
Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

Everyone is Different: Client-side Diversification
for Defending Against Extension Fingerprinting

Erik Trickel, Arizona State University; Oleksii Starov, Stony Brook University;
Alexandros Kapravelos, North Carolina State University; Nick Nikiforakis,

Stony Brook University; Adam Doupé, Arizona State University

https://www.usenix.org/conference/usenixsecurity19/presentation/trickel

This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Everyone is Different: Client-side Diversification for Defending Against Extension
Fingerprinting

Erik Trickel?, Oleksii Starov†, Alexandros Kapravelos‡, Nick Nikiforakis†, and Adam Doupé?

?Arizona State University
{etrickel, doupe}@asu.edu

†Stony Brook University
{ostarov, nick}@cs.stonybrook.edu

‡North Carolina State University
akaprav@ncsu.edu

Abstract
Browser fingerprinting refers to the extraction of attributes
from a user’s browser which can be combined into a near-
unique fingerprint. These fingerprints can be used to re-
identify users without requiring the use of cookies or other
stateful identifiers. Browser extensions enhance the client-
side browser experience; however, prior work has shown that
their website modifications are fingerprintable and can be
used to infer sensitive information about users.

In this paper we present CloakX, the first client-side anti-
fingerprinting countermeasure that works without requiring
browser modification or requiring extension developers to
modify their code. CloakX uses client-side diversification to
prevent extension detection using anchorprints (fingerprints
comprised of artifacts directly accessible to any webpage)
and to reduce the accuracy of extension detection using struc-
tureprints (fingerprints built from an extension’s behavior).
Despite the complexity of browser extensions, CloakX au-
tomatically incorporates client-side diversification into the
extensions and maintains equivalent functionality through the
use of static and dynamic program analysis. We evaluate the
efficacy of CloakX on 18,937 extensions using large-scale
automated analysis and in-depth manual testing. We con-
ducted experiments to test the functionality equivalence, the
detectability, and the performance of CloakX-enabled ex-
tensions. Beyond extension detection, we demonstrate that
client-side modification of extensions is a viable method for
the late-stage customization of browser extensions.

1 Introduction

As the web expands and continues being the platform of
choice for delivering applications to users, the browser be-
comes a core component of a user’s interactions with the web.
Modern browsers advertise a wide range of features, from
cloud-syncing and notifications to password management and
peer-to-peer video and audio communications. An important
feature of modern browsers is their ability to be extended

by users, as they see fit, by installing browser extensions.
Namely, Google Chrome and Mozilla Firefox, the browsers
with the largest market share, offer dedicated browser exten-
sion stores that house tens of thousands of extensions. In turn,
these extensions advertise a wide range of additional features,
such as enabling the browser to store passwords with online
password managers, blocking ads, and saving articles for later
reading.

From a security perspective, the ability to load third-party
code into the browser comes at a cost, even though extensions
rely on web technologies such as HTML, JavaScript, and
CSS. Browsers afford extensions significantly more privileges
than they do to a webpage. For example, the same origin
policy restricts webpages from accessing content, such as a
cookie, that does not originate from the same domain. For a
webpage to bypass this restriction, it must implement cross-
origin resource sharing, whereas extensions may not only
access resources of any domain but may also alter the content.
Historically, malicious extensions abuse these privileges to
perform advertising fraud and to steal private and financial
user data [22, 28, 44, 47].

Next to security issues, using browser extensions can also
lead to the loss of privacy. Given that users choose the ex-
tensions to install, it is possible to make inferences about a
user’s thoughts and beliefs based solely on the extensions she
keeps. For example, the detection of a coupon-finding ex-
tension [1] reveals information about the user’s income-level.
Additionally, an extension that hides articles about certain
political figures [20, 21] reveals the user’s political leanings.
Lastly, the use of browser extensions may provide a means
for websites to persistently identify a user over the course of
distinct browser sessions.

Although browser vendors do not offer any programmatic
methods for a webpage’s JavaScript to detect the extensions
currently installed in a user’s browser, researchers recently
discovered side-channel techniques for fingerprinting many
extensions. Sjösten et al. were the first to demonstrate a new
method for detecting browser extensions that exploited the
public nature of web-accessible resources (WARs) [38]. A

USENIX Association 28th USENIX Security Symposium 1679

WAR is any resource (e.g., JavaScript or image) within an
extension that the extension identifies as externally accessi-
ble. As a result, a webpage can determine whether a visitor
uses an extension by requesting one of the exposed WARs.
Sjösten et al. showed that more than 50% of the top 1,000
browser extensions use WARs, which any webpage might use
to detect extensions. Later, Starov and Nikiforakis demon-
strated another technique for fingerprinting extensions that
uses an extension’s modifications to the document-object-
model (DOM) to detect their presence [42]. The authors de-
veloped XHOUND, a system that automatically discovers the
DOM side-effects of extensions. Through their experiments,
they showed that more than 10% of the top 50K extensions
were fingerprintable.

One approach to reducing fingerprintable extensions is
through education and developer training. However, his-
torically, developers — and web developers in particular —
ignore even well-known security concerns. Even after nearly
20 years, the most common website vulnerabilities are still
SQL injection vulnerabilities [43]. Therefore, it is unlikely
that asking extension developers to make their extensions less
fingerprintable will have the desired effect on the ecosystem.

To empower users to protect their own privacy, in this pa-
per we propose CloakX, a client-side countermeasure against
extension detection using fingerprints. Instead of trying to
remove the fingerprintable attributes of extensions, our ap-
proach is to automatically alter, randomize, and add to these
attributes without requiring web browser modifications or
any involvement from the extension’s developer. Through
these modifications, CloakX diversifies the extension’s an-
chorprints, which are fingerprints consisting of items that
can be accessed directly from a webpage, and structureprints,
which are fingerprints that embody the structural changes
an extension makes to a webpage (for more details refer
to Section 2.2). On the surface, client-side diversification
of the fingerprintable attributes seems straightforward; how-
ever, the dynamic nature of JavaScript and the complexity
of the browser extension’s architecture necessitated a com-
plex approach that relies on both static and dynamic program
analysis.

CloakX uses static and dynamic analysis techniques to
automatically diversify the extension’s fingerprint without
modifying the browser, without requiring any changes by the
extension’s author, and without altering the extension’s func-
tionality. To diversify the extension’s anchorprint, CloakX
automatically renames WARs, IDs, and class names and cor-
rects any references to them in the extension’s code, which
severs the link between the published extension and the cur-
rently installed version. In addition to static changes, the
diversification is also performed by our dynamic DOM proxy
(Droxy), which intercepts DOM modifications from the ex-
tension’s code and makes the changes on-the-fly. To diversify
the extension’s structureprint, Droxy also injects random tags,
attributes, and custom attributes into each webpage, which

obfuscates the extension’s structureprint. As a result, an ex-
tension cloaked by CloakX is undetectable by a webpage
using anchorprints and is obfuscated from a webpage using
structureprints; however, from the user’s point of view, the
extension operates the same.

In summary, we make the following contributions:

• We present the design of a novel system that automati-
cally identifies and randomizes browser extension finger-
prints to defend against existing extension fingerprinting
techniques without requiring any browser changes or
any involvement from the extension’s developer.

• We describe the implementation of our design into a
prototype, CloakX, that uses a combination of: (1) static
rewriting of extension JavaScript code and (2) a dynamic
DOM proxy, Droxy, that intercepts and rewrites exten-
sion requests on-the-fly.

• We use a combination of high-fidelity testing (exten-
sive manual testing) and low-fidelity testing (broad auto-
mated testing) on the extensions rewritten by CloakX to
quantify the breakage caused by our system, demonstrat-
ing that client-side modification of extensions introduces
minimal defects.

• We also evaluate the detectability of cloaked extensions
and show that some cloaked extensions are undetectable
while others are more difficult to detect.

2 Background

In this section, we provide insights into the complexity of
modern browser extension frameworks that must be taken into
account when designing a client-side countermeasure against
extension fingerprinting. We start by describing the architec-
ture of browser extensions, focusing on the details that pertain
to their fingerprintability. Next, we discuss fingerprinting and
detecting extensions using anchorprints (fingerprints that are
comprised of items directly accessible from a tracking web-
page’s JavaScript) and structureprints (fingerprints built from
the extension’s behavior). Last, we finish this section by
presenting the threat model that CloakX can defend against.

2.1 Browser Extensions Explained
While modern web browsers provide an ever-increasing range
of functionality to users and webpages, an off-the-shelf
browser cannot possibly provide a sufficiently large set of fea-
tures to satisfy every user’s browsing needs. To improve the
user’s browsing experience, browsers enable users to enhance
their functionality through extensions. Users add extensions
to their browsers to change the browser’s look, to add helpful
toolbars, to block ads, and to enhance popular webpages [5].

Although extensions utilize web technologies such as
HTML, CSS, and JavaScript, they also have access to pow-
erful extension-only APIs that enable them to, among oth-
ers, access and modify cross-origin content and a browser’s

1680 28th USENIX Security Symposium USENIX Association

Figure 1: Extension architecture. A high-level overview of Chrome’s extension architecture with the static content of the extension on
the left side and the multiple execution environments on the right. Background pages can 1) inject content scripts dynamically using the
executeScript() method in Chrome’s extension API and 2) send and receive messages from the content scripts.

client-side storage. However, before an extension can ac-
cess broader privileges or interact with a webpage, it must
request this access from the browser. As Figure 1 depicts, the
modern extension architecture implements a layered security
approach within the browser that creates multiple execution
environments with varying levels of persistence and privileges
for each extension and webpage.

The left-hand side of Figure 1 depicts the static parts of an
extension, including items such as the manifest, JavaScript,
HTML, and image files. For the browser to parse and in-
stall an extension, it must have a manifest file which defines
the extension’s properties. Similar to the manifest shown
in Figure 1, extensions commonly rely on three properties,
which describe background pages, content scripts, and web
accessible resources [5].

When the background property is included in the exten-
sion’s manifest, the browser automatically constructs a hidden
background page for the extension. The background page
contains HTML, a DOM, and a separate JavaScript execu-
tion environment (labeled as “Background Page” in Figure 1).
The JavaScript executed in the background page often con-
tains the main logic of the extension, maintains long-term
state, and operates independently from the life-cycle of the
webpages [28].

Content scripts bridge the gap between the background
page and the current webpage. An extension uses content
scripts to modify the current webpage and communicate with
the background page. These content scripts are either stati-
cally declared by an extension in the manifest file or program-
matically injected into the current webpage. For example, on
the left-hand side of Figure 1, the manifest declares the two
content scripts content_a.js and content_b.js. To program-

matically inject a content script, an extension must call exe-
cuteScript() from a background page (see 1 in Figure 1).

To modify a webpage, a content script uses the webpage’s
DOM [10]. DOM APIs provide a systematic way for interact-
ing with a webpage. In this paper, we call the content script’s
interaction with the DOM APIs DOM requests.

Notice in Figure 1 that the background page, content scripts,
and webpage each run their own JavaScript execution envi-
ronment. The separate execution environments prevent the
JavaScript variables and functions from directly interacting.
Google Chrome’s documentation states that content scripts
“live in an isolated world, allowing a content script to make
changes to its JavaScript environment without conflicting with
the page or additional content scripts” [3] (emphasis added).
This statement, however, is misleading because we experi-
mentally discovered that content scripts loaded from the same
extension share variables and can call functions from other
content scripts. Thus, an extension’s content scripts share a
single execution environment; however, they do not share an
environment with the background page, webpage, or other
extensions (depicted in Figure 1).

Using DOM requests, a content script has significant con-
trol over the rendered webpage. Content scripts can inject
HTML into the webpage (using DOM element properties such
as innerHTML or DOM methods such as appendChild()).
We call this injected HTML droplets (the extension drops
them onto the webpage). Among other elements, droplets
may contain <script> tags where the extension includes ei-
ther inline or remote JavaScript. By injecting JavaScript, the
content script purposefully bypasses the isolation between the
content scripts and the webpage’s execution environments.

The Chrome Extension API provides privileged function-
ality available only to extensions. Chrome grants back-

USENIX Association 28th USENIX Security Symposium 1681

ground scripts broad access to the API’s capabilities. How-
ever, Chrome grants content scripts limited access to the
API while making the API inaccessible to webpages. For
example, only an extension’s background page can access
network resources, view platform information, and com-
municate with native applications. However, both content
scripts and background scripts may use the API to initiate
and listen for communications from one another via the ap-
propriate Chrome APIs (as shown by the double lines to-
wards the bottom of Figure 1). Background scripts cannot
directly interact with a webpage, however they can indirectly
send messages to it via the extension API using the method
chrome.runtime.sendMessage() [2]. Part of the reason for
this layered security model, including the separate execution
environments, is to isolate the components and prevent web-
pages from unauthorized access to the extension API’s more
sensitive functions.

Another important property in the manifest is the web-
accessible-resources property [7]. Prior to January 2014,
Chrome permitted external access to all of an extension’s re-
sources, i.e., a webpage could reference resources belonging
to installed extensions. In more modern versions of Google
Chrome, an extension must explicitly whitelist a resource
before a webpage may retrieve it [8]. An extension whitelists
its resources by adding them to the web-accessible-resources
property in the manifest. Once added, a resource becomes
accessible to any webpage or any installed extension.

To access a web accessible resource (WAR) from the con-
text of a web page, a webpage developer uses a URL of the for-
mat: chrome-extension://[extId]/[path-to-resource]. The
extId in the URL is a unique identifier generated by the
Google Web Store upon publication of an extension which
does not change when extensions are updated.

2.2 Extension Fingerprinting and Detection

In 2017, Sjösten et al. demonstrated that, with WAR finger-
printing, any extension using WARs is trivially detectable
by a webpage [38] by creating a database of which WARs
are utilized by each extension available in the Google Store.
Given that an extension’s ID is globally unique and perma-
nent, a tracker can detect an extension by requesting any one
of its previously identified WARs. If the request is successful,
then the corresponding extension is installed on the user’s
browser. Next to its simplicity and the 16,479 (28%) of exten-
sions that utilize WARs (and are thus fingerprintable), WAR
fingerprinting works in the browser’s private mode.

Orthogonally to WAR fingerprinting, Starov et al.’s Ex-
tension Hound (XHOUND) [42] creates a DOM fingerprint
based on the extension’s DOM modifications. XHOUND uses
dynamic analysis to exercise extensions and detect changes
introduced to the DOM through the extension’s operation. By
loading a set of webpages with and without a given extension,
XHOUND can compare the two resulting DOMs and isolate

the DOM changes that were performed by the given exten-
sion. These changes can straightforwardly be converted into
fingerprints which trackers can use to detect the presence of
any DOM-modifying extension.

When using WAR and DOM fingerprints for detection of
extensions, we reclassify all such fingerprints into anchor-
prints and structureprints to describe the method and accuracy
of the detection techniques. Anchorprints rely on an anchor
between the webpage’s JavaScript and the extension. An
anchor is a unique identifier formed to facilitate access and
communication between webpages and extensions. An an-
chor provides a way to directly access elements and resources
available to the webpage. Some examples of anchors include
WARs, IDs, class names, and custom attributes. For example,
the Chrome extension Grammarly adds a unique class to the
root <html> element on each webpage. Thus, if a webpage
uses document.getElementsByClassName() and receives
the <html> element, it is likely the user has Grammarly
installed.

An anchorprint is comprised of all the WARs, IDs, class
names, and custom attributes made available by an extension.
With the items in an anchorprint, a webpage need only to
query the DOM or send an XMLHttpRequest to detect an
extension. WARs are the most powerful of the anchorprint
elements because, due to the unique extension identifier, an
anchorprint with even one WAR is always 100% accurate.
Although IDs, class names, and custom attributes might be
100% accurate, they often have a much lower per element
accuracy than WARs because webpages and extensions alike
often use some of the same names. Despite this limitation,
the accuracy of the anchorprint improves dramatically with
each additional element included in it.

Structureprints are less precise (in terms of fingerprinting)
but are formed based on the structure of the changes the ex-
tension makes to the underlying webpage. Structureprints
effectively create a DOM fingerprint that uses the extension’s
unique and intended behavior to identify the extension. The
idea of a structureprint is that it can be used to detect a spe-
cific extension because the extension always behaves in a
predictable manner and alters a webpage consistently, thus
creating a structure that is unique among extensions. For
instance, consider a popular Google Calendar extension that
is the only extension with a structureprint that contains the
tags a and img with the following attribute names href, lo-
cation, target, blank, width, height, src, alt and style
Surprisingly, we found during our experiments that a tracking
webpage can reliably detect 28.93% (1,511) of extensions us-
ing only the tagName of the DOM elements added or deleted
from a webpage by an extension. Adding attribute names,
attribute values, and the text of the DOM elements to the
structureprint increases the number of detectable extensions
to 73.65% (3,847).

An important subset of structureprints that target an ex-
tension’s behavior are called behaviorprints. For example,

1682 28th USENIX Security Symposium USENIX Association

Grammarly creates a green button inside a text area. With
manual analysis, it is possible to identify whether the green
button has been added to the webpage without relying on the
IDs or class names injected by Grammarly. Another example
of using behaviorprints are in the detection of ad-blocking
extensions, such as Detect AdBlock [4]. However, no recent
research has shown how to create a behaviorprint in an auto-
mated way at scale. As a result, current behaviorprints are
limited to targeted attacks against specific extensions or nar-
rowly constrained categories of extensions (e.g., ad-blocking
extensions).

Beyond the obvious implementation differences between
anchorprints and structureprints, the fingerprint classes dif-
fer in their accuracy and their destructibility. For most an-
chorprints, matching the WAR, ID, class name, and custom
attributes of a published extension often provides a (unique)
one-to-one match. However, for structureprints, finding a
match is often less certain because many extensions have
similar behavior, which results in the same structureprint. An-
other key difference between anchorprints and structureprints
is the permanence of their link between the published exten-
sion and the user’s installed version. For anchorprints using
WARs, IDs, and class names, CloakX completely renames
the values. By renaming the values, CloakX completely de-
stroys the link between the published extension and the user’s
installed version. Without that link, it is impossible for a
tracking webpage to use the anchorprint to identify the in-
stalled extension because the anchorprint no longer matches
the published extension. Whereas with structureprints, the
destruction of the link between the published extension and
the user’s installed version is difficult. This difficulty occurs
because of the requirement that a cloaked extension retain
the same behavior (i.e., user experience). By maintaining the
same behavior, the structureprint of a cloaked extension is
only being obfuscated, which means that with enough effort a
tracker can eventually deobfuscate the cloaked structureprint
and, thus, detect the cloaked extension.

2.3 Threat Model

In our threat model, attackers use a database of fingerprints
to detect the extensions installed by a visitor to the site. How-
ever, we limit the attackers to the information and privileges
afforded to the webpage’s JavaScript execution environment.
In essence, we assume that there are no zero-day vulnerabili-
ties that would allow webpages to bypass the layered-security
architecture depicted in Figure 1. Therefore, the attackers can-
not access the content of an extension installed on a visitor’s
device.

In this paper, we explore two different types of attackers.
The automated attacker uses automated extension detection
techniques. Specifically, we limit the automated attacker to
anchorprints and structureprints. To detect an extension, the
automated attacker must find either an exact or fuzzy match

to an entry in their fingerprint database. The targeted attacker
is permitted to manually generate targeted structureprints
using portions of the structureprint (i.e., behaviorprints) for
extension detection. While we focus on defending against the
automated attacker because automated large-scale detection
is a feasible attack, we also include the targeted attacker to
explore how CloakX can defend against the targeted attacks.

3 CloakX

The core idea behind CloakX is to diversify each extension’s
fingerprint from the client-side while maintaining equivalent
functionality without making any changes to the browser and
without requiring the developers to alter their extensions.
Client-side diversification of the anchorprints (fingerprints
comprised of items directly accessible from a tracking web-
page’s JavaScript) and structureprints (fingerprints built from
the extension’s behavior) reduces the extension’s detectability
by breaking a webpage’s ability to link together a published
extension and the one installed on the user’s machine. CloakX
defeats detection using an anchorprint by randomizing the
names of the WARs, IDs, and classes. However, CloakX does
not completely defeat anchorprint detection using custom
attributes. CloakX’s approaches combat custom attribute-
based detection by randomly injecting more unique custom
attributes into each webpage. CloakX reduces the efficacy
of structureprints by introducing random attributes and tags
into the webpage. Although CloakX does not completely
prevent detection using custom attributes or structureprints, it
is a step beyond current solutions and CloakX achieves these
protections without any changes to the browser and without
requiring the intervention of extension developers.

Figure 2 shows the overall process of CloakX, a multiphase
tool that leverages static- and dynamic-analysis techniques
to achieve extension diversification while maintaining func-
tional equivalence. In the first phase, CloakX analyzes the
extension for the DOM fingerprints and CloakX identifies the
droplets that must be statically analyzed. In the second phase,
CloakX renames each WAR within the extension to a unique
random value, finds all the references to the original name,
and replaces them with their randomized counterpart. In the
third phase, CloakX adds a dynamic proxy (Droxy) to the
extension’s content and background scripts. Droxy dynami-
cally intercepts DOM and WAR requests and substitutes the
original ID, class names, and WAR names with their random
counterparts. In the last phase, CloakX statically analyzes
and rewrites the DOM IDs and class names inside droplets
that cannot be dynamically intercepted by Droxy.

3.1 XHOUND Analysis
CloakX uses XHOUND (we obtained a copy of the XHOUND
prototype by contacting the paper’s authors [42]) to generate a
DOM fingerprint for the extension and to identify the droplets

USENIX Association 28th USENIX Security Symposium 1683

Figure 2: Overview of the CloakX process.

injected into the webpage. Each DOM fingerprint consists of
four types of artifacts: (1) adding a new DOM element, (2)
deleting a DOM element, (3) setting or altering an element’s
attribute, and (4) changing text on the page.

Of the four types, DOM additions are the most common
type of detectable artifacts according to XHOUND [42]. This
is because DOM additions are generic operations that often
rely on loose coupling with a webpage for them to be trig-
gered. Whereas most DOM modifications or deletions require
a tighter coupling between the extension and the webpage,
which limits their applicability to the problems often solved
by developers. For instance, consider a password manager
extension that injects a stylized element into every password
form field (so that the user can invoke the password manager
interface). The extension adds the element to the webpage
and gives it a unique ID and a custom class name. It requires
the ID to communicate with the element once it’s placed on
the webpage. Using the added ID and class name (i.e., the
extension’s anchorprint), a webpage can detect the extension
by checking for the presence of either the unique ID or class
name on the webpage.

Next, CloakX uses XHOUND to identify any droplets
the extension injects into the webpage’s execution environ-
ment so that CloakX can preprocess the droplets to iden-
tify the ID and class names within them. As discussed in
Section 2.1, droplets (purple-colored boxes in Figure 1) are
JavaScript strings that an extension injects directly into a ren-
dered webpage. Droplets can include any text literal such
as HTML, JavaScript, or base64-encoded images; however,
the preprocessing is only performed on droplets containing
inline JavaScript and those <script> elements that reference
WARs.

Finally, during this phase, CloakX creates a map from the
original ID and class names used to fingerprint the extension
to the new randomized values.

3.2 Diversification of Web-Accessible Re-
sources (WARs)

The principle behind the diversification of Web-Accessible
Resources (WARs) is straightforward: if each installation of
an extension has different filenames for the same WARs, then
a tracker can no longer create a global database of WARs and,
therefore, can no longer detect the presence or absence of any
given extension based on its WAR anchorprint.

In the first stage of the WAR diversification process,
CloakX identifies all the resources declared as WARs in the
manifest file of each extension. Although many extensions
explicitly list the resources they wish to make accessible, it is
also possible to use a * wildcard [34]. With wildcards, an en-
tire folder, its contents, and all its subfolders can be designated
as web-accessible — this includes using a single *, which des-
ignates every file in the extension as web-accessible. Even
though making every file in the extension web-accessible is
likely an implementation error, we discovered 419 extensions
that made all of their resources web-accessible, out of 59K an-
alyzed extensions. In the second stage, CloakX computes the
shortest unique file path to facilitate the search-and-replace in
the final stage. Specifically, CloakX reduces the full path of
each WAR to the minimum length necessary to uniquely iden-
tify the resource (compared to all the other resources in the
extension). This operation reduces the number of resource ref-
erences missed (i.e., false negatives) associated with dynamic
string concatenation (often a directory path).

In the final stage of the WAR diversification process,
CloakX uses the shortest unique path to find every use of
the WAR within the extension’s files and to replace that with
the appropriate random value, maintaining the correctness of
WAR references for each extension.

In addition to the static alterations described above, CloakX
relies on Droxy, discussed in the Section 3.3, to dynamically
translates any WAR requests missed by the static replacement
method.

3.3 Droxy
The next step in the CloakX process adds Droxy to the exten-
sion. Droxy is a content script that injects random attributes
and tags into the DOM to further obfuscate the extension’s
DOM fingerprint while also translating any uncloaked WAR
requests and the IDs and class names used in DOM requests
into their cloaked versions. CloakX patches Droxy into the
extension and configures Droxy to execute before any of the
extension’s content scripts.

Droxy adds random attributes and tags to the DOM to re-
duce the accuracy of detection using structureprints. As each
webpage is loaded, Droxy adds a random number of randomly
generated tags to the DOM to make extension detection less
accurate. To further frustrate detection using structureprint
matching, Droxy adds random attributes to the DOM elements
added by each extension.

1684 28th USENIX Security Symposium USENIX Association

Droxy also uses cross injection of custom attributes to
frustrate anchorprint detection. For trackers using custom
attributes to detect extensions, cross injection allows the user
to impersonate other extensions, which increases a tracker’s
false positives when using anchorprint detection. This is
done by adding custom attributes that are randomly selected
from a list of the 244 unique custom attributes used by other
extensions with a DOM fingerprint.

Droxy also dynamically catches any WAR requests made
using the resource’s original filename, which serves as a
backup for the static replacement method described in Sec-
tion 3.2. Droxy achieves this by watching for changes to
the DOM using a MutationObserver() that checks for un-
cloaked WAR requests inside the DOM elements altered by
the extension. In addition, Droxy overrides the XMLHttpRe-
quest.open() method and adds functionality to translate any
WAR requests for the original filename to the new, random-
ized filename.

Droxy translates the ID and class names used to create a
DOM anchorprint. As the first content script to load, Droxy
overrides DOM accessor and mutator methods before the ex-
tension uses them to interact with the DOM, which effectively
wraps all DOM requests in a translation layer (blue area in
Figure 3). Each of the overridden methods are augmented
to intercept and translate ID and class names used to create
the DOM fingerprint. Droxy determines which ID and class
names to translate by checking the ID and class names against
the cloaking map, created in Section 3.1. The cloaking map
contains name–value pairs where each XHOUND-discovered
ID and class name is paired with a randomized version. If it
finds a match in the cloaking map, it translates the original
value on-the-fly into the randomized version. By intercept-
ing and translating the fingerprintable ID and class names to
randomized values, Droxy alters the extension’s DOM fin-
gerprint from the perspective of a tracker’s execution context
breaking the link between the user’s installed extension and
the publicly available version.

To prevent the use of anchorprint detection, Droxy trans-
lates IDs and class names into random values according to
the map created in Section 3.1. For ID and class name trans-
lation, Droxy also tracks DOM queries and DOM mutations.
Droxy intercepts and inspects the extension’s queries that use
IDs, element names, class names, and query selectors, which
include the methods getElementById(), getElements-
ByName(), getElementsByTagName(), getElementsBy-
ClassName(), querySelector(), and querySelectorAll().
To handle more complex query selectors, Droxy parses the
selectors using the open-source Sizzle engine to accurately
identify the ID and class names [9].

For DOM mutations performed via JavaScript, Droxy in-
tercepts all the ways in which an ID or class name can be
introduced to the DOM. This dynamic interception of ID
and class names is done by overriding setAttribute() and
getAttribute() methods and redefining id and className

properties to use the overridden setAttribute() and getAt-
tribute(). In addition, Droxy overrides the classList property.
Because classList is an object, Droxy overrides the add(),
contains(), and remove() methods of the classList. As a
result, Droxy translates the extension’s use of IDs and class
names whether it is done when a DOM element is created or
modified.

For DOM mutations performed via the injection of raw
HTML, Droxy uses static and dynamic analysis to make the
translation of ID and class names straight-forward and precise.
Droxy overrides the methods used to inject raw HTML, such
as the innerHTML property and insertAdjacentHTML()
method. Droxy uses the browser to parse the HTML by
creating a mock container and adding the HTML to it without
attaching the mocked container to the DOM. Droxy queries
the mock container to identify and transform the ID and class
names into their randomized versions. Droxy then exports
the string representation from the mock container’s DOM and
then calls the original method to apply the modified string to
the webpage’s DOM.

In addition to DOM queries and mutations, Droxy
intercepts styles and translates on-the-fly. An exten-
sion can include styles via text content inside <style>
or CSSStyleSheet’s methods such as addRule() or in-
sertRule(). Once intercepted, Droxy uses CSS parsing to
locate the IDs and class names. If found, Droxy replaces the
ID or class name with its randomized counterpart.

Droxy replaces an extension’s droplets with the statically
rewritten version (content_a.js and Dynamic JS in Fig-
ure 3). As a part of the droplet rewriting process described
in Section 3.4, Droxy receives a hash value of the original
droplet and modified version of the code for each droplet
used by the extension. Droxy then matches the current
droplet’s hash to the ones provided and replaces it with its
cloaked counterpart. Droxy performs the matching and re-
placement by customizing the properties textContent, in-
nerText, and HTMLScriptElement’s and the methods ap-
pend() and appendChild() This process is depicted by the
dashed arrow near 1 in Figure 3. Droxy relies on the prepro-
cessed JavaScript because rewriting the code on-the-fly in the
browser efficiently is currently infeasible.

3.4 Static Droplet Rewriting

As discussed previously and shown in Figure 1, Droxy can-
not intercept a droplet with dynamically inserted JavaScript
because when the inserted code is executed in the webpage’s
JavaScript execution environment. Unfortunately, Droxy is
also unable to cloak the droplet before inserting it because the
heavy-weight static analysis necessary would significantly
degrade the extension’s performance. Therefore, CloakX
statically analyzes the droplets offline, identifies where the
extension adds the fingerprintable ID and class names to the

USENIX Association 28th USENIX Security Symposium 1685

Figure 3: Diversified CloakX rewritten extension. CloakX hides fingerprints by rewriting the droplets, content styles, and renaming of
web-accessible resources (WARs) and through Droxy’s on-the-fly substitution. As a result, a tracking webpage cannot access the original
identifiers; however, the internal logic of the extension still can because Droxy translates those requests.

DOM, rewrites the JavaScript code, and Droxy dynamically
substitutes the original code with its rewritten counterpart.

Extensions commonly use generic values for IDs and class
names, which often overlap with JavaScript keywords or
JavaScript code constructs that refer to the class names and
IDs dynamically. In addition, the expressiveness of JavaScript
means that the ID and class names usage are context-sensitive.
For example, if the fingerprintable class name is content,
CloakX should only replace the instance of #content and
ignore element.content, content.maximizer, and content-
shaper, as each have a different semantic meaning. Devel-
opers often construct ID and class names dynamically in
the code, which necessitates a more sophisticated form of
static analysis. For example, an extension might attempt to
access an element with the ID content by using getElement-
ById("con" + "tent"), which would be missed by a regular
expression searching for the full word.

CloakX statically rewrites droplets offline (i.e., before an
extension is installed) using static analysis to identify the
appropriate locations in the JavaScript. CloakX limits its
rewrites to the ID and class names that occur in the JavaScript
and are added to the webpage via the DOM. By identifying
and only altering these DOM altering instances, CloakX limits
the possibility of breaking the extension with the alterations.
In essence, the static rewriting requires a tool that performs
taint analysis where it labels DOM interactions as sinks and
then analyzes the backward slices of the control flow graph
(CFG) until it finds the fingerprintable IDs and class names
as sources.

We decided to use TAJS — a state-of-the-art and feature
rich JavaScript analyzer — as the program analysis core of
the CloakX static rewriting. We chose TAJS because it (1)
performs type analysis on JavaScript, (2) supports most of
the ECMAScript 5 standard and DOM functionality, (3) is
under active development, (4) is open source [6], and (5) is
the product of recent research [13, 14, 15, 23, 24, 25, 27].

TAJS performs dataflow analysis by using techniques that
examine the flow of data along program execution paths. As
TAJS iterates over the CFG, it creates a semilattice of program
states that are unique for each basic block in the CFG [26].
For each variable represented in the lattice at a given basic
block, TAJS assigns a set of possible values. The dataflow
analysis completes when the values inside the lattice reach a
fixed point and no longer change with each iteration. Using
these values, it is possible to follow data both forwards and
backwards through the CFG [26].

3.4.1 TAJS for Extensions

We enhanced TAJS to support static rewriting of the droplets
by adding support for Chrome extensions, adding DOM taint
analysis, and maximizing its exploration of the CFG. In addi-
tion, we plan to make our changes to TAJS publicly available
because there are currently no other program analysis tools
for browser extensions.

We added extension support to TAJS by creating stubs
for Chrome’s extension API and implementing support for
necessary methods such as sendMessage(), getURL(), exe-
cuteScript(), onMessage.addListener() .

We implemented taint analysis within TAJS that tracks
data through an application until it reaches a sink, where a
sink is a location of interest within the CFG [16]. For the
purposes of this analysis, TAJS tracks string literals matching
the fingerprintable IDs and class names through the CFG
until they are used to interact with the DOM. As a part of the
taint tracking, we added functionality that maintains an audit
trail of the changes to each variable while traversing the CFG
so that upon reaching a sink CloakX can trace the values of
interest to their origins.

We increased TAJS’s code coverage by adding edges to
the end of the CFG that force a call to every named and
anonymous function defined within the code. For the purposes

1686 28th USENIX Security Symposium USENIX Association

of extension rewriting, it is necessary that TAJS analyzes
all the JavaScript within a droplet because some functions
appear unreachable without complete semantic understanding
of Chrome’s extension execution environment. However,
the dynamic aspects used by TAJS itself to strike a balance
between soundness and precision came at the cost of code
coverage [15]. For example, TAJS does not analyze functions
unless they are called by the JavaScript and the call is also
reachable from the beginning of the CFG. Because extension
rewriting requires TAJS to analyze all of the JavaScript within
a droplet, we added edges to the end of the CFG that simulates
a call to every named and anonymous function in the droplet.
The potential downside to adding the edges is the decreased
precision of our analysis (i.e., we are adding behavior to the
application that does not exist at run-time), however for the
purposes of identifying DOM fingerprints the trade-off is
acceptable.

3.4.2 Static Analysis Results

Automated analysis of real-world JavaScript code is a dif-
ficult problem and despite all the advances made by TAJS,
it, as well as similar tools, cannot analyze some JavaScript
programs. As a JavaScript program increases in complexity
and size, it becomes increasingly less likely TAJS will com-
plete the analysis due to the explosion of dataflows (i.e., the
classic state space explosion problem). As acknowledged by
the authors, TAJS initially targeted hand-written JavaScript
applications of a “few thousand lines of code” [26]. Plus, the
addition of the fake edges dramatically increased the com-
plexity of the CFG and the number of states, which decreased
the code TAJS could successfully analyze to about 1,000 lines
of code.

Fortunately, CloakX only needs TAJS analysis for the 197
extensions using droplets, which is only 3.2% of the exten-
sions identifiable by XHOUND, because Droxy handles the
rest of the extensions. Out of those 197 extensions, TAJS
analyzed 212 total scripts of which 94 were JavaScript files
that were designated as a WAR (and thus accessed via a
src attribute, see Figure 3) and 118 were inline JavaScript.
TAJS successfully completed analysis of 134 scripts (63.2%)
finding 19,380 basic blocks and analyzing 18,497 (95.44%).
However, TAJS was unable to analyze 78 (36.8%) of the in-
line JavaScript and WARs because the analysis for 34 scripts
timed out, 6 scripts failed with an analysis exception, 6 scripts
failed due to syntax errors in the JavaScript, and 32 scripts
failed when TAJS crashed.

After manually analyzing the results we found the follow-
ing reasons for why TAJS failed.
Exceeded timeout threshold. Most of the JavaScript code
that caused TAJS to timeout were large JavaScript files that
varied in size from 75 kilobytes to over a megabyte. In other
cases, TAJS failed to finish analyzing smaller JavaScript code
because of a bug in the forced path exploration code.

Analysis exceptions. TAJS failed to complete the analysis
because it was missing support for the ECMAScript standard.
Syntax errors. TAJS was unable to analyze scripts with error
in the JavaScript syntax.
Crashed. Some of the scripts triggered a bug in TAJS, caus-
ing it to crash with null pointer, stack overflow, or other
miscellaneous exceptions.

3.5 Cloaked Extension

Once CloakX completes its modifications to the extension,
the extension is cloaked and it appears to a webpage using
anchorprint or structureprint detection techniques as though
the user no longer has that particular extension installed. Ar-
chitecturally, the resulting extension is similar to Figure 3
with Droxy surrounding the content scripts and translating
the extension’s DOM requests and droplet injections. To a
webpage, the results look similar to the HTML source shown
in Figure 4.

The permanence of the cloaked anchorprint and struc-
tureprint depends on whether the extension is subject to static
rewriting. For cloaked extensions that rely on purely dy-
namic mutations, the structureprint changes each time the
cloaked extension is loaded. Droxy alters the structureprint
by injecting new randomly generated noise into the DOM
and re-randomizing the cloaked ID and class names. How-
ever, CloakX must statically alter extensions with WARs or
droplets. As a result, the cloaked fingerprint of extensions
requiring static rewriting remains the same until a new ver-
sion of the extension is reprocessed by CloakX. Although
guessing the name of a cloaked WAR is unlikely because
CloakX generates a random alphanumeric value that is at
least ten characters in length for each WAR; even if an ad-
versary guesses the name of a WAR, the detectability would
cease when a new version of the extension was released.

3.6 Deployment

Although we describe CloakX as a client-side mechanism
(as this is where the fingerprint rewriting is done), to reduce
end-user friction, we envision CloakX as the final step in
an extension’s release and update process, all of which can
be performed by the extension store and would require no
intervention by the users. Prior to releasing the extension to
users, the store sends the extension to CloakX for preprocess-
ing. During CloakX’s preprocessing, CloakX installs Droxy
and generates a cloaking-template for the extension. The
cloaking-template contains a configuration file that identifies
the static variable replacements necessary for WARs, IDs, and
class names. When a user requests a preprocessed extension,
CloakX uses the cloaking-template to quickly generate and
implement random WAR, IDs, and class names for the current
user.

USENIX Association 28th USENIX Security Symposium 1687

Figure 4: Original code of SEOquake extension (left) and SEOQuake extension when patched by CloakX (right).

4 Evaluation

Altering extensions without modifying the browser or rely-
ing on extension developers to make changes is a complex
process, and while CloakX is a prototype and does not cover
every possible scenario, we wanted to evaluate its current
effectiveness. Thus, in this section we evaluate the efficacy
of CloakX by (1) testing the breakage introduced by its use
(2) the detectability of the cloaked extensions and (3) the
performance of the cloaked extensions.

In November 2017, we extracted 59,255 extensions from
the Chrome Store. Of those, we identified 13,693 extensions
with only WAR fingerprints; however, 67 of the extensions
had errors that prevented them from loading. Next, we iden-
tified 2,537 extensions having only DOM fingerprints, but
Chrome could not load nine of the extensions. The last set of
2,786 extensions had both WAR and DOM fingerprints, one
of which would not load in Chrome.

4.1 Functionality Experiments

Testing the functionality of a large set of applications is sub-
ject to two problems. First, the tests must explore all the
relevant execution paths in the application. Second, the tests
should test the entire set of applications. Furthermore, any
testing approach will leave code unexplored and applications
uncovered, and thus the results form an estimation of func-
tionality breakage. In this work, we perform two different
experiments to address both of these challenges: a low-fidelity
and a high-fidelity experiment.

The low-fidelity experiment tested the entire population
and the high-fidelity experiment randomly sampled from the
population. The low-fidelity experiment automatically exer-
cised the original and cloaked extensions and compared the
error messages generated by each. The low-fidelity experi-
ment provides a lower bound on the breakage across the entire
population. The high-fidelity experiment involved manually —
and extensively — exercising the extension, which provided
deeper coverage of the extension’s functionality. Due to the
time-consuming nature of each high-fidelity run, we used a
random sample of the extensions from each population.

4.1.1 Low-fidelity Functionality Experiments

To measure functionality breakage introduced by CloakX
broadly across all extensions, we performed automated exper-
iments that measured the change in errors from the original
extension to the cloaked extension. To execute the experi-
ment, we created a headless browser session using Selenium’s
ChromeDriver with full logging enabled, which includes er-
rors from the extension’s content scripts. Next, we visited a
triggering web page, which is similar to the webpage used by
XHOUND to activate the extension’s functionality. In addi-
tion, for those extensions with DOM fingerprints identified by
XHOUND, the triggering webpage also included dynamically
generated triggers. After the page loaded, the browser waited
30 seconds for any delayed actions to execute. Other than the
static and dynamic triggers, the automated experiments do
not simulate additional user actions, which might be neces-
sary to execute all the extension’s functionality. These steps
comprise a run, which is completed once for the original
extension and once for the cloaked extension.

After both runs finish, we compared the severe JavaScript
error messages between the two runs. If the cloaked extension
generated the same errors, then the extension passed. Other-
wise, if the cloaked extension generated any new or different
errors, then the extension failed. Because the automated tests
exercise limited functionality and only compare errors, this
experiment represents the best case scenario (i.e., the lower
bound) on the errors introduced by CloakX. However, the
automation allowed us to run the experiment across the entire
population.

Table 1 shows the results for WAR and DOM cloaking
separately. Note that at the time we ran the experiments,
which took place several months after collecting the exten-
sions, some of the original versions stopped working because
of Chrome browser updates, obsolete back-end servers, etc.
As a result, we only tested working extensions and, therefore,
the results only contain errors introduced by CloakX.

In the low-fidelity experiments, CloakX retained equivalent
functionality for 99.02% (13,493) of the WAR fingerprintable
extensions, 98.69% (2,493) of DOM fingerprintable exten-
sions, and 97.92% (2,727) of WAR and DOM fingerprintable

1688 28th USENIX Security Symposium USENIX Association

Table 1: Automated Test Results

Extension set Total Tested Passed Results
Pass Fail

WAR Fingerprintable 13,693 13,626 13,493 99.02% .98%
DOM Fingerprintable 2,537 2,526 2,493 98.69% 1.31%

WAR & DOM Fingerprintable 2,786 2,785 2,727 97.92% 2.08%
Totals 19,016 18,937 18,713 98.82% 1.18%

extensions. For the WAR fingerprintable extensions, we found
that the most frequent cause of the failures was the loading of
WARs from remote websites. For the DOM fingerprintable
extensions, most of the new error messages generated by the
cloaked extensions were severe JavaScript errors caused by
(1) extensions loading remote content or (2) missing func-
tionality in Droxy. For the WAR and DOM fingerprintable
extensions, we found the same errors as seen in the WAR and
DOM only tests. To verify the WAR and DOM cloaking did
not interfere with one another, we also ran this group using
only one of the modifications at a time. The total number
of errors was the same for the joint run as it was for the two
additional runs with the single modifications, which indicates
the modifications did not interfere with one another.

4.1.2 High-fidelity Functionality Experiments

The high-fidelity experiments consisted of manually exercis-
ing and evaluating the operation of the cloaked extensions.
The high-fidelity evaluation was inspired by the methodology
used by Snyder et al. [39]. This methodology focuses on the
extension’s operation from the perspective of the user. If the
cloaking process introduces an error, but the user does not per-
ceive a difference in the extension’s operations, then we deem
the extension passes. This method of evaluation exercises
much more of the extension’s code than the automated tests
and it provides an additional metric that evaluates the actual
operation of each extension. The high-fidelity experiments
were performed by the authors using the testing framework
detailed next.

We built a custom framework to methodically follow a four-
phase evaluation of each extension and advise the tester on
the current step in the process. In phase one, the framework
loads the original extension and gives the user five minutes to
understand its basic operation (including the time necessary
to read the extension’s description in the Chrome Store). In
phase two, the framework reloads the original extension and
the user exercises its functionality for five minutes. In phase
three, the framework loads the modified extension and the
user spends five minutes completing operations similar to the
ones completed in phase two to verify it is still operational.
In the last phase, the user records any notes on the evaluation
and chooses whether the extension passed or failed.

Similar to the automated tests, we divided the extensions
into three groups based on the type of fingerprints they emit-
ted. As a result, the populations for each of the high-fidelity
tests were as follows: 13,626 WAR fingerprintable extensions,

Table 2: Manual Test Results

Extension set Random Top 25 Overall
Pass/Fail Pass/Fail Pass/Fail

WAR Fingerprintable 25 / 0 25 / 0 50 / 0
DOM Fingerprintable 24 / 1 24 / 1 48 / 2

WAR & DOM Fingerprintable 24 / 1 24 / 2 47 / 3

2,526 DOM fingerprintable extensions, and 2,727 WAR and
DOM fingerprintable extensions.

To create samples for these groups, we created both ran-
dom and systematic samples containing 25 extensions each.
We created the first sample by randomly selecting 25 exten-
sions from the population. We formed the systematic sample
by selecting the top 25 most popular extensions based on
the number of downloads listed on the Chrome Web Store.
Throughout the manual tests, if we could not test an exten-
sion because the original version was broken or it was only
available in a foreign language, then it was discarded and
another one was selected according to the associated sam-
pling method. The resulting samples contained quite a bit of
diversity between the extensions. Although we found a few
instances of overlapping functionality, we kept these exten-
sions in the samples. However, when we found a duplicate
extension, we discarded the duplicate and tested a different
extension. Some example extensions included in the test sam-
ples included a utility for those who are color blind, a search
bar tool, a product search by image, a data extraction tool,
and a gesture utility for navigation.

Out of all 150 experiments, 145 of the cloaked extensions
retained equivalent functionality (see Table 2). All of the
WAR fingerprintable extensions retained their functionality.
96% (48 out of 50 extensions) of the DOM fingerprintable
extensions and 94% (47 out of 50 extensions) of the WAR and
DOM fingerprintable extensions retained their functionality.

After analyzing the broken extensions, we found three
different causes for the broken extensions.
Remote source code using original resource name. The
extension loads remote Facebook SDK, which looks for ob-
fuscated ID and class values.
Extension relies on hardcoded values that Droxy alters.
An extension relies on hardcoded logic that expects its content
scripts to appear in a specific order. However, Droxy must
be the first content script, which changes the position of all
of the extension’s original content scripts, and in one case, it
broke the extension.
Droxy implementation limitation. Droxy does not currently
support recursive iframe sourcing, cloneNode, and some ad-
vanced CSS rules that the cssutils Python library fails to
properly parse.

With engineering improvements to Droxy, we can remedi-
ate each of the errors listed above and increase the success rate.
For the remote source code, Droxy could intercept the remote
source code request and parse it before it is executed. This,
of course, would add additional performance overhead. The

USENIX Association 28th USENIX Security Symposium 1689

hardcoded logic could be rectified by overriding the methods
that accesses the content scripts. The implementation limita-
tions can be addressed by adding logic to support them into
Droxy.

4.2 Detectability Experiments

The detectability experiments evaluated the efficacy of the
cloaking against an extension tracking webpage. In the first
experiment, the tracker used anchorprints to detect extensions
with either WAR or DOM fingerprints. In the second experi-
ment, the tracker used structureprints to detect the extensions
with DOM fingerprints. In the third experiment, we investi-
gated the use of behaviorprints to detect cloaked extensions.
Last, we explored different methods for detecting the use of
CloakX on an extension.

For the first three experiments, we set the fingerprint match-
ing threshold to three. To meet the matching threshold, the
tracker must be able to match the extension’s fingerprint to
three or fewer extensions in its repository. When the tracker
meets the matching threshold, it has successfully detected the
extension.

We chose a threshold of three because thresholds higher
than three showed a sharp decrease in the tracking benefit
gained from an extension detection. The matching thresh-
old represents the number of extensions that match a struc-
tureprint. The best threshold depends on the requirements
of the web tracker and the resources available. The main
purpose of the threshold for our experiments was to balance
the search time complexity of the fuzzy searches with the
increase in the matching of cloaked extensions. For example,
by raising the threshold to 20, the web tracker matches three
additional cloaked structureprints (one of which matches 18
extensions).

4.2.1 Detectability Experiment Using Anchorprints

The anchorprint detectability experiments focused on detec-
tion using WARs, IDs, and class names. In the first phase of
the experiment, we harvested the anchorprints of the exten-
sions. Next, we loaded each of the original extensions and
used a tracking webpage to verify that the extensions were
detectable using the anchorprint. Finally, we loaded each
of the cloaked extensions and used a tracking webpage to
evaluate the detectability of the cloaked extensions using its
anchorprint. For a successful detection, the tracker must meet
the matching threshold.

In our experiment, we found that none of the cloaked ex-
tensions were detectable using their WARs, IDs, and class
names after cloaking. In the first phase, we harvested 17,833
anchorprints, which includes 16,411 extensions with WAR
fingerprints and 1,422 that have DOM fingerprints with IDs
and classes. However, we chose to limit the testing to the
17,678 extensions that could be executed after being cloaked

and assumed that the 155 broken extensions were detectable
(thus providing a lower bound on detectability).

In the second phase, we matched 17,534 of the 17,678
original extensions. The ID and class name functionality of
the tracker failed to match 144 extensions because it either
failed to trigger the extension’s anchorprint or it found too
many matching extensions. The ID and class name tracker did
not find matches for 26 extensions because those extensions
required dynamic triggering and the tracker could not use
dynamic triggering and still extract the anchorprint; thus, the
extensions did not inject their anchorprint into the webpage.
The remaining 118 extensions did not count as a detection be-
cause the IDs and class names matched more than three other
extensions, which exceeded our threshold for a detection.

Initially, the WAR functionality of the tracker failed to find
956 of the WAR fingerprinted extensions using XMLHttpRe-
quest because none of the WAR declarations in the manifest
file existed in the extension. However, we discovered we
could reliably match these extensions by timing how long
it took for three WAR requests to return. The first request
is for the declared but missing resources of the extension.
The second request was for the extension’s manifest.json,
which was not declared as a WAR. The third request was
for a randomly generated resource that does not exist in the
extension and is not a WAR. If the missing request (i.e., the
first) takes the longest to return, then the extension has the
resource defined as a WAR but the resource does not exist in
the extension. Thus, we improved the tracker such that if the
tracker failed to match an extension using any of the WARs,
then it performs these three requests for each of the WARs in
the 956 extensions and if the first request takes the longest it
has detected the extension.

In the third phase, we were able to detect 96 of the cloaked
extensions using their anchorprints. After investigating sev-
eral extensions that were detected, we found that matches
occurred because CloakX was not translating the ID and
classes for the extensions due to errors introduced through the
cloaking process. In other words, the experiment found 96 ad-
ditional cloaked extensions that did not maintain functionality
equivalent to their original versions. Thus, with the additional
errors but no actual matches, we found that 98.55% (17,582)
of the extensions were undetectable using anchorprints.

4.2.2 Detectability Experiment Using Structureprints

The structureprint experiment tested the detectability of
cloaked extensions using exact and fuzzy matching to de-
tect the extensions. In the first phase, we ran each of the 5,311
DOM fingerprintable and WAR and DOM fingerprintable
extensions through XHOUND to gather the structureprints.
In the next phase, we ran each of the 5,223 cloaked exten-
sions through XHOUND to gather cloaked fingerprints. We
considered the extensions that failed the automated tests as
detectable. Similar to the WAR detection experiments, we

1690 28th USENIX Security Symposium USENIX Association

Table 3: Structureprint Detection Test Results

Structureprint Key Type Exact Matching Fuzzy Matching
Original Cloaked Cloaked

Tags, Attributes, Text 3,756 (71.91%) 91 (1.74%) 217 (4.15%)
Tags and Attribute Values 2,092 (40.05%) 91 (1.74%) 95 (1.82%)

Tags 1,420 (27.19%) 91 (1.74%) 91 (1.74%)

did not test the broken extensions, but we assume that they
were detectable. In the last phase, we used the structureprints
generated in phase one to match the cloaked fingerprints.

The accuracy and precision of detecting structureprints
varies depending on both (1) the DOM elements used to build
the structureprint and (2) the matching technique used to iden-
tify the extension. Therefore, to explore how CloakX can
prevent the detection of various types of structureprints, we
ran the last phase several times using three different struc-
tureprints (each one representing less information used in the
structureprint) and two different matching techniques (one on
exact matching and one on fuzzy matching) to ensure CloakX
reduced detection for each of them.

The structureprints varied based on the contents used to
build the fingerprint. The first type used all the XHOUND data,
in other words, each fingerprint included added and changed
tags, attribute names, attribute values, and text data. While
these are the most accurate, they are also the most brittle; as a
result, it is likely that the accuracy will degrade considerably
in a real-world environment with dynamic HTML content
and visitors that have several extensions installed. The second
type of structureprint used only the tags and attribute names,
which means the fingerprint did not use the attributes values
or text. The third type of structureprint used only the tags.

For detection, the experiment extracted an extension’s struc-
tureprint and then used exact and fuzzy matching against the
structureprint database to identify the extension. Exact match-
ing worked well for detecting uncloaked extensions; however,
due to the preciseness required for an exact match, cloaked
extensions evaded exact matching. Thus, we also tested using
fuzzy matching with a 90% level of confidence. Fuzzy match-
ing was successful when the match was made with a 90%
level of confidence. Using either matching technique, if the
tracker met the matching threshold (three or fewer matches)
using the extension’s structureprint then we counted the ex-
tension as detected.

Overall, we found that cloaking significantly limited the
number of extensions detectable using structureprints. With
the full structureprints (tags, attribute names, attribute values,
and text) and exact matching, we were able to detect 3,756
of the 5,311 original extensions. The reason that 1,555 ex-
tensions were undetectable is because the number of matches
made using the extension’s structureprint exceeded the match-
ing threshold for a detection (a structureprint must match
three or fewer extensions for a successful detection). Us-
ing the full structureprints on cloaked extensions, none of
the cloaked extensions were detected using exact matching

and only 126 extensions were detected using fuzzy matching.
Using partial structureprints (attributes and tags), we were
able to detect 2,092 of the original extensions; however, the
cloaked extensions were undetectable using exact matching
and only four were detectable using fuzzy matching. Using
the tag only structureprints, we detected 1,420 of the original
extensions; however, we were unable to detect any of the
cloaked extensions using either matching technique.

4.2.3 Detectability Experiment Using Behaviorprints

To understand the limitations of CloakX, we performed an ex-
periment to test the detectability of cloaked extensions using
behaviorprints. We chose ten of the most popular extensions
with structureprints and to avoid duplication we excluded all
ad-blocking extensions except AdBlock. In addition, we ex-
amined ten extensions that we randomly selected from those
with structureprints. By analyzing their structureprints, we
manually created their behaviorprints from portions of the
structureprint that remain constant after cloaking.

For the popular extension sample, six of the extensions
added elements to the DOM that made them uniquely identi-
fiable. The extensions LastPass, Pinterest Save Button, and
Grammarly all add a base64 encoded image to the DOM that
makes them uniquely identifiable. The extensions Ghostery,
Evernote, and Skype add a style tag to the head element with
features that made them uniquely identifiable. The extension
Turn Off the Lights adds a data-video attribute. Although
the data-video attribute is detectable when the extension is
cloaked, CloakX randomly includes this attribute even when
the extension is not installed, which increases the attacker’s
false positive rate and makes it more difficult to correctly
detect when the extension is truly installed. Even though the
cloaked version of AdBlock was detectable, its behaviorprint
was not distinguishable from other popular ad-blocking ex-
tensions (e.g., AdBlock Plus, uBlock Origin, and AdGuard
AdBlocker) because they all perform the same behavior by
deleting ads from the DOM and not injecting any other el-
ements into the DOM. Thus, the detection of ad-blocking
extensions exceeds the matching threshold for the identifica-
tion of a user. Ace Script and Honey added div tags with an
ID, which means CloakX obfuscated the behaviorprint, and
the extensions were not detectable.

For the random sample of ten extensions, five extensions
were detectable using behaviorprints and five were unde-
tectable. Similar to popular extensions, five of the ten exten-
sions added elements to the DOM that made them uniquely
identifiable. For example, two of them added custom text to
the web page. Two of the undetectable extensions performed
actions on the DOM, which were duplicated by a number
of other extensions. Thus, those extensions exceeded the
matching threshold and were undetectable. Finally, the three
remaining undetectable extensions only added class names,
IDs, and common tags to the DOM, which are obfuscated by
CloakX.

USENIX Association 28th USENIX Security Symposium 1691

4.3 Detectability of CloakX

For our last set of experiments, we evaluated three differ-
ent techniques meant to determine whether an extension was
cloaked by CloakX, thus detecting CloakX. These detection
experiments were limited to the 2,447 extensions with struc-
tureprints that contained at least one ID or class name.

In the first experiment, we created a method for detect-
ing CloakX after analyzing the lengths of the IDs and class
names in cloaked and uncloaked extensions. The IDs and
class names generated by CloakX were initially six characters
in length and comprised of random alphanumeric characters.
However, the IDs and class names in uncloaked extensions
averaged 15.1 characters for IDs and 15.9 characters for class
names. In addition, we discovered that only 62 uncloaked
extensions met the criteria of having all their IDs and class
names with a length of six (most of which had only one ID or
class name). As a result, we created a method for detecting
CloakX that marked an extension as CloakX-enabled if all
the IDs and class names injected by the extension were six
characters in length. Next, we ran the CloakX detector on
2,447 uncloaked extensions and cloaked extensions, thus eval-
uating 4,894 extensions. The CloakX detector reported 2,509
cloaked extensions, which means we had 62 false positives,
2,447 true positives, and 2,385 true negatives with an accu-
racy of 98.7%. As a result, we modified CloakX to randomize
the length of the IDs and class names it renames. After mak-
ing this change, we were no longer able to accurately detect
the existence of CloakX based on the length of IDs and class
names.

As a follow up, the second experiment attempted to identify
cloaked extensions by measuring the entropy of the injected
ID and class names. Our hypothesis was that the entropy of
randomly generated IDs and class names would be measur-
ably different from those chosen by extension developers. We
found that the uncloaked ID and class names exhibited nearly
the same amount of entropy as their randomized counterparts.
As a result, we could not accurately identify the existence of
CloakX using the entropy of ID and class names even though
the cloaked values contained randomly generated characters.

In the last CloakX detection experiment, we identified the
use of CloakX by exploiting popular extensions that both
exhibited a behaviorprint and injected an ID or class name
into the webpage. In particular, we found Evernote and Gram-
marly offered a strong behaviorprint and a related ID. Once
we identified the existence of the extension’s behaviorprint
we looked for the ID or class name, if it did not exist then
we determined CloakX was likely installed. For instance,
Evernote injects a style tag with unique elements and it uses
an ID for the same style tag. When a style tag is found that
contains Evernote’s elements and the style’s ID is not style-
1-cropbar-clipper, then the tracker records that it found a
cloaked version of Evernote. Similarly, when Grammarly’s
green icon is detected and the top level html tag does not

contain a class starting with gr, the tracker records that it
found a cloaked version of Grammarly. We tested this by
running the tracker against all 2,447 uncloaked extensions
and the two cloaked versions of Evernote and Grammarly.
The tracker accurately identified the cloaked versions of both
extensions with zero false positives.

4.4 Performance Experiments
CloakX minimally impacts the performance of Chrome in
our automated tests. We tested CloakX’s performance by ran-
domly selecting 500 extensions that contain structureprints
because their cloaking requires more resources. Each indi-
vidual test loaded Chrome, loaded the extension, and ran a
triggering webpage from the local machine, which either trig-
gered a page load event or timed out. We executed the tests
ten times on both the original and modified extensions. The
tests were performed across 16 cores with each core running
at 2.2 Ghz. On average, the original extensions took 12.3128
seconds and used 66,790 KB of memory whereas the mod-
ified extensions took 12.3221 seconds and used 67,123 KB
of memory. Thus, the average increase in overhead for the
cloaked extensions was a .07% increase in execution time
(0.0093 seconds per extension) and a .49% increase in mem-
ory use (333 KB per extension).

5 Discussion

Using the highest failure rate for each of the fingerprint types
and using fuzzy matching, CloakX retained the functional-
ity and hid from detection 96.23% (18,222) of the tested
extensions. For anchorprint detectable extensions, CloakX
rendered 98.55% (17,574) of the extensions undetectable and
with equivalent functionality. For structureprint detectable
extensions, the tracker was unable to detect 95.91% (5,094)
of the cloaked extensions.

CloakX rendered the detection of extensions using anchor-
prints significantly less accurate. CloakX increases user’s
anonymity by diversifying WARs, IDs, class names, and cus-
tom attributes used for anchorprints. In our experiments,
cloaking the WARs, IDs, and class names destroyed the link
between the published extension and the currently installed
version. As a result, none of the successfully cloaked exten-
sions could be detected based solely on their WAR, ID, or
class name. Although it is possible to cloak custom attributes
in a similar fashion, CloakX uses cross extension injection
of custom attributes to cloak extensions. For trackers using
custom attributes to perform anchorprint detection, CloakX
increases the number of matches the tracker makes when eval-
uating an extension’s anchorprint, which causes it to exceed
the matching threshold and, thus, not detect the extension.

For detection using structureprints, CloakX obfuscated
95.91% (5,094) of the previously detectable extensions even
when fuzzy matching with 90% level of confidence was used.

1692 28th USENIX Security Symposium USENIX Association

To prevent structureprint matching, CloakX diversifies the
tags and attributes added to the DOM by the extension. While
these changes were effective against exact and fuzzy match-
ing, the changes only obfuscate the structureprint. Therefore,
it is possible that a tracker could create a more sophisticated
matching process (as has been the case in fingerprinting at-
tacks and countermeasures) that limits the search to those
DOM modifications that are constant.

For example, cloaked extensions are still sometimes iden-
tifiable with behaviorprints. In our experiments with twenty
extensions, we were able to manually create unique behavior-
prints for eleven of the twenty cloaked extensions.

However, behaviorprinting does not currently scale. First,
the creation of behaviorprints requires human intelligence and
no recent research has shown how to automatically generate
a behaviorprint. Second, consistent human intervention is
required to prevent the behaviorprints from going stale and
no longer being able to identify the extension. For example,
LastPass could update their icon, which would no longer
match the saved behaviorprint. Third, due to the dynamic
nature of the web ecosystem many of the behaviorprints will
likely be difficult to use in practice. Lastly, the more popular
an extension is the less value the detection of that extension
offers towards the goal of identifying users. As a result, for
a tracking website to effectively utilize behaviorprints they
need to obtain a large number of behaviorprints from both
popular and less popular extensions, which exacerbates the
scaling problems.

Protection from behaviorprints is a fundamentally difficult
problem because the extensions and the browser share the
same view of the DOM. CloakX provides some protection
from behaviorprints through its injection of noise into the
DOM and with additional features could provide even more
protection against behaviorprinting. For example, CloakX
can make user identification via behaviorprints even more
difficult by adding a feature that randomly injects the behav-
iorprints of the popular extensions, which increases the false
positive detections and further dilutes the user’s fingerprint.
In addition, it is important to point out that only 3,756 exten-
sions (of the 59,255 extensions we used in our study) have
unique enough changes to the DOM to form behaviorprints
and many of those are not unique enough to provide a robust
means of detecting extensions. Nevertheless, the more com-
plete privacy solution for extension fingerprinting is to modify
the browser so that the extension and the website JavaScript
see their own views of the DOM.

Although we were able to detect the use of CloakX, de-
tecting the presence of a defense mechanism, like CloakX,
is different than defending what the mechanism is explicitly
trying to protect against (i.e., the presence of specific browser
extensions). The fingerprinting value realized by detecting
an extension cloaked with CloakX diminishes with each user
that uses cloaked extensions. However, it is unlikely any
attackers will try to detect cloaked extensions until CloakX

becomes popular enough to warrant the attention. As a result,
the fingerprint value of detecting CloakX is limited. How-
ever, as CloakX becomes more popular it is possible that
malicious or shady websites could deny service to users with
CloakX-enabled extensions, but this issue exists with any
defensive mechanism (similar to what users experience with
ad-blocking extension detection).

Thus, despite the limitations described above, CloakX
takes a large step forward towards protecting users from
wide-spread automated fingerprinting using anchorprints and
structureprints.

5.1 Case Study of Failures
Despite their large size and complexity, CloakX cloaks and
retains equivalent functionality of 97.88% of the extensions
detectable through their anchorprints and structureprints.

Functional breakage caused by the remote loading of
scripts was common in broken extensions. One approach
to address this issue is to find droplets that load remote scripts
which CloakX could download, cloak, and save inside the
extension. While an improvement over our current CloakX
prototype, the downside of this approach is that the remote
scripts might be dynamically generated and copying them
inside the extension would not solve the problem. At a high
level, we consider the loading of remote code in browser ex-
tensions an open problem because remote code can drastically
alter the extension’s logic after that extension has been vetted
by the extension store.

Droxy relies on hash values calculated from a static version
of the JavaScript code; however, some extensions dynamically
change their inline JavaScript code each time it is produced.
As a result, Droxy was unable to find the inline code because
the current script would not match the one stored in CloakX’s
metadata. In most cases, we observed that the differences be-
tween the original and live scripts were minor which suggests
that alternative search routines that allow for fuzzy-matching
would be able to handle most of the observed code-matching
issues, such as the one used by Soni et al. [40].

5.2 A New Avenue of Security Exploration
Due to the often-misaligned incentives between extension
developers and end users, it is desirable to be able to perform
late-stage customizations of browser extensions not only to
make extensions less fingerprintable, but to also improve their
overall security and privacy. In this work, we showed that
despite the complexity of the rewriting process, we were
able to automatically modify extensions, without requiring
browser changes or changes to the development process of
browser extensions. Therefore, our approach could be used
in additional contexts, such as removing unnecessary third-
party trackers and PII leaks [41, 46] or automatically patching
vulnerabilities discovered in browser extensions [17].

USENIX Association 28th USENIX Security Symposium 1693

6 Related Work

To the best of our knowledge this paper proposes the
first client-side countermeasure against the fingerprinting of
browser extensions. In this section, we briefly describe prior
work on generic browser fingerprinting and the related coun-
termeasures.

Eckersley conducted the first large-scale study that showed
browser fingerprinting was sufficient to uniquely identify
users without cookies or other stateful identifiers [18]. Since
then, researchers studied several related topics including
tracking the adoption of fingerprinting in the wild [11, 12,
19, 31, 36], proposing new vectors for browser fingerprint-
ing [32, 33, 37, 38, 42, 45], and describing potential defenses
against it [29, 30, 35].

Of all the new vectors proposed for browser fingerprint-
ing, in 2017, researchers discovered three different types of
side-channels for detecting the presence of specific browser
extensions. Sjösten et al. used WARs to determine whether a
browser extension is installed [38]. Using this method, they
found unique fingerprints for 12,154 extensions and more
than 50% of the 1,000 most popular extensions. With the
fingerprint, extension detection is straightforward for an at-
tacker to execute (one check per extension) and works even
if the user utilizes incognito mode. To defend against this
attack, CloakX dynamically renames all of an extension’s
WARs and rewrites all references to these WARs from the
extension’s code. As such, every different installation of the
same cloaked extension will now have different WARs.

Starov and Nikiforakis utilized the changes in a webpage’s
DOM to detect extensions. Similar to the WAR detection
technique, the attacker pre-processes all the extensions of
interest to extract the DOM fingerprints that can be later
used to detect the extension’s presence [42]. As with WARs,
CloakX dynamically rewrites the IDs and class names of
all injected DOM elements, which changes the extension’s
fingerprint and makes it undetectable.

The last browser extension fingerprinting technique, pro-
posed by Iskander-Rola et al. [37] relies on timing channels
to detect the presence of files associated with a browser ex-
tension. Their method works regardless of whether the ex-
tensions declares the files as web accessible. Similarly, Van
Goethem and Joosen propose a variation of the same tech-
nique using different timing side channels [45]. Because these
attacks abuse the access-control mechanisms of a browser, no
amount of extension rewriting can counter them. As such, we
consider these attacks as out-of-scope for CloakX because
our goal is to counteract the detection techniques without
modifying the browser.

7 Conclusion

In this paper, we presented the first client-side countermea-
sure for defending against the detection of browser extensions.

Our system, CloakX, uses the principle of diversification so
that two installations of the same extension expose different
fingerprintable attributes. CloakX operates in an extension-
agnostic fashion by rewriting extensions on the client-side,
without requiring any modifications to the web browser. Over-
all, through a combination of large-scale experiments and
manual testing, we showed that our CloakX prototype can
successfully handle the majority of browser extensions while
causing minimal breakage.
Acknowledgements: We thank the anonymous reviewers for
their helpful feedback. This work was supported by the Office
of Naval Research (ONR) under grant N00014-17-1-2541,
as well as by the National Science Foundation (NSF) under
grants CNS-1527086, CNS-1617593 and CNS-1703375.

References

[1] Automatically find and apply coupons. https:
//chrome.google.com/webstore/detail/honey/
bmnlcjabgnpnenekpadlanbbkooimhnj.

[2] Chrome.runtime - getbackgroundpage(). https:
//developer.chrome.com/extensions/runtime#
method-getBackgroundPage.

[3] Content scripts. https://developer.chrome.com/
extensions/content_scripts.

[4] Detect adblock – most effective way to detect ad blockers.
https://www.detectadblock.com/.

[5] Extension overview. https://developer.chrome.com/
extensions/overview.

[6] Github - tajs. http://nicolas.golubovic.net/thesis/master.
pdf .

[7] Manifest - web accessible resources. https://developer.
chrome.com/extensions/manifest/web_accessible_
resources.

[8] Manifest version. https://developer.chrome.com/
extensions/manifestVersion.

[9] Sizzle javascript selector. https://sizzlejs.com/.

[10] W3 dom overview. https://www.w3.org/TR/
DOM-Level-2-Core/introduction.html.

[11] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan,
and C. Diaz. The Web Never Forgets: Persistent Tracking
Mechanisms in the Wild. In Proceedings of the 21st ACM
Conference on Computer and Communications Security (CCS),
2014.

[12] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses,
F. Piessens, and B. Preneel. FPDetective: Dusting the Web for
fingerprinters. In Proceedings of the 20th ACM Conference on
Computer and Communications Security (CCS), 2013.

1694 28th USENIX Security Symposium USENIX Association

https://chrome.google.com/webstore/detail/honey/bmnlcjabgnpnenekpadlanbbkooimhnj
https://chrome.google.com/webstore/detail/honey/bmnlcjabgnpnenekpadlanbbkooimhnj
https://chrome.google.com/webstore/detail/honey/bmnlcjabgnpnenekpadlanbbkooimhnj
https://developer.chrome.com/extensions/runtime#method-getBackgroundPage
https://developer.chrome.com/extensions/runtime#method-getBackgroundPage
https://developer.chrome.com/extensions/runtime#method-getBackgroundPage
https://developer.chrome.com/extensions/content_scripts
https://developer.chrome.com/extensions/content_scripts
https://www.detectadblock.com/
https://developer.chrome.com/extensions/overview
https://developer.chrome.com/extensions/overview
http://nicolas.golubovic.net/thesis/master.pdf
http://nicolas.golubovic.net/thesis/master.pdf
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifestVersion
https://developer.chrome.com/extensions/manifestVersion
https://sizzlejs.com/
https://www.w3.org/TR/DOM-Level-2-Core/introduction.html
https://www.w3.org/TR/DOM-Level-2-Core/introduction.html

[13] E. Andreasen, A. Feldthaus, S. H. Jensen, C. S. Jensen, P. A.
Jonsson, M. Madsen, and A. Møller. Improving tools for
javascript programmers. In Proc. of International Workshop
on Scripts to Programs. Beijing, China:[sn], pages 67–82,
2012.

[14] E. Andreasen and A. Møller. Determinacy in static analysis
for jQuery. ACM SIGPLAN Notices, 49(10):17–31, 2014.

[15] E. S. Andreasen, A. Møller, and B. B. Nielsen. Systematic
Approaches for Increasing Soundness and Precision of Static
Analyzers. ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, (June), 2017.

[16] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices, 49(6):259–
269, 2014.

[17] A. Barth, A. P. Felt, P. Saxena, and A. Boodman. Protecting
browsers from extension vulnerabilities. In Network and Dis-
tributed System Security Symposium (NDSS). Citeseer, 2010.

[18] P. Eckersley. How Unique Is Your Browser? In Proceedings of
the 10th Privacy Enhancing Technologies Symposium (PETS),
pages 1–18, 2010.

[19] S. Englehardt and A. Narayanan. Online tracking: A 1-million-
site measurement and analysis. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security, pages 1388–1401. ACM, 2016.

[20] Google Chrome Extension. Trump Filter. https:
//chrome.google.com/webstore/detail/trump-filter/
lhondapiaknegjpellpodegmeonigjic.

[21] Google Chrome Extensioon. Hillary Blocker. https:
//chrome.google.com/webstore/detail/hillary-blocker/
kiblhkcoiojbdhhnjaekompfecgelfja.

[22] N. Jagpal, E. Dingle, J.-P. Gravel, P. Mavrommatis, N. Provos,
M. A. Rajab, and K. Thomas. Trends and lessons from three
years fighting malicious extensions. In 24th USENIX Security
Symposium, 2015.

[23] S. H. Jensen, P. A. Jonsson, and A. Møller. Remedying the
eval that men do. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis, pages 34–44.
ACM, 2012.

[24] S. H. Jensen, P. a. Jonsson, and A. Møller. Remedying the
Eval That Men Do. Proceedings of the 2012 International
Symposium on Software Testing and Analysis, pages 34–44,
2012.

[25] S. H. Jensen, M. Madsen, and A. Møller. Modeling the html
dom and browser api in static analysis of javascript web appli-
cations. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software
engineering, pages 59–69. ACM, 2011.

[26] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for
javascript. In International Static Analysis Symposium, pages
238–255. Springer, 2009.

[27] S. H. Jensen, A. Møller, and P. Thiemann. Interprocedural
analysis with lazy propagation. In International Static Analysis
Symposium, pages 320–339. Springer, 2010.

[28] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and
V. Paxson. Hulk: Eliciting malicious behavior in browser exten-
sions. In 23rd USENIX Security Symposium (USENIX Security
14), pages 641–654, San Diego, CA, Aug. 2014. USENIX
Association.

[29] P. Laperdrix, B. Baudry, and V. Mishra. Fprandom: Randomiz-
ing core browser objects to break advanced device fingerprint-
ing techniques. In International Symposium on Engineering
Secure Software and Systems, pages 97–114. Springer, 2017.

[30] P. Laperdrix, W. Rudametkin, and B. Baudry. Mitigating
browser fingerprint tracking: multi-level reconfiguration and
diversification. In Proceedings of the 10th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing
Systems, pages 98–108. IEEE Press, 2015.

[31] P. Laperdrix, W. Rudametkin, and B. Baudry. Beauty and
the Beast: Diverting modern web browsers to build unique
browser fingerprints. In 37th IEEE Symposium on Security
and Privacy (S&P 2016), San Jose, United States, May 2016.

[32] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham. Finger-
printing information in javascript implementations. In Pro-
ceedings of W2SP, volume 2, 2011.

[33] K. Mowery and H. Shacham. Pixel perfect: Fingerprinting
canvas in html5. Proceedings of W2SP, pages 1–12, 2012.

[34] Nicolas Golubovic. Attacking Browser Extensions, MS Thesis,
Ruhr-University Bochum. http://nicolas.golubovic.net/
thesis/master.pdf , 2016.

[35] N. Nikiforakis, W. Joosen, and B. Livshits. Privaricator: De-
ceiving fingerprinters with little white lies. In Proceedings of
the 24th International Conference on World Wide Web, pages
820–830. International World Wide Web Conferences Steering
Committee, 2015.

[36] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna. Cookieless monster: Exploring
the ecosystem of web-based device fingerprinting. In Security
and privacy (SP), 2013 IEEE symposium on. IEEE, 2013.

[37] I. Sanchez-Rola, I. Santos, and D. Balzarotti. Extension break-
down: Security analysis of browsers extension resources con-
trol policies. In 26th USENIX Security Symposium, 2017.

[38] A. Sjösten, S. Van Acker, and A. Sabelfeld. Discovering
browser extensions via web accessible resources. In Proceed-
ings of the Seventh ACM on Conference on Data and Applica-
tion Security and Privacy, pages 329–336. ACM, 2017.

USENIX Association 28th USENIX Security Symposium 1695

https://chrome.google.com/webstore/detail/trump-filter/lhondapiaknegjpellpodegmeonigjic
https://chrome.google.com/webstore/detail/trump-filter/lhondapiaknegjpellpodegmeonigjic
https://chrome.google.com/webstore/detail/trump-filter/lhondapiaknegjpellpodegmeonigjic
https://chrome.google.com/webstore/detail/hillary-blocker/kiblhkcoiojbdhhnjaekompfecgelfja
https://chrome.google.com/webstore/detail/hillary-blocker/kiblhkcoiojbdhhnjaekompfecgelfja
https://chrome.google.com/webstore/detail/hillary-blocker/kiblhkcoiojbdhhnjaekompfecgelfja
http://nicolas.golubovic.net/thesis/master.pdf
http://nicolas.golubovic.net/thesis/master.pdf

[39] P. Snyder, C. Taylor, and C. Kanich. Most websites don’t
need to vibrate: A cost-benefit approach to improving browser
security. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 179–194.
ACM, 2017.

[40] P. Soni, E. Budianto, and P. Saxena. The sicilian defense:
Signature-based whitelisting of web javascript. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 1542–1557. ACM, 2015.

[41] O. Starov and N. Nikiforakis. Extended tracking powers: Mea-
suring the privacy diffusion enabled by browser extensions. In
Proceedings of the 26th International Conference on World
Wide Web, pages 1481–1490. International World Wide Web
Conferences Steering Committee, 2017.

[42] O. Starov and N. Nikiforakis. XHOUND: Quantifying the fin-
gerprintability of browser extensions. In Security and Privacy
(SP), 2017 IEEE Symposium on, pages 941–956. IEEE, 2017.

[43] M. Stockley. The web attacks that refuse to die.
https://nakedsecurity.sophos.com/2016/06/15/
the-web-attacks-that-refuse-to-die/.

[44] K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jagpal,
A. Kapravelos, D. McCoy, A. Nappa, V. Paxson, P. Pearce,
et al. Ad injection at scale: Assessing deceptive advertisement
modifications. In IEEE Symposium on Security and Privacy
(SP), 2015.

[45] T. Van Goethem and W. Joosen. One side-channel to bring
them all and in the darkness bind them: Associating isolated
browsing sessions.

[46] M. Weissbacher, E. Mariconti, G. Suarez-Tangil, G. Stringhini,
W. Robertson, and E. Kirda. Ex-ray: Detection of history-
leaking browser extensions. In Proceedings of the 33rd Annual
Computer Security Applications Conference, pages 590–602.
ACM, 2017.

[47] X. Xing, W. Meng, B. Lee, U. Weinsberg, A. Sheth, R. Perdisci,
and W. Lee. Understanding malvertising through ad-injecting
browser extensions. In Proceedings of the 24th International
Conference on World Wide Web, WWW ’15, pages 1286–1295,
2015.

1696 28th USENIX Security Symposium USENIX Association

https://nakedsecurity.sophos.com/2016/06/15/the-web-attacks-that-refuse-to-die/
https://nakedsecurity.sophos.com/2016/06/15/the-web-attacks-that-refuse-to-die/

	Introduction
	Background
	Browser Extensions Explained
	Extension Fingerprinting and Detection
	Threat Model

	CloakX
	XHound Analysis
	Diversification of Web-Accessible Resources (WARs)
	Droxy
	Static Droplet Rewriting
	TAJS for Extensions
	Static Analysis Results

	Cloaked Extension
	Deployment

	Evaluation
	Functionality Experiments
	Low-fidelity Functionality Experiments
	High-fidelity Functionality Experiments

	Detectability Experiments
	Detectability Experiment Using Anchorprints
	Detectability Experiment Using Structureprints
	Detectability Experiment Using Behaviorprints

	Detectability of CloakX
	Performance Experiments

	Discussion
	Case Study of Failures
	A New Avenue of Security Exploration

	Related Work
	Conclusion

