
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

The Art of The Scam: Demystifying Honeypots in
Ethereum Smart Contracts

Christof Ferreira Torres, Mathis Steichen, and Radu State, University of Luxembourg

https://www.usenix.org/conference/usenixsecurity19/presentation/ferreira

The Art of The Scam:
Demystifying Honeypots in Ethereum Smart Contracts

Christof Ferreira Torres
SnT, University of Luxembourg

Mathis Steichen
SnT, University of Luxembourg

Radu State
SnT, University of Luxembourg

Abstract

Modern blockchains, such as Ethereum, enable the execu-
tion of so-called smart contracts – programs that are exe-
cuted across a decentralised network of nodes. As smart
contracts become more popular and carry more value, they
become more of an interesting target for attackers. In the
past few years, several smart contracts have been exploited
by attackers. However, a new trend towards a more proac-
tive approach seems to be on the rise, where attackers do not
search for vulnerable contracts anymore. Instead, they try
to lure their victims into traps by deploying seemingly vul-
nerable contracts that contain hidden traps. This new type
of contracts is commonly referred to as honeypots. In this
paper, we present the first systematic analysis of honeypot
smart contracts, by investigating their prevalence, behaviour
and impact on the Ethereum blockchain. We develop a tax-
onomy of honeypot techniques and use this to build HON-
EYBADGER – a tool that employs symbolic execution and
well defined heuristics to expose honeypots. We perform a
large-scale analysis on more than 2 million smart contracts
and show that our tool not only achieves high precision, but
is also highly efficient. We identify 690 honeypot smart con-
tracts as well as 240 victims in the wild, with an accumulated
profit of more than $90,000 for the honeypot creators. Our
manual validation shows that 87% of the reported contracts
are indeed honeypots.

1 Introduction

The concept of blockchain has been introduced in 2009
with the release of Satoshi Nakamoto’s Bitcoin [26] and
has greatly evolved since then. It is regarded as one of the
most disruptive technologies since the invention of the In-
ternet itself. In recent years, companies across the globe
have poured value into blockchain research, examining how
it can make their existing business more efficient and secure.
A blockchain is essentially a verifiable, append-only list of
records in which all transactions are recorded in so-called

blocks. Every block is linked to its previous block via a cryp-
tographic hash, thus forming a chain of blocks or a so-called
“blockchain”. This list is maintained by a distributed peer-
to-peer network of untrusted nodes, which follow a consen-
sus protocol that dictates the appending of new blocks. Trust
is obtained via the assumption that the majority acts faith-
fully and going against the protocol is too costly.

A broad range of different blockchain implementations
have emerged since the inception of Bitcoin. However, all of
these implementations pursue a common goal, namely, the
decentralisation of control over a particular asset. Bitcoin’s
asset is its cryptocurrency and the trusted centralised enti-
ties it attempts to decentralise are traditional banks. Mod-
ern blockchains such as Ethereum [46] aim to decentralise
the computer as a whole through so-called smart contracts.
Smart contracts are programs that are stored and executed
across the Ethereum blockchain via the Ethereum Virtual
Machine (EVM). The EVM is a purely stack-based virtual
machine that supports a Turing-complete instruction set of
opcodes. Smart contracts are deployed, invoked and re-
moved from the blockchain via transactions. Each operation
on the EVM costs a specified amount of gas. When the total
amount of gas assigned to a transaction is exceeded, program
execution is terminated and its effects are reversed. In con-
trast to traditional programs, smart contracts are immutable.
Thus, programming mistakes that were never intended by
the developer, become now irreversible. Developers usu-
ally write smart contract code in a high-level language which
compiles into EVM bytecode. At the time of writing, Solid-
ity [47] is the most prevalent high-level language for devel-
oping smart contracts in Ethereum.

In 2018, Ethereum reached a market capitalisation of over
$133 billion [9]. As it becomes more and more valuable, at-
tackers become more and more incentivised to find and ex-
ploit vulnerable contracts. In fact, Ethereum already faced
several devastating attacks on vulnerable smart contracts.
The most prominent ones being the DAO hack in 2016 [34]
and the Parity Wallet hack in 2017 [29], together causing
a loss of over $400 million. In response to these attacks,

USENIX Association 28th USENIX Security Symposium 1591

academia proposed a plethora of different tools that allow
to scan contracts for vulnerabilities, prior to deploying them
on the blockchain (see e.g. [21, 25, 38]). Unfortunately, these
tools may also be used by attackers in order to easily find vul-
nerable contracts and exploit them. This potentially enables
attackers to follow a reactive approach by actively scanning
the blockchain for vulnerable contracts.

Alternatively, attackers could follow a more proactive ap-
proach by luring their victims into traps. In other words: Why
should I spend time on looking for victims, if I can just let the
victims come to me? This new type of fraud has been intro-
duced by the community as “honeypots” (see e.g. [32, 33]).
Honeypots are smart contracts that appear to have an obvious
flaw in their design, which allows an arbitrary user to drain
ether (Ethereum’s cryptocurrency) from the contract, given
that the user transfers a priori a certain amount of ether to the
contract. However, once the user tries to exploit this appar-
ent vulnerability, a second, yet unknown, trapdoor unfolds
which prevents the draining of ether to succeed. The idea
is that the user solely focuses on the apparent vulnerability
and does not consider the possibility that a second vulnera-
bility might be hidden in the contract. Similar to other types
of fraud, honeypots work because human beings are often
easily manipulated. People are not always capable of quan-
tifying risk against their own greed and presumptions.

In this paper, we investigate the prevalence of such honey-
pot smart contracts in Ethereum. To the best of our knowl-
edge this is the first work to provide an in depth analysis on
the inner workings of this new type of fraud. Moreover, we
introduce HONEYBADGER – a tool that uses a combination
of symbolic execution and precise heuristics to automatically
detect various types of honeypots. Using HONEYBADGER,
we are able to provide interesting insights on the plethora,
anatomy and popularity of honeypots that are currently de-
ployed on the Ethereum blockchain. Finally, we investigate
whether this new type of scam is profitable and we discuss
the effectiveness of such honeypots. In summary, we present
the following main contributions:

• We conduct the first systematic analysis of an emerging
new type of fraud in Ethereum: honeypots.

• We identify common techniques used by honeypots and
organise them in a taxonomy.

• We present HONEYBADGER, a tool that automatically
detects honeypots in Ethereum smart contracts.

• We run HONEYBADGER on 151,935 unique smart con-
tracts and confirm the prevalence of at least 282 unique
honeypots.

2 Background

In this section, we provide the required background for un-
derstanding the setting of our work, including a description

of smart contracts, the Ethereum virtual machine, and the
Etherscan blockchain explorer.

2.1 Smart Contracts
The notion of smart contracts has been introduced by Nick
Szabo in 1997 [35]. He described the concept of a trustless
system consisting of self-executing computer programs that
would facilitate the digital verification and enforcement of
contract clauses contained in legal contracts. However, this
concept only became a reality with the release of Ethereum
in 2015. Ethereum smart contracts are different from tra-
ditional programs in several aspects. For example, as the
code is stored on the blockchain, it becomes immutable and
its execution is guaranteed by the blockchain. Nevertheless,
smart contracts may be destroyed, if they contain the nec-
essary code to handle their destruction. Once destroyed, a
contract can no longer be invoked and its funds are trans-
ferred to another address. Smart contracts are usually de-
veloped using a dedicated high-level programming language
that compiles into low-level bytecode. The bytecode of a
smart contract is then deployed to the blockchain through a
transaction. Once successfully deployed, a smart contract is
identified by a 160-bit address. Despite a large variety of pro-
gramming languages (e.g. Vyper [44], LLL [19] and Bam-
boo [6]), Solidity [47] remains the most prominent program-
ming language for developing smart contracts in Ethereum.
Solidity’s syntax resembles a mixture of C and JavaScript. It
comes with a multitude of unique concepts that are specific
to smart contracts, such as the transfer of funds or the capa-
bility to call other contracts.

2.2 Ethereum Virtual Machine
The Ethereum blockchain consists of a network of mutually
distrusting nodes that together form a decentralised public
ledger. This ledger allows users to create and invoke smart
contracts by submitting transactions to the network. These
transactions are processed by so-called miners. Miners exe-
cute smart contracts during the verification of blocks, using
a dedicated virtual machine denoted as the Ethereum Virtual
Machine [46]. The EVM is a stack-based, register-less vir-
tual machine, running low-level bytecode, that is represented
by an instruction set of opcodes. To guarantee termination
of a contract and thus prevent miners to be stuck in endless
loops of execution, the concept of gas has been introduced.
It associates costs to the execution of every single instruc-
tion. When issuing a transaction, the sender has to specify
the amount of gas that he or she is willing to pay to the miner
for the execution of the smart contract. The execution of a
smart contract results in a modification of the world state σ ,
a data structure stored on the blockchain mapping an address
a to an account state σ [a]. The account state of a smart con-
tract consists of two main parts: a balance σ [a]b, that holds

1592 28th USENIX Security Symposium USENIX Association

Attacker Honeypot

1) Deployment

3) Withdrawal
2) Exploitation

Victim

Figure 1: Actors and phases of a honeypot.

the amount of ether owned by the contract, and storage σ [a]s,
which holds the persistent data of the contract. Storage is or-
ganised as a key-value store and is the only way for a smart
contract to retain state across executions. Besides the world
state σ , the EVM also holds a transaction execution environ-
ment I, which contains the address of the smart contract that
is being executed Ia, the transaction input data Id , the trans-
action sender Is and the transaction value Iv. The EVM can
essentially be seen as a transaction-based state machine, that
takes as input σ and I, and outputs a modified world state σ ′.

2.3 Etherscan Blockchain Explorer
Etherscan1 is an online platform that collects and displays
blockchain specific information. It acts as a blockchain nav-
igator allowing users to easily lookup the contents of indi-
vidual blocks, transactions and smart contracts on Ethereum.
It offers multiple services on top of its exploring capabili-
ties. One of these services is the possibility for smart con-
tract creators to publish their source code and confirm that
the bytecode stored under a specific address is the result of
compilation of the specified source code. It also offers users
the possibility to leave comments on smart contracts.

3 Ethereum Honeypots

In this section, we provide a general definition of a honeypot
and introduce our taxonomy of honeypots.

3.1 Honeypots
Definition 1 (Honeypot) A honeypot is a smart contract
that pretends to leak its funds to an arbitrary user (victim),
provided that the user sends additional funds to it. However,
the funds provided by the user will be trapped and at most
the honeypot creator (attacker) will be able to retrieve them.

Figure 1 depicts the different actors and phases of a honey-
pot. A honeypot generally operates in three phases:

1. The attacker deploys a seemingly vulnerable contract
and places a bait in the form of funds;

2. The victim attempts to exploit the contract by transfer-
ring at least the required amount of funds and fails;

1https://etherscan.io/

3. The attacker withdraws the bait together with the funds
that the victim lost in the attempt of exploitation.

An attacker does not require special capabilities to set up
a honeypot. In fact, an attacker has the same capabilities
as a regular Ethereum user. He or she solely requires the
necessary funds to deploy the smart contract and place a bait.

3.2 Taxonomy of Honeypots

We grasped public sources available on the Internet, in or-
der to have a first glimpse at the inner workings of honey-
pots [45, 22, 32, 31, 33]. We were able to collect a total of 24
honeypots (see Table 5 in Appendix A) and distill 8 different
honeypot techniques. We organise the different techniques
in a taxonomy (see Table 1), whose purpose is twofold: (i)
as a reference for users in order to avoid common honeypots
in Ethereum; (ii) as a guide for researchers to foster the de-
velopment of methods for the detection of fraudulent smart
contracts. We group the different techniques into three dif-
ferent classes, according to the level on which they operate:

1. Ethereum Virtual Machine

2. Solidity Compiler

3. Etherscan Blockchain Explorer

The first class tricks users by making use of the unusual
behaviour of the EVM. Although the EVM follows a strict
and publicly known set of rules, users can still be misled
or confused by devious smart contract implementations that
suggest a non-conforming behaviour. The second class re-
lates to honeypots that benefit from issues that are intro-
duced by the Solidity compiler. While some compiler is-
sues are well known, others still remain undocumented and
might go unnoticed if a user does not analyse the smart con-
tract carefully or does not test it under real-world conditions.
The final and third class takes advantage of issues that are
related to the limited information displayed on Etherscan’s
website. Etherscan is perhaps the most prominent Ethereum

Level Technique
Ethereum Virtual Machine Balance Disorder

Solidity Compiler

Inheritance Disorder
Skip Empty String Literal
Type Deduction Overflow

Uninitialised Struct

Etherscan
Blockchain Explorer

Hidden State Update
Hidden Transfer

Straw Man Contract

Table 1: A taxonomy of honeypot techniques in Ethereum
smart contracts.

USENIX Association 28th USENIX Security Symposium 1593

1 contract MultiplicatorX3 {

2 ...

3 function multiplicate(address adr) payable {

4 if (msg.value >= this.balance)

5 adr.transfer(this.balance+msg.value);

6 }

7 }

Figure 2: An example of a balance disorder honeypot.

blockchain explorer and many users fully trust the data dis-
played therein. In the following, we explain each honey-
pot technique through a simplified example. We also assume
that: 1) the attacker has placed a bait in form of ether into the
smart contract, as an incentive for users to try to exploit the
contract; 2) the attacker has a way of retrieving the amount
of ether contained in the honeypot.

3.2.1 Ethereum Virtual Machine

Balance Disorder. Every smart contract in Ethereum pos-
sesses a balance. The contract in Figure 2 depicts an ex-
ample of a honeypot that makes use of a technique that we
denote as balance disorder. The function multiplicate

suggests that the balance of the contract (this.balance)
and the value included in the transaction to this function call
(msg.value) are transferred to an arbitrary address, if the
caller of this function includes a value that is higher than or
equal to the current balance of the smart contract. Hence, a
naive user will believe that all that he or she needs to do, is
to call this function with a value that is higher or equal to
the current balance, and that in return he or she will obtain
the “invested” value plus the balance contained in the con-
tract. However, if a user tries to do so, he or she will quickly
realise that line 5 is not executed because the condition at
line 4 does not hold. The reason for this is that the balance
is already incremented with the transaction value, before the
actual execution of the smart contract takes place. It is worth
noting that: 1) the condition at line 4 can be satisfied if the
current balance of the contract is zero, but then the user does
not have an incentive to exploit the contract; 2) the addition
this.balance+msg.value at line 5, solely serves the pur-
pose of making the user further believe that the balance is
updated only after the execution.

3.2.2 Solidity Compiler

Inheritance Disorder. Solidity supports inheritance via
the is keyword. When a contract inherits from multiple con-
tracts, only a single contract is created on the blockchain,
and the code from all the base contracts is copied into the
created contract. Figure 3 shows an example of a honeypot
that makes use of a technique that we denote as inheritance
disorder. At first glance, there seems to be nothing special

1 contract Ownable {

2 address owner = msg.sender;

3 modifier onlyOwner {

4 require(msg.sender == owner);

5 _;

6 }

7 }

8 contract KingOfTheHill is Ownable {

9 address public owner;

10 ...

11 function () public payable {

12 if(msg.value >jackpot)owner=msg.sender;

13 jackpot += msg.value;

14 }

15 function takeAll () public onlyOwner {

16 msg.sender.transfer(this.balance);

17 jackpot = 0;

18 }

19 }

Figure 3: An example of an inheritance disorder honeypot.

about this code, we have a contract KingOfTheHill that
inherits from the contract Ownable. We notice two things
though: 1) the function takeAll solely allows the address
stored in variable owner to withdraw the contract’s balance;
2) the owner variable can be modified by calling the fallback
function with a message value that is greater than the current
jackpot (line 12). Now, if a user tries to call the function
in order to set themself as the owner, the transaction suc-
ceeds. However, if he or she afterwards tries to withdraw
the balance, the transaction fails. The reason for this is that
the variable owner, declared at line 9, is not the same as the
variable that is declared at line 2. We would assume that the
owner at line 9 would be overwritten by the one at line 2,
but this is not the case. The Solidity compiler will treat the
two variables as distinct variables and thus writing to owner

at line 9 will not result in modifying the owner defined in the
contract Ownable.

Skip Empty String Literal. The contract illustrated in
Figure 4 allows a user to place an investment by sending a
minimum amount of ether to the contract’s function invest.
Investors may withdraw their investment by calling the func-
tion divest. Now, if we have a closer look at the code,
we realise that there is nothing that prohibits the investor
from divesting an amount that is greater than the originally
invested amount. Thus a naive user is led to believe that
the function divest can be exploited. However, this con-
tract contains a bug known as skip empty string literal2. The
empty string literal that is given as an argument to the func-
tion loggedTransfer (line 14), is skipped by the encoder
of the Solidity compiler. This has the effect that the en-
coding of all arguments following this argument are shifted
to the left by 32 bytes and thus the function call argument

2https://github.com/ethereum/solidity/blob/develop/docs/bugs.json

1594 28th USENIX Security Symposium USENIX Association

1 contract DividendDistributorv3 {

2 ...

3 function loggedTransfer(uint amount ,bytes32

msg ,address target ,address currentOwner){

4 if (! target.call.value(amount)()) throw;

5 Transfer(amount ,msg ,target ,currentOwner);

6 }

7 function invest () public payable {

8 if (msg.value >= minInvestment)

9 investors[msg.sender]. investment +=msg.

value;

10 }

11 function divest(uint amount) public {

12 if (investors[msg.sender]. investment == 0

|| amount == 0) throw;

13 investors[msg.sender]. investment -= amount;

14 this.loggedTransfer(amount ,"",msg.sender ,

owner);

15 }

16 }

Figure 4: An example of a skip empty string literal honeypot.

1 contract For_Test {

2 ...

3 function Test() payable public {

4 if (msg.value > 0.1 ether) {

5 uint256 multi = 0;

6 uint256 amountToTransfer = 0;

7 for (var i = 0; i < 2*msg.value; i++) {

8 multi = i*2;

9 if (multi < amountToTransfer) {

10 break;

11 amountToTransfer = multi;

12 }

13 msg.sender.transfer(amountToTransfer);

14 }

15 }

16 }

Figure 5: An example of a type deduction overflow honey-
pot.

msg receives the value of target, whereas target is given
the value of currentOwner, and finally currentOwner re-
ceives the default value zero. Thus, in the end the function
loggedTransfer performs a transfer to currentOwner in-
stead of target, essentially diverting all attempts to divest
from the contract to transfers to the owner. A user trying
to use the smart contract’s apparent vulnerability thereby ef-
fectively just transfers the investment to the contract owner.

Type Deduction Overflow. In Solidity, when declaring a
variable as type var, the compiler uses type deduction to au-
tomatically infer the smallest possible type from the first ex-
pression that is assigned to the variable. The contract in Fig-
ure 5 depicts an example of a honeypot that makes use of a
technique that we denote as type deduction overflow. At first,
the contract suggests that a user will be able to double the in-

1 contract GuessNumber {

2 uint private randomNumber=uint256(keccak256(

now))%10+1;

3 uint public lastPlayed;

4 uint public minBet =0.1 ether;

5 struct GuessHistory {

6 address player;

7 uint256 number;

8 }

9 function guessNumber(uint256 _number)payable{

10 require(msg.value >= minBet &&_number <=10);

11 GuessHistory guessHistory;

12 guessHistory.player = msg.sender;

13 guessHistory.number = _number;

14 if (_number == randomNumber)

15 msg.sender.transfer(this.balance);

16 lastPlayed = now;

17 }

18 }

Figure 6: An example of an uninitialised struct honeypot.

vestment. However, since the type is only deduced from the
first assignment, the loop at line 7 will be infinite. Variable
i will have the type uint8 and the highest value of this type
is 255, which is smaller than 2 * msg.value3. Therefore,
the loop’s halting condition will never be reached. Never-
theless, the loop can still be stopped, if the variable multi

is smaller than amountToTransfer. This is possible, since
amountToTransfer is assigned the value of multi, which
eventually will be smaller than amountToTransfer due to
an integer overflow happening at line 8, where i is multiplied
by 2. Once the loop exits, the contract performs a value trans-
fer back to the caller, although with an amount that will be
at most 255 wei (smallest sub-denomination of ether, where
1 ether = 1018 wei) and therefore far less than the value the
user originally invested.

Uninitialised Struct. Solidity provides means to define
new data types in the form of structs. They combine sev-
eral named variables under one variable and are the basic
foundation for more complex data structures in Solidity. An
example of an uninitialised struct honeypot is given in Fig-
ure 6. In order to withdraw the contract’s balance, the con-
tract requires a user to place a minimum bet and guess a
random number that is stored in the contract. However, any
user can easily obtain the value of the random number, since
every data stored on the blockchain is publicly available.
The first thought suggests that the contract creator simply
made a common mistake by assuming that variables declared
as private are secret. An innocent user simply reads the
random number from the blockchain and calls the function
guessNumber by placing a bet and providing the correct
number. Afterwards, the contract creates a struct that seems
to track the participation of the user. However, the struct

3 2 * 0.1 ether = 2 * 1017 wei

USENIX Association 28th USENIX Security Symposium 1595

1 contract Gift_1_ETH {

2 bool passHasBeenSet = false;

3 ...

4 function SetPass(bytes32 hash) payable {

5 if (! passHasBeenSet &&(msg.value >=1 ether))

6 hashPass = hash;

7 }

8 function GetGift(bytes pass)returns(bytes32){

9 if (hashPass == sha3(pass))

10 msg.sender.transfer(this.balance);

11 return sha3(pass);

12 }

13 function PassHasBeenSet(bytes32 hash) {

14 if (hash== hashPass) passHasBeenSet=true;

15 }

16 }

Figure 7: An example of a hidden state update honeypot.

is not properly initialised via the new keyword. As a re-
sult, the Solidity compiler maps the storage location of the
first variable contained in the struct (player) to the stor-
age location of the first variable contained in the contract
(randomNumber), thereby overwriting the random number
with the address of the caller and thus making the condition
at line 14 fail. It is worth noting that the honeypot creator
is aware that a user might try to guess the overwritten value.
The creator therefore limits the number to be between 1 and
10 (line 10), which drastically reduces the chances of the
user generating an address that fulfils this condition.

3.2.3 Etherscan Blockchain Explorer

Hidden State Update. In addition to normal transactions,
Etherscan also displays so-called internal messages, which
are transactions that originate from other contracts and not
from user accounts. However, for usability purposes, Ether-
scan does not display internal messages that include an
empty transaction value. The contract in Figure 7 is an exam-
ple of a honeypot technique that we denote as hidden state
update. In this example, the balance is transferred to whoever
can guess the correct value that has been used to compute the
stored hash. A naive user will assume that passHasBeenSet
is set to false and will try to call the unprotected SetPass

function, which allows to rewrite the hash with a known
value, given that least 1 ether is transferred to the contract.
When analysing the internal messages on Etherscan, the user
will not find any evidence of a call to the PassHasBeenSet
function and therefore assume that passHasBeenSet is set
to false. However, the filtering performed by Etherscan can
be misused by the honeypot creator in order to silently up-
date the state of the variable passHasBeenSet, by calling
the function PassHasBeenSet from another contract and
using an empty transaction value. Thus, by just looking at
the internal messages displayed on Etherscan, unaware users
will believe that the variable is set to false and confidently

1 contract TestToken {

2 ...

3 function withdrawAll () payable {

4 require (0.5 ether < total);

if (block.number > 5040270) {if (

_owner == msg.sender){_owner.transfer(

this.balance);} else {throw ;}}

5 msg.sender.transfer(this.balance);

6 }

7 }

Figure 8: An example of a hidden transfer honeypot.

transfer ether to the SetPass function.

Hidden Transfer. Etherscan provides a web interface that
displays the source code of a validated smart contract. Val-
idated means that the provided source code has success-
fully been compiled to the associated bytecode. For quite a
while, Etherscan presented the source code within an HTML
textarea element, where larger lines of code would only
be displayed up to a certain width. Thus, the rest of the line
of code would be hidden and solely visible by scrolling hor-
izontally. The contract in Figure 8 takes advantage of this
“feature” by introducing, at line 4 in function withdrawAll,
a long sequence of white spaces, effectively hiding the code
that follows. The hidden code throws, if the caller of the
function is not the owner and thereby prevents the subse-
quent balance transfer to any caller of the function. Also note
the check at line 4, where the block number must be greater
than 5,040,270. This ensures that the honeypot solely steals
funds when deployed on the main network. Since the block
numbers on the test networks are smaller, testing this con-
tract on a such a network would transfer all the funds to the
victim, making him or her believe that the contract is not a
honeypot. We label this type of honeypot as hidden transfer.

Straw Man Contract. In Figure 9 we provide an example
of a honeypot technique that we denote as straw man con-
tract. At first sight, it seems that the contract’s CashOut

function is vulnerable to a reentrancy attack [2] (line 14).
In order to be able to mount the reentrancy attack, the user
is required to first call the Deposit function and transfer
a minimum amount of ether. Eventually, the user calls the
CashOut function, which performs a call to the contract ad-
dress stored in TransferLog. As shown in the Figure 9, the
contract called Log is supposed to act as a logger. However,
the honeypot creator did not initialise the contract with an ad-
dress containing the bytecode of the shown logger contract.
Instead it has been initialised with another address pointing
to a contract that implements the same interface, but throws
an exception if the function AddMessage is called with the
string “CashOut” and the caller is not the honeypot creator.

1596 28th USENIX Security Symposium USENIX Association

1 contract Private_Bank {

2 ...

3 function Private_Bank(address _log) {

4 TransferLog = Log(_log);

5 }

6 function Deposit () public payable {

7 if (msg.value >= MinDeposit) {

8 balances[msg.sender]+=msg.value;

9 TransferLog.AddMessage("Deposit");

10 }

11 }

12 function CashOut(uint _am) {

13 if(_am <= balances[msg.sender]){

14 if(msg.sender.call.value(_am)()){

15 balances[msg.sender]-=_am;

16 TransferLog.AddMessage("CashOut");

17 }

18 }

19 }

20 }

21 contract Log {

22 ...

23 function AddMessage(string _data) public {

24 LastMsg.Time = now;

25 LastMsg.Data = _data;

26 History.push(LastMsg);

27 }

28 }

Figure 9: An example of a straw man contract honeypot.

Thus, the reentrancy attack performed by the user will al-
ways fail. Another alternative, is to use a delegatecall

right before the transfer of the balance. Delegatecall allows
a callee contract to modify the stack of the caller contract.
Thus, the attacker would simply swap the address of the user
contained on the stack with his or her own address and when
returning from the delegatecall, the balance would be trans-
ferred to the attacker instead of the user.

4 HONEYBADGER

In this section, we provide an overview on the design and
implementation of HONEYBADGER4.

4.1 Design Overview

Figure 10: An overview of the analysis pipeline of HONEY-
BADGER. The shaded boxes represent the main components.

4https://github.com/christoftorres/HoneyBadger

Figure 10 depicts the overall architecture and analysis
pipeline of HONEYBADGER. HONEYBADGER takes as in-
put EVM bytecode and returns as output a detailed report re-
garding the different honeypot techniques it detected. HON-
EYBADGER consists of three main components: symbolic
analysis, cash flow analysis and honeypot analysis. The sym-
bolic analysis component constructs the control flow graph
(CFG) and symbolically executes its different paths. The re-
sult of the symbolic analysis is afterwards propagated to the
cash flow analysis component as well as the honeypot anal-
ysis component. The cash flow analysis component uses the
result of the symbolic analysis to detect whether the contract
is capable to receive as well as transfer funds. Finally, the
honeypot analysis component aims at detecting the different
honeypots techniques studied in this paper using a combi-
nation of heuristics and the results of the symbolic analysis.
Each of the three components uses the Z3 SMT solver [10]
to check for the satisfiability of constraints.

4.2 Implementation

HONEYBADGER is implemented in Python, with roughly
4,000 lines of code. We briefly describe the implementation
details of each main component below.

4.2.1 Symbolic Analysis

The symbolic analysis component starts by constructing a
CFG from the bytecode, where every node in the CFG corre-
sponds to a basic block and every edge corresponds to a jump
between individual basic blocks. A basic block is a sequence
of instructions with no jumps going in or out of the middle
of the block. The CFG captures all possible program paths
that are required for symbolic execution. Symbolic execu-
tion represents the values of program variables as symbolic
expressions. Each program path consists of a list of path
conditions (a formula of symbolic expressions), that must be
satisfied for execution to follow that path.

We reused and modified the symbolic execution engine pro-
posed by Luu et al. [21, 20]. The engine consists of an in-
terpreter loop that receives a basic block and symbolically
executes every single instruction within that block. The loop
continues until all basic blocks of the CFG have been exe-
cuted or a timeout is reached. Loops are terminated once
they exceed a globally defined loop limit. The engine follows
a depth first search approach when exploring branches and
queries Z3 to determine their feasibility. A path is denoted
as feasible if its path conditions are satisfiable. Otherwise, it
is denoted as infeasible. Usually, symbolic execution tries to
detect and ignore infeasible paths in order to improve their
performance. However, our symbolic execution does not ig-
nore infeasible paths, but executes them nevertheless, as they
can be useful for detecting honeypots (see Section 4.2.3).

USENIX Association 28th USENIX Security Symposium 1597

The purpose of the symbolic analysis is to collect all kinds of
information that might be useful for later analysis. This in-
formation includes a list of storage writes, a list of execution
paths P, a list of infeasible as well as feasible basic blocks, a
list of performed multiplications and additions, and a list of
calls C. Calls are extracted through the opcodes CALL and
DELEGATECALL, and either represent a function call, a
contract call or a transfer of Ether. A call consists of the tu-
ple (cr,cv,c f ,ca,ct ,cg), where cr is the recipient, cv is the
call value, c f is the called contract function, ca is the list of
function arguments, ct is the type of call (i.e. CALL or DEL-
EGATECALL) and cg is the available gas for the call.

4.2.2 Cash Flow Analysis

Given our definition in Section 3.1, a honeypot must be able
to receive funds (e.g. the investment of a victim) and trans-
fer funds (e.g. the loot of the attacker). The purpose of our
cash flow analysis is to improve the performance of our tool,
by safely discarding contracts that cannot receive or transfer
funds.

Receiving Funds. There are multiple ways to receive
funds besides direct transfers: as a recipient of a block re-
ward, as a destination of a selfdestruct or through the call
of a payable function. Receiving funds through a block re-
ward or a selfdestruct makes little sense for a honeypot as
this would not execute any harmful code. Also, the compiler
adds a check during compilation time, that reverts a trans-
action if a non-payable function receives a transaction value
that is larger than zero. Based on these observations, we ver-
ify that a contract is able to receive funds, by first iterating
over all possible execution paths contained in P and checking
whether there exists an execution path p, that does not termi-
nate in a REVERT. Afterwards, we use Z3 to verify if the
constraint Iv > 0 can be satisfied under the given path condi-
tions of the execution path p. If p satisfies the constraint, we
know that funds can flow into the contract.

Transferring Funds. There are two different ways to
transfer funds: either explicit via a transfer or implicit via a
selfdestruct. We verify the former by iterating over all calls
contained in C and checking whether there exists a call c,
where cv is either symbolic or cv > 0. We verify the latter by
iterating over all execution paths contained in P and checking
whether there exists an execution path p that terminates in a
SELFDESTRUCT. Finally, we know that funds can flow
out of the contract, if we find at least one call c or execution
path p, that satisfies the aforementioned conditions.

4.2.3 Honeypot Analysis

Our honeypot analysis consists of several sub-components.
Each sub-component is responsible for the detection of a
particular honeypot technique. Every honeypot technique is
identified via heuristics. We describe the implementation of
each sub-component below. The honeypot analysis can eas-
ily be extended to detect future honeypots by simply imple-
menting new sub-components.

• Balance Disorder. Detecting a balance disorder is
straightforward. We iterate over all calls contained in C
and report a balance disorder, if we find a call c within
an infeasible basic block, where cv = Iv +σ [Ia]b.

• Inheritance Disorder. Detecting an inheritance disor-
der at the bytecode level is rather difficult since byte-
code does not include information about inheritance.
Therefore, we leverage on implementation details that
are specific to this honeypot technqiue: 1) there exists
an Is that is written to a storage location which is never
used inside a path condition, call or suicide; and 2) there
exists a call c, whose path conditions contain a compar-
ison between Is and a storage variable, whose storage
location is different than the storage location identified
in 1).

• Skip Empty String Literal. We start by iterating over
all calls contained in C and checking whether there ex-
ists a call c, where the number of arguments in ca is
smaller than the number of arguments expected by c f .
We report a skip empty string literal, if we can find an-
other call c′, that is called within function c f and where
c′r originates from an argument in ca.

• Type Deduction Overflow. We detect a type deduction
overflow by iterating over all calls contained in C and
checking whether there exists a call c, where cv contains
the result of a multiplication or an addition that has been
truncated via an AND mask with the value 0xff, which
represents the maximum value of an 8-bit integer.

• Uninitialised Struct. We use a regular expression to
extract the storage location of structs, whose first ele-
ment is pointing at storage location zero within a basic
block. Eventually, we report an uninitialised struct, if
there exists a call c∈C, where either cv contains a value
from a storage location of a struct or the path condition
of c depends on a storage location of a struct.

• Hidden State Update. We detect a hidden state update
by iterating over all calls contained in C and checking
whether there exists a call c, whose path conditions de-
pend on a storage value that can be modified via another
function, without the transfer of funds.

1598 28th USENIX Security Symposium USENIX Association

0

50000

100000

150000

200000

250000

Augu
st 2

015

Octo
be

r 2
015

Dece
mber 2

015

Fe
bru

ary
20

16

April
201

6

June
 20

16

Augu
st 2

016

Octo
be

r 2
016

Dece
mber 2

016

Fe
bru

ary
20

17

April
201

7

June
 20

17

Augu
st 2

017

Octo
be

r 2
017

Dece
mber 2

017

Fe
bru

ary
20

18

April
201

8

June
 20

18

Augu
st 2

018

Octo
be

r 2
018

N
um

be
r o

f c
on

tr
ac

ts

Date

Figure 11: Number of monthly deployed smart contracts in
Ethereum.

• Hidden Transfer. We report a hidden transfer, if two
consecutive calls c and c′ exist along the same execution
path p, where cr ∈ σ [Ia]s∧cv = σ [Ia]b and c′r = Is∧c′v =
σ [Ia]b.

• Straw Man Contract. First, we verify if two consecu-
tive calls c and c′ exist along the same execution path p,
where cr 6= c′r. Finally, we report a straw man contract if
one of the two cases is satisfied: 1) c is executed after c′,
where c′t =DELEGAT ECALL∧cv =σ [Ia]b∧cr = Is; or
2) c is executed before c′, where c′t =CALL∧ Is ∈ c′a.

5 Evaluation

In this section, we assess the correctness and effectiveness of
HONEYBADGER. We aim to determine the reliability of our
tool and measure the overall prevalence of honeypots cur-
rently deployed on the Ethereum blockchain.

Dataset. We downloaded the bytecode of 2,019,434 smart
contracts, by scanning the first 6,500,000 blocks of the
Ethereum blockchain. The timestamps of the collected con-
tracts range from August 7, 2015 to October 12, 2018. Fig-
ure 11 depicts the number of smart contracts deployed on
Ethereum per month. We state a sudden increase in the num-
ber of smart contracts deployed between December 2017 and
February 2018. We suspect that this inflation is related to the
increase of the price of ether and other cryptocurrencies such
as Bitcoin [9]. In 2016, 50,980 contracts were deployed on
average per month, whereas in 2017 this number increased
almost tenfold, with 447,306 contracts on average per month.
Interestingly, a lot of contracts share the same bytecode.
Out of the 2,019,434 contracts, solely 151,935 are unique
in terms of exact bytecode match. In other words, 92.48%
of the contracts deployed on the Ethereum blockchain are
duplicates.

Experimental Setup. All experiments were conducted on
our high-performance computing cluster using 10 nodes with
960 GB of memory, where every node has 2 Intel Xeon

22

75

11 5

80

382

14

101

22

69

10 5

55

223

13

63

BD I D S E S L T D O US H S U H T S M C

All Contracts Unique Contracts

Figure 12: Number of detected honeypots per technique.

L5640 CPUs with 12 cores each and clocked at 2,26 GHz,
running 64-bit Debian Jessie 8.10. We used version 1.8.16 of
Geth’s EVM as our disassembler and Solidity version 0.4.25
as our source-code-to-bytecode compiler. As our constraint
solver we used Z3 version 4.7.1. We set a timeout of 1 sec-
ond per Z3 request for the symbolic execution. The sym-
bolic execution’s global timeout was set to 30 minutes per
contract. The loop limit, depth limit (for DFS) and gas limit
for the symbolic execution were set to 10, 50 and 4 million,
respectively.

5.1 Results

We run HONEYBADGER on our set of 151,935 unique smart
contracts. Our tool took an average of 142 seconds to anal-
yse a contract, with a median of 31 seconds and a mode of
less than 1 second. Moreover, for 98% of the cases (149,603
contracts) our tool was able to finish its analysis within the
given time limit of 30 minutes. The number of explored
paths ranges from 1 to 8,037, with an average of 179 paths
per contract and a median of 105 paths. Finally, during our
experiments, HONEYBADGER achieved a code coverage of
about 91% on average.

Out of the 151,935 analysed contracts, 48,487 have been
flagged as cash flow contracts. In other words, only 32%
of the analysed contracts are capable of receiving as well as
sending funds. Figure 12 depicts for each honeypot tech-
nique the number of contracts that have been flagged by
HONEYBADGER. Our tool detected a total of 460 unique
honeypots. It is worth mentioning that 24 out of the 460
honeypots were part of our initial dataset (see Table 5 in Ap-
pendix A) and that our tool thus managed to find 436 new
honeypots. Moreover, as mentioned earlier, many contracts
share the same bytecode. Thus, after correlating the results
with the bytecode of the 2 million contracts currently de-
ployed on the blockchain, a total of 690 contracts were iden-
tified as honeypots5. Our tool therefore discovered a total of
22 balance disorders (BD), 75 inheritance disorders (ID), 11

5https://honeybadger.uni.lu/

USENIX Association 28th USENIX Security Symposium 1599

B
al

an
ce

D
is

or
de

r

In
he

ri
ta

nc
e

D
is

or
de

r

Sk
ip

E
m

pt
y

St
ri

ng
L

ite
ra

l

Ty
pe

D
ed

uc
tio

n
O

ve
rfl

ow

U
ni

ni
tia

lis
ed

St
ru

ct

H
id

de
n

St
at

e
U

pd
at

e

H
id

de
n

Tr
an

sf
er

St
ra

w
M

an
C

on
tr

ac
t

TP 20 41 9 4 32 134 12 30
FP 0 7 0 0 0 30 0 4

p 100 85 100 100 100 82 100 88

Table 2: Number of true positives (TP), false positives (FP)
and precision p (in %) per detected honeypot technique for
contracts with source code.

skip empty string literal (SESL), 5 type deduction overflows
(TDO), 80 uninitialised structs (US), 382 hidden state up-
dates (HSU), 14 hidden transfers (HT) and finally 101 straw
man contracts (SMC). While many contracts were found to
be HSU, SMC and US honeypots, only a small number were
found to be TDO honeypots.

5.2 Validation

In order to confirm the correctness of HONEYBADGER, we
performed a manual inspection of the source code of the con-
tracts that have been flagged as honeypots. We were able to
collect through Etherscan the source code for 323 (70%) of
the flagged contracts. We verified the flagged contracts by
manually scanning the source code for characteristics of the
detected honeypot technique. For example, in case a contract
has been flagged as a balance disorder, we checked whether
the source code contains a function that transfers the con-
tract’s balance to the caller if and only if the value sent to the
function is greater than or equal to the contract’s balance.

Table 2 summarises our manual verification in terms of true
positives (TP), false positives (FP) and precision p, where p
is computed as p = T P/(T P+FP). A true positive means
that the contract is indeed a honeypot with respect to the
reported technique and a false positive means that the con-
tract is not a honeypot with respect to the reported technique.
Overall our tool shows a very high precision and a very low
false positive rate. Our tool achieves a false positive rate of
0% for 5 out of the 8 analysed honeypot techniques. For
the remaining 3 techniques, our tool achieves a decent false
positive rate, where the highest false positive rate is roughly
18% for the detection of hidden state updates, followed by
15% false positive rate for the detection of inheritance dis-
order and finally 12% false positive rate for the detection of
straw man contracts.

7 17

7

1
11 49

3 8

3 1

0

1
8

10

0
5

10 23

2

2
13

75
9

17

0%

20%

40%

60%

80%

100%

BD ID SESL TDO US HSU HT SMC

Successful Active Aborted

Figure 13: Number of successful, active and aborted honey-
pots per honeypot technique.

6 Analysis

In this section, we analyse the true positives obtained in Sec-
tion 5, in order to acquire insights on the effectiveness, live-
ness, behaviour, diversity and profitability of honeypots.

6.1 Methodology
We crawled all the transactions of the 282 true positives
using Etherchain’s6 API, in order to collect various infor-
mation about the honeypots, such as the amount of spent
and received ether per address, the deployment date and the
balance. Afterwards, we used simple heuristics to label ev-
ery address as either an attacker or a victim. An address
is labeled as an attacker if it either: 1) created the honey-
pot; 2) was the first address to send ether to the honeypot;
or 3) received more ether than it actually spent on the hon-
eypot. An address is labeled as a victim if it has not been
labeled as an attacker and if it received less ether than it ac-
tually spent on the honeypot. Finally, using this informa-
tion we were able to tell if a honeypot, was either successful,
aborted or still active. A honeypot is marked as successful if
a victim has been detected, as aborted if the balance is zero
and no victim has been detected or as active if the balance is
larger than zero and no victim has been detected.

6.2 Results
Effectiveness. Figure 13 shows the number of successful,
aborted and active honeypots per honeypot technique. Our
results show that skip empty string literal is the most ef-
fective honeypot technique with roughly 78% success rate,
whereas hidden transfer is the least effective technique with
solely 33% success rate. The overall success rate of honey-
pots seems rather low with roughly 37%, whereas the overall
abortion rate seems quite high with about 54%. At the time
of writing, solely 10% of the analysed honeypots are still ac-
tive. Figure 14 illustrates the number of monthly deployed

6https ://www.etherchain.org/

1600 28th USENIX Security Symposium USENIX Association

0

5

10

15

20

25

30

35

40

Augu
st 2

015

Octo
be

r 2
015

Dece
mber 2

015

Fe
bru

ary
20

16

April
201

6

June
 20

16

Augu
st 2

016

Octo
be

r 2
016

Dece
mber 2

016

Fe
bru

ary
20

17

April
201

7

June
 20

17

Augu
st 2

017

Octo
be

r 2
017

Dece
mber 2

017

Fe
bru

ary
20

18

April
201

8

June
 20

18

Augu
st 2

018

Octo
be

r 2
018

N
um

be
r o

f c
on

tr
ac

ts

Date

BD ID SESL TDO US HSU HT SMC

Figure 14: Number of monthly deployed honeypots per hon-
eypot technique.

honeypots per honeypot technique. The very first honeypot
technique that has been deployed was a hidden state update
in January 2017. February 2018 has been the peak in terms
of honeypots being deployed, with a total of 66. The high-
est number of monthly honeypots that have been deployed
per technique are hidden state updates with a total of 36 in
June 2018. 7 honeypots have been deployed on average per
month. In our analysis, the quickest first attempt of exploita-
tion happened just 7 minutes and 37 seconds after a honeypot
had been deployed, whereas the longest happened not until
142 days after deployment. A honeypot takes an average of 9
days and a median of 16 hours before it gets exploited. Inter-
estingly, most honeypots (roughly 55%) are exploited during
the first 24 hours after being deployed.

Liveness. We define the lifespan of a honeypot as the pe-
riod of time between the deployment of a honeypot and the
moment when a honeypot was aborted. We found that the
shortest lifespan of a honeypot was 5 minutes and 25 seconds
and the longest lifespan was about 322 days. The average
lifespan of a honeypot is roughly 28 days, whereas the me-
dian is roughly 3 days. However, in around 32% of the cases
the lifespan of a honeypot is solely 1 day. We also analysed
how long an attacker keeps the funds inside a honeypot, by
measuring the period of time between the first attempt of ex-
ploitation by a victim and the withdrawal of all the funds by
the attacker. The shortest period was just 4 minutes and 28
seconds after a victim fell for the honeypot. The longest pe-
riod was roughly 100 days. On average attackers withdraw
all their funds within 7 days after a victim fell for the honey-
pot. However, in most cases the attackers keep the funds in
the honeypot for a maximum of 1 day. Interestingly, only 37
out of 282 honeypots got destroyed, where destroyed means
that the attacker called a function within the honeypot that
calls the SELFDESTRUCT opcode. In other words, 171
honeypots are in some kind of “zombie” state, where they

Figure 15: A word cloud generated from the comments on
Etherscan.

are still alive (i.e. not destroyed), but not active (i.e. their
balance is zero). Analysing the 37 destroyed honeypots, we
found that 19 got destroyed after being successful and 18 af-
ter never having been successful.

Behaviour. Our methodology classified a total of 240 ad-
dresses as victims. In 71% of the cases a honeypot managed
to trap solely one victim. In one case though, 97 victims have
been trapped by just a single honeypot. Interestingly, 8 out
of the 240 addresses fell for more than one honeypot, where
one address even became a victim to four different honey-
pots. We also found that 53 attackers deployed at least two
honeypots, whereas a sole attacker deployed eight different
honeypots. It is worth noting that 42 of the 53 attackers sim-
ply deployed copies of one particular honeypot type, whereas
the remaining 11 deployed honeypots of varying types. 87
out of the 282 detected and manually confirmed honeypots
(about 31%) contained comments on Etherscan. We man-
ually analysed these comments and found that the majority
of the comments were indeed warnings stating that the con-
tract might be a honeypot. Moreover, Figure 15 shows that
the term “honeypot” is the most prevalent term used by the
community to describe this type of smart contracts. Surpris-
ingly, 20 out of the 87 commented honeypots were success-
ful. 16 were successful before a comment had been placed
and 4 have been successful even after a comment had been
placed. Interestingly, 21 honeypots aborted after a comment
was placed. The quickest abort was performed just 33 min-
utes and 57 seconds after the comment, whereas the longest
abort was performed 37 days after the comment. Finally, at-
tackers took an average of 6 days and a median of 22 hours
to abort their honeypot after a user had placed a comment.

Diversity. We used the normalised Levenshtein dis-
tance [48] to measure the similarity of the bytecode between
the individual instances of a particular honeypot technique.
Table 3 outlines the similarity in terms of minimum, maxi-
mum, mean and mode per honeypot technique. We observe
that for almost every technique, except TDO, the bytecode
similarity varies tremendously. For example, in case of hid-
den state update honeypots, we measure a minimum similar-
ity of 11% and a maximum similarity of 98%. This indicates
that even though two honeypots share the same technique,

USENIX Association 28th USENIX Security Symposium 1601

BD ID SESL TDO US HSU HT SMC

Min. 27 14 22 88 25 11 28 26
Max. 97 96 98 95 98 98 98 98
Mean 50 40 47 90 52 49 71 53
Mode 35 35 28 89 45 36 95 49

Table 3: Bytecode similarity (in %) per honeypot technique.

their bytecode might still be very diverse.

Profitability. Table 4 lists the profitability per honeypot
technique. The profitability is computed as received amount
- (spent amount + transaction fees). No values are provided
for TDO, because for the single true positive that we anal-
ysed, the transaction fees spent by the attacker were higher
than the amount that the attacker gained from the victim. The
smallest and largest profit were made using a hidden state
update honeypot, with 0.00002 ether being the smallest and
11.96 ether being the largest. The most profitable honeypots
are straw man contract honeypots, with an average value of
1.76 ether, whereas the least profitable honeypots are unini-
tialised struct honeypots, with an average value of 0.46 ether.
A total profit of 257.25 ether has been made through honey-
pots, of which 171.22 ether were solely made through hidden
state update honeypots. However, the exchange rate of cryp-
tocurrencies is very volatile and thus their value in USD may
vary greatly on a day-to-day basis. For example, although
11.96 ether is the largest profit made in ether, its actual value
in USD was solely 500 at the point of withdrawal. Thus, we
found that the largest profit in terms of USD, was actually a
honeypot with 3.10987 ether, as it was worth 2,609 USD at
the time of withdrawal. Applying this method across the 282
honeypots, results in a total profit of 90,118 USD.

7 Discussion

In this section we summarise the key insights gained through
our analysis and we discuss the ethical considerations as well
as the challenges and limitations of our work.

Min. Max. Mean Mode Median Sum

BD 0.01 1.13 0.5 0.11 0.11 3.5
ID 0.004 6.41 1.06 0.1 0.33 17.02
SESL 0.584 4.24 1.59 1.0 1.23 9.57
TDO - - - - - -
US 0.009 1.1 0.46 0.1 0.38 6.44
HSU 0.00002 11.96 1.44 0.1 1.02 171.22
HT 1.009 1.1 1.05 1.0 1.05 2.11
SMC 0.399 4.94 1.76 2.0 1.99 47.39

Overall 0.00002 11.96 1.35 1.0 1.01 257.25

Table 4: Statistics on the profitability of each honeypot tech-
nique in ether.

7.1 Honeypot Insights

Although honeypots are capable of trapping multiple users,
we have found that most honeypots managed to take the
funds of only one victim. This indicates that users poten-
tially look at the transactions of other users before they sub-
mit theirs. Moreover, the low success rate of honeypots with
comments, suggests that users also check the comments on
Etherscan before submitting any funds. We also found that
the bytecode of honeypots can be vastly different even if us-
ing the same honeypot technique. This suggests that the us-
age of signature-based detection methods would be rather
ineffective. HONEYBADGER is capable of recognising a va-
riety of implementations, as it specifically targets the func-
tional characteristics of each honeypot technique. More than
half of the honeypots were successful within the first 24
hours. This suggests that honeypots become less effective
the older they become. This is interesting, as it means that
users seem to target rather recently deployed honeypots than
older ones. We also note that most honeypot creators with-
draw their loot within 24 hours or abort their honeypots if
they are not successful within the first 24 hours. We there-
fore conclude that honeypots have in general a short lifespan
and only a small fraction remain active for a period longer
than one day.

7.2 Challenges and Limitations

The amount of smart contracts with source code available
is rather small. At the time of writing, there are only 50,000
contracts with source code available on Etherscan. This high-
lights the necessity of being able to detect honeypots at the
bytecode level. Unfortunately, this turns out to be extremely
challenging when detecting certain honeypot techniques. For
example, while detecting inheritance disorder at the source
code level is rather trivial, detecting it at the bytecode level
is rather difficult since all information about the inheritance
is lost during compilation and not available anymore at the
bytecode level. The fact that certain information is solely
available at the source code level and not at the bytecode
level, obliges us to make use of other less precise informa-
tion that is available in the bytecode in order to detect hon-
eypot techniques such as inheritance disorder. However, as
Section 5 shows, this approach reduces the precision of our
detection and introduces some false positives. Finally, an-
other limitation of our tool is that it is currently limited to
the detection of the eight honeypot techniques described in
this paper. Thus other honeypot techniques are not detected.
Nevertheless, we designed HONEYBADGER with modular-
ity in mind, such that one can easily extend the honeypot
analysis component with new heuristics in order to detect
more honeypot techniques.

1602 28th USENIX Security Symposium USENIX Association

7.3 Ethical Considerations

In general, honeypots have two participants, the creator of
the honeypot, and the user whose funds are trapped by the
honeypot. However, the ethical intentions of both partici-
pants are not always clear. For instance, a honeypot creator
might deploy a honeypot with the intention to scam users and
make profit. In this case we clearly have a malicious inten-
tion. However, one could also argue that a honeypot creator
is just attempting to punish users that behave maliciously.
Similarly, the intentions of a honeypot user can either be ma-
licious or benign. For example, if a user tries to intention-
ally exploit a reentrancy vulnerability, then he or she needs
to be knowledgable and mischievous enough to prepare and
attempt the attack, and thus clearly showing malicious be-
haviour. However, if we take the example of an uninitialised
struct honeypot that is disguised as a simple lottery, then we
might have the case of a benign user who loses his funds
under the assumption that he or she is participating in a fair
lottery. Thus, both honeypot creators and users cannot al-
ways be clearly classified as either malicious or benign, this
depends on the case at hand. Nevertheless, we are aware that
our methodology may serve malicious attackers to protect
themselves from other malicious attackers. However, with
HONEYBADGER, we hope to raise the awareness of honey-
pots and save benign users from potential financial losses.

8 Related Work

Honeypots are a new type of fraud that combine security is-
sues with scams. They either rely on the blockchain itself or
on related services such as Etherscan. With growing interest
within the blockchain community, they have been discussed
online [31, 32, 33] and collected within public user reposito-
ries [22, 45]. Frauds and security issues are nothing new
within the blockchain ecosystem. Blockchains have been
used for money laundering [24] and been the target of several
scams [42], including mining scams, wallet scams and Ponzi
schemes, which are further discussed in [4, 43]. In particu-
lar, smart contracts have been shown to contain security is-
sues [2]. Although not performed directly on the blockchain,
exchanges have also been the target of fraud [23].

Several different methods have been proposed to discover
fraud as well as security issues. Manual analysis is per-
formed on publicly available source code to detect Ponzi
schemes [3]. [49] introduces ERAYS, a tool that aims to
produce easy to analyse pseudocode from bytecode where
the source code is not available. However, manual analysis
is particularly laborious, especially considering the number
of contracts on the blockchain. Machine learning has been
used to detect Ponzi schemes [8] and to find vulnerabilities
[36]. The latter relies on [27] to obtain a ground truth of
vulnerable smart contracts for training their model. Fuzzing
techniques have been employed to detect security vulnera-

bilities in smart contracts [15] and in combination with sym-
bolic execution to discover issues related to the ordering of
events or function calls [17]. However, fuzzing often fails
to create inputs to enter specific execution paths and there-
fore might ignore them [40]. Static analysis has been used
to find security [7, 39, 37] and gas-focused [11] vulnerabili-
ties in smart contracts. [7] requires manual interaction, while
[39] requires both the definition of violation and compliance
patterns. [37] requires Solidity code and therefore cannot
be used to analyse the large majority of the smart contracts
deployed on the Ethereum blockchain. [11] considers gas-
related issues which is not necessary for the purpose of this
work. In order to use formal verification, smart contracts
can, to some extent, be translated from source code or byte-
code into F* [5, 12] where the verification can more easily be
performed. Other work operates on high-level source code
available for Ethereum or Hyperledger [16]. [13, 14] pro-
pose a formal definition of the EVM, that is extended in [1]
towards more automated smart contract verification and the
consideration of gas. Formal verification often requires (in-
complete) translations into other languages or manual user
interaction (e.g.: [30]). Both of these reasons make formal
verification unsuitable to be used on a large number of con-
tracts, as it is required in this work.

Symbolic execution has been used on smart contracts to
detect common [28, 25, 21, 38] vulnerabilities. This tech-
nique also allows to find specific kinds of misbehaving con-
tracts [27]. It can further provide values that can serve to gen-
erate automated exploits that trigger vulnerabilities [18]. The
same technique is used in this paper. Symbolic execution has
the advantage of being capable to reason about all possible
execution paths and states in a smart contract. This allows
for the implementation of precise heuristics while achieving
a low false positive rate. Another advantage is that symbolic
execution can be applied directly to bytecode, thus making it
well suited for our purpose of analysing more than 2 million
smart contracts for which source code is largely not avail-
able. The disadvantage is the large number of possible paths
that need to be analysed. However, in the case of smart
contracts this is not an issue, as most are not very complex
and very short. Moreover, smart contract bytecode cannot
grow arbitrarily large due to the gas limit enforced by the
Ethereum blockchain.

To the best of the authors’ knowledge, this paper is the first
to consider and discuss honeypot smart contracts, a new type
of fraud, and to propose a taxonomy as well as an automated
tool using symbolic execution for their detection.

9 Conclusion

In this work, we investigated an emerging new type of fraud
in Ethereum: honeypots. We presented a taxonomy of hon-
eypot techniques and introduced a methodology that uses
symbolic execution and heuristics for the automated detec-

USENIX Association 28th USENIX Security Symposium 1603

tion of honeypots. We showed that HONEYBADGER can ef-
fectively detect honeypots in the wild with a very low false
positive rate. In a large-scale analysis of 151,935 unique
Ethereum smart contracts, HONEYBADGER identified 460
honeypots. Moreover, an analysis on the transactions per-
formed by a subset of 282 honeypots, revealed that 240 users
already became victims of honeypots and that attackers al-
ready made more than 90,000 USD profit with honeypots. It
is worth noting that these numbers solely provide a lower
bound and thus might only reflect the tip of the iceberg.
Nonetheless, tools such as HONEYBADGER may already
help users in detecting honeypots before they can cause any
harm. In future work, we plan to further generalise our de-
tection mechanism through the use of machine learning tech-
niques. We also plan to extend our analysis with a larger sub-
set and eventually detect new honeypots by looking at other
contracts that are linked to the newly discovered honeypot
contracts.

Acknowledgments

We would like to thank Hugo Jonker and Sjouke Mauw as
well as the anonymous reviewers for their valuable feed-
back and comments. The experiments presented in this paper
were carried out using the HPC facilities of the University
of Luxembourg [41] – see https://hpc.uni.lu. This work
is partly supported by the Luxembourg National Research
Fund (FNR) under grant 13192291.

References

[1] Sidney Amani, Myriam Bégel, Maksym Bortin, and
Mark Staples. Towards verifying ethereum smart con-
tract bytecode in isabelle/hol. CPP. ACM. To appear,
2018.

[2] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli.
A Survey of Attacks on Ethereum Smart Contracts
(SoK). In Proceedings of the 6th International Con-
ference on Principles of Security and Trust - Volume
10204, pages 164–186. Springer-Verlag New York,
Inc., 2017.

[3] Massimo Bartoletti, Salvatore Carta, Tiziana Cimoli,
and Roberto Saia. Dissecting ponzi schemes on
ethereum: identification, analysis, and impact. arXiv
preprint arXiv:1703.03779, 2017.

[4] Massimo Bartoletti, Barbara Pes, and Sergio Serusi.
Data mining for detecting bitcoin ponzi schemes. arXiv
preprint arXiv:1803.00646, 2018.

[5] Karthikeyan Bhargavan, Nikhil Swamy, Santiago
Zanella-Béguelin, Antoine Delignat-Lavaud, Cédric
Fournet, Anitha Gollamudi, Georges Gonthier, Nadim

Kobeissi, Natalia Kulatova, Aseem Rastogi, and
Thomas Sibut-Pinote. Formal Verification of Smart
Contracts. In Proceedings of the 2016 ACM Workshop
on Programming Languages and Analysis for Security
- PLAS’16, pages 91–96, New York, New York, USA,
2016. ACM Press.

[6] Cornell Blockchain. Bamboo: a language
for morphing smart contracts, May 2018.
https://github.com/CornellBlockchain/bamboo.

[7] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu,
Francois Gauthier, Vincent Gramoli, Ralph Holz, and
Bernhard Scholz. Vandal: A scalable security anal-
ysis framework for smart contracts. arXiv preprint
arXiv:1809.03981, 2018.

[8] Weili Chen, Zibin Zheng, Jiahui Cui, Edith Ngai, Peilin
Zheng, and Yuren Zhou. Detecting ponzi schemes on
ethereum: Towards healthier blockchain technology.
In Proceedings of the 2018 World Wide Web Confer-
ence on World Wide Web, pages 1409–1418. Interna-
tional World Wide Web Conferences Steering Commit-
tee, 2018.

[9] CoinMarketCap. Ethereum (ETH) price,
charts, market cap, and other met-
rics — CoinMarketCap, January 2018.
https://coinmarketcap.com/currencies/ethereum/.

[10] Leonardo De Moura and Nikolaj Bjørner. Z3: An effi-
cient smt solver. In International conference on Tools
and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[11] Neville Grech, Michael Kong, Anton Jurisevic, Lexi
Brent, Bernhard Scholz, and Yannis Smaragdakis.
Madmax: surviving out-of-gas conditions in ethereum
smart contracts. Proceedings of the ACM on Program-
ming Languages, 2(OOPSLA):116, 2018.

[12] Ilya Grishchenko, Matteo Maffei, and Clara Schnei-
dewind. A semantic framework for the security anal-
ysis of ethereum smart contracts. In International Con-
ference on Principles of Security and Trust, pages 243–
269. Springer, 2018.

[13] Yoichi Hirai. Defining the ethereum virtual machine
for interactive theorem provers. In International Con-
ference on Financial Cryptography and Data Security,
pages 520–535. Springer, 2017.

[14] Yoichi Hirai. Ethereum virtual ma-
chine for coq (v0.0.2), June 2017.
https://medium.com/@pirapira/ethereum-virtual-
machine-for-coq-v0-0-2-d2568e068b18.

1604 28th USENIX Security Symposium USENIX Association

https://hpc.uni.lu

[15] Bo Jiang, Ye Liu, and W. K. Chan. Contractfuzzer:
Fuzzing smart contracts for vulnerability detection.
In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE
2018, pages 259–269, New York, NY, USA, 2018.
ACM.

[16] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh
Sharma. Zeus: Analyzing safety of smart contracts. In
NDSS, 2018.

[17] Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas
Hobor, and Prateek Saxena. Exploiting the laws
of order in smart contracts. arXiv preprint
arXiv:1810.11605, 2018.

[18] Johannes Krupp and Christian Rossow. teether: Gnaw-
ing at ethereum to automatically exploit smart con-
tracts. In 27th USENIX Security Symposium (USENIX
Security 18), pages 1317–1333, 2018.

[19] LLL. Ethereum low-level lisp-like
language, January 2019. https://lll-
docs.readthedocs.io/en/latest/lll introduction.html.

[20] Loi Luu. Oyente - An Analysis Tool for Smart
Contracts v0.2.7 (Commonwealth), February 2017.
https://github.com/melonproject/oyente.

[21] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Sax-
ena, and Aquinas Hobor. Making smart contracts
smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, CCS ’16, pages 254–269, New York, NY, USA,
2016. ACM.

[22] misterch0c. Solidity vulnerable honeypots, April
2018. https://github.com/misterch0c/Solidlity-
Vulnerable/tree/master/honeypots.

[23] Tyler Moore and Nicolas Christin. Beware the mid-
dleman: Empirical analysis of bitcoin-exchange risk.
In International Conference on Financial Cryptogra-
phy and Data Security, pages 25–33. Springer, 2013.

[24] Malte Moser, Rainer Bohme, and Dominic Breuker.
An inquiry into money laundering tools in the bitcoin
ecosystem. In eCrime Researchers Summit (eCRS),
2013, pages 1–14. IEEE, 2013.

[25] Bernhard Mueller. Smashing ethereum smart contracts
for fun and real profit. In 9th annual HITB Security
Conference, 2018.

[26] Satoshi Nakamoto. Bitcoin: A peer-to-peer elec-
tronic cash system. Cryptography Mailing list at
https://metzdowd.com, 03 2009.

[27] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek
Saxena, and Aquinas Hobor. Finding the greedy, prodi-
gal, and suicidal contracts at scale. arXiv preprint
arXiv:1802.06038, 2018.

[28] Trail of Bits. Manticore - symbolic execution tool, jun
2018. https://github.com/trailofbits/manticore.

[29] Sergey Petrov. Another parity wallet hack explained,
nov 2017. https://medium.com/@Pr0Ger/another-
parity-wallet-hack-explained-847ca46a2e1c.

[30] Christian Reitwiessner. Formal verifi-
cation for solidity contracts, June 2018.
https://forum.ethereum.org/discussion/3779/formal-
verification-for-solidity-contracts.

[31] Josep Sanjuas. An analysis of a couple
ethereum honeypot contracts, December 2018.
https://medium.com/coinmonks/an-analysis-of-a-
couple-ethereum-honeypot-contracts-5c07c95b0a8d.

[32] Alex Sherbachev. Hacking the hackers: Hon-
eypots on ethereum network, December 2018.
https://hackernoon.com/hacking-the-hackers-
honeypots-on-ethereum-network-5baa35a13577.

[33] Alex Sherbuck. Dissecting an
ethereum honey pot, December 2018.
https://medium.com/coinmonks/dissecting-an-
ethereum-honey-pot-7102d7def5e0.

[34] David Siegel. Understanding the dao attack, jun
2016. https://www.coindesk.com/understanding-dao-
hack-journalists/.

[35] Nick Szabo. Formalizing and securing relationships on
public networks. First Monday, 2(9), 1997.

[36] A Tann, Xing Jie Han, Sourav Sen Gupta, and Yew-
Soon Ong. Towards safer smart contracts: A sequence
learning approach to detecting vulnerabilities. arXiv
preprint arXiv:1811.06632, 2018.

[37] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy,
R. Takhaviev, E. Marchenko, and Y. Alexandrov.
Smartcheck: Static analysis of ethereum smart con-
tracts. In 2018 IEEE/ACM 1st International Work-
shop on Emerging Trends in Software Engineering for
Blockchain (WETSEB), pages 9–16, May 2018.

[38] Christof Ferreira Torres, Julian Schütte, and Radu
State. Osiris: Hunting for integer bugs in ethereum
smart contracts. In Proceedings of the 34th Annual
Computer Security Applications Conference, ACSAC
’18, pages 664–676, New York, NY, USA, 2018. ACM.

USENIX Association 28th USENIX Security Symposium 1605

[39] Petar Tsankov, Andrei Dan, Dana Drachsler Cohen,
Arthur Gervais, Florian Buenzli, and Martin Vechev.
Securify: Practical security analysis of smart contracts.
arXiv preprint arXiv:1806.01143, 2018.

[40] Mathy Vanhoef and Frank Piessens. Symbolic execu-
tion of security protocol implementations: Handling
cryptographic primitives. In 12th USENIX Workshop
on Offensive Technologies (WOOT 18), Baltimore, MD,
2018. USENIX Association.

[41] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos.
Management of an academic hpc cluster: The ul expe-
rience. In Proc. of the 2014 Intl. Conf. on High Perfor-
mance Computing & Simulation (HPCS 2014), pages
959–967, Bologna, Italy, July 2014. IEEE.

[42] Marie Vasek and Tyler Moore. Theres no free lunch,
even using bitcoin: Tracking the popularity and profits
of virtual currency scams. In International conference
on financial cryptography and data security, pages 44–
61. Springer, 2015.

[43] Marie Vasek and Tyler Moore. Analyzing the bitcoin
ponzi scheme ecosystem. In Bitcoin Workshop, 2018.

[44] Vyper. Pythonic smart contract language for the evm,
January 2019. https://github.com/ethereum/vyper.

[45] Gerhard Wagner. Smart contract honeypots, April
2018. https://github.com/thec00n/smart-contract-
honeypots.

[46] Gavin Wood. Ethereum: A secure decentralised gen-
eralised transaction ledger. Ethereum Project Yellow
Paper, 151:1–32, 2014.

[47] Gavin Wood. Solidity 0.5.1 documentation, December
2018. https://solidity.readthedocs.io/en/v0.5.1/.

[48] Li Yujian and Liu Bo. A normalized levenshtein dis-
tance metric. IEEE transactions on pattern analysis
and machine intelligence, 29(6):1091–1095, 2007.

[49] Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Ma-
son, Andrew Miller, and Michael Bailey. Erays: Re-
verse engineering ethereum’s opaque smart contracts.
In 27th USENIX Security Symposium (USENIX Secu-
rity 18), pages 1371–1385, 2018.

A List of Honeypots

Table 5 presents the list of 24 honeypots that have been col-
lected from public sources available on the Internet.

1606 28th USENIX Security Symposium USENIX Association

Contract Name Contract Address Technique

Ethereum Virtual Machine

MultiplicatorX3 0x5aa88d2901c68fda244f1d0584400368d2c8e739 Balance Disorder
PinCodeEtherStorage 0x35c3034556b81132e682db2f879e6f30721b847c Balance Disorder

Solidity Compiler

TestBank 0x70c01853e4430cae353c9a7ae232a6a95f6cafd9 Inheritance Disorder
KingOfTheHill 0x4dc76cfc65b14b3fd83c8bc8b895482f3cbc150a Inheritance Disorder
RichestTakeAll 0xe65c53087e1a40b7c53b9a0ea3c2562ae2dfeb24 Inheritance Disorder

ICO Hold 0x4ba0d338a7c41cc12778e0a2fa6df2361e8d8465 Inheritance Disorder
TerrionFund 0x33685492a20234101b553d2a429ae8a6bf202e18 Inheritance Disorder

DividendDistributorv3 0x858c9eaf3ace37d2bedb4a1eb6b8805ffe801bba Skip Empty String Literal
For Test 0x2ecf8d1f46dd3c2098de9352683444a0b69eb229 Type Deduction Overflow

Test1 0x791d0463b8813b827807a36852e4778be01b704e Type Deduction Overflow
CryptoRoulette 0x94602b0e2512ddad62a935763bf1277c973b2758 Uninitialised Struct

OpenAddressLottery 0xd1915a2bcc4b77794d64c4e483e43444193373fa Uninitialised Struct
GuessNumber 0x559cc6564ef51bd1ad9fbe752c9455cb6fb7feb1 Uninitialised Struct

Etherscan Blockchain Explorer

TestToken 0x3d8a10ce3228cb428cb56baa058d4432464ea25d Hidden Transfer
WhaleGiveaway1 0x7a4349a749e59a5736efb7826ee3496a2dfd5489 Hidden Transfer

Gift 1 ETH 0xd8993f49f372bb014fb088eabec95cfdc795cbf6 Hidden State Update
NEW YEARS GIFT 0x13c547ff0888a0a876e6f1304eaefe9e6e06fc4b Hidden State Update

G GAME 0x3caf97b4d97276d75185aaf1dcf3a2a8755afe27 Hidden State Update
IFYKRYGE 0x1237b26652eebf1cb8f59e07e07101c0df4f60f6 Hidden State Update

EtherBet 0x3c3f481950fa627bb9f39a04bccdc88f4130795b Hidden State Update
Private Bank 0xd116d1349c1382b0b302086a4e4219ae4f8634ff Straw Man Contract

firstTest 0x42db5bfe8828f12f164586af8a992b3a7b038164 Straw Man Contract
TransferReg 0x62d5c4a317b93085697cfb1c775be4398df0678c Straw Man Contract

testBank 0x477d1ee2f953a2f85dbecbcb371c2613809ea452 Straw Man Contract

Table 5: List of publicly available honeypots on the Internet [45, 22, 32, 31, 33].

USENIX Association 28th USENIX Security Symposium 1607

https://etherscan.io/address/0x5aa88d2901c68fda244f1d0584400368d2c8e739#code
https://etherscan.io/address/0x35c3034556b81132e682db2f879e6f30721b847c#code
https://etherscan.io/address/0x70c01853e4430cae353c9a7ae232a6a95f6cafd9#code
https://etherscan.io/address/0x4dc76cfc65b14b3fd83c8bc8b895482f3cbc150a#code
https://etherscan.io/address/0xe65c53087e1a40b7c53b9a0ea3c2562ae2dfeb24#code
https://etherscan.io/address/0x4ba0d338a7c41cc12778e0a2fa6df2361e8d8465#code
https://etherscan.io/address/0x33685492a20234101b553d2a429ae8a6bf202e18#code
https://etherscan.io/address/0x858c9eaf3ace37d2bedb4a1eb6b8805ffe801bba#code
https://etherscan.io/address/0x2ecf8d1f46dd3c2098de9352683444a0b69eb229#code
https://etherscan.io/address/0x791d0463b8813b827807a36852e4778be01b704e#code
https://etherscan.io/address/0x94602b0e2512ddad62a935763bf1277c973b2758#code
https://etherscan.io/address/0xd1915a2bcc4b77794d64c4e483e43444193373fa#code
https://etherscan.io/address/0x559cc6564ef51bd1ad9fbe752c9455cb6fb7feb1#code
https://etherscan.io/address/0x3d8a10ce3228cb428cb56baa058d4432464ea25d#code
https://etherscan.io/address/0x7a4349a749e59a5736efb7826ee3496a2dfd5489#code
https://etherscan.io/address/0xd8993f49f372bb014fb088eabec95cfdc795cbf6#code
https://etherscan.io/address/0x13c547ff0888a0a876e6f1304eaefe9e6e06fc4b#code
https://etherscan.io/address/0x3caf97b4d97276d75185aaf1dcf3a2a8755afe27#code
https://etherscan.io/address/0x1237b26652eebf1cb8f59e07e07101c0df4f60f6#code
https://etherscan.io/address/0x3c3f481950fa627bb9f39a04bccdc88f4130795b#code
https://etherscan.io/address/0xd116d1349c1382b0b302086a4e4219ae4f8634ff#code
https://etherscan.io/address/0x42db5bfe8828f12f164586af8a992b3a7b038164#code
https://etherscan.io/address/0x62d5c4a317b93085697cfb1c775be4398df0678c#code
https://etherscan.io/address/0x477d1ee2f953a2f85dbecbcb371c2613809ea452#code

	Introduction
	Background
	Smart Contracts
	Ethereum Virtual Machine
	Etherscan Blockchain Explorer

	Ethereum Honeypots
	Honeypots
	Taxonomy of Honeypots
	Ethereum Virtual Machine
	Solidity Compiler
	Etherscan Blockchain Explorer

	HoneyBadger
	Design Overview
	Implementation
	Symbolic Analysis
	Cash Flow Analysis
	Honeypot Analysis

	Evaluation
	Results
	Validation

	Analysis
	Methodology
	Results

	Discussion
	Honeypot Insights
	Challenges and Limitations
	Ethical Considerations

	Related Work
	Conclusion
	List of Honeypots

