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Abstract
Isolating sensitive state and data can increase the security
and robustness of many applications. Examples include pro-
tecting cryptographic keys against exploits like OpenSSL’s
Heartbleed bug or protecting a language runtime from na-
tive libraries written in unsafe languages. When runtime
references across isolation boundaries occur relatively in-
frequently, then conventional page-based hardware isola-
tion can be used, because the cost of kernel- or hypervisor-
mediated domain switching is tolerable. However, some
applications, such as the isolation of cryptographic session
keys in network-facing services, require very frequent do-
main switching. In such applications, the overhead of kernel-
or hypervisor-mediated domain switching is prohibitive.

In this paper, we present ERIM, a novel technique that
provides hardware-enforced isolation with low overhead on
x86 CPUs, even at high switching rates (ERIM’s measured
overhead is less than 1% for 100,000 switches per second).
The key idea is to combine protection keys (MPKs), a feature
recently added to x86 that allows protection domain switches
in userspace, with binary inspection to prevent circumven-
tion. We show that ERIM can be applied with little effort
to new and existing applications, doesn’t require compiler
changes, can run on a stock Linux kernel, and has low run-
time overhead even at high domain switching rates.

1 Introduction

It is good software security practice to partition sensitive data
and code into isolated components, thereby limiting the ef-
fects of bugs and vulnerabilities in a component to the con-
fidentiality and integrity of that component’s data. For in-
stance, isolating cryptographic keys in a network-facing ser-
vice can thwart vulnerabilities like the OpenSSL Heartbleed
bug [37]; isolating a managed language’s runtime can pro-
tect its security invariants from bugs and vulnerabilities in
co-linked native libraries; and, isolating jump tables can pre-
vent attacks on an application’s control flow.

Isolation prevents an untrusted component from directly
accessing the private memory of other components. Broadly
speaking, isolation can be enforced using one of two ap-
proaches. First, in software fault isolation (SFI) [47],
one instruments the code of untrusted components with
bounds checks on indirect memory accesses, to prevent ac-
cess to other components’ memory. The bounds checks
can be added by the compiler or through binary rewrit-
ing. Bounds checks impose overhead on the execution of
all untrusted components; additional overhead is required to

prevent control-flow hijacks [30], which could circumvent
the bounds checks. On x86-64, pointer masking-based SFI
techniques like Native Client [42] incur overheads of up to
42% on the execution of untrusted code [30]. Even with
hardware-supported bounds checks, like those supported by
the Intel MPX ISA extension [26], the overhead is up to 30%,
as shown in by Koning et al. [30] and later in Section 6.5.

Another approach is to use hardware page protection for
memory isolation [9, 10, 13, 32, 33, 34]. Here, access checks
are performed in hardware as part of the address translation
with no additional overhead on execution within a compo-
nent. However, transferring control between components
requires a switch to kernel or hypervisor mode in order to
change the (extended) page table base. Recent work such as
Wedge, Shreds, SeCage, SMVs, and light-weight contexts
(lwCs) [10, 13, 24, 33, 34] have reduced the overhead of
such switching, but the cost is still substantial. For instance,
Litton et al. [33] report a switching cost of about 1us per
switch for lwCs, which use kernel-managed page tables for
in-process isolation. This amounts to an overhead of nearly
10% for an application that switches 100,000 times a second
and, in our experiments, an overhead of up to 65% on the
throughput of the web server NGINX when lwCs are used
to isolate session keys (Section 6.5). Techniques based on
Intel VT-x extended page tables with VMFUNC [34] have
less overhead, but the overhead is still high—up to 14.4% on
NGINX’s throughput in our experiments (Section 6.5).

In this paper, we present ERIM, the first isolation tech-
nique for x86 that combines near-zero overhead on in-
component execution with very low cost switching among
components. ERIM relies on a recent x86 ISA extension
called protection keys (MPK) [28]. With MPK, each virtual
page can be tagged with a 4-bit domain id, thus partitioning
a process’s address space into up to 16 disjoint domains. A
special register, PKRU, that is local to each logical core de-
termines which domains the core can read or write. Switch-
ing domain permissions requires writing the PKRU register
in userspace, which takes only 11–260 cycles on current In-
tel CPUs, corresponding to an overhead of 0.07% to 1.0%
per 100,000 switches/s on a 2.6 GHz CPU. This amounts to
an overhead of at most 4.8% on the throughput of NGINX
when isolating all session keys, which is up to 6.3x, 13.5x
and 3x lower than the overhead of similar protection using
SFI (with Intel MPX), lwCs and Intel VT-x, respectively.

However, MPK by itself does not provide strong security
because a compromised or malicious component can sim-
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ply write to the PKRU register and grant itself permission
to access any component. ERIM relies on binary inspection

to ensure that all occurrences of instructions that update the
PKRU in the binary are safe, i.e., they cannot be exploited
to gain unauthorized access. With this, ERIM provides iso-
lation without requiring control-flow integrity in untrusted
code, and therefore avoids the runtime overhead of ensuring
control-flow integrity in unsafe languages.

While ERIM’s binary inspection enforces the safety of
its MPK-based isolation, it creates a potential usability is-
sue: What to do if a binary has unintentional occurrences
of PKRU-updating instructions? Since x86 does not require
instruction alignment, such occurrences could arise within a
longer instruction, or spanning the bytes of two or more adja-
cent instructions. Any such sequence could be exploited by a
control-flow hijack attack and must be rejected by the binary
inspection mechanism. To handle such cases, we describe
a novel procedure to rewrite any instruction sequence con-
taining an unaligned PKRU-updating instruction to a func-
tionally equivalent sequence without the instruction. This
rewriting procedure can be integrated with a compiler or our
binary inspection.

ERIM is the first technique that enables efficient isolation
in applications that require very high domain switching rates
(~105/s or more) and also spend significant time executing
inside untrusted components. We evaluate our ERIM proto-
type on three such applications: 1) Isolating the frequently
accessed session keys in a web server (NGINX), 2) isolat-
ing a managed language runtime from native libraries written
in unsafe languages, and 3) efficiently isolating the safe re-
gion in code-pointer integrity [31]. In all cases, we observe
switching rates of order 105 or more per second per core.
ERIM provides strong, hardware-based isolation in all these
cases, with overheads that are considerably lower than those
of existing techniques. Moreover, ERIM does not require
compiler support and can run on stock Linux.

In summary, this paper makes the following contributions.
1) We present ERIM, an efficient memory isolation tech-
nique that relies on a combination of Intel’s MPK ISA ex-
tension and binary inspection, but does not require or assume
control-flow integrity. 2) We describe a complete rewriting
procedure to ensure binaries cannot be exploited to circum-
vent ERIM. 3) We show that ERIM can protect applications
with high inter-component switching rates with low over-
head, unlike techniques based on hardware (extended) page
tables and SFI (even with hardware support).

2 Background and related work

In this section, we survey background and related work. En-
forcing relevant security or correctness invariants while trust-
ing only a small portion of an application’s code generally
requires data encapsulation. Encapsulation itself requires
isolating sensitive data so it cannot be accessed by untrusted
code, and facilitating switches to trusted code that has access

to the isolated state. We survey techniques for isolation and
switching provided by operating systems, hypervisors, com-
pilers, language runtimes, and binary rewriting, as well as
other work that uses MPK for memory isolation.

OS-based techniques Isolation can be easily achieved by
placing application components in separate OS processes.
However, this method has high overhead even with a mod-
erate rate of cross-component invocation. Novel kernel
abstractions like light-weight contexts (lwCs) [33], secure
memory views (SMVs) [24] and nested kernels [14], com-
bined with additional compiler support as in Shreds [13] or
runtime analysis tools as in Wedge [10], have reduced the
cost of such data encapsulation to the point where isolating
long-term signing keys in a web server is feasible with little
overhead [33]. Settings that require more frequent switches
like isolating session keys or the safe region in CPI [31], how-
ever, remain beyond the reach of OS-based techniques.

Mimosa [20] relies on the Intel TSX hardware transac-
tional memory support to protect private cryptographic keys
from software vulnerabilities and cold-boot attacks. Mi-
mosa restricts cleartext keys to exist only within uncom-
mitted transactions, and TSX ensures that an uncommitted
transaction’s data is never written to the DRAM or other
cores. Unlike ERIM, which is a general-purpose isolation
technique, Mimosa specifically targets cryptographic keys,
and is constrained by hardware capacity limits of TSX.

Virtualization-based techniques In-process data encap-
sulation can be provided by a hypervisor. Dune [9] en-
ables user-level processes to implement isolated compart-
ments by leveraging the Intel VT-x x86 virtualization ISA
extensions [28]. Koning et al. [30] sketch how to use the VT-
x VMFUNC instruction to switch extended page tables in
order to achieve in-process data isolation. SeCage [34] sim-
ilarly relies on VMFUNC to switch between isolated com-
partments. SeCage also provides static and dynamic pro-
gram analysis based techniques to automatically partition
monolithic software into compartments, which is orthogo-
nal to our work. TrustVisor [36] uses a thin hypervisor and
nested page tables to support isolation and additionally sup-
ports code attestation. SIM [44] relies on VT-x to isolate
a security monitor within an untrusted guest VM, where it
can access guest memory with native speed. In addition to
the overhead of the VMFUNC calls during switching, these
techniques incur overheads on TLB misses and syscalls due
to the use of extended page tables and hypercalls, respec-
tively. Overall, the overheads of virtualization-based encap-
sulation are much higher than those of ERIM.

Nexen [45] decomposes the Xen hypervisor into isolated
components and a security monitor, using page-based pro-
tection within the hypervisor’s privilege ring 0. Control of
the MMU is restricted to the monitor; compartments are
de-privileged by scanning and removing exploitable MMU-
modifying instructions. The goal of Nexen is quite different
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from ERIM’s: Nexen aims to isolate co-hosted VMs and the
hypervisor’s components from each other, while ERIM iso-
lates components of a user process. Like ERIM Nexen scans
for and removes exploitable instructions.

Language and runtime techniques Memory isolation can
be provided as part of a memory-safe programming lan-
guage. This encapsulation is efficient if most of the checks
can be done statically. However, such isolation is language-
specific, relies on the compiler and runtime, and can be un-
dermined by co-linked libraries written in unsafe languages.

Software fault isolation (SFI) [47] provides memory iso-
lation in unsafe languages using runtime memory access
checks inserted by the compiler or by rewriting binaries. SFI
imposes a continuous overhead on the execution of untrusted
code. Additionally, SFI by itself does not protect against at-
tacks that hijack control flow (to possibly bypass the mem-
ory access checks). To get strong security, SFI must be cou-
pled with an additional technique for control-flow integrity
(CFI) [6]. However, existing CFI solutions have nontrivial
overhead. For example, code-pointer integrity (CPI), one of
the cheapest reasonably strong CFI defenses, has a runtime
overhead of at least 15% on the throughput of a moderately
performant web server (Apache) [31, Section 5.3]. In con-
trast, ERIM does not rely on CFI for data encapsulation and
has much lower overhead. Concretely, we show in Section 6
that ERIM’s overhead on the throughput of a much more per-
formant web server (NGINX) is no more than 5%.

The Intel MPX ISA extension [28] provides architectural
support for bounds checking needed by SFI. A compiler can
use up to four bounds registers, and each register can store a
pair of 64-bit starting and ending addresses. Specialized in-
structions check a given address and raise an exception if the
bounds are violated. However, even with MPX support, the
overhead of bounds checks is of the order of tens of percent
points in many applications (Section 6.5 and [12, 30, 40]).

Hardware-based trusted execution environments Intel’s
SGX [27] and ARM’s TrustZone [8] ISA extensions al-
low (components of) applications to execute with hardware-
enforced isolation. JITGuard [17], for instance, uses SGX to
protect the internal data structures of a just-in-time compiler
from untrusted code, thus preventing code-injection attacks.
While SGX and TrustZone can isolate data even from the
operating system, switching overheads are similar to other
hardware-based isolation mechanisms [30].

IMIX [18] and MicroStach [38] propose minimal exten-
sions to the x86 ISA, adding load and store instructions to
access secrets in a safe region. The extended ISA can provide
data encapsulation. Both systems provide compilers that au-
tomatically partition secrets. However, for data encapsula-
tion in the face of control-flow hijack attacks, both systems
require CFI. As mentioned, CFI techniques have nontrivial
overhead. ERIM, on the other hand, provides strong isola-
tion without relying on CFI and has lower overhead.

ASLR Address space layout randomization (ASLR) is
widely used to mitigate code-reuse exploits such as those
based on buffer overflow attacks [43, 23]. ASLR has also
been used for data encapsulation by randomizing data lay-
out. For example, as one of the isolation techniques used in
CPI [31, 46], a region of sensitive data is allocated at a ran-
dom address within the 48-bit x86-64 address space and its
base address is stored in a segment descriptor. All pointers
stored in memory are offsets into the region and do not reveal
its actual address. However, all forms of ASLR are vulnera-
ble to attacks like thread spraying [43, 25, 16, 19, 39]. Con-
sequently, ASLR is not viable for strong memory isolation,
despite proposals such as [35] to harden it.

ARM memory domains ARM memory domains [7] are
similar to Intel MPK, the x86 feature that ERIM relies on.
However, unlike in MPK, changing domains is a kernel op-
eration in ARM. Therefore, unlike MPK, ARM’s memory
domains do not support low-cost user-mode switching.

MPK-based techniques Koning et al. [30] present Mem-
Sentry, a general framework for data encapsulation, imple-
mented as a pass in the LLVM compiler toolchain. They
instantiate the framework with several different memory iso-
lation techniques, including many described above and one
based on MPK domains. However, MemSentry’s MPK in-
stance is secure only with a separate defense against control-
flow hijack/code-reuse attacks to prevent adversarial misuse
of PKRU-updating instructions in the binary. Such defenses
have significant overhead of their own. As a result, the over-
all overhead of MemSentry’s MPK instance is significantly
higher than that of ERIM, which does not rely on a defense
against control-flow hijacks.

In concurrent work [22], Hedayati et al. describe how to
isolate userspace libraries using VMFUNC or Intel MPK.
The MPK-based method is similar to ERIM, but does not ad-
dress the challenge of ensuring that there are no exploitable
occurrences of PKRU-modifying instructions. Rewriting bi-
naries in this manner is a key contribution of our work (Sec-
tion 4). Finally, Hedayati et al. rely on kernel changes while
ERIM can run safely on a stock Linux kernel.

libmpk [41] virtualizes MPK memory domains beyond the
16 supported in hardware. It also addresses potential security
issues in the API of Linux’s MPK support. libmpk addresses
concerns orthogonal to ERIM because neither limitation is
relevant to ERIM’s use of MPK. libmpk could be combined
with ERIM in applications that require more than 16 compo-
nents, but the integration remains as future work.

In recent work, Burow et al. [11] survey implementation
techniques for shadow stacks. In particular, they examine the
use of MPK for protecting the integrity of shadow stacks.
Burow et al.’s measurements of MPK overheads (Fig. 10
in [11]) are consistent with ours. Their use of MPK could
be a specific use-case for ERIM, which is a more general
framework for memory isolation.
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3 Design

Goals ERIM enables efficient data isolation within a user-
space process. Like prior work, it enables a (trusted) appli-
cation component to isolate its sensitive data from untrusted
components. Unlike prior work, ERIM supports such iso-
lation with low overhead even at high switching rates be-
tween components without requiring control-flow integrity.
In the following, we focus on the case of two components
that are isolated from each other within a single-threaded
process. Later, we describe generalizations to multi-threaded
processes, more than two components per process, and read-
only sharing among components.

We use the letter T to denote a trusted component and U
to denote the remaining, untrusted application component.
ERIM’s key primitive is memory isolation: it reserves a re-
gion of the address space and makes it accessible exclusively
from the trusted component T. This reserved region is de-
noted MT and can be used by T to store sensitive data. The
rest of the address space, denoted MU, holds the applica-
tion’s regular heap and stack and is accessible from both U
and T. ERIM enforces the following invariants:
(1) While control is in U, access to MT remains disabled.
(2) Access to MT is enabled atomically with a control trans-
fer to a designated entry point in T and disabled when T
transfers control back to U.
The first invariant provides isolation of MT from U, while the
second invariant prevents U from confusing T into accessing
MT improperly by jumping into the middle of MT’s code.

Background: Intel MPK To realize its goals, ERIM uses
the recent MPK extension to the x86 ISA [28]. With MPK,
each virtual page of a process can be associated with one of
16 protection keys, thus partitioning the address space into
up to 16 domains. A new register, PKRU, that is local to
each logical core, determines the current access permissions
(read, write, neither or both) on each domain for the code
running on that core. Access checks against the PKRU are
implemented in hardware and impose no overhead on pro-
gram execution.

Changing access privileges requires writing new permis-
sions to the PKRU register with a user-mode instruction,
WRPKRU. This instruction is relatively fast (11–260 cycles
on current Intel CPUs), does not require a syscall, changes
to page tables, a TLB flush, or inter-core synchronization.

The PKRU register can also be modified by the XRSTOR
instruction by setting a specific bit in the eax register prior
to the instruction (XRSTOR is used to restore the CPU’s
previously-saved extended state during a context switch).

For strong security, ERIM must ensure that untrusted code
cannot exploit WRPKRU or XRSTOR instructions in exe-
cutable pages to elevate privileges. To this end, ERIM com-
bines MPK with binary inspection to ensure that all exe-
cutable occurrences of WRPKRU or XRSTOR are safe, i.e.,
they cannot be exploited to improperly elevate privilege.

Background: Linux support for MPK As of version 4.6,
the mainstream Linux kernel supports MPK. Page-table en-
tries are tagged with MPK domains, there are additional
syscall options to associate pages with specific domains,
and the PKRU register is saved and restored during context
switches. Since hardware PKRU checks are disabled in ker-
nel mode, the kernel checks PKRU permissions explicitly
before dereferencing any userspace pointer. To avoid execut-
ing a signal handler with inappropriate privileges, the kernel
updates the PKRU register to its initial set of privileges (ac-
cess only to domain 0) before delivering a signal to a process.

3.1 High-level design overview

ERIM can be configured to provide either complete isola-
tion of MT from U (confidentiality and integrity), or only
write protection (only integrity). We describe the design for
complete isolation first. Section 3.7 explains a slight design
re-configuration that provides only write protection.

ERIM’s isolation mechanism is conceptually simple: It
maps T’s reserved memory, MT, and the application’s gen-
eral memory, MU, to two different MPK domains. It man-
ages MPK permissions (the PKRU registers) to ensure that
MU is always accessible, while only MU is accessible when
control is in U. It allows U to securely transfer control to T
and back via call gates. A call gate enables access to MT us-
ing the WRPKRU instruction and immediately transfers con-
trol to a specified entry point of T, which may be an explicit
or inlined function. When T is done executing, the call gate
disables access to MT and returns control to U. This enforces
ERIM’s two invariants (1) and (2) from Section 3. Call gates
operate entirely in user-mode (they don’t use syscalls) and
are described in Section 3.3.

Preventing exploitation A key difficulty in ERIM’s de-
sign is preventing the untrusted U from exploiting occur-
rences of the WRPKRU or XRSTOR instruction sequence
on executable pages to elevate its privileges. For instance,
if the sequence appeared at any byte address on an exe-
cutable page, it could be exploited using control-flow hijack
attacks. To prevent such exploits, ERIM relies on binary

inspection to enforce the invariant that only safe WRPKRU
and XRSTOR occurrences appear on executable pages.

A WRPKRU occurrence is safe if it is immediately fol-
lowed by one of the following: (A) a pre-designated entry
point of T, or (B) a specific sequence of instructions that
checks that the permissions set by WRPKRU do not include
access to MT and terminates the program otherwise. A safe
WRPKRU occurrence cannot be exploited to access MT in-
appropriately. If the occurrence satisfies (A), then it does not
give control to U at all; instead, it enters T at a designated
entry point. If the occurrence satisfies (B), then it would ter-
minate the program immediately when exploited to enable
access to MT.

A XRSTOR is safe if it is immediately followed by a spe-
cific sequence of instructions to check that the eax bit that
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causes XRSTOR to load the PKRU register is not set. Such
a XRSTOR cannot be used to change privilege and continue
execution.1

ERIM’s call gates use only safe WRPKRU occurrences
(and do not use XRSTOR at all). So, they pass the binary
inspection. Section 3.4 describes ERIM’s binary inspection.

Creating safe binaries An important question is how to
construct binaries that do not have unsafe WRPKRUs and
XRSTORs. On x86, these instructions may arise inadver-
tently spanning the bytes of adjacent instructions or as a sub-
sequence in a longer instruction. To eliminate such inad-
vertent occurrences, we describe a binary rewriting mecha-
nism that rewrites any sequence of instructions containing
a WRPKRU or XRSTOR to a functionally equivalent se-
quence without any WRPKRUs and XRSTORs. The mech-
anism can be deployed as a compiler pass or integrated with
our binary inspection, as explained in Section 4.

3.2 Threat model

ERIM makes no assumptions about the untrusted component
(U) of an application. U may behave arbitrarily and may
contain memory corruption and control-flow hijack vulnera-
bilities that may be exploited during its execution.

However, ERIM assumes that the trusted component T’s
binary does not have such vulnerabilities and does not com-
promise sensitive data through explicit information leaks, by
calling back into U while access to MT is enabled, or by map-
ping executable pages with unsafe/exploitable occurrences
of the WRPKRU or XRSTOR instruction.

The hardware, the OS kernel, and a small library added
by ERIM to each process that uses ERIM are trusted to
be secure. We also assume that the kernel enforces stan-
dard DEP—an executable page must not be simultaneously
mapped with write permissions. ERIM relies on a list of le-
gitimate entry points into T provided either by the program-
mer or the compiler, and this list is assumed to be correct
(see Section 3.4). The OS’s dynamic program loader/linker
is trusted to invoke ERIM’s initialization function before any
other code in a new process.

Side-channel and rowhammer attacks, and microachitec-
tural leaks, although important, are beyond the scope of this
work. However, ERIM is compatible with existing defenses.
Our current prototype of ERIM is incompatible with appli-
cations that simultaneously use MPK for other purposes, but
this is not fundamental to ERIM’s design. Such incompat-
ibilities can be resolved as long as the application does not
re-use the MPK domain that ERIM reserves for T.

3.3 Call gates

A call gate transfers control from U to T by enabling access
to MT and executing from a designated entry point of T, and

1We know of only one user-mode Linux application – the dynamic
linker, ld, that legitimately uses XRSTOR. However, ld categorically does
not restore PKRU through XRSTOR, so this safe check can be added to it.

1xor ecx, ecx

2xor edx, edx

3mov PKRU_ALLOW_TRUSTED, eax

4WRPKRU // copies eax to PKRU

6// Execute trusted component’s code

8xor ecx, ecx

9xor edx, edx

10mov PKRU_DISALLOW_TRUSTED, eax

11WRPKRU // copies eax to PKRU

12cmp PKRU_DISALLOW_TRUSTED, eax

13je continue

14syscall exit // terminate program

15continue:

16// control returns to the untrusted

application here

Listing 1: Call gate in assembly. The code of the trusted
component’s entry point may be inlined by the compiler on
line 6, or there may be an explicit direct call to it.

later returns control to U after disabling access to MT. This
requires two WRPKRUs. The primary challenge in design-
ing the call gate is ensuring that both these WRPKRUs are
safe in the sense explained in Section 3.1.

Listing 1 shows the assembly code of a call gate. WRP-
KRU expects the new PKRU value in the eax register and
requires ecx and edx to be 0. The call gate works as follows.
First, it sets PKRU to enable access to MT (lines 1–4). The
macro PKRU_ALLOW_TRUSTED is a constant that allows
access to MT and MU.2 Next, the call gate transfers control
to the designated entry point of T (line 6). T’s code may be
invoked either by a direct call, or it may be inlined.

After T has finished, the call gate sets PKRU
to disable access to MT (lines 8–11). The macro
PKRU_DISALLOW_TRUSTED is a constant that al-
lows access to MU but not MT. Next, the call
gate checks that the PKRU was actually loaded with
PKRU_DISALLOW_TRUSTED (line 12). If this is not the
case, it terminates the program (line 14), else it returns con-
trol to U (lines 15–16). The check on line 12 may seem re-
dundant since eax is set to PKRU_DISALLOW_TRUSTED
on line 10. However, the check prevents exploitation of the
WRPKRU on line 11 by a control-flow hijack attack (ex-
plained next).

Safety Both occurrences of WRPKRU in the call gate are
safe. Neither can be exploited by a control flow hijack to get
unauthorized access to MT. The first occurrence of WRP-
KRU (line 4) is immediately followed by (a direct control
transfer to) a designated entry point of T. This instance can-

2To grant read (resp. write) access to domain i, bit 2i (resp. 2i+1) must
be set in the PKRU. PKRU_ALLOW_TRUSTED sets the 4 least significant
bits to grant read and write access to domains 0 (MU) and 1 (MT).
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not be exploited to transfer control to anywhere else. The
second occurrence of WRPKRU (line 11) is followed by a
check that terminates the program if the new permissions
include access to MT. If, as part of an attack, the execu-
tion jumped directly to line 11 with any value other than
PKRU_DISALLOW_TRUSTED in eax, the program would
be terminated on line 14.

Efficiency A call gate’s overhead on a roundtrip from U to
T is two WRPKRUs, a few very fast, standard register oper-
ations and one conditional branch instruction. This overhead
is very low compared to other hardware isolation techniques
that rely on pages tables and syscalls or hypervisor trampo-
lines to change privileges (see also Section 6.5).

Use considerations ERIM’s call gate omits features that
readers may expect. These features have been omitted to
avoid having to pay their overhead when they are not needed.
First, the call gate does not include support to pass parame-
ters from U to T or to pass a result from T to U. These
can be passed via a designated shared buffer in MU (both U
and T have access to MU). Second, the call gate does not
scrub registers when switching from T to U. So, if T uses
confidential data, it should scrub any secrets from registers
before returning to U. Further, because T and U share the
call stack, T must also scrub secrets from the stack prior to
returning. Alternatively, T can allocate a private stack for
itself in MT, and T’s entry point can switch to that stack im-
mediately upon entry. This prevents T’s secrets from being
written to U’s stack in the first place. (A private stack is also
necessary for multi-threaded applications; see Section 3.7).

3.4 Binary inspection

Next, we describe ERIM’s binary inspection. The inspection
prevents U from mapping any executable pages with unsafe
WRPKRU and XRSTOR occurrences and consists of two
parts: (i) an inspection function that verifies that a sequence
of pages does not contain unsafe occurrences; and, (ii) an
interception mechanism that prevents U from mapping exe-
cutable pages without inspection.

Inspection function The inspection function scans a se-
quence of pages for instances of WRPKRU and XRSTOR.
It also inspects any adjacent executable pages in the address
space for instances that cross a page boundary.

For every WRPKRU, it checks that the WRPKRU is safe,
i.e., either condition (A) or (B) from Section 3.1 holds. To
check for condition (A), ERIM needs a list of designated en-
try points of T. The source of this list depends on the nature
of T and is trusted. If T consists of library functions, then
the programmer marks these functions, e.g., by including a
unique character sequence in their names. If the functions
are not inlined by the compiler, their names will appear in
the symbol table. If T’s functions are subject to inlining or
if they are generated by a compiler pass, then the compiler
must be directed to add their entry locations to the symbol

table with the unique character sequence. In all cases, ERIM
can identify designated entry points by looking at the symbol
table and make them available to the inspection function.

Condition (B) is checked easily by verifying that the
WRPKRU is immediately followed by exactly the instruc-
tions on lines 12–15 of Listing 1. These instructions ensure
that the WRPKRU cannot be used to enable access to MT
and continue execution.

For every XRSTOR, the inspection function checks that
the XRSTOR is followed immediately by the following in-
structions, which check that the eax bit that causes XRSTOR
to load PKRU (bit 9) is not set: bt eax, 0x9; jnc

.safe; EXIT; .safe:.... Here, EXIT is a macro
that exits the program. Trivially, such a XRSTOR cannot
be used to enable access to MT and continue execution.

Interception On recent (≥ 4.6) versions of Linux, inter-
ception can be implemented without kernel changes. We in-
stall a seccomp-bpf filter [29] that catches mmap, mprotect,
and pkey_mprotect syscalls which attempt to map a region
of memory as executable (mode argument PROT_EXEC).
Since the bpf filtering language currently has no provisions
for reading the PKRU register, we rely on seccomp-bpf’s
SECCOMP_RET_TRACE option to notify a ptrace()-based
tracer process. The tracer inspects the tracee and allows the
syscall if it was invoked from T and denies it otherwise. The
tracer process is configured so that it traces any child of the
tracee process as well. While ptrace() interception is expen-
sive, note that it is required only when a program maps pages
as executable, which is normally an infrequent operation.

If programs map executable pages frequently, a more ef-
ficient interception can be implemented with a simple Linux
Security Module (LSM) [50], which allows mmap, mpro-
tect and pkey_mprotect system calls only from T. (Whether
such a call is made by U or T is easily determined by ex-
amining the PKRU register value at the time of the syscall.)
Our prototype uses this implementation of interception. An-
other approach is to implement a small (8 LoC) change to
seccomp-bpf in the Linux kernel, which allows a bpf filter to
inspect the value of the PKRU register. With this change in
place, we can install a bpf filter that allows certain syscalls
only from T, similar to the LSM module.

With either interception approach in place, U must go
through T to map executable pages. T maps the pages only
after they have passed the inspection function. Regardless
of the interception method, pages can be inspected upfront
when T attempts to map them as executable, or on demand
when they are executed for the first time.

On-demand inspection is preferable when a program maps
a large executable segment but eventually executes only a
small number of pages. With on-demand inspection, when
the process maps a region as executable, T instead maps the
region read-only but records that the pages are pending in-
spection. When control transfers to such a page, a fault oc-
curs. The fault traps to a dedicated signal handler, which
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ERIM installs when it initializes (the LSM or the tracer pre-
vents U from overriding this signal handler). This signal
handler calls a T function that checks whether the faulting
page is pending inspection and, if so, inspects the page. If
the inspection passes, then the handler remaps the page with
the execute permission and resumes execution of the faulting
instruction, which will now succeed. If not, the program is
terminated.

The interception and binary inspection has very low over-
head in practice because it scans an executable page at most
once. It is also fully transparent to U’s code if all WRPKRUs
and XRSTORs in the binary are already safe.

Security We briefly summarize how ERIM attains secu-
rity. The binary inspection mechanism prevents U from
mapping any executable page with an unsafe WRPKRU or
XRSTOR. T does not contain any executable unsafe WRP-
KRU or XRSTOR by assumption. Consequently, only safe
WRPKRUs and XRSTORs are executable in the entire ad-
dress space at any point. Safe WRPKRUs and XRSTORs
preserve ERIM’s two security invariants (1) and (2) by de-
sign. Thus MT is accessible only while T executes starting
from legitimate T entry points.

3.5 Lifecycle of an ERIM process

As part of a process’s initialization, before control is trans-
ferred to main(), ERIM creates a second MPK memory do-
main for MT in addition to the process’s default MPK do-
main, which is used for MU. ERIM maps a memory pool
for a dynamic memory allocator to be used in MT and hooks
dynamic memory allocation functions so that invocations are
transparently redirected to the appropriate pool based on the
value of the PKRU register. This redirection provides pro-
grammer convenience but is not required for security. If
U were to call T’s allocator, it would be unable to access
MT’s memory pool and generate a page fault. Next, ERIM
scans MU’s executable memory for unsafe WRPKRUs and
XRSTORs, and installs one of the interception mechanisms
described in Section 3.4. Finally, depending on whether
main() is in U or T, ERIM initializes the PKRU register ap-
propriately and transfers control to main(). After main() has
control, the program executes as usual. It can map, unmap
and access data memory in MU freely. However, to access
MT, it must invoke a call gate.

3.6 Developing ERIM applications

We describe here three methods of developing applications
or modifying existing applications to use ERIM.

The binary-only approach requires that either U or T con-
sist of a set of functions in a dynamic link library. In this
case, the library and the remaining program can be used
in unmodified binary form. An additional ERIM dynamic
wrapper library is added using LD_PRELOAD, which wraps
the entry points with stub functions that implement the call
gates and have names that indicate to the ERIM runtime the

1typedef struct secret {

2int number; } secret;

3secret* initSecret() {

4ERIM_SWITCH_T;

5secret * s = malloc(sizeof(secret));

6s->number = random();

7ERIM_SWITCH_U;

8return s;

9}

10int compute(secret* s, int m) {

11int ret = 0;

12ERIM_SWITCH_T;

13ret = f(s->number, m);

14ERIM_SWITCH_U;

15return ret;

16}

Listing 2: C component isolated with ERIM

valid entry points. We have used this approach to isolate
SQLite within the Node.js runtime (Section 5).

The source approach requires that either U or T consist of
a set of functions that are not necessarily in a separate compi-
lation unit or library. In this case, the source code is modified
to wrap these functions with stubs that implement the call
gates, and choose names that indicate valid entry points. We
used this approach to isolate the crypto functions and session
keys in OpenSSL (Section 5).

The compiler approach requires modifications to the com-
piler to insert call gates at appropriate points in the exe-
cutable and generate appropriate symbols that indicate valid
entry points. This approach is the most flexible because it
allows arbitrary inlining of U and T code. We used this ap-
proach to isolate the metadata in CPI (Section 5).

Next, we give a simple example describing the process
of developing a new C application using the source ap-
proach. ERIM provides a C library and header files to in-
sert call gates, initialize ERIM, and support dynamic mem-
ory allocation. Listing 2 demonstrates an example C pro-
gram that isolates a data structure called secret (lines
1–2). The structure contains an integer value. Two func-
tions, initSecret and compute, access secrets and
bracket their respective accesses with call gates using the
macros ERIM_SWITCH_T and ERIM_SWITCH_U. ERIM
isolates secret such that only code that appears between
ERIM_SWITCH_T and ERIM_SWITCH_U, i.e., code in T,
may access secret. initSecret allocates an instance
of secretwhile executing inside T by first allocating mem-
ory in MT and then initializing the secret value. compute
computes a function f of the secret inside T.

3.7 Extensions

Next, we discuss extensions to ERIM’s basic design.
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Multi-threaded processes ERIM’s basic design works as-
is with multi-threaded applications. Threads are created as
usual, e.g. using libpthread. The PKRU register is saved and
restored by the kernel during context switches. However,
multi-threading imposes an additional requirement on T (not
on ERIM): In a multi-threaded application, it is essential that
T allocate a private stack in MT (not MU) for each thread
and execute its code on these stacks. This is easy to imple-
ment by switching stacks at T’s entry points. Not doing so
and executing T on standard stacks in MU runs the risk that,
while a thread is executing in T, another thread executing in
U may corrupt or read the first thread’s stack frames. This
can potentially destroy T’s integrity, leak its secrets and hi-
jack control while access to MT is enabled. By executing T’s
code on stacks in MT, such attacks are prevented.

More than two components per process Our description
of ERIM so far has been limited to two components (T and
U) per process. However, ERIM generalizes easily to sup-
port as many components as the number of domains Linux’s
MPK support can provide (this could be less than 16 because
the kernel may reserve a few domains for specific purposes).
Components can have arbitrary pairwise trust relations with
each other, as long as the trust relations are transitive. A sim-
ple setting could have a default domain that trusts all other
domains (analogous to U) and any number of additional do-
mains that do not trust any others. ERIM’s initialization code
creates a private heap for each component, and ERIM’s cus-
tom allocator allocates from the heap of the currently execut-
ing component. Each component can also (in its own code)
allocate a per-thread stack, to protect stack-allocated sensi-
tive data when calling into other untrusted domains. Stacks
can be mandatorily switched by ERIM’s call gates.

ERIM for integrity only Some applications care only
about the integrity of protected data, but not its confidential-
ity. Examples include CPI, which needs to protect only the
integrity of code pointers. In such applications, efficiency
can be improved by allowing U to read MT directly, thus
avoiding the need to invoke a call gate for reading MT. The
ERIM design we have described so far can be easily modi-
fied to support this case. Only the definition of the constant
PKRU_DISALLOW_TRUSTED in Listing 1 has to change
to also allow read-only access to MT. With this change, read
access to MT is always enabled.

Just-in-time (jit) compilers with ERIM ERIM works
with jit compilers that follow standard DEP and do not allow
code pages that are writable and executable at the same time.
Such jit compilers write new executable code into newly al-
located, non-executable pages and change these pages’ per-
missions to non-writable and executable once the compila-
tion finishes. ERIM’s mprotect interception defers enabling
execute permissions until after a binary inspection, as de-
scribed in Section 3.4. When a newly compiled page is
executed for the first time, ERIM handles the page exe-

cute permission fault, scans the new page for unsafe WRP-
KRUs/XRSTORs and enables the execute permission if no
unsafe occurrences exist. This mechanism is safe, but may
lead to program crashes if the jit compiler accidentally emits
an unsafe WRPKRU or XRSTOR. ERIM-aware jit compil-
ers can emit WRPKRU- and XRSTOR-free binary code by
relying on the rewrite strategy described in Section 4, and
inserting call gates when necessary.

OS privilege separation The design described so far pro-
vides memory isolation. Some applications, however, re-
quire privilege separation between T and U with respect to
OS resources. For instance, an application might need to re-
strict the filesystem name space accessible to U or restrict the
system calls available to U.

ERIM can be easily extended to support privilege sepa-
ration with respect to OS resources, using one of the tech-
niques described in Section 3.4 for intercepting systems calls
that map executable pages. In fact, intercepting and dis-
allowing these system calls when invoked from U is just
a special case of privilege separation. During process ini-
tialization, ERIM can instruct the kernel to restrict U’s ac-
cess rights. After this, the kernel refuses to grant access
to restricted resources whenever the value of the PKRU is
not PKRU_ALLOW_TRUSTED, indicating that the syscall
does not originate from T. To access restricted resources, U
must invoke T, which can filter syscalls.

4 Rewriting program binaries

The binary inspection described in Section 3.4 guarantees
that executable pages do not contain unsafe instances of the
WRPKRU and XRSTOR instructions. This is sufficient for
ERIM’s safety. In this section, we show how to generate or
modify program binaries to not contain unsafe WRPKRUs
and XRSTORs, so that they pass the binary inspection.

Intentional occurrences of WRPKRU that are not imme-
diately followed by a transfer to T and all occurrences of
XRSTOR, whether they are generated by a compiler or writ-
ten manually in assembly, can be made safe by inserting
the checks described in Section 3.4 after the instances. In-
advertent occurrences—those that arise unintentionally as
part of a longer x86 instruction and operand, or spanning
two consecutive x86 instructions/operands—are more inter-
esting. We describe a rewrite strategy to eliminate such oc-
currences and how the strategy can be applied by a compiler
or a binary rewriting tool. The strategy can rewrite any se-
quence of x86 instructions and operands containing an inad-
vertent WRPKRU or XRSTOR to a functionally equivalent
sequence without either. In the following we describe the
strategy, briefly argue why it is complete, and summarize an
empirical evaluation of its effectiveness.

Rewrite strategy WRPKRU is a 3 byte instruction,
0x0F01EF. XRSTOR is also always a 3-byte instruction, but
it has more variants, fully described by the regular expres-

1228    28th USENIX Security Symposium USENIX Association



Overlap with Cases Rewrite strategy ID Example
Opcode Opcode =

WRPKRU/
XRSTOR

Insert safety check after instruction 1

Mod R/M Mod R/M =
0x0F

Change to unused register + move command 2 add ecx, [ebx + 0x01EF0000] → mov eax,
ebx; add ecx, [eax + 0x01EF0000];

Push/Pop used register + move command 3 add ecx, [ebx + 0x01EF0000] → push eax;
mov eax, ebx; add ecx, [eax + 0x01EF0000];
pop eax;

Displacement Full/Partial
sequence

Change mode to use register 4 add eax, 0x0F01EF00 → (push ebx;) mov ebx,
0x0F010000; add ebx, 0x0000EA00; add eax,
ebx; (pop ebx;)

Jump-like
instruction

Move code segment to alter constant used in
address

5 call [rip + 0x0F01EF00] → call [rip +
0x0FA0EEFF]

Immediate Full/Partial
sequence

Change mode to use register 6 add eax, 0x0F01EF → (push ebx;) mov ebx,
0x0F01EE00; add ebx, 0x00000100; add eax,
ebx; (pop ebx;)

Associative
opcode

Apply instruction twice with different imme-
diates to get equivalent effect

7 add ebx, 0x0F01EF00 → add ebx,
0x0E01EF00; add ebx, 0x01000000

Table 1: Rewrite strategy for intra-instruction occurrences of WRPKRU and XRSTOR

sion 0x0FAE[2|6|A][8-F]. There are two cases to consider.
First, a WRPKRU or XRSTOR sequence can span two or
more x86 instructions. Such sequences can be “broken” by
inserting a 1-byte nop like 0x90 between the two consecutive
instructions. 0x90 does not coincide with any individual byte
of WRPKRU or XRSTOR, so this insertion cannot generate
a new occurrence.

Second, a WRPKRU or XRSTOR may appear entirely
within a longer instruction including any immediate operand.
Such cases can be rewritten by replacing them with a se-
mantically equivalent instruction or sequence of instructions.
Doing so systematically requires an understanding of x86 in-
struction coding. An x86 instruction contains: (i) an opcode
field possibly with prefix, (ii) a MOD R/M field that deter-
mines the addressing mode and includes a register operand,
(iii) an optional SIB field that specifies registers for indirect
memory addressing, and (iv) optional displacement and/or
immediate fields that specify constant offsets for memory
operations and other constant operands.

The strategy for rewriting an instruction depends on the
fields with which the WRPKRU or XRSTOR subsequence
overlaps. Table 1 shows the complete strategy.

An opcode field is at most 3-bytes long. If the WRPKRU
(XRSTOR) starts at the first byte, the instruction is WRP-
KRU (XRSTOR). In this case, we make the instruction safe
by inserting the corresponding check from Section 3.4 after
it. If the WRPKRU or XRSTOR starts after the first byte of
the opcode, it must also overlap with a later field. In this
case, we rewrite according to the rule for that field below.

If the sequence overlaps with the MOD R/M field, we
change the register in the MOD R/M field. This requires
a free register. If one does not exist, we rewrite to push an
existing register to the stack, use it in the instruction, and pop

it back. (See lines 2 and 3 in Table 1.)
If the sequence overlaps with the displacement or the im-

mediate field, we change the mode of the instruction to use
a register instead of a constant. The constant is computed
in the register before the instruction (lines 4 and 6). If a
free register is unavailable, we push and pop one. Two
instruction-specific optimizations are possible. First, for
jump-like instructions, the jump target can be relocated in
the binary; this changes the displacement in the instruction,
obviating the need a free register (line 5). Second, associa-
tive operations like addition can be performed in two incre-
ments without an extra register (line 7). Rewriting the SIB
field is never required because any WRPKRU or XRSTOR
must overlap with at least one non-SIB field (the SIB field is
1 byte long while these instructions are 3 bytes long).

Compilers and well-written assembly programs normally
do not mix data like constants, jump tables, etc. with the
instruction stream and instead place such data in a non-
executable data segment. If so, WRPKRU or XRSTOR se-
quences that occur in such data can be ignored.

Compiler support For binaries that can be recompiled
from source, rewriting can be added to the codegen phase of
the compiler, which converts the intermediate representation
(IR) to machine instructions. Whenever codegen outputs an
inadvertent WRPKRU or XRSTOR, the surrounding instruc-
tions in the IR can be replaced with equivalent instructions
as described above, and codegen can be run again.

Runtime binary rewriting For binaries that cannot be re-
compiled, binary rewriting can be integrated with the inter-
ception and inspection mechanism (Section 3.4). When the
inspection discovers an unsafe WRPKRU or XRSTOR on an
executable page during its scan, it overwrites the page with

USENIX Association 28th USENIX Security Symposium    1229



1-byte traps, makes it executable, and stores the original page
in reserve without enabling it for execution. Later, if there is
a jump into the executable page, a trap occurs and the trap
handler discovers an entry point into the page.

The rewriter then disassembles the reserved page from
that entry point on, rewriting any discovered WRPKRU or
XRSTOR occurrences, and copies the rewritten instruction
sequences back to the executable page. To prevent other
threads from executing partially overwritten instruction se-
quences, we actually rewrite a fresh copy of the executable
page with the new sequences, and then swap this rewritten
copy for the executable page. This technique is transparent
to the application, has an overhead proportional to the num-
ber of entry points in offending pages (it disassembles from
every entry point only once) and maintains the invariant that
only safe pages are executable.

A rewritten instruction sequence is typically longer than
the original sequence and therefore cannot be rewritten in-
place. In this case, binary rewriting tools place the rewrit-
ten sequence on a new page, replace the first instruction in
the original sequence with a direct jump to the rewritten se-
quence, and insert a direct jump back to the instruction fol-
lowing the original sequence after the rewritten sequence.
Both pages are then enabled for execution.

Implementation and testing The rewrite strategy is ar-
guably complete. We have implemented the strategy as a
library, which can be used either with the inspection mecha-
nism as explained above or with a static binary rewrite tool,
as described here. To gain confidence in our implementation,
we examined all binaries of five large Linux distributions (a
total of 204,370 binaries). Across all binaries, we found a
total of 1213 WRPKRU/XRSTOR occurrences in code seg-
ments. We then used a standard tool, Dyninst [15], to try
to disassemble and rewrite these occurrences. Dyninst was
able to disassemble 1023 occurrences and, as expected, our
rewriter rewrote all instances successfully. Next, we wanted
to run these 1023 rewritten instances. However, this was
infeasible since we did not know what inputs to the bina-
ries would cause control to reach the rewritten instances.
Hence, we constructed two hand-crafted binaries with WRP-
KRUs/XRSTORs similar to the 1023 occurrences, rewrote
those WRPKRUs/XRSTORs with Dyninst and checked that
those rewritten instances ran correctly. Based on these exper-
iments, we are confident that our implementation of WRP-
KRU/XRSTOR rewriting is robust.

5 Use Cases

ERIM goes beyond prior work by providing efficient isola-
tion with very high component switch rates of the order of
105 or 106 times a second. We describe three such use cases
here, and report ERIM’s overhead on them in Section 6.

Isolating cryptographic keys in web servers Isolating
long-term SSL keys to protect from web server vulnerabil-

ities such as the Heartbleed bug [37] is well-studied [33,
34]. However, long-term keys are accessed relatively infre-
quently, typically only a few times per user session. Session

keys, on the other hand, are accessed far more frequently—
over 106 times a second per core in a high throughput web
server like NGINX. Isolating sessions keys is relevant be-
cause these keys protect the confidentiality of individual
users. With its low-cost switching, ERIM can be used to
isolate session keys efficiently. To verify this, we partitioned
OpenSSL’s low-level crypto library (libcrypto) to isolate the
session keys and basic crypto routines, which run as T, from
the rest of the web server, which runs as U.

Native libraries in managed runtimes Managed runtimes
such as a Java or JavaScript VM often rely on third-party na-
tive libraries written in unsafe languages for performance.
ERIM can isolate the runtime from bugs and vulnerabilities
in a native library by mapping the managed runtime to T and
the native libraries to U. This use case leverages the “in-
tegrity only” version of ERIM (Section 3.7). We isolated
Node.js from a native SQLite plugin. Node.js is a state-of-
the-art managed runtime for JavaScript and SQLite is a state-
of-the-art database library written in C [1, 2]. The approach
generalizes to isolating several mutually distrusting libraries
from each other by leveraging ERIM’s multi-component ex-
tension from Section 3.7.

CPI/CPS Code-pointer integrity (CPI) [31] prevents
control-flow hijacks by isolating sensitive objects—code
pointers and objects that can lead to code pointers—in a safe

region that cannot be written without bounds checks. CPS
is a lighter, less-secure variant of CPI that isolates only code
pointers. A key challenge is to isolate the safe region effi-
ciently, as CPI can require switching rates on the order of
106 or more switches/s on standard benchmarks. We show
that ERIM can provide strong isolation for the safe region
at low cost. To do this, we override the CPI/CPS-enabled
compiler’s intrinsic function for writing the sensitive region
to use a call gate around an inlined sequence of T code that
performs a bounds check before the write. (MemSentry [30]
also proposes using MPK for isolating the safe region, but
does not actually implement it.)

6 Evaluation

We have implemented two versions of an ERIM prototype
for Linux.3 One version relies on a 77 line Linux Secu-
rity Module (LSM) that intercepts all mmap and mprotect
calls to prevent U from mapping pages in executable mode,
and prevents U from overriding the binary inspection han-
dler. We additionally added 26 LoC for kernel hooks to
Linux v4.9.110, which were needed by the LSM. We also
implemented ERIM on an unmodified Linux kernel using
the ptrace-based technique described in Section 3.4. In the

3Available online at https://gitlab.mpi-sws.org/

vahldiek/erim.
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following, we show results obtained with the modified ker-
nel. The performance of ERIM on the stock Linux kernel
is similar, except that the costs of mmap, mprotect, and
pkey_mprotect syscalls that enable execute permissions
are about 10x higher. Since the evaluated applications use
these operations infrequently, the impact on their overall per-
formance is negligible.

Our implementation also includes the ERIM runtime li-
brary, which provides a memory allocator over MT, call
gates, the ERIM initialization code, and binary inspection.
These comprise 569 LoC. Separately, we have implemented
the rewriting logic to eliminate inadvertent WRPKRU oc-
currences (about 2250 LoC). While we have not yet inte-
grated the logic into either a compiler or our inspection han-
dler, the binaries used in our performance evaluation exper-
iments do not have any unsafe WRPKRU occurrences and
do not load any libraries at runtime. However, the binaries
did have two legitimate occurrences of XRSTOR (in the dy-
namic linker library ld.so), which we made safe as de-
scribed in Section 3.4. Two other inadvertent XRSTOR oc-
curred in data-only pages of executable segments in libm,
which is used by the SPEC benchmarks. We made these safe
by re-mapping the pages read-only. Hence, the results we
report are on completely safe binaries.

We evaluate the ERIM prototype on microbenchmarks and
on the three applications mentioned in Section 5. Unless
otherwise mentioned, we perform our experiments on Dell
PowerEdge R640 machines with 16-core MPK-enabled In-
tel Xeon Gold 6142 2.6GHz CPUs (with the latest firmware;
Turbo Boost and SpeedStep were disabled), 384GB mem-
ory, 10Gbps Ethernet links, running Debian 8, Linux kernel
v4.9.60. For the OpenSSL/webserver experiments in Sec-
tions 6.2 and 6.5, we use NGINX v1.12.1, OpenSSL v1.1.1
and the ECDHE-RSA-AES128-GCM-SHA256 cipher. For
the managed language runtime experiment (Section 6.3), we
use Node.js v9.11.1 and SQLite v3.22.0. For the CPI exper-
iment (Section 6.4), we use the Levee prototype v0.2 avail-
able from http://dslab.epfl.ch/proj/cpi/ and
Clang v3.3.1 including its CPI compile pass, runtime library
extensions and link-time optimization.

6.1 Microbenchmarks

Switch cost We performed a microbenchmark to measure
the overhead of invoking a function with and without a
switch to a trusted component. The function adds a con-
stant to an integer argument and returns the result. Table 2
shows the cost of invoking the function, in cycles, as an in-
lined function (I), as a directly called function (DC), and as
a function called via a function pointer (FP). For reference,
the table also includes the cost of a simple syscall (getpid),
the cost of a switch on lwCs, a recent isolation mechanism
based on kernel page table protections [33], and the cost of a
VMFUNC (Intel VT-x)-based extended page table switch.

In our microbenchmark, calls with an ERIM switch are be-

Call type Cost (cycles)
Inlined call (no switch) 5
Direct call (no switch) 8

Indirect call (no switch) 19

Inlined call + switch 60
Direct call + switch 69

Indirect call + switch 99

getpid system call 152
Call + VMFUNC EPT switch 332

lwC switch [33] (Skylake CPU) 6050

Table 2: Cycle counts for basic call and return

tween 55 and 80 cycles more expensive than their no-switch
counterparts. The most expensive indirect call costs less than
the simplest system call (getpid). ERIM switches are up to
3-5x faster than VMFUNC switches and up to 100x faster
than lwC switches.

Because the CPU must not reorder loads and stores with
respect to a WRPKRU instruction, the overhead of an ERIM
switch depends on the CPU pipeline state at the time the
WRPKRUs are executed. In experiments described later in
this section, we observed average overheads ranging from 11
to 260 cycles per switch. At a clock rate of 2.6GHz, this cor-
responds to overheads between 0.04% and 1.0% for 100,000
switches per second, which is significantly lower than the
overhead of any kernel- or hypervisor-based isolation.

Binary inspection To determine the cost of ERIM’s bi-
nary inspection, we measured the cost of scanning the bina-
ries of all 18 applications in the CINT/FLOAT SPEC 2006
CPU benchmark. These range in size from 9 to 3918 4KB
pages, contain between 35 and 63765 intentional WRPKRU
instructions when compiled with CPI (see Section 6.4), no
unintended WRPKRU and no XRSTOR instructions. The
overhead is largely independent of the number of WRPKRU
instructions and ranges between 3.5 and 6.2 microseconds
per page. Even for the largest binary, the scan takes only
17.7ms, a tiny fraction of a typical process’ runtime.

6.2 Protecting session keys in NGINX

Next, we use ERIM to isolate SSL session keys in a high
performance web server, NGINX. We configured NGINX to
use only the ECDHE-RSA-AES128-GCM-SHA256 cipher
and AES encryption for sessions. We modified OpenSSL’s
libcrypto to isolate all session keys and the functions for AES
key allocation and encryption/decryption into ERIM’s T, and
use ERIM call gates to invoke these functions.

To measure ERIM’s overhead on the peak throughput, we
configure a single NGINX worker pinned to a CPU core,
and connect to it remotely over HTTPS with keep-alive from
4 concurrent ApacheBench (ab) [3] instances each simulat-
ing 75 concurrent clients. The clients all request the same
file, whose size we vary from 0 to 128KB across experi-

USENIX Association 28th USENIX Security Symposium    1231



File
size
(KB)

1 worker 3 workers 5 workers 10 workers
Native
(req/s)

ERIM
rel. (%)

Native
(req/s)

ERIM
rel. (%)

Native
(req/s)

ERIM
rel. (%)

Native
(req/s)

ERIM
rel. (%)

0 95,761 95.8 276,736 96.1 466,419 95.7 823,471 96.4
1 87,022 95.2 250,565 94.5 421,656 96.1 746,278 95.5
2 82,137 95.4 235,820 95.1 388,926 96.6 497,778 100.0
4 76,562 95.3 217,602 94.9 263,719 100.0
8 67,855 96.0 142,680 100.0

Table 3: Nginx throughput with multiple workers. The standard deviation is below 1.5% in all cases.
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Figure 1: Throughput of NGINX with one worker, normal-
ized to native (no protection), with varying request sizes.
Standard deviations were all below 1.1%.

File
size
(KB)

Throughput
Switches/s

CPU load
native
(%)

Native
(req/s)

ERIM
rel. (%)

0 95,761 95.8 1,342,605 100.0
1 87,022 95.2 1,220,266 100.0
2 82,137 95.4 1,151,877 100.0
4 76,562 95.3 1,073,843 100.0
8 67,855 96.0 974,780 100.0

16 45,483 97.1 820,534 100.0
32 32,381 97.3 779,141 100.0
64 17,827 100.0 679,371 96.7

128 8,937 100.0 556,152 86.4

Table 4: Nginx throughput with a single worker. The stan-
dard deviation is below 1.1% in all cases.

ments.4 Figure 1 shows the average throughput of 10 runs of
an ERIM-protected NGINX relative to native NGINX with-
out any protection for different file sizes, measured after an
initial warm-up period.

ERIM-protected NGINX provides a throughput within
95.18% of the unprotected server for all request sizes. To
explain the overhead further, we list the number of ERIM
switches per second in the NGINX worker and the worker’s
CPU utilization in Table 4 for request sizes up to 128KB.
The overhead shows a general trend up to requests of size 32

4Since NGINX only serves static files in this experiment, its support for
Lua and JavaScript is not used. As a result, this experiment does not rely on
any support for Jit, which we have not yet implemented.

KB: The worker’s core remains saturated but as the request
size increases, the number of ERIM switches per second de-
crease, and so does ERIM’s relative overhead. The observa-
tions are consistent with an overhead of about 0.31%–0.44%
for 100,000 switches per second. For request sizes 64KB
and higher, the 10Gbps network saturates and the worker
does not utilize its CPU core completely in the baseline. The
free CPU cycles absorb ERIM’s CPU overhead, so ERIM’s
throughput matches that of the baseline.

Note that this is an extreme test case, as the web server
does almost nothing and serves the same cached file repeat-
edly. To get a more realistic assessment, we set up NGINX to
serve from main memory static HTML pages from a 571 MB
(15,520 pages) Wikipedia snapshot of 2006 [48]. File sizes
vary from 417 bytes to 522 KB (average size 37.7 KB). 75
keep-alive clients request random pages (selected based on
pageviews on Wikipedia [49]). The average throughput with
a single NGINX worker was 22,415 requests/s in the base-
line and 21,802 requests/s with ERIM (std. dev. below 0.6%
in both cases). On average, there were 615,000 switches a
second. This corresponds to a total overhead of 2.7%, or
about 0.43% for 100,000 switches a second.

Scaling with multiple workers To verify that ERIM
scales with core parallelism, we re-ran the first experiment
above with 3, 5 and 10 NGINX workers pinned to separate
cores, and sufficient numbers of concurrent clients to satu-
rate all the workers. Table 3 shows the relative overheads
with different number of workers. (For requests larger than
those shown in the table, the network saturates, and the spare
CPU cycles absorb ERIM’s overhead completely.) The over-
heads were independent of the number of workers (cores),
indicating that ERIM adds no additional synchronization and
scales perfectly with core parallelism. This result is expected
as updates to the per-core PKRU do not affect other cores.

6.3 Isolating managed runtimes

Next, we use ERIM to isolate a managed language runtime
from an untrusted native library. Specifically, we link the
widely-used C database library, SQLite, to Node.js, a state-
of-the-art JavaScript runtime and map Node.js’s runtime to
T and SQLite to U. We modified SQLite’s entry points to
invoke call gates. To isolate Node.js’s stack from SQLite,
we run Node.js on a separate stack in MT, and switch to the
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Test # Switches/s ERIM overhead (%)
100 11,183,281 12.73%
110 8,329,914 12.18%
400 8,161,584 15.42%
120 7,190,766 13.81%
142 7,074,553 9.41%
500 6,419,008 12.13%
510 5,868,395 5.60%
410 5,091,212 3.64%
240 2,358,524 3.74%
280 2,303,516 3.22%
170 1,264,366 4.22%
310 1,133,364 2.92%
161 1,019,138 2.81%
160 1,014,829 2.73%
230 670,196 2.04%
270 560,257 2.28%

Table 5: Overhead relative to native execution for SQLite
speedtest1 tests with more than 100,000 switches/s. Standard
deviations were below 5.6%.

standard stack (in MU) prior to calling a SQLite function.
Finally, SQLite uses the libc function memmove, which ac-
cesses libc constants that are in MT, so we implemented a
separate memmove for SQLite. In total, we added 437 LoC.

We measure overheads on the speedtest1 benchmark that
comes with SQLite and emulates a typical database work-
load [4]. The benchmark performs 32 short tests that stress
different database functions like selects, joins, inserts and
deletes. We increased the iterations in each test by a factor
of four to make the tests longer. Our baseline for compar-
ison is native SQLite linked to Node.js without any protec-
tion. We configure the benchmark to store the database in
memory and report averages of 20 runs.

The geometric mean of ERIM’s runtime overhead across
all tests is 4.3%. The overhead is below 6.7% on all tests
except those with more than 106 switches per second. This
suggests that ERIM can be used for isolating native libraries
from managed language runtimes with low overheads up to
a switching cost of the order of 106 per second. Beyond that
the overhead is noticeable. Table 5 shows the relative over-
heads for tests with switching rates of at least 100,000/s. The
numbers are consistent with an average overhead between
0.07% and 0.41% for 100,000 switches/s. The actual switch
cost measured from direct CPU cycle counts varies from 73
to 260 cycles across all tests. It exceeds 100 cycles only
when the switch rate is less than 2,000 times/s. We verified
that these are due to i-cache misses—at low switch rates, the
call gate instructions are evicted between switches.

6.4 Protecting sensitive data in CPI/CPS

Next, we use ERIM to isolate the safe region of CPI and
CPS [31] in a separate domain. We modified CPI/CPS’s
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Figure 2: Percentage overhead relative to no protection.

LLVM compiler pass to emit additional ERIM switches,
which bracket any code that modifies the safe region. The
switch code, as well as the instructions modifying the safe
region, are inlined with the application code. In addition, we
implemented simple optimizations to safely reduce the fre-
quency of ERIM domain switches. For instance, the original
implementation sets sensitive code pointers to zero during
initialization. Rather than generate a domain switch for each
pointer initialization, we generate loops of pointer set oper-
ations that are bracketed by a single pair of ERIM domain
switches. This is safe because the loop relies on direct jumps
and the code to set a pointer is inlined in the loop’s body. In
all, we modified 300 LoC in LLVM’s CPI/CPS pass.

Like the original CPI/CPS paper [31], we compare the
overhead of the original and our ERIM-protected CPI/CPS
system on the SPEC CPU 2006 CINT/FLOAT benchmarks,
relative to a baseline compiled with Clang without any pro-
tection. The original CPI/CPS system is configured to use
ASLR for isolation, the default technique used on x86-64 in
the original paper. ASLR imposes almost no switching over-
head, but also provides no security [43, 25, 16, 19, 39].

Figure 2 shows the average runtime overhead of 10 runs of
the original CPI/CPS (lines “CPI/CPS”) and CPI/CPS over
ERIM (lines “ERIM-CPI/CPS”). All overheads are normal-
ized to the unprotected SPEC benchmark. We could not
obtain results for 400.perlbench for CPI and 453.povray for
both CPS and CPI. 400.perlbench does not halt when com-
piled with CPI and SPEC’s result verification for 453.povray
fails due to unexpected output. These problems exist in
the code generated by the Levee CPI/CPS prototype with
CPI/CPS enabled (-fcps/-fcpi), not our modifications.
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Benchmark Switches/sec
ERIM-CPI overhead

relative to orig. CPI in %
403.gcc 16,454,595 22.30%
445.gobmk 1,074,716 1.77%
447.dealII 1,277,645 0.56%
450.soplex 410,649 0.60%
464.h264ref 1,705,131 1.22%
471.omnetpp 89,260,024 144.02%
482.sphinx3 1,158,495 0.84%
483.xalancbmk 32,650,497 52.22%

Table 6: Domain switch rates of selected SPEC CPU bench-
marks and overheads for ERIM-CPI without binary inspec-
tion, relative to the original CPI with ASLR.

CPI: The geometric means of the overheads (relative to
no protection) of the original CPI and ERIM-CPI across all
benchmarks are 4.7% and 5.3%, respectively. The relative
overheads of ERIM-CPI are low on all individual bench-
marks except gcc, omnetpp, and xalancbmk.

To understand this better, we examined switching rates
across benchmarks. Table 6 shows the switching rates
for benchmarks that require more than 100,000 switches/s.
From the table, we see that the high overheads on gcc, om-
netpp and xalancbmk are due to extremely high switching
rates on these three benchmarks (between 1.6 × 107 and
8.9× 107 per second). Further profiling indicated that the
reason for the high switch rate is tight loops with pointer
updates (each pointer update incurs a switch). An optimiza-
tion pass could hoist the domain switches out of the loops
safely using only direct control flow instructions and enforc-
ing store instructions to be bound to the application memory,
but we have not implemented it yet.

Table 6 also shows the overhead of ERIM-CPI excluding
binary inspection, relative to the original CPI over ASLR
(not relative to an unprotected baseline as in Figure 2). This
relative overhead is exactly the cost of ERIM’s switching.
Depending on the benchmark, it varies from 0.03% to 0.16%
for 100,000 switches per second or, equivalently, 7.8 to 41.6
cycles per switch. These results again indicate that ERIM
can support inlined reference monitors with switching rates
of up to 106 times a second with low overhead. Beyond this
rate, the overhead becomes noticeable.

CPS: The results for CPS are similar to those for CPI, but
the overheads are generally lower. Relative to the baseline
without protection, the geometric means of the overheads of
the original CPS and ERIM-CPS are 1.1% and 2.4%, respec-
tively. ERIM-CPS’s overhead relative to the original CPS
is within 2.5% on all benchmarks, except except perlbench,
omnetpp and xalancbmk, where it ranges up to 17.9%.

6.5 Comparison to existing techniques

In this section, we compare ERIM to isolation using SFI
(with Intel MPX), extended page tables (with Intel VT-

x/VMFUNC), kernel page tables (with lwCs), and instru-
mentation of untrusted code for full memory safety (with
WebAssembly). In each case, our primary goal is a quan-

titative comparison of the technique’s overhead to that of
ERIM. As we show below, ERIM’s overheads are substan-
tially lower than those of the other techniques. But before
presenting these results, we provide a brief qualitative com-
parison of the techniques in terms of their threat models.

Qualitative comparison of techniques Isolation using
standard kernel page tables affords a threat model similar
to ERIM’s. In particular, like ERIM, the OS kernel must be
trusted. In principle, isolation using a hypervisor’s extended
page tables (VMFUNC) can afford a stronger threat model,
in which the OS kernel need not be trusted [34].

Isolation using SFI, with or without Intel MPX, affords
a threat model weaker than ERIM’s since one must addi-
tionally trust the transform that adds bounds checks to the
untrusted code. For full protection, a control-flow integrity
(CFI) mechanism is also needed to prevent circumvention of
bounds checks. This further increases both the trusted com-
puting base (TCB) and the overheads. In the experiments
below, we omit the CFI defense, thus underestimating SFI
overheads for protection comparable to ERIM’s.

Instrumenting untrusted code for full memory safety, i.e.,
bounds-checking at the granularity of individual memory
allocations, implicitly affords the protection that SFI pro-
vides. Additionally, such instrumentation also protects the
untrusted code’s data from other outside threats, a use case
that the other techniques here (including ERIM) do not han-
dle. However, as for SFI, the mechanism used to instrument
the untrusted code must be trusted. In our experiments be-
low, we enforce memory safety by compiling untrusted code
to WebAssembly, and this compiler must be trusted.

Next, we quantitatively compare the overheads of these
techniques to those of ERIM.

SFI using MPX We start by comparing the cost of ERIM’s
isolation to that of isolation based on SFI using MPX. For
this, we follow the NGINX experiment of Section 6.2. We
place OpenSSL (trusted) in a designated memory region,
and use MemSentry [30] to compile all of NGINX (un-
trusted) with MPX-based memory-bounds checks that pre-
vent it from accessing the OpenSSL region directly.5 To
get comparable measurements on the (no protection) base-
line and ERIM, we recompile NGINX with Clang version
3.8, which is the version that MemSentry supports. We then
re-run the single worker experiments of Section 6.2.

Figure 3a shows the overheads of MPX and ERIM on
NGINX’s throughput, relative to a no-protection baseline.
The MPX-based instrumentation reduces the throughput of
NGINX by 15-30% until the experiment is no longer CPU-

5This setup reduces the overheads of MPX as compared to the setup
of Section 6.2, which isolates only small parts of OpenSSL. It is also less
secure. Hence, the MPX overheads reported here are conservative.
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(a) ERIM vs. SFI using MPX (averages of 3 runs, std. devs.
below 1.9%)
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(b) Emulated ERIM vs. VMFUNC (averages of 3 runs, std. devs.
below 0.9%)
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(c) Emulated ERIM vs. LwC (averages of 5 runs, std. devs. be-
low 1.1%)

Figure 3: Comparison of NGINX throughput with ERIM and
alternative isolation techniques

bound (file sizes ≥ 64kb). In contrast, ERIM reduces over-
heads by no more than 3.5%. Across all file sizes, MPX
overheads are 4.2-8.5x those of ERIM.

MPX (more generally, SFI) and ERIM impose overhead
in different ways. MPX imposes an overhead during the ex-
ecution of NGINX (the untrusted component), while ERIM
imposes an overhead on component switches. Consequently,
one could argue that, as the switch rate increases, ERIM must

eventually become more expensive than MPX. While this is
theoretically true, in this experiment, we already observe ex-
tremely high switch rates of 1.2M/s (for file size 0kb) and,
even then, MPX’s overhead is 8.4x that of ERIM’s overhead.

Further, as explained earlier, for strong security, SFI must
be supported by control-flow integrity, which would induce

additional overheads that are not included here.

Extended page tables (VMFUNC) Next, we compare
ERIM to isolation based on extended page tables (EPTs) us-
ing Intel VT-x and VMFUNC. To get access to EPTs, we
use Dune [9] and a patch from MemSentry. We create two
page tables—one maps the trusted region that contains ses-
sion keys, and the other maps the untrusted region that con-
tains all the remaining state of NGINX and OpenSSL. Ac-
cess to the first table is efficiently switched on or off using
the VMFUNC EPT switch call provided by the MemSentry
patch. This call is faster than an OS process switch since it
does not switch the process context or registers. Since we
use Dune, the OS kernel runs in hypervisor mode. It has the
switch overheads of hypervisor-based isolation using VM-
FUNC but includes the OS kernel in the TCB.

Unfortunately, MemSentry’s patch works only on old
Linux kernels which do not have the page table support
needed for MPKs and, hence, cannot support ERIM. Con-
sequently, for this comparison, we rely on an emulation of
ERIM’s switch overhead using standard x86 instructions.
This emulation is described later in this section, and we val-
idate that it is accurate to within 2% of ERIM’s actual over-
heads on a variety of programs. So we believe that the com-
parative results presented here are quite accurate.

Figure 3b shows the throughput of NGINX protected with
VMFUNC and emulated ERIM, relative to a baseline with
no protection for different file sizes (we use Linux kernel
v3.16). Briefly, VMFUNC induces an overhead of 7-15%,
while the corresponding overhead of emulated ERIM is 2.1-
5.3%. Because both VMFUNC and ERIM incur overhead
on switches, overheads of both reduce as the switching rate
reduces, which happens as the file size increases. (The use
of Dune and extended page tables also induces an overhead
on all syscalls and page walks in the VMFUNC isolation.)

To directly compare VMFUNC’s overheads to actual

ERIM’s, we calculated VMFUNC’s overhead as a func-
tion of switch rate. Across different file sizes, this varies
from 1.4%-1.87% for 100,000 switches/s. In contrast, actual
ERIM’s overhead in the similar experiment of Section 6.2
never exceeds 0.44% for 100,000 switches/s. This difference
is consistent with the microbenchmark results in Table 2.

Kernel page tables (lwCs) Next, we compare ERIM’s
overhead to that of lwCs [33], a recent system for in-process
isolation based on kernel page-table protections. LwCs map
each isolated component to a separate address space in the
same process. A switch between components requires ker-
nel mediation to change page tables, but does not require a
process context switch. To measure lwC overheads, we re-
run the NGINX experiment of Section 6.2, using two lwC
contexts, one for the session keys and encryption/decryption
functions and the other for NGINX and the rest of OpenSSL.
Unfortunately, lwCs were prototyped in FreeBSD, which
does not support MPK, so we again use our emulation of
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ERIM’s switch overhead to compare. All experiments re-
ported here were run on Dell OptiPlex 7040 machines with
4-core Intel Skylake i5-6500 CPUs clocked at 3.2 GHz, 16
GB memory, 10 Gbps Ethernet cards, and FreeBSD 11.

Figure 3c shows the throughput of NGINX running with
lwCs and emulated ERIM, relative to a baseline without any
protection. With lwCs, the throughput is never above 80%
of the baseline, and for small files, where the switch rate is
high, the throughput is below 50%. In contrast, the through-
put with emulated ERIM is within 95% of the baseline for all
file sizes. In terms of switch rates, lwCs incur a cost of 10.5-
18.3% for 100,000 switches/s across different file sizes. Ac-

tual ERIM’s switch overhead during the similar experiment
of Section 6.2 is no more than 0.44% across all file sizes,
which is two orders of magnitude lower than that of lwCs.

Memory safety (WebAssembly) Finally, we compare
ERIM’s overheads to those of full memory safety on un-
trusted code. Specifically, we compare to compilation of
untrusted code through WebAssembly [21], a memory-safe,
low-level language that is now supported natively by all ma-
jor web browsers and expected to replace existing SFI tech-
niques like Native Client in the Chrome web browser. We
compare to ERIM using the experiment of Section 6.3. We
re-compile the (untrusted) SQLite library to WebAssembly
via emscripten v1.37.37’s WebAssembly backend [5], and
run the WebAssembly within Node.js, which supports the
language. Accross tests of Table 5, the overhead of using
WebAssembly varies from 81% to 193%, which is one to
two orders of magnitude higher than ERIM’s overhead.

Emulating ERIM’s switch cost We describe how we em-
ulate ERIM’s switch cost when comparing to VMFUNC and
lwCs above. Specifically, we need to emulate the cost of a
WRPKRU instruction, which isn’t natively supported in the
environments of those experiments. We do this using xor in-
structions to consume the appropriate number of CPU cycles,
followed by RDTSCP, which causes a pipeline stall and pre-
vents instruction re-ordering. Specifically, we execute a loop
five times, with xor eax,ecx; xor ecx,eax; xor

eax,ecx, followed by a single RDTSCP after the loop.
To validate the emulation we re-ran the SPEC CPU 2006

benchmark with CPI/CPS (Section 6.4) after swapping ac-
tual WRPKRU instructions with the emulation sequence
shown above and compared the resulting overheads. In each
individual test, the difference in overhead between actual
ERIM and the emulation is below 2%. We note that a per-
fectly precise emulation is impossible since emulation can-
not exactly reproduce the effects of WRPKRU on the exe-
cution pipeline. (WRPKRU must prevent the reordering of
loads and stores with respect to itself.) Depending on the
specific benchmark, our emulation slightly over- or under-
estimates the actual performance impact of WRPKRU. We
also observed that emulations of WRPKRU using LFENCE
or MFENCE (the latter was suggested by [30]) in place of

RDTSCP incur too little or too much overhead, respectively.

7 Conclusion

Relying on the recent Intel MPK ISA extension and simple
binary inspection, ERIM provides hardware-enforced isola-
tion with an overhead of less than 1% for every 100,000
switches/s between components on current Intel CPUs,
and almost no overhead on execution within a component.
ERIM’s switch cost is up to two orders of magnitude lower
than that of kernel page-table based isolation, and up to
3-5x lower than that of VMFUNC-based isolation. For
VMFUNC, virtualization can cause additional overhead on
syscalls and page table walks. ERIM’s overall overhead
is lower than that of isolation based on memory-bounds
checks (with Intel MPX), even at switch rates of the order
of 106/s. Additionally, such techniques require control-flow
integrity to provide strong security, which has its own over-
head. ERIM’s comparative advantage prominently stands
out on applications that switch very rapidly and spend a non-
trivial fraction of time in untrusted code.
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