower-value service even if the
latter imposes a stricter policy. Our methodologi-
cal approaches would also be useful for analyzing
passwords of other non-English speaking users.

I we reported this issue to the authors of [26, 34], they have
acknowledged it. As their journal paper [26] is technically a verbatim
of their conference version [34], we mainly use [34] for discussion.
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2 Related work

In this section, we briefly review prior research on pass-
word characteristics and security.

2.1 Password characteristics

Basic statistics. In 1979, Morris and Thompson [39]
analyzed a corpus of 3,000 passwords. They reported
that 71% of the passwords are no more than 6 characters
long and 14% of the passwords are non-alphanumeric
characters. In 1990, Klein [32] collected 13,797 comput-
er accounts from his friends and acquaintances around
US and UK. They observed that users tend to choose
passwords that can be easily derived from dictionary
words: a dictionary of 62,727 words is able to crack 24%
of the collected accounts and 52% of the cracked pass-
words are shorter than 6 characters long. In 2004, Yan et
al. [62] found that passwords are likely to be dictionary
words since users have difficulty in memorizing random
strings. On average, the password length in their user
study (288 participants) is 7~8.

In 2012, Bonneau [7] conducted a systematic analysis
of 70 million Yahoo private passwords. This work
examined dozens of subpopulations based on demo-
graphic factors (e.g., age, gender, and language) and
site usage characteristics (e.g., email and retail). They
found that even seemingly distant language communities
choose the same weak passwords. This research was
recently reproduced in [3] by using differential privacy
techniques. Particularly, Chinese passwords are found
among the most difficult ones to crack [7]. In 2014, how-
ever, Li et al. [34] argued that Bonneau’s dataset is not
representative of general Chinese users, because Yahoo
users are familiar with English. Accordingly, Li et al.
leveraged a corpus of five datasets from Chinese sites and
observed that Chinese users like to use digits when cre-
ating passwords, as compared to English speaking users
who like to use letters to create passwords. However, as
an elementary defect, two of their Chinese datasets have
not been cleaned properly (see Section 3.2), which might
lead to inaccurate measures and biased comparisons.
More importantly, several critical password properties
(such as length distributions, frequency distributions and
semantics) remain to be explored.

In 2014, Ma et al. [36] investigated password charac-
teristics about the length and the structure of six datasets,
three of which are from Chinese websites. Nonethe-
less, this work mainly focuses on the effectiveness of
probabilistic password cracking models and pays little
attention to the deeper semantics (e.g., no information is
provided about the role of Pinyins, names or dates). In
2017, Pearman et al. [42] reported on an in situ examina-
tion of 4057 passwords from 154 English-speaking users
over an average of 147 days. They found that the average

password is composed of 2.77 character classes and is of
length 9.92 characters, including 5.91 lowercase letters,
2.70 digits, 0.84 uppercase letters, and 0.46 symbols.
Semantic patterns. In 1989, Riddle et al. [43] found
that birth dates, personal names, nicknames and celebrity
names are popular in user-generated passwords. In
2004, Brown et al. [9] confirmed this by conducting a
thorough survey that involved 218 participants and 1,783
passwords. They reported that the most frequent entity
in passwords is the self (67%), followed by relatives
(7%), lovers and friends; Also, names (32%) were found
to be the most common information used, followed
by dates (7%). Veras et al. [S1] examined the 32M
RockYou dataset by employing visualization techniques
and observed that 15% of passwords contain sequences
of 5~8 consecutive digits, 38% of which could be fur-
ther classified as dates. They also found that repeated
days/months and holidays are popular, and when non-
digits are paired with dates, they are most commonly
single-characters or names of months.

In 2014, Li et al. [34] showed that Chinese users
tend to insert Pinyins and dates into their passwords.
However, many other important semantic patterns (e.g.,
Pinyin name and mobile number) are left unexplored. In
addition, we improve upon the processes of data cleaning
(see Sec. 3.2) and tuning of cracking algorithms (see
Sec. 4.1) to advance beyond Li et al.’s measurement
of the strength of Chinese passwords. In 2015, Ji et al.
[30] noted that user-IDs and emails have a great impact
on password security. For instance, 53% of Dodonew
passwords can be guessed by using user-IDs within an
average of 706 guesses. This motivates us to investigate
to what extent the Pinyin names and Chinese-style dates
impact the security of Chinese passwords. In 2018,
AlSabah et al. [2] studied 79,760 passwords leaked from
the Qatar National Bank, customers of which are mainly
Middle Easterners. They observed that over 30% of
passwords contain names, over 5% use a 2-digit birth
year, and 4% include their own phone number in whole
as part of their password.

2.2 Password security

A crucial password research subject is password
strength. Instead of using brute-force attacks, earlier
works (e.g., [32, 43]) use a combination of ad hoc
dictionaries and mangling rules, in order to model the
common password generation practice and see whether
user passwords can be successfully rebuilt in a period of
time. This technique has given rise to automated tools
like John the Ripper (JTR), hashcat and LOphtCrack.
Borrowing the idea of Shannon entropy, the NIST-
800-63-2 guide [10] attempts to use the concept of pass-
word entropy for estimating the strength of password
creation policy underlying a password system. Password
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entropy is calculated mainly according to the length
of passwords and augmented with a bonus for special
checks. Florencio and Herley [19], and Egelman et al.
[17] improved this approach by adding the size of the al-
phabet into the calculation and called the resulting value
loga((al pha.size)Pess1e") the bit length of a password.

However, previous ad hoc metrics (e.g., password
entropy and bit length) have recently been shown far
from accurate by Weir et al. [57]. They suggested that
the approach based on simulating password cracking
sessions is more promising. They also developed a novel
method that first automatically derives word-mangling
rules from password datasets by using PCFG, and then
instantiates the derived grammars by using string seg-
ments from external input dictionaries to generate guess-
es in decreasing probability order [58]. This PCFG-
based cracking approach is able to crack 28% to 129%
more passwords than JTR when allowed the same guess
number. It is considered as a leading password cracking
technique and used in a number of recent works [36,56].

Differing from the PCFG-based approach, Narayanan
and Shmatikov [40] introduced the Markov-Chain theo-
ry for assigning probabilities to letter segments, which
substantially reduces the password search space. This
approach was tested in an experiment against 142 re-
al user passwords and could break 68% of them. In
2014, by utilizing various normalization and smoothing
techniques from the natural language processing domain,
Ma et al. [36] systematically evaluated the Markov-based
model. They found it performs significantly better than
the PCFG-based model at large guesses (e.g., 2°°) in
some cases when parameterized appropriately. In this
work, we perform extensive experiments by using both
models to evaluate the strength of Chinese passwords.

When these password models are coupled with tools
(e.g., AUTOFORGE [63]) that can automatically forge
valid online login requests from the client side, server-
side mechanisms like rate-limiting (see Sec. 5.2.2 of
[25]) and password leakage detection [31] become nec-
essary. However, in reality, few sites have implemented
proper countermeasures to thwart online guessing. A-
mong the 182 sites in the Alexa Top 500 sites in the
US that Lu et al. [35] were able to examine, 131 sites
(72%) allow frequent unsuccessful login attempts, and
another 28 sites (15%) can be easily locked out, leading
to denial of service attacks. This further suggests the
necessity of our work—understanding the strength of
Chinese passwords against online guessing.

3 Characteristics of Chinese passwords

We now investigate Chinese password characteristics,
most of which are underexplored. In addition, we discuss
weaknesses in previous major studies [26,34].

3.1 Dataset and ethics consideration

Our empirical analysis employs six password datasets
from Chinese websites and three password datasets from
English websites. In total, these nine datasets consist of
106.3 million real-life passwords. As summarized in Ta-
ble 1, these nine datasets are different in terms of service,
language, culture, and size. The role of each dataset
will be specified in Sec. 4 when performing strength
comparison. They were hacked and made public on the
Internet between 2009 and 2012, and may be a bit old.
However, they can represent current passwords due to
two reasons. First, Bonneau has shown that “passwords
have changed only marginally since then (1990)” [7].
Second, the password ecosystem evolves very slowly.
A number of recent researches (see [21, 24, 55]) reveal
that password guidance and practices implemented on
leading sites have seldom changed over time.

We realize that though publicly available and widely
used in the literature [36, 52, 56], these datasets are pri-
vate data. Thus, we only report the aggregated statistical
information, and treat each individual account as confi-
dential so that using it in our research will not increase
risk to the corresponding victim, i.e., no personally
identifiable information can be learned. Furthermore,
these datasets may be exploited by attackers as cracking
dictionaries, while our use is both beneficial for the
academic community to understand password choices
of Chinese netizens and for security administrators to
secure user accounts. As our datasets are all publicly
available, the results in this work are reproducible.

3.2 Data cleaning

We note that some original datasets (e.g., Rockyou and
Tianya) include un-necessary headers, descriptions, foot-
notes, password strings with len>100, etc. Thus, before
any exploration, we first launch data cleaning. We
remove email addresses and user names from the original
data. As with [36], we also remove strings that in-
clude symbols beyond the 95 printable ASCII characters.
We further remove strings with len>30, because after
manually scrutinizing the original datasets, we find that
these long strings do not seem to be generated by users,
but more likely by password managers or simply junk
information. Moreover, such unusually long passwords
are often beyond the scope of attackers who care about
cracking efficiency [4]. In all, the fraction of excluded
passwords is negligible (see the last column but two in
Table 1), yet this cleaning step unifies the input of crack-
ing algorithms and simplifies the later data processing.
We find that either Tianya or 7k7k has been contam-
inated: there is a non-negligible overlap between the
Tianya dataset and 7k7k dataset (i.e., 40.85% of 7k7k
and 24.62% of Tianya). More specifically, we were first
puzzled by the fact that the password “111222tianya”
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Table 1: Data cleaning of the password datasets leaked from nine web services (“PWs” stands for passwords).

Dataset | Web service Language Leaked Time Original PWs | Miscellany Length>30 Removed % |After cleaning Unique PWs
Tianya Social forum Chinese Dec. 2011 31,761,424 860,178 5 2.71% 30,901,241 12,898,437
7k7k Gaming Chinese Dec. 2011 19,138,452 | 13,705,087 10,078 71.66%* 5,423,287 2,865,573
Dodonew | E-commerce&Gaming Chinese Dec. 2011 16,283,140 10,774 13,475 0.15% 16,258,891 10,135,260
178 Gaming Chinese Dec. 2011 9,072,966 0 1 0.00% 9,072,965 3,462,283
CSDN Programmer forum Chinese Dec. 2011 6,428,632 355 0 0.01% 6,428,277 4,037,605
Duowan | Gaming Chinese Dec. 2011 5,024,764 42,024 10 0.83% 4,982,730 3,119,060
Rockyou | Social forum English Dec. 2009 32,603,387 18,377 3140 0.07% 32,581,870 14,326,970
Yahoo Portal(e.g., E-commerce) English July 2012 453,491 10,657 0 2.35% 442,834 342,510
Phpbb Programmer forum English Jan. 2009 255,421 45 3 0.02% 255,373 184,341

*We remove 13M duplicate accounts from 7k7k, because we identify that they are copied from Tianya as we will detail in Section 3.2.

was originally in the top-10 most popular list of both
datasets. We manually scrutinize the original datasets
(before removing the email addresses and user names)
and are surprised to find that there are around 3.91 mil-
lion (actually 3.91*2 million due to a split representation
of 7k7k accounts, as we will discuss later) joint accounts
in both datasets. In Appendix A, we provide strong
evidence that someone has copied these joint accounts
from Tianya to 7k7k, but not from 7k7k to Tianya as
concluded in previous major studies [26,34].

3.3 Password characteristics

Language dependence. There is a folklore that user-
generated passwords are greatly influenced by their na-
tive languages, yet so far no large-scale quantitative
measurement has ever been given. To fill this gap,
we first illustrate the character distributions of the nine
datasets, and then measure the closeness of passwords
with their native languages in terms of inversion number
of the character distributions (in descending order).

As expected, passwords from different language
groups have significantly varied letter distributions (see
Fig. 1). What’s unexpected is that, even though
generated and used in vastly diversified web services,
passwords from the same language group have quite
similar letter distributions. This suggests that, when
given a password dataset, one can largely determine
what the native language of its users is by investigating
its letter distribution. Arranged in descending order, the
letter distribution of all Chinese passwords is aineo
hglwuyszxqcdjmbtfrkpv, while this distribution for
all English passwords is aeionrlstmcdyhubkgpjviw
zxq. While some letters (e.g., ‘a’, ‘e’ and ‘i’) occur
frequently in both groups, some letters (e.g., ‘q” and ‘r’)
only occur frequently in one group. Such information
can be exploited by attackers to reduce the search space
and optimize their cracking strategies. Note that, here
all the percentages are handled case-insensitively.

While users’ passwords are greatly affected by their
native languages, the letter frequency of general
language may be somewhat different from the letter
frequency of passwords. To what extent do they differ?
According to Huang et al’s work [28], the letter

distribution of Chinese language (i.e., written Chinese
texts like literary work, newspapers and academic
papers), when converted into Chinese Pinyin, is
inauhegoyszdjmxwgbctlpfrkv.  This shows that
some letters (e.g., ‘1’ and ‘w’), which are popular in
Chinese passwords, appear much less frequently in
written Chinese texts. A plausible reason may be that
‘1’ and ‘w’ is the first letter of the family names 1i and
wang (which are the top-2 family names in China),
respectively, while Chinese users, as we will show, love
to use names to create their passwords.

A similar observation holds for passwords of English
speaking users. The letter distribution of English lan-
guage (i.e., etaoinshrdlcumwfgypbvkjxqz) is from
www.cryptograms.org/letter-frequencies.php. For exam-
ple, ‘t’ is common in English texts, but not so common
in English passwords. A plausible reason may be that ‘t’
is used in popular words like the, it, this, that, at,
to, while such words are rare in passwords.

To further explore the closeness of passwords with
their native languages and with the passwords from other
datasets, we measure the inversion number of the letter
distribution sequences (in descending order) between
two password datasets (as well as languages). The results
are summarized in Table 2. “Pinyin_fullname” is a
dictionary consisting of 2,426,841 unique Chinese full
names (e.g., wanglei and zhangwei), “Pinyin_word” is
a dictionary consisting of 127,878 unique Chinese words
(e.g., chang and cheng), and these two dictionaries are
detailed in Appendix B. Note that the inversion number
of sequence A to sequence B is equal to that of B to A.
For instance, the inversion number of inauh to aniuh is
3, which is equal to that of aniuh to inauh.

As shown in Table 2, the inversion number of letter
distributions between passwords from the same language
group is generally much smaller than that of passwords
from different language groups. This value is also
distinctly smaller than that of the letter distributions
between passwords and their native language (see the
bold values in Table 2). The latter is less expected. All
this indicates that passwords from different languages are
intrinsically different from each other in letter distribu-
tions, and that passwords are close to their native lan-
guage yet the distinction is still significant (measurable).
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Table 2: Inversion number of the letter distributions (in descending order) between two datasets.

Tianya 7k7k 178 CSDN Dodonew Duowan Ael:ecl?\l;s litgssgz fulllpézﬁlel Pg,l(};g Rockyou Yahoo Phpbb hAs 1}11 l]inwgs la];:lgiggz

Tianya 0 15 22 42 15 17 14 40 32 37 100 100 113 100 99

7k7k 15 0 23 31 14 10 13 41 39 38 105 101 112 105 96

Dodonew 22 23 0 42 21 15 12 52 40 49 94 92 105 94 99

178 42 31 42 0 41 35 32 56 48 47 134 130 141 134 125

CSDN 15 14 21 41 0 12 15 45 39 42 95 95 106 95 96

Duowan 17 10 15 35 12 0 9 49 39 44 99 97 110 99 98
All_Chinese_PWs 14 13 12 32 15 9 0 44 34 43 104 102 115 104 101
Chinese_language 40 41 52 56 45 49 44 0 38 27 118 114 123 118 113
Pinyin_fullname 32 39 40 48 39 39 34 38 0 31 124 122 135 124 123
Pinyin_word 37 38 49 47 42 44 43 27 31 0 115 113 124 115 112
Rockyou 100 105 94 134 95 99 104 118 124 115 0 12 23 0 47

Yahoo 100 101 92 130 95 97 102 114 122 113 12 0 15 12 39

Phpbb 113 112 105 141 106 110 115 123 135 124 23 15 0 23 44
All_English_ PWs 100 105 94 134 95 99 104 118 124 115 0 12 23 0 47
English_language 99 96 99 125 96 98 101 113 123 112 47 39 44 47 0

Note that, among all Chinese datasets, Duowan has
the least inversion number (i.e., 9 in dark gray) with the
dataset “All_Chinese_PWs”. This indicates that Duowan
passwords are likely to best represent general Chinese
web passwords, and thus Duowan will be selected as the
training set for attacking other Chinese datasets (see Sec
5). For a similar reason, Rockyou will be selected as the
training set when attacking English passwords.

Length distribution. Fig. 2 depicts the length distri-
butions of passwords. Irrespective of the web service,
language and culture differences, the most common pass-
word lengths of every dataset are between 6 and 10,
among which length-6 and 8 take the lead. Merely
passwords with lengths of 6 to 10 can account for more
than 75% of every entire dataset, and this value will rise
to 90% if we consider passwords with lengths of 5 to
12. Very few users prefer passwords longer than 15
characters. Notably, people seem to prefer even lengths
over odd ones. Another interesting observation is that,
CSDN exhibits only one peak in its length distribution
curve and has many fewer passwords (i.e., only 2.16%)
with length<8. This might be due to the password policy
that requires the length to be no shorter than 8 on this site.

Frequency distribution. Fig. 3 portrays the frequency
vs. the rank of passwords from different datasets in a
log-log scale. We first sort each dataset according to
the password frequency in descending order. Then, each
individual password will be associated with a frequency
fr, and its rank in the frequency table is denoted by
r. Interestingly, the curve for each dataset closely ap-

proximates a straight line, and this trend will be more
pronounced if we take all the nine curves as a whole.
This well accords with the Zipf’s law [53]: f, and r
follow a relationship of the type f, =C-r  —C-(r —
1) =~ C-s-r!, where C €[0.01, 0.06] and s €[0.15,
0.40] are constants. Particularly, 1 — s is the absolute
value of the Zipf linear regression line’s slope. The
Zipf theory indicates that the popularity of passwords
decreases polynomially with the increase of their rank.
This further implies that a few passwords are overly
popular (explaining why online guessing [56] can be
effective, even if security mechanisms like rate-limiting
and suspicious login detection [16] are implemented
at the server), while the least frequent passwords are
very sparsely scattered in the password space (explaining
why offline guessing attackers need to consider cost-
effectiveness [4] and weigh when to stop).

Top popular passwords. Table 3 shows the top-10
most frequent passwords from different services. The
most frequent password among all datasets is “123456”,
with CSDN being the only exception due to its password
policy that requires passwords to be of length 8 (see
Fig. 2). “111111” follows on the heel. Other popular
Chinese passwords include “123123”, “123321” and
“123456789”, all composed of digits and in simple
patterns such as repetition and palindrome. Love also
shows its magic power: “5201314”, which has a sim-
ilar pronunciation of “I love you forever and ever” in
Chinese,” appears in the top-10 lists of four Chinese

2 https://ninchanese.com/blog/2016/05/20/520-chinese-love-word-number/
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Table 3: Top-10 most popular passwords of each dataset.

Rank Tianya 7k7k  Dodonew 178 CSDN Duowan | Rockyou Yahoo Phpbb

1 123456 123456 123456 123456 123456789 123456 123456 123456 123456

2 111111 0 al23456 111111 12345678 111111 12345 password password

3 000000 111111 123456789  zz12369 11111111 123456789 |123456789  welcome phpbb

41| 123456789 123456789 111111  qiulaobai  dearbook 123123 | password ninja  qwerty

5 123123 123123 5201314 123456aa 00000000 000000 | iloveyou abc123 12345

6 123321 5201314 123123 wmsxiel23 123123123  5201314| princess 123456789 12345678

7 5201314 123 a321654 1231231234567890 123321 123321 12345678  letmein

8 12345678 12345678 12345 000000 88888888  al23456| rockyou sunshine 111111

9 666666 12345678 000000  qq66666 111111111 suibian| 12345678  princess 1234

10 111222tianya wangyut2  123456a  w2w2w2 147258369 12345678 abc123 qwerty 123456789

Sum of top-10 || 2,297,505 440,300 533,285 793,132 670,881 338,012 669,126 4,476 7,135

Total accounts || 30,901,241 5,423,287 16,258,891 9,072,965 6,428,277 4,982,730|32,581,870 442,834 255,373

% of top-10 7.43% 8.12% 3.28% 8.74% 10.44% 6.78% 2.05% 1.01%  2.79%
Table 4: Top-3 structural patterns in two user groups (each % is taken by dividing the corresponding total accounts).
Top-3 patterns Chinese password datasets Average of Top-3 patterns| English password datasets ~ Average of
in Chinese PWs| Tianya 7k7k Dodonew 178 CSDN Duowan Chinese PWs|| in English PWs| Rockyou Yahoo Phpbb English PWs
D(e.g., 123456)| 63.77% 59.62% 30.76% 48.07 % 45.01% 52.84% 52.93% || L(e.g., abcdef)| 41.69% 33.03% 50.07 % 41.59%
LD(e.g., 2a12345)| 14.71% 17.98% 43.50% 31.12% 26.14% 23.97% 23.72%||LD(e.g., abc123)| 27.70% 38.27% 19.14% 28.37%
DL(e.g., 12345a)| 4.12% 391% 7.55% 6.25% 5.88% 5.83% 5.25%|| D(e.g., 123456)| 15.94% 5.89% 12.06% 11.30%
Sum of top-3| 82.61% 81.51% 81.80% 85.45% 77.03% 82.64% 81.90% Sum of top-3| 85.33% 77.19% 81.25% 81.26%

datasets. In contrast, popular ones in English datasets
tend to be meaningful letter strings (e.g., “sunshine”
and “letmein”). The eternal theme of love—frankly,
“iloveyou” or perhaps euphemistically, “princess”—
also show up in top-10 lists of English datasets. Our
results confirm the folklore [50] that “back at the dawn of
the Web, the most popular password was 12345. Today,
it is one digit longer but hardly safer: 123456.”

It is interesting to see that only the top-10 most popular
ones account for as high as 6.78%~10.44% of each
entire dataset, with Dodonew being the only exception.
However, this figure for Dodonew even achieves 3.24%,
while the English datasets are all below 2.80%. This
indicates that top-popular Chinese passwords are more
concentrated than their English counterparts, which is
likely to make Chinese passwords more vulnerable to
online guessing. This will be confirmed in Sec. 4.1.

Top popular structures. We have seen that digits are
popular in top-10 passwords of Chinese datasets. Are
they also popular in the whole datasets? We investigate
the frequencies of password patterns that involve digits,
and show the results of the top 3 most frequent ones
in the left hand of Table 4. The first column of the
table denotes the pattern of a password as in [58] (i.e.,
L denotes a lower-case sequence, D for digit sequence,
U for upper-case sequence, S for symbol sequence, and
the structure pattern of the password “Wangleil23” is
ULD). Over 50% of the average Chinese web passwords
are only composed of digits, while this value for English
datasets is only 11.30%. In contrast to first D then DL,
English speaking users prefer the patterns L and LD.

It is somewhat surprising to see that the sum of merely
the top-3 digit-based patterns (i.e., D, LD, and DL)

accounts for an average of 81.90% for Chinese dataset-
s. In contrast, English speaking users favor letter- re-
lated patterns, and on average, their top-3 structures
(i.e., L, LD and D) also account for slightly over 80%.
This indicates that, unlike English speaking users, Chi-
nese speaking users are inclined to employ digits to build
their passwords — digits in Chinese passwords serve
the role of letters that play in English passwords, while
letters in Chinese passwords mainly come from Pinyin
words/ names. This is probably due to that most Chinese
users are unfamiliar with English language (and Roman
letters on the keyboard). If this is the case, is there any
meaningful information in these digit sequences?

Semantics in passwords. As there is little existing
work, to gain an insight into the underlying seman-
tic patterns, we have to construct semantic dictionaries
from scratch by ourselves. Finally, we construct 22
dictionaries of different semantic categories (see the first
column in Table 5). The detailed information about
how we construct them is referred to Appendix B. To
eliminate ambiguities, we use the “left-most longest
match” when matching a password with each item in
our dictionaries. Table 5 shows the prevalence of various
semantic patterns in passwords. Lots of English speaking
users tend to use raw English words as their password
building blocks: 25.88% insert a 57 -letter word into their
passwords. Passwords with a 5T -letter word account
for over a third of the total passwords with a 5T-letter
substring. In comparison, fewer Chinese users (2.41%)
choose English words to build passwords, yet they prefer
Pinyin names (11.50%), especially full names.

Particularly, of all the Chinese passwords (22.42%)
that include a 57-letter substring, more than half
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Table 5: Popularity of 22 kinds of semantics in passwords (by matching our 22 semantic dictionaries).*

Semantic dictionary || Tianya  7k7k Dodonew 178  CSDN Duowan Avg Chinese |Rockyou Yahoo Phpbb Avg English
English_word_lower(len > 5)[| 2.08% 2.05% 3.69% 0.83% 341% 2.37% 2.41%| 23.54% 29.49% 24.60% 25.88%
English_firstname(len > 5) || 1.11% 0.93%  2.23% 0.53% 147% 1.19% 1.24%| 18.80% 1521% 9.20% 14.40%
English_lastname(len > 5) || 2.16% 2.34%  4.48% 193% 3.65% 2.77% 2.89%| 20.16% 20.82% 15.22% 18.73%
English_fullname(len > 5) || 4.03% 4.30%  6.14% 4.99% 6.58% 5.07% 5.18% | 13.05% 11.35% 8.25% 10.88%
English_name_any(len > 5)|| 4.60% 4.65%  6.32% 520% 6.87% 5.18% 5.35%| 27.67% 26.51% 18.71% 24.30%
Pinyin_word_lower(len > 5)|| 7.34% 8.56% 10.82% 10.24% 11.51% 9.92% 9.73%| 333% 299% 2.50% 2.94%
Pinyin_familyname(len > 5) | 1.35% 1.64%  2.34% 224% 247% 1.88% 1.99%| 0.05% 0.07% 0.07% 0.06%
Pinyin_fullname(len > 5) || 8.39% 9.87% 12.91% 11.81% 13.14% 11.29% 11.24% | 4.79% 4.17% 3.35% 4.10%
Pinyin_name_any(len > 5) || 8.56% 10.05% 13.31% 12.11% 13.46% 11.53% 11.50%| 4.80% 4.18% 3.36% 4.11%
Pinyin_place(len > 5) || 1.24% 127% 1.64% 158% 2.12% 1.48% 1.55%| 0.20% 0.18% 0.16% 0.18%

PW _with_a_5" -letter_substring || 18.51% 19.99% 26.95% 19.38% 28.03% 21.70% 22.42% | 71.69% 75.93% 68.66 % 72.09 %
Date YYYY || 1438% 12.82% 12.45% 10.06% 16.91% 14.33% 13.49%| 4.34% 430% 2.77% 3.80%

Date YYYYMMDD || 6.06% 5.42%  3.93% 3.94% 8.78% 6.17% 572%| 0.10% 0.05% 0.09% 0.08%

Date MMDD || 24.99% 19.97% 17.08% 16.46% 24.45% 22.59% 20.92%| 1.53% 4.46% 3.59% 5.20%

Date .YYMMDD ||21.29% 15.89% 12.70% 13.09% 20.67% 18.28% 16.99% | 3.24% 123% 1.55% 2.01%
Date_any_above ||36.61% 30.39% 26.66% 27.07% 35.30% 33.58% 31.60% | 11.33% 8.77% 6.45% 8.85%
PW_with_a_digit || 89.49% 88.42% 88.52% 90.76% 87.10% 89.26% 88.93% | 54.04% 64.74% 46.14% 54.97%

PW _with_a_4"-digit_substring || 81.64% 76.98% 71.90% 78.76% 78.38% 80.60% 78.04% | 24.712% 21.85% 19.33% 21.97%
PW _with_a_6T-digit_substring || 75.59% 68.32% 61.16% 70.02% 69.87% 73.10% 69.68% | 17.77% 8.48% 11.28% 12.51%
PW_with_a_8"-digit_substring || 28.04% 27.56% 26.53% 26.37% 49.73% 31.03% 31.54%| 6.88% 2.50% 3.73% 4.37%
Mobile_Phone_Number(11-digit) || 2.90% 1.76% 2.63% 3.97% 3.75% 2.44% 291%| 0.07% 0.01% 0.02% 0.03%
PW_with_a_117"-digit_substring || 4.71% 2.09% 3.39% 5.08% 7.57% 3.35% 436%| 0.75% 0.17% 0.18% 0.37%

“Each percentage (%) is counted by the rule of “left-most longest” match and taken by dividing the corresponding password dataset size.

(11.24%) include a 5" -letter Pinyin full name. There is
also 4.10% of English passwords that contain a 5" -letter
full Pinyin name. A reasonable explanation is that many
Chinese users have created accounts in these English
sites. For instance, the popular Chinese Pinyin name
“zhangwei” appears in both Rockyou and Yahoo. We
also note that English names are also widely used in
English passwords, yet full names are less popular than
last names and first names.

Equally interestingly, we find that, on average, 16.99%
of Chinese users insert a six-digit date into their pass-
words. Further considering that users love to include self
information into passwords [9, 56], such dates are likely
to be users’ birthdays. Besides, about 30.89% of Chinese
speaking users use a 47-digit date to create passwords,
which is 3.59 times higher than that of English speaking
users (i.e. 8.61%). Also, there are 13.49% of Chinese
users inserting a four-digit year into their passwords,
which is 3.55 times higher than that of English speaking
users (3.80%, which is comparable to the results in [14]).
We note that there might be some overestimates, for
there is no way to definitely tell apart whether some digit
sequences are dates or not, e.g., 010101 and 520520.
These two sequences may be dates, yet they are also
likely to be of other semantic meanings (e.g., 520520
sounds like “I love you I love you”). As discussed later,
we have devised reasonable ways to address this issue. In
all, dates play a vital role in passwords of Chinese users.

We mainly pay attention to length-4, 6 and 8 digits
in passwords, because: 1) Length-4 and 6 are the most
widely used lengths of PINs in the West and Asia; and 2)
6&8 are the two most frequent password lengths (see Fig.
2). It is interesting to see that 2.91% of Chinese users are
likely to use their 11-digit mobile numbers as passwords,
making up 39.59% of all passwords with an 117-digit

substring. On average, 12.39% of Chinese passwords
are longer than 11. Thus, if an attacker can determine
(e.g., by shoulder-surfing) that the victim uses a long
password, she is likely to succeed with a high chance
of 23.48%(= &%5%) by just trying the victim’s 11-
digit mobile number. This reveals a practical attacking
strategy against long Chinese passwords.

Note that there are some unavoidable ambiguities
when determining whether a text/digit sequence belongs
to a specific dictionary, and an improper resolution of
these ambiguities would lead to an overestimation or
underestimation.  Here we take “YYMMDD” for
illustration. For example, both 111111 and 520521 fall
into “YYMMDD” and are highly popular. However, it is
more likely that users choose them simply because they
are easily memorable repetition numbers or meaningful
strings, and counting them as dates would lead to an
overestimation.  Yet they can really be dates (e.g.,
111111 stands for “Nov. 11th, 2011” and 520131 for
“Jan 31th, 1952”) and completely excluding them from
“YYMMDD” would lead to underestimation of dates.

Thus, we assume that user birthdays are randomly
distributed and assign the expectation of the frequency of
dates (denoted by E), instead of zero, to the frequency of
these abnormal dates. We manually identify 17 abnormal
dates in the dictionary “YYMMDD”, each of which
originally has a frequency> 10E and appears in every
top-1000 list of the six Chinese datasets. In this way, the
ambiguities can be largely resolved. We similarly tackle
16 abnormal items in “MMDD”. The detailed info about
these abnormal dates can be found in Appendix B. As for
the other 19 dictionaries in Table 5, few abnormal items
can be identified, and they are processed as usual.
Summary. We have measured nine password datasets in
terms of letter distribution, length distribution, frequency
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distribution and semantic patterns. To our knowledge,
most of these fundamental characteristics have at most
been mentioned/exampled in the literature (see [26, 30,
34,36, 53]) but never systematically examined. We have
identified a number of similarities (e.g., frequency distri-
bution and the theme of love) and differences (e.g., letter
distribution, structural patterns, and semantic patterns)
between passwords of these two user groups.

4 Strength of Chinese web passwords

Now we employ two state-of-the-art password attacking
algorithms (i.e., PCFG-based [58] and Markov-based
[36]) to evaluate the strength of Chinese web passwords.
We further investigate whether the characteristics iden-
tified in Sec. 3.3 (e.g., dates and Pinyin names) can be
practically exploited to facilitate password guessing.
Necessity of pairing passwords by service type. There
are a number of confounding factors that impact pass-
word security, among which language, service type,
and password policy are the three most important ones
[29, 53, 56]. As shown in [36, 53], except for CSDN
that imposes a length 8 policy, all our datasets (Table
1) reflect no explicit policy requirements. It has recently
been revealed that users often rationally choose robust
passwords for accounts perceived to be important [46],
while knowingly choose weak passwords for unimpor-
tant accounts [17]. Since accounts of the same service
would generally have the same level of value for users,
we divide datasets into three pairs according to their
types of services (i.e., Tianya vs. Rockyou, Dodonew
vs. Yahoo, and CSDN vs. Phpbb) for fairer strength
comparison, as opposed to existing works [7, 26, 34]
that do not take into account the site service type. We
emphasize that it is less reasonable if one compares
Dodonew passwords (from an e-commerce site) with
Phpbb passwords (from a low-value programmer forum):
Even if Dodonew passwords are stronger than Phpbb
passwords, one can not conclude that Chinese passwords
are more secure than English ones, because there is a
potential that Dodonew passwords will be weaker than
Yahoo e-commerce passwords.

4.1 PCFG-based attacks

The PCFG-based model [58] is one of the state-of-the-art
cracking models. Firstly, it divides all the passwords in a
training set into segments of similar character sequences
and obtains the corresponding base structures and their
associated probabilities of occurrence. For example,
“wanglei@123” is divided into the L segment “wanglei”,
S segment “@” and D segment “123”, resulting in a
base structure L;S;D3. The probability of 17S;D3 is

#ofL781Ds - Gych information is used to generate the

#of base structures *
probabilistic context-free grammar.

Then, one can derive password guesses in decreasing
order of probability. The probability of each guess is the
product of the probabilities of the productions used in its
derivation. For instance, the probability of “1liwei@123”
is computed as P(“liwei@123”)= P(LsS;D3)- P(Ls —
liwei)- P(S; — @)- P(D3 — 123). In Weir et al.’s original
proposal [58], the probabilities for D and S segments
are learned from the training set by counting, yet L
segments are handled either by learning from the training
set or by using an external input dictionary. Ma et al.
[36] revealed that PCFG-based attacks with L segments
directly learned from the training set generally perform
better than using an external input dictionary. Thus, we
prefer to instantiate the PCFG L segments of password
guesses by directly learning from the training set.

We divide the nine datasets into two groups by lan-
guage. For the Chinese group of test sets, we randomly
select 1M passwords from the Duowan dataset as the
training set (denoted by “Duowan_1M”). The reason is
that: Duowan has the least inversion number with the
dataset “All Chinese PWs” (see Sec. 3.3) and is likely to
best represent general Chinese web passwords. Similar-
ly, for the English test sets, we select 1M passwords from
Rockyou as the training set. Since we have only used
part of Duowan and Rockyou, their remaining passwords
and the other 7 datasets are used as the test sets. The
attacking results on the Chinese group and English group
are depicted in Fig. 4(a) and Fig. 4(b), respectively.
Bifacial-security. When the guess number (i.e., search
space size) allowed is below about 3,000, Chinese pass-
words are generally much weaker than English pass-
words from the same service (i.e., Tianya vs. Rock-
you, Dodonew vs. Yahoo, and CSDN vs. Phpbb).
For example, at 100 guesses, the success rate against
Tianya, Dodonew and CSDN is 10.2%, 4.3% and 9.7%,
respectively, while their English counterparts are 4.6%,
1.9% and 3.7%, respectively. However, when the search
space size is above 10,000, Chinese web passwords are
generally much stronger than their English counterparts.
For example, at 10 million guesses, the success rate
against Tianya, Dodonew and CSDN is 37.5%, 28.8%
and 29.9%, respectively, while their English counterparts
are 49.7%, 39.0% and 41.4%, respectively. The strength
gap will be even wider when the guess number further
increases. This reveals a reversal principle, i.e., the
bifacial-security nature of Chinese passwords: they are
more vulnerable to online guessing attacks (i.e., when the
guess number allowed is small) than English passwords;
But out of the remaining Chinese passwords, they are
more secure against offline guessing. This reconciles
two drastically conflicting claims (see Sec. 1.1) made
about the strength of Chinese passwords. This bifacial-
security is highly due to the bifacial-density nature of
digit-based passwords: Top digit-based passwords are
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Figure 4: General and our improved PCFG attacks on different groups of datasets. Our algorithm gains tangible advantages.

more converging (see Table 3), while digits in general
are more random (and diverging) than letters.

A weakness in PCFG. We observe that, the original
PCFG algorithm [36, 58] inherently gives extremely low
probabilities to password guesses (e.g., “1q2w3e4r”
and “1a2b3c4d”) that are of a monotonically long base
structure (e.g., D;Ly{DiL{D; L;D;Ly, or (D1|_1)4 for
short). For example, P(“1q2w3e4r”) = P((DiL;)4)
-P(D|—>1)- P(L] — q)- P(D] — 2)- P(L] —>W)-
P(D;—3)- P(L;—e)- P(D; —4) -P(L; — r) can hardly
be larger than 1077, for it is a multiplication of nine
probabilities. Thus, some guesses (e.g., “1q2w3e4r”
and “a12b34c56”) will never appear in the top-107
guess list generated by the original PCFG algorithm,
even if they are popular (e.g, “1q2w3edr” appears in the
top-200 list of every dataset). The essential reason is
that the PCFG algorithm simply assumes that each
segment in a structure is independent. Yet, in many
situations this is not true. For instance, the four D;
segments and L; segments in the structure (DjL;)4 of
password “1q2w3e4r” are evidently interrelated with
each other (i.e., D4: 1234 and L4: qwer).

Our solution. To address this problem, we specially
tackle a few password structures that are long but simple
alternations of short segments by treating them as short
structures. For instance, (DiL;)4 is converted to Dyl4,
and (DiL;)3 to DiLg. In this way, the probability of
“1q2w3ed4r” now is computed as P(“1q2w3e4dr”)=
P((D1L1)4) P((D1L1)4 — D4L4)~P(D4 —1234)-
P(L4 — qwer). Our approach is language-agnostic and
constitutes a general amendment to the state-of-the -art
PCFG-based algorithm in [36].

To further exploit the characteristics of Chinese pass-
words, we insert the “Pinyin_name_any” dictionary and
the six-digit date dictionary (see Sec. 3.3) into the o-
riginal PCFG L-segment and D-segment dictionaries,
respectively. Details about this insertion process and
our improved algorithm for password-guess generation
are shown in Algorithm 1. The resulting changes to the
original PCFG grammars are given in Table 6.

Fig. 4(c) illustrates that, when the guess number al-
lowed is small (e.g., 103), our improved attack exhibits
little improvement; As the guess number grows, the

Algorithm 1: Our improved PCFG-based attack

Input: A training set S; A name list nameList; A date list
dateList; A parameter k indicating the desired size of
the PW guess list that will be generated (e.g., k = 107)
Output: A PW guess list L with the top-k items
1 Training (lastly tackle monotonically long PWs:)

2 for password € S do

3 for segment € splitToSegments(password) do

4 | segmentSet.insert(segment)

5 baseStructure < getBaseStructure(password)

6 if monotonicallyLong(baseStructure) then

7 trans formStructureSet .insert (baseStructure)

8 baseStructure <

convertToshort(baseStructure)

9 baseStructureSet.insert (baseStructure)
10 | trainingSet.insert(password)
11 Append name and date lists to the learned segment list:
12 for name € nameList do
13 correctedCount =

totalOverlapNamelnSegmentSet *
nameList.getCount (name) /total OverlapNameInNameList

14 if name ¢ segmentSet and correctedCount > 1 then
15 | segmentSet.insert(name,correctedCount)
16 for date € dateList do
17 if date ¢ segementSet then
18 | segementSet.insert(date)

19 Pioduze k guesses: As with [36] and the details are omitted.

Table 6: Changes caused to the original PCFG grammars

Training set Base structures L segments D segments S segments
Duowan_IM 890540  155693+24416 465157+20341 865+0
Duowan_All 2096140  559017+98654 182440449744 2417+0

improvement increases. For example, at 10° guesses,
there is 0.09%~0.85% improvement in success rate; at
10° guesses, this figure is 1.32~4.32%; at 107 guesses,
this figure reaches 1.70%~4.29%. This indicates that
the vulnerable behaviors of using monotonically long
passwords, Pinyin names and birthdays help an attacker
reduce her search space, and this issue is more serious
when large guesses are allowed.

Comparison. Li et al. [34] reported that using 2M
Dodonew passwords as the training set and at 10'° guess-
. __# of successfully cracked PWs
?S’ their best success rates (= "~ the size of test se )
is about 17.30%. However, against the same Chinese
test sets, our improved attack can achieve much higher

success rates (29.41%~39.47%) at only 107 guesses.
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This means that we can crack 70% to 128% more pass-
words than Li et al.’s best record. Our attacks are better
because: 1) Our training-set (i.e., Duowan) is more ef-
fective than [34], for we find Duowan represents Chinese
password distributions better (see Table 2) than Dodonew
as used in [34]; 2) We optimize PCFG not only through
adding semantic dictionaries as [34] but also through
transforming monotonically long base structures.

The role of Names. In our improved PCFG-based
attacks, external name segments are added into the PCFG
L-segment dictionary during training, and we get glad-
some increases in success rates (see Fig. 4(c)). However,
such improvements are still not so prominent as com-
pared to the prevalence of names in Chinese passwords.
To explicate this paradox, we scrutinize the internal
process of PCFG-based guess generation and manage
to identify its crux. Here we take the improved PCFG at-
tack against Tianya (trained on Duowan) as an example.
During training, we have added 98K name segments (see
Table 6) into the L-segment dictionary.

Fig. 5(a) demonstrates that these 98K name segments
only cover 2.88% of the total L segments of the test set
Tianya. However, the original L segments trained from
Duowan can cover 13.75% of the name segments and
60.59% of the non-name L segments in Tianya. This
suggests that Duowan can well cover the name segments
in the test set Tianya, and thus the addition of some extra
names would have limited impacts. This observation
also holds for the other eight test sets. The detailed
results are summarized in Table 7, where “Duowan1M”
is Duowan_1M for short and “PY_name” is Pinyin_name
for short. The fraction of L-segments in the test set y that
can be covered by the set x is denoted by ColL(x).

Table 7 shows that no matter x=Duowan_IM or
Duowan: 1) Col(x) is at least 11.12 times (= 65.64%/
5.90%) larger than Col(Pinyin_name)-CoL(x); 2) CoL(
Pinyin_name)NColL(x) is at least 1.92 times (=11.35%/
5.90%) larger than ColL(Pinyin_ name)-Col(x). This
suggests that adding extra names into the PCFG
L-segments when training is of limited yields. Note that,
this does not contradict our observation that Pinyin
names are prevalent in Chinese web passwords and pose

Table 8: Five Markov-based attacking scenarios

Attacking scenario || Smoothing Normalization Markov order
#1 Laplace End-symbol 3/4/5
#2 Laplace Distribution 3/4/5
#3 Good-Turing End-symbol 3/4/5
#4 Good-Turing Distribution 3/4/5
#5 Backoff End-symbol Backoff

a serious vulnerability. Actually, this does suggest that
when the training set is selected properly, the name
segments in passwords can be well guessed. Still, when
there is no proper training set available, our improved
attack would demonstrate its advantages (see Fig. 5(b)).
Though our improved PCFG algorithm might not be
optimal, its cracking results represent a new benchmark
that any future algorithm should aim to decisively clear.

Limitations. We mainly investigate the impacts of
names on password cracking, and similar observations
and implications are likely to hold for dates (but with no
confirmation). We leave it as future work. In addition,
as our focus is the overall security of Chinese passwords
(and its comparison with English counterparts), we only
show the overall effectiveness of our improved PCFG
attack. It is also interesting to see to what extent the im-
proved PCFG structure and the usage of Duowan would
respectively have impacts on the cracking effectiveness,
but it is independent of the presented work.

4.2 Markov-based attacks

To show the robustness of our findings about password
security, we further conduct Markov-based attacks.

4.2.1

To make our experiments as reproducible as possible,
we now detail the setups. As recommended in [36],
we consider two smoothing techniques (i.e., Laplace
Smoothing and Good-Turing Smoothing) to deal with
the data sparsity problem and two normalization tech-
niques (i.e., distribution-based and end-symbol-based)
to deal with the unbalanced length distribution problem
of passwords. This brings four attacking scenarios in
Table 8. In each scenario we consider three types of
Markov order (i.e., order-5, 4 and 3) to investigate which
order performs best. It is reported that another scenario
(i.e., backoff with end-symbol normalization) performs
“slightly better” than the above 4 scenarios, yet it is “ap-
proximately 11 times slower, both for guess generation
and for probability estimation” [36]. We also investigate
this scenario and observe similar results. Thus, attackers,
who particularly care about the cost-effectiveness [4], are
highly unlikely to exploit this scenario.

Particularly, there is a challenge to be addressed when
implementing the Good-Turing (GT) smoothing tech-
nique. To our knowledge, we for the first time explicate
how to combine GT and simple GT in Markov-based

Markov-based experimental setups
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Table 7: Coverage of letter (CoL) segments in corresponding test sets (“PY” stands for Pinyin).

Test set ColL ColL CoL(PY_name)n CoL(PY.name)— ColL(DuowanlM) ColL CoL(PY_name) CoL(PY_name) ColL(Duowan)—

’ (PY_name)|(Duowan1M) ColL(Duowan1M) CoL(DuowaniM) —CoL(PY _name)|(Duowan) NColL(Duowan) —ColL(Duowan) Col(PY_name)
Tianya|| 16.63% 67.53% 11.82% 4.81% 55.71% 74.34% 13.75% 2.88% 60.59%
TK7k || 16.70% 71.60% 12.35% 4.35% 59.25% 79.84% 14.49% 2.20% 65.35%
Dodonew || 15.76% 75.79% 11.79% 3.97 % 63.99% 81.19% 13.47% 2.29% 67.72%
1781 20.30% 79.15% 15.42% 4.88 % 63.73% 83.98% 17.49% 2.81% 66.49%
CSDN|| 17.26% 65.64% 11.35% 5.90% 54.28% 72.70% 13.43% 3.83% 59.27%
Duowan|| 18.06% 80.05% 14.38% 3.68% 65.67% 100.00% 18.06% 0.00% 81.94%
Duowan_rest|| 18.07% 75.03% 13.46% 4.61% 61.57% 100.00% 18.07% 0.00% 81.93%

attacks (see details in Appendix C). As with PCFG-
based attacks, in our implementation we use a max-heap
to store the interim results to maintain efficiency. To
produce k=107 guesses, we employ the strategy of first
setting a lower bound (i.e., 10710) for the probability
of guesses generated, then sorting all the guesses, and
finally selecting the top k ones. In this way, we can
reduce the time overheads by 170% at the cost of about
110% increase in storage overheads, as compared to the
strategy of producing exactly k guesses. In Laplace
Smoothing, it is required to add & to the count of each
substring and we set §=0.01 as suggested in [36].

4.2.2 Markov-based experimental results

The experiment results for these five scenarios are quite
similar. Here we mainly show the cracking results of
Scenario #1 in Fig. 6, while the experiment results for
Scenarios #2~#5 are omitted due to space constraints.

We can see that, for both Chinese and English test
sets: (1) At large guesses (i.e., >2*10°), order-4 markov-
chain evidently performs better than the other two or-
ders, while at small guesses (i.e., <106) the larger the
order, the better the performance will be; (2) There is
little difference in performance between Laplace and
GT Smoothing at small guesses, while the advantage of
Laplace Smoothing gets greater as the guess number in-
creases; (3) End-symbol normalization always performs
better than the distribution-based approach, while at
small guesses its advantages will be more obvious. Such
observations have not been reported in previous major
studies [15,36]. This suggests that: 1) At large guesses,
the attacks with order-4, Laplace Smoothing and end-
symbol normalization (see Figs. 6(b) and 6(e)) perform
best; and 2) At small guesses, the attacks preferring
order-5, Laplace Smoothing and end-symbol normaliza-
tion (see Figs. 6(a) and 6(d)) perform best.

Results show that the bifacial-security nature found in
our PCFG attacks (see Sec. 5.1) also applies in all the
Markov attacks. For example, in order-4 markov-chain-
based experiments (see Fig.6(b) and Fig.6(e)), we can
see that, when the guess number is below about 7000,
Chinese web passwords are generally much weaker than
their English counterparts. For example, at 1000 guesses,
the success rate against Tianya, Dodonew and CSDN
is 11.8%, 6.3% and 11.6%, respectively, while their
English counterparts (i.e., Rockyou, Yahoo and Phpbb)
is merely 8.1%, 4.3% and 7.1%, respectively. However,

Table 9: Bifacial-security nature of Chinese passwords."

Attacking scenario Online guessing Offline guessing

Algorithm*[ — Test set 10T 10 10° 10 10° 10° 107
Dodonew 0.0270.044 0.068 0.103 0.150 0.225 0.288

Yahoo 0.008 0.022 0.063 0.136 0.212 0.316 0.390

PCFG Tianya 0.073 0.105 0.138 0.213 0.2950.3550.376
Rockyou_rest|0.020 0.044 0.110 0.214 0.320 0.438 0.497

CSDN 0.070 0.105 0.136 0.189 0.229 0.272 0.300

Phpbb 0.021 0.038 0.087 0.183 0.274 0.369 0.415

Dodonew  [0.024 0.040 0.060 0.0850.1450.2120.305

Yahoo 0.007 0.016 0.043 0.097 0.165 0.261 0.361

Markov Tianya 0.062 0.087 0.118 0.154 0.269 0.386 0.516
Rockyou_rest|0.018 0.035 0.081 0.159 0.259 0.392 0.503

CSDN 0.0370.098 0.116 0.1440.211 0.260 0.316

Phpbb 0.019 0.034 0.071 0.146 0.230 0.333 0.436

TA value in bold green (e.g., the leftmost 0.027) means that: it is

a success-rate under a given guess number (resp. 10') against a
Chinese dataset (resp. Dodonew) and is greater than that of its
English counterpart (resp. Yahoo). A value in bold blue is on the
contrary: it is a guessing success-rate against a English dataset and
greater than that of its Chinese counterpart.

*For both PCFG- and Markov-based attacks, the training set is
Duowan_1M for each Chinese test set and Rockyou_1M for English
test sets. Here the Markov setups are from Scenario#1 in Table 8.
Other Markov scenarios show the same trends.

when the guess number allowed is over 10%, Chinese
web passwords are generally stronger than their English
counterparts. For example, at 10% guesses, the success
rate against Tianya, Dodonew and CSDN is 38.2%,
20.4% and 25.4%, respectively, while their English coun-
terparts is 38.6%, 24.8% and 32.3%, respectively.

As summarized in Table 9, for both PCFG and Markov

attacks, the cracking success-rates against Chinese pass-
words are always higher than those of English passwords
when the guess number is below 10*, while this trend
is reversed when the guess number is above 10*. Here
we mainly use order-4 Markov attacks (see Figs. 6(b)
and 6(e)) as an example, and the other Markov setup
scenarios all show the same trends.
Summary. Both PCFG- and Markov-based cracking re-
sults reveal the bifacial-security nature of Chinese pass-
words: They are more prone to online guessing as
compared to English passwords; But out of the re-
maining Chinese passwords, they are more secure a-
gainst offline guessing. This reconciles the conflicting
claims made in [7, 26, 34]. Alarmingly high crack-
ing rates (40%~50%) highlight the urgency of devel-
oping defense-in-depth countermeasures (e.g., cracking-
resistant honeywords [31] and password-hardening ser-
vices [33]) to alleviate the situation. We provide a large-
scale empirical evidence for the hypothesis raised by
the HCI community [17, 46]: users rationally choose
stronger passwords for accounts with higher value.
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Figure 6: Markov-chain-based attacks on different groups of datasets (scenario #1: Laplace Smoothing and End-Symbol
Normalization). Attacks (a)~(c) use 1 million Duowan passwords as the training set, while attacks (d)~(f) use 1 million Rockyou
passwords as the training set. The reversal principle also holds. The other four scenarios #2~#5 show similar cracking results.

5 Some implications
We now elaborate on lessons learned and key takeaways.

5.1 For password creation policies

Interestingly, 2.18% of the passwords in CSDN are of
length len <7, 97.82% are of length 8-20, no password
is of length len >21. This means that short passwords
(i.e., len <7) in the other eight sites are 14~25 times
higher than CSDN. This also suggests that CSDN has
changed its password policy at least once before the data
breach (i.e., Dec. 2011), but whether the strict policy
(i.e., 8< len <20) is enforced before or later than the
weaker policy (i.e., no length requirement) is unknown.>
Still, what’s certain is that most CSDN passwords are
generated under the strict policy 8< len <20. In contrast,
no apparent policy can be inferred from the Dodonew
data, i.e., neither minimum length (see Fig. 2) nor charset
requirement (see Table 3 and Table 2 of [53]).* However,
Figs. 4 and 6 indicate that, given any guess number below
107, passwords from CSDN are significantly weaker
than passwords from Dodonew. A plausible reason is
that Dodonew provides e-commerce services and users
perceive it as more important. As a result, users “ratio-
nally” [17,46] choose more complex passwords for it.
As for CSDN, since it is only a technology forum, users
knowingly choose weaker passwords for it.

3We note that CSDN enforced the policy 6< len <20 (and no
charset requirement) at Jan. 2015 [55], and currently it requires
passwords to be 11< [en <20 and consist at least a letter and a digit.

“This situation even held at Aug. 2017 (and April 2019): the
length-7 letter string “dodonew” is allowed as the default password,
see https://www.5636.com/netbar/money/15886.html.

In 2012, Bonneau [7] cast doubt on the hypothesis
that users rationally select more secure passwords to
protect their more important accounts. In 2013, Egelman
et al. [17] initiated a field study involving 51 students
and confirmed this hypothesis. In 2018, Stobert and
Biddle [46] surveyed three groups of English speaking
users (i.e., 27 non-experts, 15 experts and 345 MTurk
participants), and their results also corroborated this
hypothesis. Fortunately, our work provides a large-
scale empirical evidence (i.e., on the basis of 6.43M
CSDN passwords and 16.26M Dodonew passwords) that
confirms this hypothesis.

We also note that though the overall security of
Dodonew passwords is higher than that of passwords
from the five other Chinese sites, many seemingly
complex yet popular passwords (e.g., 5201314,
321654a and lovedever) dwelling in Dodonew also
appear in other less sensitive sites. This can be under-
stood: 1) “Users never see other users’ passwords” [47]
(and are unaware of how similar their passwords are
with other users, and thus they may inadvertently
choose popular passwords; 2) Users tend to reuse the
same password across multiple sites [27,42,56]. What’s
more, users generally “show a lack of situation
awareness” [46] and fail to recognize different
categories of accounts [41], and most of them reuse
(84% [27]) or simply modify a password from an
important site for a non-important site.

Further considering the great password burden already
placed on users [8] and the “bounded rationality” [27]
and “finite-effort” [20] of users, we outline the need for
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HCI research to explore nudges that appropriately frame
the importance of accounts and study their impacts on
password creation. When designing password creation
policies, instead of merely insisting on stringent rules,
administrators can employ such nudges to help users
gain more accurate perceptions of the importance of the
accounts to be protected and improve their ability to
recognize different categories of accounts. Both would
help enhance user internal impetus and facilitate users to
responsibly allocate passwords (i.e., selecting one can-
didate from their limited pool of passwords memorized
[41,46]).

In addition, the finding of “bifacial-security nature”
suggests that Chinese passwords are more vulnerable to
online guessing attacks. This is because top popular
Chinese passwords are more concentrated (see Table 3).
Thus, a special blacklist that includes a moderate number
of most common Chinese passwords (e.g., 10K~20K as
suggested in [61]) would be very helpful for Chinese
sites to resist against online guessing. Such a blacklist
can be learned from various leaked Chinese datasets
(see a concrete list at http://t.cn/RG88tvF as built
according to [56]). Any password falling into this list
would be deemed weak. However, it is well known that if
some popular passwords (e.g., woaini1314) are banned,
new popular ones (e.g., wOaini1314) will arise. These
new popular passwords may be out of static blacklists
and subtle to detect. Hence, password creation policies
alone (e.g., length and blacklist rules [25, 55]) are in-
adequate for preventing such weak passwords. An in-
depth defense approach is needed: whenever possible, in
addition to password creation policies, password strength
meters (e.g., fuzzyPSM [54] and Zxcvbn [59]) can be
further employed by security-critical services to detect
and prevent weak passwords.

5.2 For password strength meters

Leading password strength meters (PSMs) employ the
guess number needed for a password-cracking algorithm
(e.g. PCFQG) to break that password as an indicator of
password strength [24]. In Sec. 1, we have exemplified
that the PSMs of four popular services are highly incon-
sistent in assessing the security of (weak) Chinese pass-
words. Failing to provide accurate/coherent feedback on
user password choices would have negative effects such
as user confusion, frustration and distrust [48,60]. Thus,
Carnavalet and Mannan [12] suggested that PSMs “can
simplify challenges by limiting their primary goal only to
detect weak passwords, instead of trying to distinguish a
good, very good, or great password.”

It follows that an essential step of a PSM would be
to identify the characteristics of weak passwords. From
our findings in Section 3.3 and Section 4.1, it is evident
that for passwords of Chinese users, the incorporation of
long Pinyin words or full/family names is an important

evidence/weight for a “weak™ decision. Other signs of
weak Chinese passwords are the incorporation of birth-
dates and simple patterns like repetition, palindrome and
keyboard. As a caveat, even if signs of weak passwords
are found, one cannot simply deem such passwords as
weak and reject them as is done in many high-profile
sites (e.g., Microsoft Azure [18]) and by the “substring
blacklist” approach recommended in [44]. Instead, such
undesirable/insecure signs should be weighted (see some
promising attempts in [54, 59]).

The superiority of our improved PCFG-based attacks
over Li et al.’s [34] (see Sec. 4.1) is partly attributed to
the proper selection of Duowan (instead of Dodonew as
in [34]) as the training set. This indicates that, for a PSM
to be accurate, its training set should be representative
of the password base of the target site. The distance of
letter distributions (see Table 2) would be an effective
metric. In addition, the universal “bifacial-security na-
ture” revealed in Sec. 4 implies that, the language factor
is more impactful than service type. We also find that
CSDN passwords are weaker than Dodonew passwords
(see Figs. 4 and 6), but CSDN imposes a stricter policy
than Dodonew, and this suggests that the service-type
factor might be more impactful than password policy.

Thus, when measuring the letter distributions is infea-
sible, these con-founding factors underlying a password
distribution can be considered for training-set selection:
1) In the order of language, service, and password policy;
and 2) The closer the training set to the target password,
the better. This suggests that there is no single training
set that can fit all PSMs. Thus, PSMs that are originally
designed for English speaking users and also do not
employ a training set (e.g., NIST entropy [10], RNN-
PSM ([38] and Zxcvbn [59]) cannot be readily applied
to Chinese users. This also explains why such PSMs
are generally less accurate than those using a training set
(e.g., fuzzyPSM [54]) as observed in [24].

5.3 For password cracking

Password cracking algorithms are not only necessary

tools for security administrators to measure password
strength, but also they can be used to facilitate infor-
mation forensics (e.g., for law enforcement agencies to
recover encrypted data of criminal suspects). Three main
lessons for password cracking can be learned from our
above results. Firstly, our findings in Sec. 3.3 show
that Chinese passwords have a vastly different letter
distribution, structure and semantic patterns as compared
to English passwords, and thus when targeting a Chinese
password, it is crucial for cracking algorithms to be
trained on datasets from Chinese sites. Such sites should
also have the same password creation policy and the
same (or a similar) service type as the target site.
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Secondly, for PCFG-based attacks, when the training
set is sufficiently large (e.g., over 1M as ours), besides
the D and S-segments, it is better to also directly learn
the L-segments of guesses from the training set. This
can be well established by the fact that, given the same
guess numbers and against the same test sets, our PCFG-
based attacks can obtain much higher success rates (see
Sec. 4.1) than those of the PCFG-based attacks in [34,58]
where external dictionaries are used to instantiate the L-
segments. This practice has been recommended by Ma
et al. [36], but they did not specify when to apply it.
Further, one may include some external semantic dict-
ionaries to instantiate the L and D-segments as we do.

Thirdly, as compared to Markov-based attacks, PCFG-
based ones are simpler to implement (31% less com-
putation and 70% less memory cost), and they perform
equally well, or even better, when the guess number is
small (e.g. 10°, see Figs. 4 and 6). For large guess
numbers, order-4 Markov attacks are the best choices.
As far as we know, these observations have not been
elucidated in previous major studies [15,36]. Note that,
we have only shown the Markov-based cracking results
when the guess number is below 107. There is potential
that order-3 Markov-based attacks will outperform order-
4 and 5 ones at larger guess numbers (e.g., 10'4).

6 Conclusion

In this paper, we performed a large-scale empirical anal-
ysis of 73.1 million real-world Chinese web passwords.
In our empirical analysis, we systematically explored
several fundamental password properties (e.g., the dis-
tance between passwords and languages, and various
semantic patterns) and uncovered the bifacial-security
nature of Chinese passwords: They are more prone
to online guessing than English passwords; But out
of the remaining Chinese passwords, they are stronger
against offline guessing. This reconciles two conflicting
claims in [7,26,34]. We hope this work will help both
security administrators and individual Chinese users to
more informedly secure their password accounts.
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APPENDIX

A

Justification for our cleaning approach

Contaminated datasets. Interestingly, we observe that
there is a non-negligible overlap between the Tianya
dataset and 7k7k dataset. We were first puzzled by the
fact that the password “111222tianya” was originally

in the top-10 most popular list of both datasets.

We

manually scrutinized the original datasets (i.e., before
removing the email addresses and user names) and are
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surprised to find that there are around 3.91 million (actu-
ally 3.91*2 million due to a split representation of 7k7k
accounts, as we will discuss later) joint accounts in both
datasets. We posit that someone probably has copied
these joint accounts from one dataset to the other.

Our cleaning approach. Now, a natural question aris-
es: From which dataset have these joint accounts been
copied?  We conclude that these joint accounts were
copied from Tianya to 7k7k, mainly for two reasons.
Firstly, it is unreasonable for 0.34% users in 7k7k to in-
sert the string “tianya” into their 7k7k passwords, while
users from tianya.cn naturally include the site name
“tianya” into their passwords for convenience. The
following second reason is quite subtle yet convincing.
In the original Tianya dataset, the joint accounts are of
the form {user name, email address, password}, while in
the original 7k7k dataset such joint accounts are divid-
ed into two parts: {user name, password} and {email
address, password}. The password “111222tianya”
occurs 64822 times in 7k7k and 48871 times in Tianya,
and one gets that 64822/2 < 48871. Thus, it is more
plausible for users to copy some (i.e., 64822/2 of a
total of 48871) accounts using “111222tianya” as the
password from Tianya to 7k7k, rather than to first copy
all the accounts (i.e., 64822/2) using “111222tianya”
as the password from 7k7k to Tianya and then reproduces
16460(= 48871 — 64822 /2) such accounts.

After removing 7.82 million joint accounts from 7k 7k,
we found that all of the passwords in the remaining
7k7k dataset occur even times (e.g., 2, 4 and 6). This
is expected, for we observe that in 7k7k half of the
accounts are of the form {user name, password}, while
the rest are of the form {email address, password}. It is
likely that both forms are directly derived from the form
{user name, email address, password}. For instance,
both {wanglei, wangleil23} and {wanglei @ gmail.com,
wangleil23} are actually derived from the single account
{wanglei, wanglei@gmail.com, wangleil23}. Conse-
quently, we further divide 7k7k into two equal parts
and discard one part. The detailed information on data
cleaning is summarized in Table 1.

Previous studies. In 2014, Li et al. [34] has also exploit-
ed the datasets Tianya and 7k7k. However, contrary to
us, they think that the 3.91M joint accounts are copied
from 7k7k to Tianya. Their main reason is that, when
dividing these two datasets into the reused passwords
group (i.e., the joint accounts) and the not-reused pass-
words group, they find that “the proportions of various
compositions are similar between the reused passwords
and the 7k7k’s not-reused passwords, but different from
Tianya’s not-reused passwords”. However, they did not
explain what the “various compositions” are. Their ex-
planation also does not answer the critical question: why
are there so many 7k7k users using “111222tianya”

as their passwords? We posit they had removed 3.91%2
million joint accounts from 7k7k but the not 3.91 million
ones from Tianya In addition, they did not observe the
extremely abnormal fact that all the passwords in 7k7k
occur even times. Such contaminated data would lead to
inaccurate results. For example, Li et al. [34] reported
that there are 32.41% of passwords in 7k7k containing
dates in “YYYMMDD”, yet the actual value is 6 times
lower: 5.42%.

We have reported this issue to the authors of [34],
they responded to us and acknowledged this flaw in their
journal version [26]. Unfortunately, Han et al. [26] do
not clean the datasets in the journal version in the manner
that we outlined.

B Detailed information about our 22 se-
mantic dictionaries

In order to make our work as reproducible as possible
and to facilitate the community, we now detail how
to construct our 22 semantic-based dictionaries. All
dictionaries are built with natural lengths. The length>5
requirement in the upper-part of Table 5 is set conser-
vatively for ensuring accuracy only when we perform
matching. Actually, we also performed measurements
for length>3 and length>4, and got higher figures (per-
centages) but less accuracy. Thus, we omit them.

The first dictionary “English-word_lower” is from
http://www.mieliestronk.com/wordlist.html
and it contains about 58,000 popular lower-case English
words. “English_lastname” is a dictionary consisting of
18,839 last names with over 0.001% frequency in the
US population during the 1990 census, according to the
US Census Bureau [11]. “English_firstname” contains
5,494 most common first names (including 1,219 male
and 4,275 female names) in US [11]. The dictionary
“English_fullname” is a cartesian product of “English
_firstname” and “English_lastname”, consisting of 1.04
million most common English full names.

To get a Chinese full name dictionary, we employ
the 20 million hotel reservations dataset [23] leaked
in Dec. 2013. The Chinese family name dictionary
includes 504 family names which are officially recog-
nized in China. Since the first names of Chinese users
are widely distributed and can be almost any combi-
nations of Chinese words, we do not consider them
in this work. As the names are originally in Chi-
nese, we transfer them into Pinyin without tones by
using a Python procedure from https://pypinyin.
readthedocs.org/en/latest/ and remove the dupli-
cates. We call these two dictionaries “Pinyin_fullname”
and “Pinyin_familyname”, respectively.

“Pinyin_word_lower” is a Chinese word dictionary
known as “SogouLabDic.dic”’, and “Pinyin_place” is a
Chinese place dictionary. Both of them are from [45]
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and also originally in Chinese. We translate them into
Pinyin in the same way as we tackle the name dictionar-
ies. “Mobile_number” consists of all potential Chinese
mobile numbers, which are 11-digit strings with the
first seven digits conforming to pre-defined values and
the last four digits being random. Since it is almost
impossible to build such a dictionary on ourselves, we
instead write a Python script and automatically test each
11-digit string against the mobile-number search engine
https://shouji.supfree.net/.

As for the birthday dictionaries, we use date patterns
to match digit strings that might be birthdays. For
example, “YYYYMMDD” stands for a birthday pattern
that the first four digits indicate years (from 1900 to
2014), the middle two represent months (from 01 to 12)
and the last two denote dates (from O1 to 31). Similarly,
we build the date dictionaries “YYYY”, “MMDD” and
“YYMMDD”. Note that, “PW with a [T -letter substring”
means a subset of the corresponding dataset and consists
of all passwords that include a letter substring no shorter
than [, and similarly for “PW with a [T-digit substring”.

Though we use the “left-most longest” rule to min-
imize ambiguities when matching, there are some un-
avoidable ambiguities when determining whether a tex-
t/digit sequence belongs to a semantic dictionary. An
improper resolution would lead to an overestimation
or underestimation. For instance, 111111 falls into
“YYMMDD” and is highly popular, yet it is more likely
that users choose it simply because it is easily memorable
repetition numbers. To tackle this issue, we manually
identify 17 abnormal dates in “YYMMDD”, each of
which originally has a frequency> 10E and appears in
every top-1000 list of the six Chinese datasets: 111111,
520131, 111222, 121212, 520520, 110110, 231231,
101010, 110119, 321123, 010203, 110120, 010101,
520530, 000111, 000123, 080808. Similarly, we iden-
tify 16 abnormal items in “MMDD™: 1111, 1122, 1231,
1212, 1112, 1222, 1010, 0101, 1223, 1123, 0123,
1020, 1230, 0102, 0520, 1110. Few abnormal items
can be identified in the other 19 dictionaries (Table 5),
and they are processed as usual.

C A subtlety about Good-Turing smooth-
ing in Markov-based cracking

In 2014, Ma et al. [36] introduced the Good-Turing (GT)
smoothing into password cracking, yet little attention
has been paid to the unsoundness of GT for popular
password segments. We illustrate the following subtlety.

We denote f to be the frequency of an event and Ny
to be the frequency of frequency f. According to the
basic GT smoothing formula, the probability of a string
“c1ca---¢;” in a Markov model of order n is denoted by

1
P(“cy--cpo1e”) = HP(“Ci|Ci7nci7(n71) ecie1”), (1)
i=1

where the individual probabilities in the product are

computed empirically by using the training sets. More
specifically, each empirical probability is given by
S(count(ci—p-+-ci—1¢;))

Y cexS(count (¢i—p---ci—ic))

where the alphabet ¥ includes 95 printable ASCII char-
acters on the keyboard (plus one special end-symbol cg
denoting the end of a password), and S(-) is defined as:

P(“cilcip-+-cim1”) =

,(2)

S() = (412 3
I

This kind of smoothing works well when f is small,
but it fails for passwords with a high frequency because
the estimates for S(f) are not smooth. For instance,
12345 is the most common 5-character string in Rock-
you and occurs f = 490,044 times. Since there is no
S-character string that occurs 490,045 times, Nigoo4s
will be zero, implying the basic GT estimator will set
P(*12345”)=0. A similar problem regarding the smooth-
ing of password frequencies is identified in [5].

There have been various improvements suggested in
linguistics to tackle this problem, among which is the
“simple Good-Turing smoothing” [22]. This improve-
ment (denoted by SGT) is famous for its simplicity and
accuracy. SGT takes two steps of smoothing. Firstly,
SGT performs a smoothing operation for Ny:

N() iff=1
W)
SN(f) =4 Fr— /- if 1 < f <max(f) @
2 it = maxy)

where f and f~ stand for the next-largest and next-
smallest values of f for which Ny > 0. Then, SGT
performs a linear regression for all values SNy and ob-
tains a Zipf distribution: Z(f) = C- (f)*, where C and
s are constants resulting from regression. Finally, SGT
conducts a second smoothing by replacing the raw count
Ny from Eq.3 with Z(f):
N
(f+D=LE if0<f<fy
L
S(f) = Q)
Z(f+1) .
+1 if fo <
(f+1) 70 fo<f

where 1(f) = |(f +1)- 5 = (F+1) - 252 and fo =

min{er Ny >0,1(f) > 1.65\/(f+1)2'\;{;‘(1+1\%]f'
7

To the best of our knowledge, we for the first time well
explicate how to combine the two smoothing techniques
(i.e., GT and SGT) in Markov-based password cracking.
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