
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

Pythia: Remote Oracles for the Masses
Shin-Yeh Tsai, Purdue University; Mathias Payer, EPFL; Yiying Zhang, Purdue University

https://www.usenix.org/conference/usenixsecurity19/presentation/tsai

Pythia: Remote Oracles for the Masses

Shin-Yeh Tsai
Purdue University

Mathias Payer
EPFL

Yiying Zhang
Purdue University

Abstract

Remote Direct Memory Access (RDMA) is a technology
that allows direct access from the network to a machine’s
main memory without involving its CPU. RDMA offers low-
latency, high-bandwidth performance and low CPU utilization.
While RDMA provides massive performance boosts and has
thus been adopted by several major cloud providers, security
concerns have so far been neglected.

The need for RDMA NICs to bypass CPU and directly
access memory results in them storing various metadata like
page table entries in their on-board SRAM. When the SRAM
is full, RNICs swap metadata to main memory across the PCIe
bus. We exploit the resulting timing difference to establish
side channels and demonstrate that these side channels can
leak access patterns of victim nodes to other nodes.

We design Pythia, a set of RDMA-based remote side-
channel attacks that allow an attacker on one client machine
to learn how victims on other client machines access data
a server exports as an in-memory data service. We reverse
engineer the memory architecture of the most widely used
RDMA NIC and use this knowledge to improve the efficiency
of Pythia. We further extend Pythia to build side-channel
attacks on Crail, a real RDMA-based key-value store applica-
tion. We evaluated Pythia on four different RDMA NICs both
in a laboratory and in a public cloud setting. Pythia is fast
(57 µs), accurate (97% accuracy), and can hide all its traces
from the victim or the server.

1 Introduction

Direct Memory Access (DMA) allows a machine’s peripher-
als like storage and network devices to access its main mem-
ory directly without involving CPU, vastly increasing I/O
performance and reducing CPU utilization. Inspired by DMA,
Remote Direct Memory Access, or RDMA, is a technology
that allows remote hosts to directly access (exported) mem-
ory of a node without having to go through its CPU. RDMA
enables high throughput and low latency data transfers and

largely reduces CPU utilization in clusters.
In recent years, major cloud vendors like Microsoft

Azure [73] and Alibaba Cloud [6] have adopted RDMA in
their datacenters to speed up processing and to reduce cost
of accessing large amounts of data. As the underlying proto-
cols prosper [32], more and more servers leverage the RDMA
protocol to speed up processing. The use of RDMA has rev-
olutionized data sharing in cloud environments with imple-
mentations for efficient key-value stores [24, 25, 40, 56, 57],
in-memory databases and transactional systems [19, 83, 88],
and graph processing systems [68, 85].

There is a plethora of research work on RDMA, but the
focus so far was all on performance, usability, and network
protocols. Security has been largely overlooked in RDMA
research and production1. With the rise of information leaks
through memory-based side-channels [17,26,39,41,42,86,87],
we have set out to evaluate the side-channel resistance of
existing RDMA implementations.

In a scenario where multiple nodes connect to a server that
provides remote access to its local memory through RDMA
(e.g., for a key-value store), a malicious node may want to
learn what data was accessed by benign nodes. We assume
that the server is trusted and that the attacker tries to learn
what data was accessed by the victim nodes through a remote
side channel which leaks access patterns. Figure 1 illustrates
this environment.

We discovered a new side channel that prevails across
all RDMA hardware that we know of. NICs that support
RDMA, or RNICs, cache metadata such as page table entries
in their on-board SRAM so that they can perform all opera-
tions needed to access main memory on their own without
involving CPU. However, the on-board SRAM size is limited
and the RNIC can only cache hot metadata while leaving the
rest in main memory. When an RDMA request’s metadata is
not cached, the RNIC takes extra time to fetch the metadata
from main memory to its SRAM. We observe and characterize
different side channels that can lead to this timing difference

1We made an initial exploration of security issues and opportunities in
one-sided communication in a recent workshop [77].

USENIX Association 28th USENIX Security Symposium 693

on three generations of RNIC devices.
Based on our findings, we designed Pythia, a set of side-

channel attacks that can be launched completely from the
network through RDMA. The basic idea is to issue RDMA
network requests to the server to fill its RNIC SRAM, eventu-
ally evicting the metadata of the target data. Then the attacker
reloads the target data with an RDMA request and based on
the time it takes, predict if the victim has accessed the data.

Although the basic idea is similar to the EVICT+RELOAD
CPU cache side-channel attack [30], designing Pythia
presents many new challenges. The first challenge is the diffi-
culty in achieving good eviction performance. Existing CPU-
cache based side-channel attacks leverage cache associativity
to reduce the eviction set size, thereby improving eviction
performance. However, RNICs are vendor owned and are
complete black boxes to public knowledge. To confront this
challenge, we reverse engineered the memory architecture
of the Mellanox ConnectX-4 RNIC [48], the type of RNIC
that is used in all major datacenter RDMA deployment. We
successfully discovered the internal architectural organiza-
tion of RNIC SRAM and leverage this knowledge to achieve
low-latency eviction.

The second challenge is in the reload and prediction pro-
cess. Because of our environment of being in a shared dat-
acenter network, the latency of an RDMA request can vary
with different network state. The traditional approach of using
a static threshold to differentiate cache hit from cache miss
is not a good fit for our environment. We take an adaptive
approach to dynamically train a hit/miss classifier based on
RDMA access latency at the time of attack and use the trained
classifier to statistically predict victim accesses [22, 28].

We evaluated Pythia in our lab environment and in a public
cloud [65] with four different types of RNICs. Pythia com-
pletes one EVICT+RELOAD cycle (across the network) in as
low as 57 µs with 97% accuracy2 Moreover, Pythia effectively
hides its traces from the server and victims because it per-
forms all its attack using RDMA operations from a separate
machine.

We further built three variations of Pythia to attack a real
RDMA-based system, the Apache Crail key-value store sys-
tem [7,70]. On a real application like Crail, it is more challeng-
ing to establish a strong side-channel attack because of limited
application interface and noise coming from application per-
formance overhead. After improving Pythia to accommodate
these difficulties, we successfully launched a side-channel
attack solely from a separate client machine using the unmod-
ified Crail client interface. This attack is efficient and can
accurately learn a victim’s key-value pair access patterns.

The contributions of this paper are:

1. Discovery of new side channels in RDMA-based systems
that leak client RDMA access patterns;

2The definition of accuracy throughout the paper is the percentage of
successful guesses over total guesses.

Server Machine

RDMA Network

 RNIC SRAM

 Main Memory CPU

Client Machine

Attacker

Client Machine

Victim

QP MR PTE

PCIe
PTEMRData

Figure 1: Attack Environment and RNIC Architecture.
The attacker and the victim are both clients that can access data in
the server machine’s memory throuth RDMA.

2. Reverse engineering of the most widely used RNIC hard-
ware architecture, which can be leveraged in designing
efficient side channels;

3. Design, implementation, and evaluation of a set of Pythia
side-channel attacks, which are fast, accurate, and can
be launched solely from a separate machine across the
network;

4. A case study of Pythia in a real-world setting;

5. Discussion of possible mitigations, most of which are
uniquely applicable to RDMA systems.

Pythia is the first work that explores side-channel vulnera-
bilities in RDMA and exploits the vulnerabilities to launch
attacks on RDMA-based datacenter systems. With today’s
datacenters all having robust defenses against direct sniffing
or hijacking of network traffic, side channels are more feasible
attack mechanisms and we believe that our work raises seri-
ous security concerns in a young but already widely-adopted
network technology.

We have responsibly disclosed the weaknesses to Mellanox
and Crail. Our implementation of Pythia is publicly available
at https://github.com/Wuklab/Pythia.

2 Background on RDMA

2.1 RDMA Basics
Remote Direct Memory Access, or RDMA, is a network
technology designed to offer remote low-latency, low-CPU-
utilization access to exported memory regions. RDMA sup-
ports both one-sided and two-sided communication. One-
sided RDMA operations directly access memory at a re-
mote node without involving the remote node’s CPU, simi-
lar to DMA on a single machine. Two-sided RDMA opera-
tions involve both sender and receiver processing, similar to
send/recv in traditional network messaging.

694 28th USENIX Security Symposium USENIX Association

https://github.com/Wuklab/Pythia

RDMA improves performance along several dimensions.
First, one-sided RDMA requests bypass the CPU of the re-
ceiver. Second, applications issue RDMA requests directly
from user space, bypassing kernel and avoiding kernel trap
cost. Third, RDMA avoids memory copying (a technique
called zero-copy). As a result, RDMA achieves low-latency,
high-throughput performance.

There are three implementations of RDMA: InfiniBand
(IB) [10, 11], RoCE [8, 9], and iWARP [63]. All implemen-
tations follow the standard RDMA protocol [64]. Among
them, RoCE, or RDMA over Converged Ethernet, implements
the RDMA protocol over standard Ethernet (RoCEv1) and
UDP (RoCEv2), and is the preferred technology in existing
datacenters [32].

One-sided RDMA is the key area where significant perfor-
mance and CPU utilization improvements over other network
technologies happen. Thus, we focus on one-sided RDMA. To
perform a one-sided RDMA operation, an application process
at a receiver node needs to first allocate a consecutive virtual
memory space and then use the virtual memory address range
to register a memory region, or MR, with the RNIC. An appli-
cation can register multiple MRs over the same or different
memory spaces. The RNIC will assign a pair of local and re-
mote protection keys (called lkey and rkey) to each MR. This
application then conveys the virtual address of the MR and
its rkey to processes running on other nodes. After building
connections between these other nodes (senders) and the node
that the MR-registering application runs on (receiver), these
processes can use 1) a virtual memory address that falls in the
MR’s virtual memory address range, 2) a size, and 3) the rkey
of the MR to perform one-sided RDMA read and write. In
RDMA’s term, a connection is called a Queue Pair, or QP.

2.2 RDMA NICs
RDMA NICs, or RNICs, are where most RDMA functionali-
ties are implemented. They usually contain complex hardware
logic that implements the RDMA protocol and some SRAM
to store metadata, and they are often connected to the host’s
PCIe bus (allowing the card access to main memory through
DMA). Because of the need to bypass the kernel and re-
ceiver’s CPU, most RDMA functionalities and data structures
have to be offloaded to the RNIC hardware.

An RNIC’s on-board SRAM stores three types of metadata.
First, it stores metadata for each QP in its memory. Second,
it stores lkeys, rkeys, and virtual memory addresses for all
registered MRs. Third, it caches page table entries (PTEs) for
MRs to obtain the DMA address of an RDMA request from
its virtual memory address. RNICs have a limited amount
of on-board SRAM which can only hold metadata for hot
data. When the SRAM is full, an RNIC will evict its cached
metadata to the main memory on the host machine, and on a
future access, fetch the evicted metadata from the host main
memory back through the PCIe bus. The timing difference
between an RDMA access whose metadata is in RNIC SRAM

and one that is not is what we exploit in our side-channel
attack. The SRAM architecture is vendor-specific and not
disclosed or specified in the RDMA standard. We reverse
engineer the SRAM architecture of the state-of-the-art RNIC
in Section 4.4.

2.3 RDMA-Based Applications
RDMA was originally designed for high-performance com-
puting environments, and it has been a popular choice of
network system in these environments for the past two
decades [34, 44, 54]. In recent years, major datacenters and
public clouds adopted RDMA for its low CPU utilization and
superior performance. For example, Microsoft Azure [73]
and Alibaba [6] have deployed RDMA with RoCE at large,
production scale.

Many datacenter systems and applications have been ported
to or rebuilt with RDMA. These include in-memory key-
value stores [7, 24, 25, 40, 56, 57, 70], in-memory databases
and transactional systems [19, 83, 88], graph processing sys-
tems [68, 85], distributed machine learning systems [15],
consensus implementations [60, 80], distributed non-volatile
memory systems [45,67,93], and remote swap systems [5,31].
Most of these applications use both one-sided and two-sided
RDMA operations, with some being pure one-sided [14, 88].
Our work is applicable to all RDMA-based applications that
use one-sided RDMA (but not necessary purely one-sided).

3 Threat Model

In our attack, there are three parties: the server which hosts
data in its main memory for other client machines to ac-
cess (e.g., an in-memory database or an in-memory key-value
store), the victim who accesses the server’s in-memory data
through RDMA, and the attacker who tries to infer the vic-
tim’s accesses and access patterns. The attacker and the victim
are both normal clients that can access the data store service
the server provides, and they run on separate machines. Fol-
lowing the threat models of related work that introduces and
evaluates side channels, we assume that the attacker does not
have direct control over the victim. As victim and attacker ex-
ecute on different machines and communication to the server
happens through the network, we assume that the attacker
cannot observe the victim’s network packets (as otherwise,
the attacker could directly infer the accessed addresses and
values as RDMA is currently not encrypted). This assumption
is reasonable as sniffing victim’s packets would require an
attacker to have root access on either the victim’s machine
or the server’s machine [52, 72, 74] or to launch man-in-the-
middle attack to the network, both of which are well defended
in cloud datacenters. We also assume that the server can-
not directly observe memory accesses of either the victim
or the attacker as both victim and attacker interact with the
server through one-sided RDMA operations, not involving
the server’s CPU.

USENIX Association 28th USENIX Security Symposium 695

4 Side-Channel Attacks on RDMA

RDMA exposes node-internal memory to external hosts. Due
to best practices of optimizing accesses and caching, cur-
rent RDMA hardware is vulnerable to a variety of timing
side channels. We present an overview of RDMA-based side
channels, two basic attacks, refined attacks with our reverse
engineered knowledge of RNIC internals, and evaluation re-
sults of the attacks. Unless otherwise stated, all our experi-
ments use three machines, each equipped with a Mellanox
ConnectX-4 100 Gbps network adapter [48], two Intel Xeon
E5-2620 2.40GHz CPUs, and 128 GB main memory. They
are connected with a Mellanox SB7700 100 Gbps InfiniBand
switch [50]. One machine is used as the server that serves
in-memory data through RDMA. The other two machines
are the victim client machine and the attacker client machine,
both of which can perform RDMA operations to access data
on the server. In all the experiments in this section, the vic-
tim has a 50% chance of accessing the targeted data that the
attacker tries to infer accesses on.

4.1 Attack Overview
The basic idea of our side-channel attacks is to exploit two
weaknesses in RNIC: 1) the RNIC caches metadata in its
SRAM, RDMA accesses whose metadata is not in SRAM
must wait until that data is fetched from main memory, and
2) all RDMA accesses from all applications share the RNIC
SRAM. As explained in Section 2.2, RNICs store three types
of metadata in their SRAM: QP information, MR information,
and PTEs. An RDMA access involves all three types of meta-
data: upon receiving a network request, an RNIC needs to
locate which QP the request belongs to, which MR it falls into,
and which page it is accessing. If any of these metadata is
not in the RNIC SRAM, the RNIC will fetch it from the host
memory, stalling the request until the required data arrives. By
exploiting this timing difference, we can launch side-channel
attacks to know which QP, which MR, and which PTE the
victim has accessed.

Traditional CPU-cache-based side-channel attacks take
three major forms: prime-based (e.g., PRIME+PROBE [1–4,
42,59,75,90]), flush-based (e.g., FLUSH+RELOAD [86]), and
evict-based (e.g., EVICT+RELOAD [30]). Because RNICs
do not provide any interface to flush their SRAM, all flush-
based side-channel attacks such as FLUSH+RELOAD [86] and
FLUSH+FLUSH [29] are incompatible with RDMA. All the
operations that are needed in prime-based and evict-based
attacks can be implemented through RDMA network requests
that an attacker performs over the network. Attackers can hide
their traces during the attacks, since one-sided RDMA reads
are oblivious to the server or other clients. Hardware perfor-
mance counters [35] may help servers track DMA traffic, but
it is challenging to associate traffic with RDMA accesses or
attacks. Even if the server suspects that an attack is happening,
it is still hard, in practice, to attribute an attack based on traffic

counters.
For the rest of the paper, we focus on RDMA-based

EVICT+RELOAD attacks. PRIME+PROBE attacks are also
possible on RDMA and we briefly discuss them in Section 7.

4.2 Unique Advantages and Challenges
There are three unique advantages for attackers in RDMA
systems. First, RDMA’s one-sided communication pattern
allows the attacker to hide her traces, since the receiving node
is unaware of any one-sided accesses. Second, the RDMA
network is much faster both in latency and in bandwidth
than traditional datacenter networks. The latest generation
of RDMA switches and RNICs can sustain 200 Gbps band-
width and under 0.6 µs latency [53]. RDMA’s superior perfor-
mance enables fine-grained, high-throughput, timing-based
side-channel attacks over the network. Finally, RDMA’s one-
sided communication bypasses the sender’s OS and does not
involve CPU at the receiver, both of which help reduce distur-
bance to timing-based attacks.

At the same time, attacking the RNIC presents several
novel challenges that no CPU-cache-based side-channel at-
tack experiences. First, it is hard to discover efficient side
channels in RNIC hardware. Unlike CPU caches, there is no
public knowledge of how RNICs organize or use their SRAM.
RNICs store different types of information in SRAM com-
pared to a linear layout of CPU caches. Second, we set a strict
threat model where attacks are launched from a separate ma-
chine that is different from the victim’s machine and the server
machine. This goal means that attacks have to be performed
using RDMA network requests only. Finally, since our side
channels are established over the network, noise in the net-
work could potentially increase difficulties for timing-based
attacks.

4.3 Basic Attack
Before presenting our side-channel attacks, we first discuss
the type of victim information we choose as our attack target
and the type of metadata we use to perform the eviction phase.
Notice that these two dimensions are orthogonal and both
have three options: QP, MR, and PTE.

Among these three types of information, knowing which
QP the victim accesses leaks little information about the vic-
tim and usually is not useful in real attacks. MRs and PTEs
can both leak more information. Using PTE as the attack tar-
get unit will reveal memory page (in virtual memory) accesses.
All OSes use 4 KB as the default page size. The MR size is
decided by the application that creates and registers it. For
performance reasons [55], most RDMA-based applications
choose to use large MRs. Thus, we choose PTE as the target
of our attack. However, most of our ideas and techniques can
be used to perform attacks that target MRs.

After choosing the attack target, we must decide what meta-
data to use to evict RNIC SRAM. To answer this question,
we tried to evict SRAM using the three types of metadata and

696 28th USENIX Security Symposium USENIX Association

Algorithm 1: MR-based eviction
Input : a target victim virtual memory address
Output :

if No access to sufficient amount of MRs then
start process at server to create MR_set;

else
foreach MR that the attacker has access to do

if MR 6= victim’s MR then
insert MR into MR_set;

end
end

end

foreach MR in MR_set do
perform 8-byte RDMA-read to MR;

end

reload our targeted information (i.e., PTE). We can success-
fully evict a PTE with PTEs, no matter whether or not the
PTEs we use to evict belong to the same MR as the target
PTE. We can also evict an MR with other MRs. We further
find that when an MR is evicted, PTEs of all the pages be-
longing to this MR will also be evicted. But we can only use
QPs to evict QP. This behavior implies that RNICs isolates
the SRAM used for QPs and for MRs and PTEs. We present
the evaluation results in Section 4.5. From this initial test, we
discovered that we can evict a PTE by either evicting the MR
it belongs to (using a large number of MRs) or by evicting
the PTE directly using a large number of other PTEs.

4.3.1 Eviction by MRs

We now present our attack that evicts SRAM with MRs,
PythiaMR. Algorithm 1 presents the pseudocode of
PythiaMR.

Because the MR-based attack requires the attacker to use
many MRs to evict the server’s RNIC SRAM, the attacker
requires access to a sufficient amount of MRs. If the number of
MRs is restricted, the attacker may resort to a (hypothetical)
MR gadget that allows her to register multiple MRs. One
approach is to launch a process on the server that allows her
to register multiple MRs (see Section 5.1 for details). Since
RDMA provides the functionality of registering multiple MRs
with the same memory space, the attacker process at the server
only needs to allocate a small memory space (of arbitrary
size) and register it multiple times. This process then needs to
send the rkeys corresponding to these registered MRs to the
attacker running on a client machine.

In the eviction phase, the attacker performs one-sided
RDMA reads from a client machine to the MRs it has access
to at the server (except for the MR that the victim PTE is in).
Since the server’s RNIC needs to fetch and store metadata for
each MR when the MR is accessed, its SRAM will eventually
be filled with MR metadata that the attacker accessed.

Algorithm 2: Naive PTE-based eviction
Input : a target victim virtual memory address
Output :

VictimVPN← victim_address >> 12;
generate eviction_set using VictimVPN;

foreach VPN in eviction_set do
perform 8-byte RDMA-read to address VPN << 12;

end

Algorithm 3: Reload and predict
Input : a target victim virtual memory address
Output :prediction of if the victim has accessed the target

address

determine Threshold according to network status;

start timer;
RDMA-read victim_address;
end timer;
time← elapsed_time;

if time < Threshold then
output accessed;

else
output not_accessed;

end

4.3.2 Eviction by PTEs

Alternatively, we can use PTEs to establish a side channel.
Compared to MR-based attacks, PTE-based attacks can often
be performed entirely from a client machine. Algorithm 2
presents the pseudocode of our PTE-based attack.

To perform PTE-based eviction, the attacker issues one-
sided RDMA reads to a sufficiently big memory space (1 GB
to 4 GB for the RNICs we study). Most RDMA-based appli-
cations are services that provide in-memory data storage and
use a large amount of memory, thus meeting the requirements
of PTE-based attacks.

Accessing different memory pages will cause the RNIC to
fetch PTEs to its SRAM. Because all accesses to the same
memory page will hit the same PTE, we only need to perform
one RDMA read (with the smallest RDMA operation size
of 8 bytes) in every 4 KB virtual memory address range. To
avoid loading the PTE that the victim accesses, we skip the
memory addresses that are close to the victim address.

4.3.3 Reload and Predict

After the eviction phase (either by MRs or by PTEs), the
attacker reloads the targeted victim data. If the reload time
is smaller than a threshold, the attacker determines that the
data has been accessed by the victim. Algorithm 3 presents
the pseudocode of the reload and prediction process.

The threshold used at the reload time directly affects the
result of an attack. Different from traditional CPU-cache side-

USENIX Association 28th USENIX Security Symposium 697

channel attacks, our attacks are in a distributed environment
where network status can vary with other workloads in the
datacenter. Thus, instead of a fixed threshold, we adapt the
threshold dynamically according to the network status. To
adjust the threshold, the attacker periodically measures the
latency of an RDMA operation which hits the RNIC SRAM
and the latency of one that misses the SRAM. The threshold
can be set as a value in the middle of these two latencies.

In addition to using an average threshold, other more ad-
vanced methods can also be used to determine the reload
result. In fact, we design a statistical method to determine
the reload result for our real-application attacks, as will be
presented in Section 5.

4.4 Finding PTE Eviction Sets
We call the attack that uses the eviction phase presented in Sec-
tion 4.3.2 the basic PTE-based attack, or PythiaPTEBasic. In
order to reduce the time to perform eviction and improve the
efficiency of PythiaPTEBasic, we search for a smaller eviction
set that achieves similar accuracy as PythiaPTEBasic. Specifi-
cally, we perform a set of experiments to systematically re-
verse engineer the internal organization of RNIC SRAM and
use our learned knowledge to construct a minimal PTE evic-
tion set.

Reverse engineering RNIC SRAM organization is signifi-
cantly harder than reverse engineering traditional CPU caches
because there is no public knowledge of the internal organi-
zation of any RNIC. All we know is that the RNIC caches
three types of metadata (PTEs, MRs, and QPs) in its SRAM.
Moreover, reverse engineering the RNIC involves network
operations which add noise compared to a well-isolated CPU
cache environment.

First attempt in finding index bits. We initially guess
that RNICs organize their in-SRAM PTE caches as set-
associative caches, similar to how CPUs organize their caches.
To validate this guess, we assume that the PTE cache is or-
ganized as a fixed number of sets (e.g., 2, 4, 8) and different
number of bits (e.g., 1, 2, 3) are used to calculate the index into
these sets. Since PTEs are identified by virtual page number
(VPN), we can ignore the lowest 12 bits (with page size being
4 KB). We then use the lowest K bits of VPNs to calculate the
index into one of the 2K cache sets. These K bits correspond
to the 12th to the (11+K)th bits of the full virtual memory
address (we call the lowest bit the 0th bit and count upwards
to higher bits).

We call the VPN of a victim memory address VictimVPN.
The eviction set of a VictimVPN is formed by setting the same
K bits as the VictimVPN and varying other bits in VPNs. To
put it another way, for every 2K pages, we pick one VPN to
add to the eviction set. We keep adding distinct VPNs in this
way until the number of VPNs in the set reaches an eviction
set size. Algorithm 4 presents the pseudocode of how we
form an eviction set. This is our straw-man approach and we
call the PTE-based attack that uses this approach of forming

Algorithm 4: Forming Eviction Set - Strawman
Input :VictimVPN, eviction set size, num of index bits
Output : an eviction set targeting VictimVPN

eviction_set← {};
mask = VictimVPN & (1 << num_index_bits−1);

for i = 0 to evict_set_size do
VPN ← i << num_index_bits+mask;
if VPN 6= VictimVPN then

insert VPN into eviction_set;
end

end

output eviction_set;

eviction sets PythiaPTEStraw.
Figure 2 plots the attack accuracy when we vary K from

0 to 15. We use two groups of attacks on VictimVPN 0. In
the first group (the solid line), each eviction set has 27 = 128
operations. The accuracy keeps improving until K is 13 and
then flattens out. This result hints at the possibility of the
RNIC using a set-associative cache with 213 = 8192 sets. It
is because when K is smaller than 13, part of the operations
in the eviction set will fall into a different cache set as the
VictimVPN’s set, making the eviction set too small to evict
the whole victim’s cache set.

To verify this guess, we perform a second group of attacks
(the dashed line). In this group, we double the eviction set size
every time when we decrease K by 1. For example, we set the
eviction set size to 128 when K is 13 and to 256 when K is 12.
If the RNIC uses 8192 cache sets, then when K is 13, all of
the eviction set will fall into the VictimVPN’s set, and when K
is 12, half of the eviction set will fall into the VictimVPN’s set.
These two attacks will then have the same effect in evicting
the VictimVPN. Our results confirm this assumption. When K
is less than 13, the attack accuracy is similar to when K is 13.
However, when K is larger than 14, the accuracy drops. This
is because we only use 64 and 32 eviction set size when K
is 14 and 15, and these eviction sets are not large enough to
evict a whole cache set.

From this set of experiments, we suspect that virtual mem-
ory address bits 12 to 24 are used in calculating the PTE cache
set index and that each PTE cache set has 128 entries (i.e., a
128-way cache).

Discovering prefetching behavior. Our guess above uses
13 bits as the index into the PTE cache and assumes that
the PTE cache has 8192 sets. If this guess is correct,
then an eviction set whose (VPN%8192) is different from
(VictimVPN%8192) should fall completely into a different
cache set from the victim’s. To verify this assumption, we
perform another set of attacks to the VictimVPN 0. In the
nth attack, we construct its eviction set using VPNs where
(VPN%8192 = n), and we change n from 0 to 8191.

Figure 3 plots the accuracy of the first 64 attacks (the rest of

698 28th USENIX Security Symposium USENIX Association

Number of Index Bits

0 3 6 9 12 15

A
c
c
u
r
a
c
y

(
%
)

0

20

40

60

80

100

Doubling eviction−set−size

Fixed eviction−set−size

Figure 2: Effect of Number of In-
dex Bits.

VPN Offset

0 16 32 48 64

A
c
c
u
r
a
c
y

(
%
)

0

20

40

60

80

100

VictimVPN 0

VictimVPN 20

VictimVPN 50

Figure 3: Effect of Eviction Set Off-
set. X axis represents the first VPN in
an eviction set (i.e., the “offset” of an
eviction set”).

High Index Start Bit

15 17 19 21 23 25 27 29

A
c
c
u
r
a
c
y

(
%
)

70

80

90

100

Figure 4: Effect of Secondary In-
dex. Error bars show the standard devi-
ation across 1000 VictimVPNs.

the attacks have the same pattern and we omit them from the
figure). The black solid line shows the result of VictimVPN
0. Surprisingly, not only the 0th attack (VPN%8192 = 0) has
high accuracy, but also the 1st to the 7th attacks. To further un-
derstand this effect, we perform the same set of attacks on an-
other two VictimVPNs, 20 and 50. With these VictimVPNs, the
accuracy is high from 16th to 23rd attacks and 48th to 55th at-
tacks respectively. These results imply that evicting any VPN
within an eight-VPN range of (VictimVPN−VictimVPN%8)
to (VictimVPN−VictimVPN%8+7) has the same effect.

We suspect that the RNIC prefetches eight VPNs at a time.
This finding implies that instead of using 13 bits as cache
index bits as in PythiaPTEStraw, only the higher 10 bits (bits
[15:24]) are used for index and the lower 3 bits (bits [12:14])
are used for prefetching. The RNIC cache thus only has 210 =
1024 sets.

Discovering secondary index. Our attack strategies so far
work well (> 90% accuracy) with the VictimVPNs we tested
(e.g., 0, 20, 50). However, when we test the same attack strat-
egy on some other VictimVPNs (e.g., 6195, 30950), the accu-
racy can sometimes drop to around 75%. A dropped accuracy
means that our eviction set cannot evict the VictimVPN, i.e.,
the VictimVPN is in another cache set whose index is not the
same as the index calculated using bits [15:24].

We thus suspect that there exists another 10 bits that are
used to calculate where out of the 1024 sets a VictimVPN can
fall into. To answer this question, we use a moving window
of 10 bits, from bits [15:24] to bits [29:48], in the victim’s
virtual memory address. We randomly pick 1000 VictimVPNs
and attack each of them by forming an eviction set with an
index calculated with the moving window of 10 bits and an
index calculated with bits [15:24] (64 operations under each
index). We use two indices in this experiment because our
alternative experiment of using just the index calculated by
the moving window does not yield good accuracy. Figure 4
plots the average attack accuracy across 1000 VictimVPNs
and their standard deviation (in error bars). Bits [24:33] yields
the best average accuracy and smallest deviation. Thus, we
believe that these bits are used as a second index into the PTE
cache. Note that when the moving window is bits [15:24], the
accuracy deviation is high, indicating that using bits [15:24]
alone is not good enough.

33:24 14:12 11:0

Page OffsetPrefetchLow IndexHigh Index

24:15

virtual memory address
virtual page number (VPN)

Eviction set for victim VPN
0x10000000000XXX

128 waysindex

2

0
1

…
1024

Figure 5: Reverse-Engineered PTE Cache Organization.

Complete algorithm. Figure 5 presents the final PTE
cache architecture we speculate RNICs use based on our
reverse engineering results. The PTE cache has 1024 sets and
128 ways. A PTE can be cached at one of the two cache sets.
Two groups of bits are used to calculate the index of these
two cache sets. The first group is bits [15:24], and the second
group is bits [24:33]. We call them low index bits and high
index bits. From our observation, both the high and the low
index bits can decide which cache set will be used to cache a
PTE. A PTE will be cached in either the cache set calculated
by the high index bits or the cache set indicated by the low
index bits. Every time when a PTE is accessed, its neighbor-
ing PTEs will also be fetched to the same set and bits [12:14]
determine the 8 PTEs that will be prefetched.

Based on this reverse-engineered architecture, we present
the final PTE-based EVICT+RELOAD attack, PythiaPTEFull.
We form half of the eviction set of a VictimVPN with VPNs
that have the same low index bits as the VictimVPN and an-
other half with VPNs that have the same high index bits as
the VictimVPN. Algorithm 5 presents the complete algorithm.

4.5 Evaluation Results
We now present our evaluation results with the attacks de-
scribed above.

4.5.1 Isolated Environment

We performed a set of experiments with three machines as de-
scribed in the beginning of this section in our lab environment

USENIX Association 28th USENIX Security Symposium 699

Algorithm 5: Forming Eviction Set - Full
Input :VictimVPN, eviction set size
Output : an eviction set targeting the victim virtual memory address

eviction_set← {}; prefetch_bits← 3; index_bits← 10; high_index_start← 12;
low_index← (VictimVPN >> prefetch_bits)&(1 << index_bits−1); mask_low← low_index << prefetch_bits;
high_index← (VictimVPN >> high_index_start)&(1 << index_bits−1); mask_high← high_index << prefetch_bits;

for i = 0 to evict_set_size/2 do
VPN ← i << (index_bits+prefetch_bits)+mask_low;
if VPN 6= VictimVPN then

insert VPN into eviction_set;
end

end

for i = 0 to evict_set_size/2 do
VPN ← i << (index_bits+high_index_start)+mask_high;
if VPN 6= VictimVPN then

insert VPN into eviction_set;
end

end

output eviction_set;

Latency (us)
0 1 2 3 4 5 6 7 8

P
e
r
c
e
n
t
i
l
e

0

20

40

60
Hit

Miss−PTE

Miss−MR

Figure 6: Timing Differences. Each
line presents the timing differences of
each case over 1000 trials.

Eviction Set Size

2 6 2 7 2 8 2 9 2 10

A
c
c
u
r
a
c
y

(
%
)

0

20

40

60

80

100

PTE−Full

PTE−Straw

MR

PTE−Basic

Figure 7: Accuracy of Attacks. Er-
ror bars show the standard deviation
across 1000 VictimVPNs.

Eviction Set Size

2 6 2 7 2 8 2 9 2 10
L
a
t
e
n
c
y

(
u
s
)

0

50

100

150

200

250
MR

PTE−Full

PTE−Straw

PTE−Basic

Figure 8: Latency of Attacks.

without any other network traffic.

Timing differences. Our side channels are based on timing
differences between consecutive loads of the same memory
address. To measure miss latency, we evict the RNIC SRAM
using either MRs or PTEs and then issue an RDMA operation.
To measure hit latency, we simply repeatedly issue the same
RDMA operation. The measurements in Figure 6 show a
clear timing difference between hit and miss latency. When
we use MRs to evict SRAM, both the victim’s MR and all the
PTEs under this MR will be evicted. An RDMA operation
afterwards will need to fetch both the PTE and the metadata
for the MR containing the page from host main memory
through the PCIe bus. On the other hand, using PTEs to evict
will only evict the victim’s PTE and reloading will only fetch
the PTE. This explains why the miss latency of MR-based
eviction is higher than that of PTE-based eviction.

Attack accuracy and latency. Figures 7 and 8 plot the
accuracy and latency of four attack strategies: PythiaMR,
PythiaPTEBasic, PythiaPTEStraw, and PythiaPTEFull, as we
change the eviction set size. As expected, with the same evic-
tion set size, the time to perform these four attacks is similar,

since they all use the same amount of RDMA operations.
With bigger eviction sets, all attacks become slower.

PythiaPTEFull’s accuracy is the highest: it can achieve 97%
accuracy with only 57 µs per attack (when the eviction set
size is 256). PythiaMR and PythiaPTEBasic have low accu-
racy, although we do observe PythiaMR’s accuracy improves
significantly as the eviction set size increases (PythiaMR’s
accuracy reaches 90% with 215 eviction set size). This re-
sult demonstrates the benefit of using our reverse engineering
findings.

Another observation is that the accuracy of PythiaPTEFull
peaks when the eviction set size is 256 and remains the same
when increasing the size further. This implies that the PTE
cache has 128 ways, since we construct two cache sets with
256 entries in total.

Evaluation with different RNICs. All our experiments
so far are performed with the Mellanox ConnectX-4 RNIC
(most RDMA deployments in real datacenters use ConnectX-
4 [32, 47]). We further validate our attacks on Mellanox
ConnectX-5 [49] and ConnectX-3 [46] RNICs. ConnectX-5 is
the latest generation of RNICs from Mellanox and ConnectX-

700 28th USENIX Security Symposium USENIX Association

Latency (us)
0 1 2 3 4 5 6 7 8

P
e
r
c
e
n
t
i
l
e

0

10

20

30

40
Hit

Miss−PTE

Miss−MR

Figure 9: Timing Differences in
ConnectX-5. Each line presents the
timing differences of each case over 1000
trials.

Eviction Set Size

2 6 2 7 2 8 2 9 2 10

A
c
c
u
r
a
c
y

(
%
)

0

20

40

60

80

100

PTE−Full

PTE−Straw

MR

PTE−Basic

Figure 10: Accuracy of Attacks in
ConnectX-5. Error bars show the stan-
dard dev of 1000 VictimVPNs.

Latency (us)
0 1 2 3 4 5 6

P
e
r
c
e
n
t
i
l
e

0

10

20

30

40
Hit

Miss−PTE

Miss−MR

Figure 11: Timing Differences in
ConnectX-3. Each line presents the
timing differences of each case over 1000
trials.

Latency (us)
0 1 2 3 4 5 6 7 8

P
e
r
c
e
n
t
i
l
e

0

10

20

30

40
Hit

Miss−PTE

Miss−MR

Figure 12: Timing Differences in
CloudLab. Each line presents the tim-
ing differences of each case over 1000
trials.

Eviction Set Size

2 6 2 7 2 8 2 9 2 10

A
c
c
u
r
a
c
y

(
%
)

0

20

40

60

80

100

PTE−Full

PTE−Straw

MR

PTE−Basic

Figure 13: Accuracy of Attacks in
CloudLab. Error bars show the stan-
dard deviation across 1000 VictimVPNs.

Eviction Set Size

2 6 2 7 2 8 2 9 2 10

L
a
t
e
n
c
y

(
u
s
)

0

100

200

300

400
MR

PTE−Full

PTE−Straw

PTE−Basic

Figure 14: Latency of Attacks in
CloudLab.

3 is the previous generation of ConnectX-4.
Figure 9 plots the timing results of SRAM hits and misses

(due to eviction by MRs and by PTEs) on ConnectX-5.
ConnectX-5’s performance is better than ConnectX-4 on all
cases. A clear timing difference between misses and hits re-
mains, and misses caused by MR-based eviction are slower
than by PTE-based eviction. Figure 10 plots the accuracy of
the four types of attacks. The accuracy results are similar to
ConnectX-4. Attack latency is also similar to ConnectX-4
and we omit the latency figure. Thus, we can confirm that
ConnectX-5 uses a similar SRAM architecture as ConnectX-
4, and it has the same side channels as ConnectX-4. We can
launch the same attacks on ConnectX-5 with high accuracy
and low latency.

We then perform the same set of experiments on ConnectX-
3, see Figure 11. The hit latency with ConnectX-3 is longer
than ConnectX-4. As hardware evolves, its internal perfor-
mance often improves, which can explain why hit latency
improves over generations of Mellanox RNICs. Surprisingly,
the miss latency due to MR-based eviction is shorter on
ConnectX-3 than on ConnectX-4 and ConnectX-5. Misses in
RNIC SRAM involve the RNIC fetching metadata from the
host main memory. We suspect the reason why miss perfor-
mance drops in newer generations is because RNICs add more
metadata for each data entry in newer generations, requiring
longer time to fetch more metadata. As a result, the timing
difference between miss and hit for ConnectX-3 is small.

Comparing ConnectX-3, ConnectX-4, and ConnectX-5, the
three generations of RNICs from Mellanox, we found that as
hardware RNICs evolve, their performance improves quickly,

while the PCIe bus and host memory speed improve very
slowly. As a result, the discrepancy between hit performance
and miss performance becomes larger and we believe that this
trend will continue in the future.

4.5.2 Public Cloud Environment

CloudLab [65] is a public cloud that has close to 15,000 cores
distributed across three sites in the United States. We eval-
uated our attacks on a cluster that is connected with RoCE
switches. Each machine in this cluster equips two Mellanox
ConnectX-4 25 Gbps adapters. These RNICs are of the same
product generation as our lab’s ConnectX-4 RNICs, with the
difference that our RNICs are 100 Gbps adapters. Both types
of adapters can be configured for Ethernet (RoCE) and for
InfiniBand. We configure ours for InfiniBand, and Cloud-
Lab’s are configured for RoCE. Apart from RNIC differences,
CloudLab is used concurrently by many different users; it has
a more complex, hierarchical network topology; and it uses a
RoCE network instead of InfiniBand. At the time of our test,
129 out of 199 physical machines in the cluster were in use.

We repeat the same set of experiments as Section 4.5.1.
Similar to our lab’s experiments, we use three machines, a
server, a victim client, and an attacker client. Figure 12 plots
the timing difference of RNIC SRAM hit and misses (due
to MR-based eviction and PTE-based eviction). Similar to
our isolated environment results, misses caused by MR-based
eviction are slower than misses caused by PTE-based eviction,
and both types of misses are slower than hits. In CloudLab’s
shared network and shared machine environments, the laten-
cies of all accesses are longer than in our lab environment,

USENIX Association 28th USENIX Security Symposium 701

but the timing differences are still clear.
Figures 13 and 14 plot the accuracy and latency of the four

types of attacks in CloudLab. Similar to the results in Fig-
ures 7 and 8, With the same eviction set size (and thus similar
latency), PythiaPTEFull and PythiaPTEStraw have higher ac-
curacy than PythiaMR and PythiaPTEBasic. However, these
attacks have larger variation in accuracy compared to attacks
in our lab’s environment because of the more dynamic envi-
ronment in CloudLab.

5 Attacking Real RDMA-Based Systems

To demonstrate the feasibility of launching side-channel at-
tacks on real RDMA-based applications, we design and per-
form a set of attacks on Crail [7, 70], an open-source RDMA-
based key-value store written in Java. A Crail system consists
of several roles: a server which stores key-value pairs, a na-
menode which stores metadata and manages the control path,
and clients which issue key-value pair gets and sets to the
server via a Crail-provided API. We install each component
on a separate machine and connect all of them with RDMA.
This section presents our design and evaluation of attacks on
Crail.

5.1 Attacks
Based on the attack primitives described in Section 4, we
designed three attacks on Crail. All these attacks have the
same goal: knowing whether or not the victim Crail client
accesses a specific key-value pair.

MR-based attack (PythiaCrailMR). Our first attack uses
MR-based eviction as described in Section 4.3.1. This attack
requires three attacker processes. The first is a Crail client
process (Pc). The second and the third processes run our attack
code, with the second one running on the Crail server machine
(Ps) and the third one running on any other machine (Pa) (it
can be the same machine as the one where Pc runs). In the
preparation phase, Ps registers a large number of MRs. In
the eviction phase, Pa issues one-sided RDMA reads to these
MRs. Finally, Pc performs a Crail get operation to reload
the victim key-value pair. PythiaCrailMR requires Ps and Pa
because MR-based attacks need to access many MRs but by
default Crail only registers a small set of MRs.

PTE-based attack (PythiaCrailPTE). The second attack
uses PTE-based eviction. In this attack, we require three pro-
cesses as in the MR-based attack: Pc, Ps, and Pa. In the prepa-
ration phase, we first use Ps to allocate a big chunk of memory
and register it with an MR. In the eviction phase, Pa performs
one-sided RDMA reads to different VPNs in the allocated
memory space. Afterwards, Pc issues a Crail get request to
the victim key-value pair.

Our reverse engineering results in Section 4.4 can be lever-
aged to reduce the eviction set size in PythiaCrailPTE. How-
ever, to form the eviction set, we need to know the index of

the SRAM cache set(s), which is calculated by the virtual
memory address. Without modifying the source code of Crail
which is written in Java, it is difficult to directly know the
virtual memory address of a target key-value pair. Instead, we
use a “learning” phase before launching the actual attack to
determine the eviction set to use for a target key-value pair.
Specifically, we let Pc access the target key-value pair and let
Pa try all 1024 different cache sets for eviction. After 1024
trials, we pick the cache set that yields the best accuracy as
our attack eviction set.

Client-only attack (PythiaCrailClient). Our last attack on
Crail is launched exclusively from a regular Crail client pro-
cess and requires no other privileges or resources. The attacker
(as a normal Crail client) issues Crail get requests to different
key-value pairs during the eviction phase. After the eviction
phase, it performs a Crail get operation to the victim key-value
pair.

Our initial design of PythiaCrailClient randomly picks key-
value pairs to access during the eviction phase. However, we
soon discovered two issues with this naive approach. First, it
needs a large number of key-value pairs to effectively evict the
target key-value pair. Doing so not only makes the attack slow
but also requires the Crail system under attack to already be
storing many key-value pairs. Second, we found that the Crail
system becomes slower and unstable as the server processes
more client requests. We suspect this to be caused by Crail’s
own (memory) management overhead. Unstable access la-
tency makes our timing-based attack harder and prohibits an
accurate prediction during the reload phase. We improve our
initial design with the following optimization. We selectively
choose a small set of key-value pairs as the eviction set. We
make the assumption that key-value pairs are sequentially
allocated in chunks of memory and pick the pairs that are
likely to be in the same RNIC SRAM cache set as the victim
key-value pair. After reducing the eviction set size, our attack
runs very fast. Instead of continuously launching the attack in
loops, we add some sleep time between eviction and reloading
so that we do not issue too many Crail requests to make Crail
unstable.

Probabilistic prediction. Under real workloads and noisy
network environments, we found that a simple threshold as
used in Section 4.3 cannot accurately determine if the victim
has accessed the target data. Thus, we use a more dynamic
and adaptive approach to predict the outcome of the attack.
Similar to the approach used in TLBleed [28], we perform a
learning phase to train a classifier of operation latency with
KNN [22] before the attack. We use the trained model to
predict the probability of a reload latency implying a victim
access (i.e., a hit).

5.2 Results
We evaluated PythiaCrailMR, PythiaCrailPTE, and
PythiaCrailClient using both controlled tests and work-

702 28th USENIX Security Symposium USENIX Association

Timeline (ms)

0 30 60 90 120 150A
c
c
e
s
s

P
r
o
b
a
b
i
l
i
t
y

(
%
)

0

20

40

60

80

100

Victim Attacker

Figure 15: PythiaCrailMR

Timeline (ms)

0 20 40 60 80 100 120 140A
c
c
e
s
s

P
r
o
b
a
b
i
l
i
t
y

(
%
)

0

20

40

60

80

100

Victim Attacker

Figure 16: PythiaCrailPTE

Timeline (ms)

0 20 40 60 80 100 120 140A
c
c
e
s
s

P
r
o
b
a
b
i
l
i
t
y

(
%
)

0

20

40

60

80

100

Victim Attacker

Figure 17: PythiaCrailClient

loads that model real datacenter key-value stores.

5.2.1 Controlled Test

We first compare the latency of a Crail client key-value pair
get operation that hits RNIC SRAM, a client get that misses
RNIC SRAM after the eviction phase in PythiaCrailMR, in
PythiaCrailPTE, and in PythiaCrailClient. In these controlled
tests, the victim client has a 50% chance of accessing the
targeted key-value pair that the attacker tries to infer accesses
on. Figure 18 plots these four types of latencies, each per-
forming 1000 trials. All the three types of misses take longer
than hits, with the timing difference of PythiaCrailMR the
biggest and PythiaCrailClient the smallest. The timing differ-
ence implies that it is easiest to separate hits and misses with
PythiaCrailMR.

We launch the PythiaCrailMR, and PythiaCrailPTE, and
PythiaCrailClient attacks by first performing their respective
eviction phases. Next, we let victim access or not access
the target key-value pair. Finally, we measure the time to
reload the key-value pair and compare it with a threshold
we determined from the timing difference testing phase. As
expected, PythiaCrailMR gives the best accuracy. The accura-
cies of PythiaCrailMR, PythiaCrailPTE, and PythiaCrailClient
are 96%, 85%, and 79% respectively, and the time to perform
these attacks are 19ms, 0.1ms, and 0.3ms.

5.2.2 Macro-benchmark Results

Workloads. To evaluate how our attacks perform with
real datacenter key-value store workloads, we construct a
macro-benchmark with the Yahoo! Cloud Serving Bench-
mark (YCSB) [21] and statistics reported by Facebook in
their production key-value store [12]. YCSB provides key-
value get/set access pattern but no inter-arrival time between
requests. Facebook provides the inter-arrival time of requests
received at a server in its cluster, which includes requests
from all the clients to this server. We set each key-value pair
size to be 1 KB, the average key-value pair size reported by
Facebook.

Attack environment setup. In this experiment, the victim
(on a Crail client machine) executes our macro-benchmark
to access key-value pairs on a Crail server machine using
the Crail APIs. Since Facebook only provides aggregated
request inter-arrival time across clients and does not reveal

Latency (us)
3 5 7 9 11 13 15

P
e
r
c
e
n
t
i
l
e

0

3

6

9

12

15
Hit Miss−Crail

Miss−PTE

Miss−MR

Figure 18: Timing Difference in Crail. Each line presents the
timing differences of each case over 1000 trials.

how many clients there are, we use one client machine to
model the aggregated effect of all clients with the provided
inter-arrival time. We run an attacker process as a normal
Crail client on another machine. A fourth machine serves as
the Crail namenode. While the victim process executes the
macro-benchmark, we repeatedly perform PythiaCrailClient,
PythiaCrailMR, or PythiaCrailPTE to detect if the victim ac-
cesses a target key-value pair.

Results. Figures 15, 16, and 17 present the timeline of the
victim accessing the target key-value pair (red crosses) and
the attacker’s prediction (black dots with values as access
probability). All three attacks can capture most if not all vic-
tim accesses. Among them, PythiaCrailMR is the worst in
attack accuracy. This is because each attack in PythiaCrailMR
takes 19ms, which is much longer than the Facebook inter-
arrival time. As a result, PythiaCrailMR misses victim ac-
cesses that happen more frequent than its attack length. Both
PythiaCrailPTE and PythiaCrailClient run very fast and cap-
ture all victim accesses. In fact, these two attacks run so
fast that we add a sleep time of 1ms between evict and
reload to avoid issuing too many Crail requests and mak-
ing Crail’s performance unstable. Comparing PythiaCrailPTE
and PythiaCrailClient, PythiaCrailPTE’s predictions are of low
access probabilities and PythiaCrailClient has more predic-
tions of around 50% access probabilities. The attacker can
set a threshold accordingly to determine the final set of
victim accesses (e.g., those with probabilities > 60% for
PythiaCrailClient).

Overall, we believe PythiaCrailClient to be the most effec-

USENIX Association 28th USENIX Security Symposium 703

tive attack, since it predicts victim accesses with high confi-
dence and it requires the least amount of attacker resources:
PythiaCrailClient can be launched exclusively from a separate
client machine through the unmodified Crail client interface.
If attackers can run modified Crail clients, they can launch
more efficient side-channel attacks by forming the eviction
set with known virtual addresses.

6 Mitigation Techniques

Defending against RDMA-based side-channel attacks is pos-
sible and feasible. We discuss both mitigations for current
hardware as well as those for future hardware.

Huge virtual memory page or no virtual memory.
PTE-based attacks are only possible when RNICs cache
PTEs and when the attacker can form an effective eviction
set. One way to prevent PTE-based attacks is to force all
RDMA registrations and operations to directly use physical
memory addresses. When physical memory addresses are
used, RDMA does not need to access or cache PTEs, thereby
preventing PTE-based attacks. Registering physical memory
addresses is a privileged operation that RNICs allow the
kernel [76] and privileged users to perform [51]. However,
using physical memory addresses loses all the benefits of
virtual memory and introduces new security concerns.

Another method to defend against PTE-based attacks is to
use huge memory pages [24]. Using huge pages (e.g., 1 GB
pages) introduces two types of difficulties for attackers. First,
the attacker can only guess victim accesses at coarse granular-
ity (e.g., 1 GB). Second, the attacker will need to have access
to a huge memory space to form an eviction set with enough
PTEs.

Isolate server’s resource. Our experience with Crail
demonstrates that attacking Crail is difficult when the attacker
can only use Crail’s interface without the access to a large
number of PTEs or MRs and without knowing Crail’s data
layout in the virtual memory address space. Our experiments
show that for PythiaCrailMR and PythiaCrailPTE to work, an
attacker needs to run a process, Ps, on the server machine.
Otherwise, the attacker would not be able to launch those
attacks (although PythiaCrailClient still works). Thus, a server
that hosts RDMA service can prohibit normal users from
running any processes to help defend against side-channel
attacks. Various address randomization techniques can also
complicate attacks.

Separate protection domains. When we disclosed the at-
tacks in this paper to Mellanox, the Mellanox engineers stated
that separating Protection Domains (PDs) between different
clients and connections can potentially mitigate the attacks.
We evaluated this mitigation by moving the attacker to a dif-
ferent PD and found that doing so mitigates Pythia attacks.
Unfortunately, all existing RDMA applications that we are

aware of [7, 24, 83] use only one PD for higher performance.
Using multiple PDs results in low throughput and high la-
tency overhead (15% throughput reduction and 21% latency
overhead with 256 PDs in our experiments). We plan to fur-
ther investigate both attack and defense mechanisms when
separating PDs across clients.

Introduce noise. Our side channels are established on tim-
ing differences at the microsecond or sub-microsecond level.
Attacking Crail running real workloads is more difficult than
attacking raw RDMA accesses mainly because of Crail’s non-
deterministic performance overhead. Therefore, an effective
countermeasure is to introduce random latency overhead at
an RDMA-based application or in the datacenter RDMA net-
work, which, however, could impact application performance.

Detect and throttle attacker’s network traffic. Our at-
tackers can hide their attacks because one-sided RDMA op-
erations are completely hidden from the receiver CPU (the
server in our case). To detect these attacks, the server can de-
ploy traffic sniffing tools to sniff all incoming RDMA network
requests. If the sniffer detects heavy network activity from
a client, it can raise a flag that this client may be malicious.
If it further detects an access pattern that matches eviction
sets described in Section 4.4, this client is more likely to be
an attacker. This defense comes with the same drawbacks of
other heuristic-based defenses that an attacker may stay under
the detection threshold.

A further countermeasure is to throttle the maximum band-
width allowed at every client. If an attacker cannot issue
enough operations to evict RNIC SRAM, its attack accuracy
will drop significantly. However, throttling client bandwidth
can hurt normal clients’ performance.

Better hardware design. All existing RNICs share their
SRAM across all users and across all connections. Because of
this, an attacker can evict a victim’s PTE and MR even when
the attacker and the victim have different connections to the
server. If RNICs can partition their SRAM to different isolated
domains for different connections, then attackers can never
evict victim’s PTEs or MRs. However, isolation resources at
hardware level will inevitably hurt performance and increase
hardware complexity, which gives little incentive for RNIC
vendors to change their hardware design.

7 Discussion

We now briefly discuss the implications, impact, and limita-
tions of Pythia, and some other attacks on RDMA that can be
designed based on Pythia.

7.1 RDMA Vulnerabilities
We discovered new vulnerabilities in RDMA systems that
are fundamental to the design of RDMA and not specific to
just one RDMA device. RNICs cache metadata as a result

704 28th USENIX Security Symposium USENIX Association

of RDMA’s design philosophy of one-sided network commu-
nication. Because one-sided operations cannot involve host
CPUs, RNICs have to handle and serve RDMA requests on
their own, which involves accessing various types of meta-
data. With limited on-board SRAM, RNICs cannot store all
the metadata and have to move metadata between their SRAM
and the host machine’s main memory through the PCIe bus.
As a result, there exists timing difference between RDMA
operations that hit or miss SRAM, and this timing difference
keeps increasing as RNICs evolve over generations.

We demonstrated the feasibility of exploiting the above
vulnerability to launch side-channel attacks on RDMA-based
systems. Pythia attacks are fast and accurate, and they can be
performed completely from the network. Moreover, attack-
ers can hide their traces because the attack uses one-sided
network requests.

Both the RNIC side channels we discovered and our at-
tacks’ unique advantages are fundamental to one-sided net-
work communication. One-sided communication offers many
performance and cost benefits that are attractive for datacenter
systems. However, it also raises new security concerns [77],
as we demonstrate in Pythia. Our work can inspire future
security researchers in discovering and defending more vul-
nerabilities in RDMA.

7.2 Attacking Real Applications
We demonstrated that it is feasible to launch Pythia attacks
on Crail, a real RDMA-based system developed by the Crail
team. PythiaCrailClient, the attack that is launched by perform-
ing Crail-provided client APIs only, can successfully infer
victim’s access patterns under real workloads.

We believe that Pythia can similarly attack other RDMA-
based applications as well. Pythia only requires two features
from an RDMA-based application: the application uses one-
sided RDMA operations and allocates regular paged memory.
Many applications meet these requirements, such as the NAM-
DB RDMA-based in-memory database [88], the Pilaf RDMA-
based key-value store [56], and the Wukong RDMA-based
graph system [68]. Unfortunately, most of these systems are
not available publicly.

7.3 Attack Limitations
Although our side-channel attacks are fast, accurate, and can
be launched entirely from the network, they do have sev-
eral limitations. First, the granularity of Pythia attacks (and
therefore information leakage of accesses) is a memory page.
Pythia currently cannot differentiate between two victim ac-
cesses that access the same target page. Second, Pythia can
only predict if a data entity at the server has been accessed,
but not which client machine(s) accessed it. Third, our MR-
based attacks require access to a large number of MRs, and
PTE-based attacks require access to large memory spaces.
Finally, our attacks consume network bandwidth and can be
detected by sniffing the network.

7.4 Other RDMA-Based Attacks
Pythia serves as a starting point for designing other
types of RDMA-based attacks. For example, similar to
Pythia EVICT+RELOAD attacks, it is possible to launch
PRIME+PROBE attacks from the network by exploiting the
MR or the PTE side channels.

The MR and the PTE side channels we established can
also be used as covert channels. We implemented a naive
covert-channel attack of using one EVICT+RELOAD cycle to
transmit one bit and it could reach a sending rate of 20 Kbps
with PythiaPTEFull.

8 Related Work

Single-node side-channel attacks. In recent years, a host
of attacks that exploit various hardware features to estab-
lish side channels have been proposed. CPU-cache-based
side-channel attacks such as PRIME+PROBE [1–4, 42, 59, 75,
78, 90], EVICT+RELOAD [30], FLUSH+RELOAD [86], and
FLUSH+FLUSH [30,78] can leak victim’s memory access pat-
terns at fine granularity. CPU-cache-based side channels are
also the key enabling factors in attacks like Meltdown [41],
Spectre [39], and Foreshadow [17]. Other than CPU caches,
TLB [28] or port contention [13] also expose hardware-based
side channels. Side-channel attacks brought key concerns
in cloud environments where one tenant can steal informa-
tion of other tenants when they share the same physical re-
source [79, 89–91] or the same service [33]. But all these
single-node side-channel attacks require the attacker to run
on the same machine as the victim. Pythia is a remote side-
channel attack that can be launched completely from a sepa-
rate remote machine.

Remote side-channel attacks. Several remote side-
channel attacks exploit TCP sequence numbers to hijack
connections [18,61,62]. Another line of work relies on traffic
analysis to exploit sensitive information [27, 37]. Brumley
et al. perform a timing-based attack on OpenSSL’s ladder
implementation to obtain the private key of a TLS server [16].
Cock et al. present an empirical study of remote timing
channels on microkernel [20]. NetSpectre [66] presents
an access-driven remote EVICT+RELOAD cache attack.
Weinberg et al. combined CSS and JavaScript to remotely
sniff victims’ browsing patterns [84]. Different from all
previous remote side-channel attacks, Pythia targets the
RDMA network. Moreover, Pythia exploits RNIC hardware
features to establish timing-based side channels, while
previous remote side channels exploit network protocols or
software features. As far as we know, Throwhammer [71] is
the only other attack related to RDMA. However, it simply
uses RDMA network requests to launch a Rowhammer attack
and does not explore or exploit vulnerabilities in the RDMA

USENIX Association 28th USENIX Security Symposium 705

technology itself.

Mitigations to side-channel attacks. Various defense
mechanisms have been proposed to combat CPU cache side-
channel attacks in both hardware [23, 36, 58, 81, 82] and soft-
ware [38, 43, 69, 92, 94]. Unfortunately, none of the existing
defense mechanisms can be directly applied to RDMA-based
side-channel attacks. We propose a set of new mitigations that
target RDMA-based side-channel attacks.

9 Conclusion

This paper presents Pythia, the first set of side-channel attacks
on RDMA-based systems. We reverse engineer the internal
data structures of current RDMA systems and leverage this
information to improve our attack. Pythia can be launched
completely from a normal client machine to steal access pat-
terns of victims on other machines. We evaluate Pythia in
laboratory settings to showcase the capabilities of the attack,
on real software such as Crail, and on real data centers to
show real-world impact. Pythia is fast, accurate, and can hide
its trace from victims and the server.

Acknowledgments

We would like to thank the anonymous reviewers for their
tremendous feedback and comments, which have substantially
improved the content and presentation of this paper. We are
also thankful to Ahmad Atamlh, Noam Bloch, Brandon Hath-
away, Yuval Itkin, Ariel Levanon, Alex Polak, Randy Splinter,
and Patrick Stuedi for their feedback during our responsible
disclosure to Mellanox and the Crail team.

This material is based upon work supported by the National
Science Foundation under the following grant: NSF 1719215.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of NSF or other institutions.

References

[1] Onur Aciiçmez. Yet another microarchitectural attack:
Exploiting i-cache. In Proceedings of the 2007 ACM
Workshop on Computer Security Architecture (CSAW
’07), Fairfax, VA, USA, November 2007.

[2] Onur Aciiçmez, Billy Bob Brumley, and Philipp Grabher.
New results on instruction cache attacks. In Proceedings
of the 12th International Conference on Cryptographic
Hardware and Embedded Systems (CHES ’10), Santa
Barbara, CA, USA, August 2010.

[3] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert.
On the power of simple branch prediction analysis.
In Proceedings of the 2Nd ACM Symposium on Infor-
mation, Computer and Communications Security (ASI-
ACCS ’07), Singapore, March 2007.

[4] Onur Aciiçmez and Werner Schindler. A vulnerability
in rsa implementations due to instruction cache analy-
sis and its demonstration on openssl. In Proceedings
of the 2008 The Cryptopgraphers’ Track at the RSA
Conference on Topics in Cryptology (CT-RSA ’08), San
Francisco, CA, USA, April 2008.

[5] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Stanko Novakovic, Arun
Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Ki-
ran Tati, Rajesh Venkatasubramanian, and Michael Wei.
Remote regions: A simple abstraction for remote mem-
ory. In Proceedings of the 2018 USENIX Conference on
Usenix Annual Technical Conference (ATC ’18), Boston,
MA, USA, July 2018.

[6] Alibaba Cloud. Super computing cluster. https://www.
alibabacloud.com/product/scc, 2018.

[7] Apache. Crail: High-performance distributed data store.
https://crail.incubator.apache.org/, 2018.

[8] InfiniBand Trade Association. InfiniBand Architec-
ture Annex A 16: RoCE. https://cw.infinibandta.org/
document/dl/7148, April 2010.

[9] InfiniBand Trade Association. InfiniBand Architec-
ture Annex A 16: RoCEv2. https://cw.infinibandta.org/
document/dl/7148, September 2014.

[10] InfiniBand Trade Association. InfiniBand Archi-
tecture Volume 1 – Architecture Specification, Re-
lease 1.3. https://cw.infinibandta.org/document/dl/7859,
March 2015.

[11] InfiniBand Trade Association. InfiniBand Architecture
Volume 2 – Architecture Specification, Release 1.3.1.
https://cw.infinibandta.org/document/dl/8125, Novem-
ber 2016.

[12] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of a
Large-scale Key-value Store. In Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS ’12), London, United
Kingdom, June 2012.

[13] Atri Bhattacharyya, Alexandra Sandulescu, Matthias
Neugschwandtner, Alessandro Sorniotti, Babak Falsafi,
Mathias Payer, and Anil Kurmus. Smotherspectre: ex-
ploiting speculative execution through port contention.
https://arxiv.org/abs/1903.01843, 2018.

[14] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim
Kraska, and Erfan Zamanian. The End of Slow Net-
works: It’s Time for a Redesign. Proceedings of the
VLDB Endowment, 9(7):528–539, 2016.

[15] Rajarshi Biswas, Xiaoyi Lu, and Dhabaleswar Panda.
Accelerating tensorflow with adaptive rdma-based grpc.
In 25th IEEE International Conference on High Per-
formance Computing, Data, and Analytics (HiPC ’18),
Bengaluru, India, December 2018.

[16] Billy Bob Brumley and Nicola Tuveri. Remote timing

706 28th USENIX Security Symposium USENIX Association

https://www.alibabacloud.com/product/scc
https://www.alibabacloud.com/product/scc
https://crail.incubator.apache.org/
https://cw.infinibandta.org/document/dl/7148
https://cw.infinibandta.org/document/dl/7148
https://cw.infinibandta.org/document/dl/7148
https://cw.infinibandta.org/document/dl/7148
https://cw.infinibandta.org/document/dl/7859
https://cw.infinibandta.org/document/dl/8125
https://arxiv.org/abs/1903.01843

attacks are still practical. In Proceedings of the 16th
European Conference on Research in Computer Security
(ESORICS ’11), Leuven, Belgium, September 2011.

[17] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel SGX king-
dom with transient out-of-order execution. In Proceed-
ings of the 27th USENIX Conference on Security Sym-
posium (SEC ’18), Baltimore, MD, USA, August 2018.

[18] Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao,
Srikanth V. Krishnamurthy, and Lisa M. Marvel. Off-
path tcp exploits: Global rate limit considered dangerous.
In Proceedings of the 25th USENIX Conference on Se-
curity Symposium (SEC ’16), Austin, TX, USA, August
2016.

[19] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and
Haibo Chen. Fast and general distributed transactions
using rdma and htm. In Proceedings of the Eleventh
European Conference on Computer Systems (EUROSYS
’16), London, UK, April 2016.

[20] David Cock, Qian Ge, Toby Murray, and Gernot Heiser.
The last mile: An empirical study of timing channels
on sel4. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security
(CCS ’14), Scottsdale, Arizona, USA, November 2014.

[21] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing (SoCC ’10), New
York, New York, June 2010.

[22] Thomas. Cover and P. Hart. Nearest neighbor pattern
classification. IEEE Transactions on Information The-
ory, 13(1):21–27, September 1967.

[23] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-
Ghazaleh, and Dmitry Ponomarev. Non-monopolizable
caches: Low-complexity mitigation of cache side chan-
nel attacks. ACM Transactions on Architecture and
Code Optimization, 8(4):35:1–35:21, January 2012.

[24] Aleksandar Dragojević, Dushyanth Narayanan, Orion
Hodson, and Miguel Castro. FaRM: Fast Remote Mem-
ory. In Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation (NSDI
’14), Seattle, WA, USA, April 2014.

[25] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No com-
promises: Distributed transactions with consistency,
availability, and performance. In Proceedings of the 25th
Symposium on Operating Systems Principles (SOSP
’15), Monterey, CA, USA, October 2015.

[26] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval
Yarom. Drive-by key-extraction cache attacks from
portable code. In Applied Cryptography and Network

Security - 16th International Conference (ACNS ’18),
Leuven, Belgium, July 2018.

[27] Xun Gong, Nikita Borisov, Negar Kiyavash, and Nabil
Schear. Website detection using remote traffic analysis.
In Privacy Enhancing Technologies - 12th International
Symposium (PETS ’12), Vigo, Spain, July 2012.

[28] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Translation leak-aside buffer: Defeating
cache side-channel protections with TLB attacks. In
Proceedings of the 27th USENIX Conference on Security
Symposium (SEC ’18), Baltimore, MD, USA, August
2018.

[29] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+flush: A fast and stealthy cache
attack. In Proceedings of the 13th International Con-
ference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA ’16), San Sebastián,
Spain, July 2016.

[30] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache template attacks: Automating attacks on inclusive
last-level caches. In Proceedings of the 24th USENIX
Conference on Security Symposium (SEC ’15), Wash-
ington, D.C., USA, August 2015.

[31] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G. Shin. Efficient memory disag-
gregation with infiniswap. In Proceedings of the 14th
USENIX Conference on Networked Systems Design and
Implementation (NSDI ’17), Boston, MA, USA, March
2017.

[32] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. Rdma
over commodity ethernet at scale. In Proceedings of the
2016 ACM SIGCOMM Conference (SIGCOMM ’16),
Florianopolis, Brazil, August 2016.

[33] Danny Harnik, Benny Pinkas, and Alexandra Shulman-
Peleg. Side channels in cloud services: Deduplication in
cloud storage. IEEE Security and Privacy, 8(6):40–47,
November 2010.

[34] Wei Huang, Gopalakrishnan Santhanaraman, Hyun-
Wook Jin, Qi Gao, and Dhabaleswar K. Panda. De-
sign of High Performance MVAPICH2: MPI2 over In-
finiBand. In Sixth IEEE International Symposium on
Cluster Computing and the Grid (CCGRID ’06), Rio de
Janeiro, Brazil, May 2006.

[35] Intel. Intel Performance Counter Monitor, 2012. http:
//www.intel.com/software/pcm.

[36] Intel. Improving Real-Time Performance
by Utilizing Cache Allocation Technology
, 2015. https://www.intel.com/content/dam/
www/public/us/en/documents/white-papers/
cache-allocation-technology-white-paper.pdf.

[37] Rob Jansen, Marc Juarez, Rafa Galvez, Tariq Elahi, and
Claudia Diaz. Inside job: Applying traffic analysis to
measure tor from within. In 25th Annual Network and

USENIX Association 28th USENIX Security Symposium 707

http://www.intel.com/software/pcm
http://www.intel.com/software/pcm
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf

Distributed System Security Symposium (NDSS ’18),
San Diego, CA, USA, February 2018.

[38] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz.
STEALTHMEM: System-level protection against cache-
based side channel attacks in the cloud. In Proceedings
of the 21st USENIX Conference on Security Symposium
(SEC ’12), Bellevue, WA, USA, August 2012.

[39] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In Proceedings of the 2019
IEEE Symposium on Security and Privacy (SP ’19), San
Francisco, CA, USA, May 2019.

[40] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu,
Yongqiang Xiong, Andrew Putnam, Enhong Chen, and
Lintao Zhang. Kv-direct: High-performance in-memory
key-value store with programmable nic. In Proceedings
of the 26th Symposium on Operating Systems Principles
(SOSP ’17), Shanghai, China, October 2017.

[41] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Ste-
fan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In Proceedings of the 27th USENIX
Conference on Security Symposium (SEC ’18), Balti-
more, MD, USA, August 2018.

[42] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan
Huang, and Elaine Shi. Oblivm: A programming frame-
work for secure computation. In Proceedings of the
2015 IEEE Symposium on Security and Privacy (SP
’15), San Jose, CA, USA, May 2015.

[43] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Car-
los Rozas, Gernot Heiser, and Ruby B Lee. Catalyst:
Defeating last-level cache side channel attacks in cloud
computing. In 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA ’16),
Barcelona, Spain, March 2016.

[44] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K. Panda.
High Performance RDMA-based MPI Implementation
over infiniBand. International Journal of Parallel Pro-
gramming, 32(3):167–198, 2004.

[45] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octo-
pus: an rdma-enabled distributed persistent memory file
system. In 2017 USENIX Annual Technical Conference
(ATC ’17), Santa Clara, CA, USA, July 2017.

[46] Mellanox. Mellanox ConnectX-3 VPI Card,
2017. http://www.mellanox.com/related-docs/prod_
adapter_cards/PB_ConnectX-3_Pro_Card_VPI.pdf.

[47] Mellanox. Mellanox Network Adapters for 25G RoCE
Ethernet Cloud Deployed in Alibaba, 2017. http://www.
mellanox.com/page/press_release_item?id=1964.

[48] Mellanox. Mellanox ConnectX-4 VPI Card,
2018. http://www.mellanox.com/related-docs/prod_

adapter_cards/PB_ConnectX-4_VPI_Card.pdf.
[49] Mellanox. Mellanox ConnectX-5 VPI Card,

2018. http://www.mellanox.com/related-docs/prod_
adapter_cards/PB_ConnectX-5_VPI_Card.pdf.

[50] Mellanox. Mellanox InfiniBand EDR 100Gb/s Switch,
2018. http://www.mellanox.com/related-docs/prod_ib_
switch_systems/pb_sb7700.pdf.

[51] Mellanox. Physical Address Memory Region,
2018. https://community.mellanox.com/s/article/
physical-address-memory-region.

[52] Mellanox. RDMA/RoCE Solutions. https://community.
mellanox.com/s/article/rdma-roce-solutions, 2018.

[53] Mellanox. Mellanox ConnectX-6 VPI Card,
2019. http://www.mellanox.com/related-docs/prod_
adapter_cards/PB_ConnectX-6_VPI_Card.pdf.

[54] Mellanox Technologies. InfiniBand Now Connecting
More than 50 Percent of the TOP500 Supercomputing
List. https://tinyurl.com/yy2ualhg, 2015.

[55] Frank Mietke, Robert Rex, Robert Baumgartl, Torsten
Mehlan, Torsten Hoefler, and Wolfgang Rehm. Analy-
sis of the memory registration process in the mellanox
infiniband software stack. In Proceedings of the 12th
International Conference on Parallel Processing (Euro-
Par ’06), Dresden, Germany, September 2006.

[56] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Us-
ing one-sided rdma reads to build a fast, cpu-efficient
key-value store. In Proceedings of the 2013 USENIX
Conference on Annual Technical Conference (ATC ’13),
San Jose, CA, USA, June 2013.

[57] Christopher Mitchell, Kate Montgomery, Lamont Nel-
son, Siddhartha Sen, and Jinyang Li. Balancing cpu
and network in the cell distributed b-tree store. In Pro-
ceedings of the 2016 USENIX Conference on Usenix
Annual Technical Conference (ATC ’16), Denver, CO,
USA, June 2016.

[58] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark
Silberstein, and Christof Fetzer. Varys: Protecting SGX
enclaves from practical side-channel attacks. In Pro-
ceedings of the 2018 USENIX Conference on Usenix
Annual Technical Conference (ATC ’18), Boston, MA,
USA, July 2018.

[59] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: The case of aes. In Pro-
ceedings of the 2006 The Cryptographers’ Track at the
RSA Conference on Topics in Cryptology (CT-RSA ’06),
San Jose, CA, USA, February 2006.

[60] Marius Poke and Torsten Hoefler. Dare: High-
performance state machine replication on rdma net-
works. In Proceedings of the 24th International Sym-
posium on High-Performance Parallel and Distributed
Computing (HPDC ’15), Portland, OR, USA, June 2015.

[61] Zhiyun Qian and Z. Morley Mao. Off-path tcp sequence
number inference attack - how firewall middleboxes
reduce security. In Proceedings of the 2012 IEEE Sym-

708 28th USENIX Security Symposium USENIX Association

http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-3_Pro_Card_VPI.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-3_Pro_Card_VPI.pdf
http://www.mellanox.com/page/press_release_item?id=1964
http://www.mellanox.com/page/press_release_item?id=1964
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-5_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-5_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_ib_switch_systems/pb_sb7700.pdf
http://www.mellanox.com/related-docs/prod_ib_switch_systems/pb_sb7700.pdf
https://community.mellanox.com/s/article/physical-address-memory-region
https://community.mellanox.com/s/article/physical-address-memory-region
https://community.mellanox.com/s/article/rdma-roce-solutions
https://community.mellanox.com/s/article/rdma-roce-solutions
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-6_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-6_VPI_Card.pdf
https://tinyurl.com/yy2ualhg

posium on Security and Privacy (SP ’12), San Francisco,
CA, USA, May 2012.

[62] Zhiyun Qian, Z. Morley Mao, and Yinglian Xie. Col-
laborative tcp sequence number inference attack: How
to crack sequence number under a second. In Proceed-
ings of the 2012 ACM Conference on Computer and
Communications Security (CCS ’12), Raleigh, NC, USA,
October 2012.

[63] RDMA Consortium. iWARP, Protocol of RDMA over
IP Networks, 2009. http://www.rdmaconsortium.org/.

[64] Recio, R., Metzler, B., Culley, P., Hilland, J., and D. Gar-
cia. A Remote Direct Memory Access Protocol Specifi-
cation, 2007. https://tools.ietf.org/html/rfc5040.

[65] Robert Ricci, Eric Eide, and the CloudLab Team. Intro-
ducing cloudlab: Scientific infrastructure for advancing
cloud architectures and applications. The USENIX Mag-
azine, 39(6):36–38, December 2014.

[66] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and
Daniel Gruss. Netspectre: Read arbitrary memory over
network, 2018. http://arxiv.org/abs/1807.10535.

[67] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Dis-
tributed shared persistent memory. In Proceedings of
the 8th Annual Symposium on Cloud Computing (SOCC

’17), Santa Clara, CA, USA, September 2017.
[68] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and

Feifei Li. Fast and concurrent rdf queries with rdma-
based distributed graph exploration. In Proceedings
of the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI ’16), Savannah, GA,
USA, November 2016.

[69] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang.
Limiting cache-based side-channel in multi-tenant cloud
using dynamic page coloring. In Proceedings of the
2011 IEEE/IFIP 41st International Conference on De-
pendable Systems and Networks Workshops (DSNW

’11), Hong Kong, China, June 2011.
[70] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Radu

Stoica, Bernard Metzler, Nikolas Ioannou, and Ioannis
Koltsidas. Crail: A high-performance i/o architecture for
distributed data processing. IEEE Bulletin of the Techni-
cal Committee on Data Engineering, 40:40–52, March
2017. Special Issue on Distributed Data Management
with RDMA.

[71] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athana-
sopoulos, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. Throwhammer: Rowhammer attacks over
the network and defenses. In Proceedings of the
2018 USENIX Annual Technical Conference (ATC ’18),
Boston, MA, USA, July 2018.

[72] Mellanox Technologies. Mellanox OFED for
Linux User Manual. http://www.mellanox.com/
related-docs/prod_software/Mellanox_OFED_Linux_
User_Manual_v3.1-1.0.0.pdf.

[73] Tejas Karmarkar. Availability of linux rdma on mi-

crosoft azure. https://azure.microsoft.com/en-us/blog/
azure-linux-rdma-hpc-available, 2015.

[74] The Tcpdump Group. tcpdump - Dump Traffic on A
Network. https://www.tcpdump.org/manpages/tcpdump.
1.html, 2018.

[75] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient
cache attacks on aes, and countermeasures. Journal of
Cryptology, 23(1):37–71, January 2010.

[76] Shin-Yeh Tsai and Yiying Zhang. LITE Kernel RDMA
Support for Datacenter Applications. In Proceedings of
the 26th Symposium on Operating Systems Principles
(SOSP ’17), Shanghai, China, October 2017.

[77] Shin-Yeh Tsai and Yiying Zhang. A double-edged
sword: Security threats and opportunities in one-sided
network communication. In 11th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud ’19), Renton,
WA, USA, July 2019.

[78] Stephan van Schaik, Cristiano Giuffrida, Herbert Bos,
and Kaveh Razavi. Malicious management unit: Why
stopping cache attacks in software is harder than you
think. In Proceedings of the 27th USENIX Conference
on Security Symposium (SEC ’18), Baltimore, MD, USA,
August 2018.

[79] Luis M. Vaquero, Luis Rodero-Merino, and Daniel
Morán. Locking the sky: A survey on iaas cloud se-
curity. Computing, 91(1):93–118, 2011.

[80] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi, and
Heming Cui. Apus: Fast and scalable paxos on rdma.
In Proceedings of the 2017 Symposium on Cloud Com-
puting (SoCC ’17), Santa Clara, CA, USA, September
2017.

[81] Zhenghong Wang and Ruby B. Lee. Covert and side
channels due to processor architecture. In Proceedings
of the 22Nd Annual Computer Security Applications
Conference (ACSAC ’06), Miami Beach, FL, USA, De-
cember 2006.

[82] Zhenghong Wang and Ruby B. Lee. A novel cache
architecture with enhanced performance and security.
In Proceedings of the 41st Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO ’41),
Lake Como, ITALY, November 2008.

[83] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing rdma-enabled distributed transac-
tions: Hybrid is better! In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
’18), Carlsbad, CA, USA, October 2018.

[84] Zachary Weinberg, Eric Y. Chen, Pavithra Ramesh Ja-
yaraman, and Collin Jackson. I still know what you
visited last summer: Leaking browsing history via user
interaction and side channel attacks. In Proceedings of
the 2011 IEEE Symposium on Security and Privacy (SP

’11), Oakland, CA, USA, May 2011.
[85] Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao,

Youshan Miao, Lan Wei, Haoxiang Lin, Yafei Dai, and

USENIX Association 28th USENIX Security Symposium 709

http://www.rdmaconsortium.org/
https://tools.ietf.org/html/rfc5040
http://arxiv.org/abs/1807.10535
http://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_Linux_User_Manual_v3.1-1.0.0.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_Linux_User_Manual_v3.1-1.0.0.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_Linux_User_Manual_v3.1-1.0.0.pdf
https://azure.microsoft.com/en-us/blog/azure-linux-rdma-hpc-available
https://azure.microsoft.com/en-us/blog/azure-linux-rdma-hpc-available
https://www.tcpdump.org/manpages/tcpdump.1.html
https://www.tcpdump.org/manpages/tcpdump.1.html

Lidong Zhou. Gram: Scaling graph computation to the
trillions. In Proceedings of the Sixth ACM Symposium
on Cloud Computing (SoCC ’15), Kohala Coast, HI,
USA, August 2015.

[86] Yuval Yarom and Katrina Falkner. Flush+reload: A high
resolution, low noise, l3 cache side-channel attack. In
Proceedings of the 23rd USENIX Conference on Secu-
rity Symposium (SEC ’14), San Diego, CA, USA, August
2014.

[87] Yuval Yarom, Daniel Genkin, and Nadia Heninger.
Cachebleed: A timing attack on openssl constant time
RSA. Journal of Cryptographic Engineering, 7(2):99–
112, 2017.

[88] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim
Kraska. The End of a Myth: Distributed Transactions
Can Scale. Proceedings of the VLDB Endowment,
10(6):685–696, 2017.

[89] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K.
Reiter. Homealone: Co-residency detection in the cloud
via side-channel analysis. In Proceedings of the 2011
IEEE Symposium on Security and Privacy (SP ’11),
Oakland, CA, USA, May 2011.

[90] Yinqian Zhang, Ari Juels, Michael K. Reiter, and
Thomas Ristenpart. Cross-vm side channels and their
use to extract private keys. In Proceedings of the 2012

ACM Conference on Computer and Communications
Security (CCS ’12), Raleigh, NC, USA, October 2012.

[91] Yinqian Zhang, Ari Juels, Michael K. Reiter, and
Thomas Ristenpart. Cross-tenant side-channel attacks in
paas clouds. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security
(CCS ’14), Scottsdale, Arizona, USA, November 2014.

[92] Yinqian Zhang and Michael K. Reiter. Dúppel:
retrofitting commodity operating systems to mitigate
cache side channels in the cloud. In Proceedings of
the 2013 ACM SIGSAC conference on Computer and
communications Security (CCS ’13), Berlin, Germany,
November 2013.

[93] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and
Steven Swanson. Mojim: A Reliable and Highly-
Available Non-Volatile Memory System. In Proceedings
of the 20th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS ’15), Istanbul, Turkey, March 2015.

[94] Ziqiao Zhou, Michael K. Reiter, and Yinqian Zhang. A
software approach to defeating side channels in last-
level caches. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security
(CCS ’16), Vienna, Austria, October 2016.

710 28th USENIX Security Symposium USENIX Association

	Introduction
	Background on RDMA
	RDMA Basics
	RDMA NICs
	RDMA-Based Applications

	Threat Model
	Side-Channel Attacks on RDMA
	Attack Overview
	Unique Advantages and Challenges
	Basic Attack
	Eviction by MRs
	Eviction by PTEs
	Reload and Predict

	Finding PTE Eviction Sets
	Evaluation Results
	Isolated Environment
	Public Cloud Environment

	Attacking Real RDMA-Based Systems
	Attacks
	Results
	Controlled Test
	Macro-benchmark Results

	Mitigation Techniques
	Discussion
	RDMA Vulnerabilities
	Attacking Real Applications
	Attack Limitations
	Other RDMA-Based Attacks

	Related Work
	Conclusion

