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Abstract
Current production web browsers are multi-process but place
different web sites in the same renderer process, which is
not sufficient to mitigate threats present on the web today.
With the prevalence of private user data stored on web sites,
the risk posed by compromised renderer processes, and the
advent of transient execution attacks like Spectre and Melt-
down that can leak data via microarchitectural state, it is no
longer safe to render documents from different web sites in
the same process. In this paper, we describe our successful
deployment of the Site Isolation architecture to all desktop
users of Google Chrome as a mitigation for process-wide
attacks. Site Isolation locks each renderer process to doc-
uments from a single site and filters certain cross-site data
from each process. We overcame performance and compat-
ibility challenges to adapt a production browser to this new
architecture. We find that this architecture offers the best
path to protection against compromised renderer processes
and same-process transient execution attacks, despite current
limitations. Our performance results indicate it is practical
to deploy this level of isolation while sufficiently preserving
compatibility with existing web content. Finally, we discuss
future directions and how the current limitations of Site Iso-
lation might be addressed.

1 Introduction
Ten years ago, web browsers went through a major architec-
ture shift to adapt to changes in their workload. Web con-
tent had become much more active and complex, and mono-
lithic browser implementations were not effective against the
security threats of the time. Many browsers shifted to a
multi-process architecture that renders untrusted web con-
tent within one or more low-privilege sandboxed processes,
mitigating attacks that aimed to install malware by exploiting
a rendering engine vulnerability [43, 51, 70, 76].

Given recent changes in the security landscape, that multi-
process architecture no longer provides sufficient safety for
visiting untrustworthy web content, because it does not pro-
vide similar mitigation for attacks between different web
sites. Browsers load documents from multiple sites within
the same renderer process, so many new types of attacks
target rendering engines to access cross-site data [5, 10, 11,
33, 53]. This is increasingly common now that the most ex-

ploitable targets of older browsers are disappearing from the
web (e.g., Java Applets [64], Flash [1], NPAPI plugins [55]).

As others have argued, it is clear that we need stronger iso-
lation between security principals in the browser [23, 33, 53,
62, 63, 68], just as operating systems offer stronger isolation
between their own principals. We achieve this in a produc-
tion setting using Site Isolation in Google Chrome, introduc-
ing OS process boundaries between web site principals.

While Site Isolation was originally envisioned to mitigate
exploits of bugs in the renderer process, the recent discov-
ery of transient execution attacks [8] like Spectre [34] and
Meltdown [36] raised its urgency. These attacks challenge
a fundamental assumption made by prior web browser ar-
chitectures: that software-based isolation can keep sensi-
tive data protected within an operating system process, de-
spite running untrustworthy code within that process. Tran-
sient execution attacks have been demonstrated to work from
JavaScript code [25, 34, 37], violating the web security
model without requiring any bugs in the browser. We show
that our long-term investment in Site Isolation also provides
a necessary mitigation for these unforeseen attacks, though
it is not sufficient: complementary OS and hardware miti-
gations for such attacks are also required to prevent leaks of
information from other processes or the OS kernel.

To deploy Site Isolation to users, we needed to over-
come numerous performance and compatibility challenges
not addressed by prior research prototypes [23, 62, 63, 68].
Locking each sandboxed renderer process to a single site
greatly increases the number of processes; we present pro-
cess consolidation optimizations that keep memory overhead
low while preserving responsiveness. We reduce overhead
and latency by consolidating painting and input surfaces of
contiguous same-site frames, along with parallelizing pro-
cess creation with network requests and carefully managing
a spare process. Supporting the entirety of the web pre-
sented additional compatibility challenges. Full support for
out-of-process iframes requires proxy objects and replicated
state in frame trees, as well as updates to a vast number of
browser features. Finally, a privileged process must filter
sensitive cross-site data without breaking existing cross-site
JavaScript files and other subresources. We show that such
filtering requires a new type of confirmation sniffing and can
protect not just HTML but also JSON and XML, beyond
prior discussions of content filtering [23, 63, 68].

USENIX Association 28th USENIX Security Symposium    1661

mailto:creis@google.com
mailto:alexmos@google.com
mailto:nasko@google.com


With these changes, the privileged browser process can
keep most cross-site sensitive data out of a malicious docu-
ment’s renderer process, making it inconsequential for a web
attacker to access and exfiltrate data from its address space.
While there are a set of limitations with its current imple-
mentation, we argue that Site Isolation offers the best path to
mitigating the threats posed by compromised renderer pro-
cesses and transient execution attacks.

In this paper, Section 2 introduces a new browser threat
model covering renderer exploit attackers and memory dis-
closure attackers, and it discusses the current limitations
of Site Isolation’s protection. Section 3 presents the chal-
lenges we overcame in fundamentally re-architecting a pro-
duction browser to adopt Site Isolation, beyond prior re-
search browsers. Section 4 describes our implementation,
consisting of almost 450k lines of code, along with critical
optimizations that made it feasible to deploy to all desktop
and laptop users of Chrome. Section 5 evaluates its effective-
ness against compromised renderers as well as Spectre and
Meltdown attacks. We also evaluate its practicality, finding
that it incurs a total memory overhead of 9-13% in practice
and increases page load latency by less than 2.25%, while
sufficiently preserving compatibility with actual web con-
tent. Given the severity of the new threats, Google Chrome
has enabled Site Isolation by default. Section 6 looks at the
implications for the web’s future and potential ways to ad-
dress Site Isolation’s current limitations. We compare to re-
lated work in Section 7 and conclude in Section 8.

Overall, we answer several new research questions:

• Which parts of a web browser’s security model can be
aligned with OS-level isolation mechanisms, while pre-
serving compatibility with the web?

• What optimizations are needed to make process-level
isolation of web sites feasible to deploy, and what is the
resulting performance overhead for real users?

• How well does process-level isolation of web sites up-
grade existing security practices to protect against com-
promised renderer processes?

• How effectively does process-level isolation of web
sites mitigate Spectre and Meltdown attacks, and where
are additional mitigations needed?

2 Threat Model
We assume that a web attacker can lure a user into visit-
ing a web site under the attacker’s control. Multi-process
browsers have traditionally focused on stopping web attack-
ers from compromising a user’s computer, by rendering un-
trusted web content in sandboxed renderer processes, coor-
dinated by a higher-privilege browser process [51]. How-
ever, current browsers allow attackers to load victim sites
into the same renderer process using iframes or popups, so
the browser must trust security checks in the renderer process
to keep sites isolated from each other.

In this paper, we move to a stronger threat model empha-
sizing two different types of web attackers that each aim to
steal data across web site boundaries. First, we consider a
renderer exploit attacker who can discover and exploit vul-
nerabilities to bypass security checks or even achieve ar-
bitrary code execution in the renderer process. This at-
tacker can disclose any data in the renderer process’s ad-
dress space, as well as lie to the privileged browser process.
For example, they might forge an IPC message to retrieve
sensitive data associated with another web site (e.g., cook-
ies, stored passwords). These attacks imply that the privi-
leged browser process must validate access to all sensitive re-
sources without trusting the renderer process. Prior work has
shown that such attacks can be achieved by exploiting bugs
in the browser’s implementation of the Same-Origin Policy
(SOP) [54] (known as universal cross-site scripting bugs, or
UXSS), with memory corruption, or with techniques such as
data-only attacks [5, 10, 11, 33, 53, 63, 68].

Second, we consider a memory disclosure attacker who
cannot run arbitrary code or lie to the browser process, but
who can disclose arbitrary data within a renderer process’s
address space, even when the SOP would disallow it. This
can be achieved using transient execution attacks [8] like
Spectre [34] and Meltdown [36]. Researchers have shown
specifically that JavaScript code can manipulate microar-
chitectural state to leak data from within the renderer pro-
cess [25, 34, 37].1 While less powerful than renderer exploit
attackers, memory disclosure attackers are not dependent on
any bugs in web browser code. Indeed, some transient exe-
cution attacks rely on properties of the hardware that are un-
likely to change, because speculation and other transient mi-
croarchitectural behaviors offer significant performance ben-
efits. Because browser vendors cannot simply fix bugs to
mitigate cases of these attacks, memory disclosure attackers
pose a more persistent threat to the web security model. It
is thus important to reason about their capabilities separately
and mitigate these attacks architecturally.

2.1 Scope
We are concerned with isolating sensitive web site data from
execution contexts for other web sites within the browser.
Execution contexts include both documents (in any frame)
and workers, each of which is associated with a site princi-
pal [52] and runs in a renderer process. We aim to protect
many types of content and state from the attackers described
above, including the HTML contents of documents, JSON
or XML data files they retrieve, state they keep within the
browser (e.g., cookies, storage, saved passwords), and per-
missions they have been granted (e.g., geolocation, camera).

Site Isolation is also able to strengthen some existing se-
curity practices for web application code, such as upgrad-
ing clickjacking [30] protections to be robust against com-

1In some cases, transient execution attacks may access information
across process or user/kernel boundaries. This is outside our threat model.
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promised renderers, as discussed in Section 5.1. Not all
web security defenses are in scope, such as mitigations for
XSS [46].

2.2 Limitations
For both types of attackers we consider, Site Isolation aims
to protect as much site data as possible, while preserving
compatibility. Because we isolate sites (i.e., scheme plus
registry-controlled domain name [52]) rather than origins
(i.e., scheme-host-port tuples [54]) per Section 3.1, cross-
origin attacks within a site are not mitigated. We hope to
allow some origins to opt into origin-level isolation, as dis-
cussed in Section 6.3.

Cross-site subresources (e.g., JavaScript, CSS, images,
media) are not protected, since the web allows documents
to include them within an execution context. JavaScript and
CSS files were already somewhat exposed to web attackers
(e.g., via XSSI attacks that could infer their contents [26]);
the new threat model re-emphasizes not to store secrets in
such files. In contrast, cross-site images and media were suf-
ficiently opaque to documents before, suggesting a need to
better protect at least some such files in the future.

The content filtering we describe in Section 3.5 is also
a best-effort approach to protect HTML, XML, and JSON
files, applying only when it can confirm the responses match
the reported content type. This confirmation is necessary to
preserve compatibility (e.g., with JavaScript files mislabeled
as HTML). Across all content types, we expect this filtering
will protect most sensitive data today, but there are opportu-
nities to greatly improve this protection with headers or web
platform changes [21, 71, 73], as discussed in Section 6.1.

Finally, we rely on protection domains provided by the
operating system. In particular, we assume that the OS’s
process isolation boundary can be trusted and consider cross-
process and kernel attacks out of scope for this paper, though
we discuss them further in Sections 5.2 and 6.2.

3 Site Isolation Browser Architecture
The Site Isolation browser architecture treats each web site
as a separate security principal requiring a dedicated renderer
process. Prior production browsers used rendering engines
that predated the security threats in Section 2 and were ar-
chitecturally incompatible with putting cross-site iframes in
a different process. Prior research browsers proposed similar
isolation but did not preserve enough compatibility to han-
dle the full web. In this section, we present the challenges
we overcame to make the Site Isolation architecture compat-
ible with the web in its entirety.

3.1 Site Principals
Most prior multi-process browsers, including Chrome, Edge,
Safari, and Firefox, did not assign site-specific security
principals to web renderer processes, and hence they did
not enforce isolation boundaries between different sites at

the process level. We advance this model in Chrome
by partitioning web content into finer-grained principals
that correspond to web sites. We adopt the site defi-
nition from [52] rather than origins as proposed in re-
search browsers [23, 62, 63, 68]. For example, an origin
https://bar.foo.example.com:8000 corresponds to a site
https://example.com. This preserves compatibility with up
to 13.4% of page loads that change their origin at runtime by
assigning to document.domain [12]. Site principals ensure
that a document’s security principal remains constant after
document.domain modifications.

For each navigation in any frame, the browser process
computes the site from the document’s URL, determining
its security principal. This is straightforward for HTTP(S)
URLs, though some web platform features require special
treatment, as we discuss in Appendix A (e.g., about:blank
can inherit its origin and site).

3.2 Dedicated Processes
Site Isolation requires that renderer processes can be dedi-
cated to documents, workers, and sensitive data from only
a single site principal. In this paper, we consider only the
case where all web renderer processes are locked to a single
site. It would also be possible for the browser to isolate only
some sites and leave other sites in shared renderer processes.
In such a model, it is still important to limit a dedicated ren-
derer process to documents and data from its own site, but it
is also necessary to prevent a shared process from retrieving
data from one of the isolated sites. When isolating all sites,
requests for site data can be evaluated solely on the process’s
site principal and not also a list of which sites are isolated.

The browser’s own components and features must be also
partitioned in a way that does not leak cross-site data. For
example, the network stack cannot run within the renderer
process, to protect HttpOnly cookies and so that filtering de-
cisions on cross-site data can be made before the bytes from
the network enter the renderer process. Similarly, browser
features must not proactively leak sensitive data (e.g., the
user’s stored credit card numbers with autofill) to untrust-
worthy renderer processes, at least until the user indicates
such data should be provided to a site [49]. These additional
constraints on browser architecture may increase the amount
of logic and state in more privileged processes. This does not
necessarily increase the attack surface of the trusted browser
process if these components (e.g., network stack) can move
to separate sandboxed processes, as in prior microkernel-like
browser architectures [23, 62].

3.3 Cross-Process Navigations
When a document in a frame navigates from site A to site
B, the browser process must replace the renderer process for
site A with one for site B. This requires maintaining state in
the browser process, such as session history for the tab, re-
lated window references such as openers or parent frames,
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and tab-level session storage [74]. Due to web-visible events
such as beforeunload and unload and the fact that a nav-
igation request might complete without creating a new doc-
ument (e.g., a download or an HTTP “204 No Content” re-
sponse), the browser process must coordinate with both old
and new renderer processes to switch at the appropriate mo-
ment: after beforeunload, after the network response has
proven to be a new document, and at the point that the new
process has started rendering the new page. Note that cross-
site server redirects may even require selecting a different
renderer process before the switch occurs.

Session history is particularly challenging. Each stop in
the back/forward history can contain information about mul-
tiple cross-site documents in various frames in the page, and
it can include sensitive data for each document, such as the
contents of partially-filled forms. To meet the security goals
of Site Isolation, this site-specific session history state can
only be sent to renderer processes locked to the correspond-
ing site. Thus, the browser process must coordinate session
history loads at a frame granularity, tracking which data to
send to each process as cross-site frames are encountered in
the page being loaded.

3.4 Out-of-process iframes
The largest and most disruptive change for Site Isolation is
the requirement to load cross-site iframes in a different ren-
derer process than their embedding page. Most widely-used
browser rendering engines were designed and built before
browsers became multi-process. The shift to multi-process
browsers typically required some changes to these existing
engines in order to support multiple instances of them. How-
ever, many core assumptions remained intact, such as the
ability to traverse all frames in a page for tasks like paint-
ing, messaging, and various browser features (e.g., find-in-
page). Supporting out-of-process iframes is a far more intru-
sive change that requires revisiting such assumptions across
the entire browser. Meanwhile, prior research prototypes
that proposed this separation [23, 63, 68] did not address
many of the challenges in practice, such as how to ensure the
iframe’s document knows its position in the frame tree. This
section describes the challenges we overcame to make out-
of-process iframes functional and compatible with the web
platform.

Frame Tree. To support out-of-process iframes, multi-
process browser architectures must change their general ab-
straction level from page (containing a tree of frames) to doc-
ument (in a single frame). The browser process must track
which document, and thus principal, is present in each frame
of a page, so that it can create an appropriate renderer process
and restrict its access accordingly. The cross-process naviga-
tions described in Section 3.3 must be supported at each level
of the frame tree to allow iframes to navigate between sites.

Each process must also keep a local representation of doc-
uments that are currently rendered in a different process,

a.com/1

a.com/2 b.com/3

a.com/4

a.com/1

DocumentA

(b) Browser Process

ProxyB

a.com/2 b.com/3

DocumentB ProxyA

a.com/4

WidgetA

WidgetB

Document

Document Proxy

Document

widget

widget

(c) Renderer Process A

Document

widget

(d) Renderer Process B

Proxy

Proxy

Proxy

(a) Web Page

DocumentA

ProxyB

DocumentA ProxyB WidgetA

Figure 1: An example of out-of-process iframes. To render the
web page shown in (a), the browser process (b) coordinates two
renderer processes, shown in (c) and (d).

which we call proxies. Proxies offer cross-process support
for the small set of cross-origin APIs that are permitted by
the web platform, as described in [52]. These APIs may
be accessed on a frame’s window object and are used for
traversing the frame hierarchy, messaging, focusing or nav-
igating other frames, and closing previously opened win-
dows. Traversing the frame hierarchy must be done syn-
chronously within the process using proxies, but interactions
between documents can be handled asynchronously by rout-
ing messages. Note that all same-site frames within a frame
tree (or other reachable pages) must share a process, allow-
ing them to synchronously script each other.

An example of a page including out-of-process iframes
is shown in Figure 1 (a), containing three documents from
a.com and one from b.com, and thus requiring two separate
renderer processes. Figure 1 (b) shows the browser process’s
frame tree, with representations of each document annotated
by which site’s process they belong to, along with a set of
proxy objects for each frame (one for each process which
might reference the frame). Figure 1 (c-d) shows the corre-
sponding frame trees within the two renderer processes, with
proxy objects for any documents rendered in a different pro-
cess. Note that the actual document and proxy objects live in
renderer processes; the corresponding browser-side objects
are stubs that track state and route IPC messages between
the browser and renderer processes.

For example, suppose the document in a.com/2 in-
vokes window.parent.frames["b"].postMessage("msg",

"b.com"). Renderer Process A can traverse its local frame
tree to find the parent frame and then its child frame named
“b”, which is a proxy. The renderer process will send the
message to the corresponding ProxyA object for b.com/3 in
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the browser process. The browser process passes it to the
current DocumentB object in this frame, which sends the
message to the corresponding Document object in Renderer
Process B. Similar message routing can support other
cross-origin APIs, such as focus, navigation, or closing
windows.

State Replication. The renderer process may need syn-
chronous access to some types of state about a frame in an-
other process, such as the frame’s current name (to find a
frame by name, as in the example above) or iframe sandbox
flags. As this state changes, the browser process broadcasts
it to all proxies for a frame across affected processes. Note
that this state should never include sensitive site-specific data
(e.g., full URLs, which may have sensitive URL parameters),
only what is necessary for the web platform implementation.

Painting and Input. To preserve the Site Isolation security
model, the rendered appearance of each document cannot
leak to other cross-site renderer processes. Otherwise, an
attacker may be able to scrape sensitive information from
the visible appearance of frames in other processes. Instead,
each renderer process is responsible for the layout and paint
operations within each of its frames. These must be sent to
a separate process for compositing at the granularity of sur-
faces, to form the combined appearance of the page. The
compositing process must support many types of transforms
that are possible via CSS, without leaking surface data to a
cross-site renderer process.

Often, many frames on a page come from the same site,
and separate surfaces for each frame may be unnecessary.
To reduce compositing overhead, we use a widget abstrac-
tion to combine contiguous same-site frames into the same
surface. Figure 1 shows how a.com/1 and a.com/2 can be
rendered in the same widget and surface without requiring
compositing. b.com/3 requires its own widget in Renderer
Process B. Since a.com/4 is not contiguous with the other
two a.com frames and its layout may depend on properties
assigned to it by b.com/3 (e.g., CSS filters), it has a separate
widget within Renderer Process A, and its surface must be
composited within b.com/3’s surface.

Widgets are also used for input event routing, such as
mouse clicks and touch interactions. In most cases, the
compositing metadata makes it possible for the browser pro-
cess to perform sufficient hit testing to route input events
to the correct renderer process. In some cases, though,
web platform features such as CSS transforms or CSS
pointer-events and opacity properties may make this
difficult. Currently, the browser process uses slow path
hit testing over out-of-process iframes, i.e., asking a parent
frame’s process to hit-test a specific point to determine which
frame should receive the event, without revealing any further
details about the event itself. This is only used for mouse
and touch events; keyboard events are reliably delivered to
the renderer process that currently has focus.

Note that images and media from other sites can be in-
cluded in a document. The Site Isolation architecture does
not try to exclude these from the renderer process, for mul-
tiple reasons. First, moving cross-origin image handling out
of the renderer process and preventing renderers from read-
ing these surfaces would require a great deal of complex-
ity in practice. Second, this would substantially increase the
number of surfaces needed for compositing. This decision is
consistent with other research browsers [23, 62, 63], includ-
ing Gazelle’s implementation [68]. Thus, we leave cross-site
images and media in the renderer process and rely on servers
to prevent unwanted inclusion, as discussed in Section 6.1.

Affected Features. In a broad sense, almost all browser fea-
tures that interact with the frame tree must be updated to
support out-of-process iframes. These features could tradi-
tionally assume that all frames of a page were in one process,
so a feature like find-in-page could traverse each frame in the
tree in the renderer process, looking for a string match. With
out-of-process iframes, the browser process must coordinate
the find-in-page feature, collecting partial results from each
frame across multiple renderer processes. Additionally, the
feature must be careful to avoid leaking information to ren-
derer processes (e.g., whether there was a match in a cross-
site sibling frame), and it must be robust to renderer pro-
cesses that crash or become unresponsive.

These updates are required for many features that com-
bine data across frames or that perform tasks that span multi-
ple frames: supporting screen readers for accessibility, com-
positing PDFs for printing, traversing elements across frame
boundaries for focus tracking, representations of the full
page in developer tools, and many others.2

3.5 Cross-Origin Read Blocking
Loading each site’s documents in dedicated renderer pro-
cesses is not sufficient to protect site data: there are many le-
gitimate ways for web documents to request cross-site URLs
within their own execution context, such as JavaScript li-
braries, CSS files, images, and media. However, it is im-
portant not to give a renderer process access to cross-site
URLs containing sensitive data, such as HTML documents
or JSON files. Otherwise, a document could access cross-
site data by requesting such a URL from a <script>,
<style>, or <img> tag. The response may nominally fail
within the requested context (e.g., an HTML file would pro-
duce syntax errors in a <script> tag), but the data would
be present in the renderer process, where a compromised ren-
derer or a transient execution attack could leak it.

Unfortunately, it is non-trivial to perfectly distinguish
which cross-site URLs must be allowed into a renderer pro-
cess and which must be blocked. It is possible to categorize
content types into those needed for subresources and those
that are not (as in Gazelle [68]), but content types of re-

2A list of these features is included in Appendix B.
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sponses are often inaccurate in practice. For example, many
actual JavaScript libraries have content types of text/html
rather than application/javascript in practice. Chang-
ing the browser to block these libraries from cross-site doc-
uments would break compatibility with many existing sites.

It may be desirable to require sites to correct their content
types or proactively label any resources that need protec-
tion (e.g., with a new Cross-Origin-Resource-Policy

header [21]), but such approaches would leave many exist-
ing resources unprotected until developers update their sites.

Until such shifts in web site behavior occur, browsers with
Site Isolation can use a best effort approach to protect as
many sensitive resources as possible, while preserving com-
patibility with existing cross-site subresources. We intro-
duce and standardize an approach called Cross-Origin Read
Blocking (CORB) [17, 20], which prevents a renderer process
from receiving a cross-site response when it has a confirmed
content type likely to contain sensitive information. CORB
focuses on content types that, when used properly, cannot
be used in a subresource context. Subresource contexts in-
clude scripts, CSS, media, fetches, and other ways to include
or retrieve data within a document, but exclude iframes and
plugins (which can be loaded in separate processes). CORB
filters the following content types:

• HTML, which is used for creating new documents with
data that should be inaccessible to other sites.

• JSON, which is used for conveying data to a document.

• XML, which is also often used for conveying data to a
document. An exception is made for SVG, which is an
XML data type permitted within <img> tags.

Since many responses have incorrect content types, CORB
requires additional confirmation before blocking the re-
sponse from the renderer process. In other contexts, web
browsers perform MIME-type sniffing when a content type
is missing, looking at a prefix of the response to guess its
type [4]. OP2 and IBOS use such sniffing to confirm a re-
sponse is HTML [23, 63], but this will block many legiti-
mate JavaScript files, such as those that begin with HTML
comments (i.e., “<!--”). In contrast, CORB relies on a new
type of confirmation sniffing that looks at a prefix of the re-
sponse to confirm that it matches the claimed content type
and not a subresource [17]. For example, a response la-
beled as text/html starting with “<!doctype” would be
blocked, but one starting with JavaScript code would not.
(CORB attempts to scan past HTML comments when sniff-
ing.) This is a default-allow policy that attempts to protect
resources where possible but prioritizes compatibility with
existing sites. For example, CORB allows responses through
when they are polyglots which could be either HTML or
JavaScript, such as:

<!--/*--><html><body><script type="text/javascript"><!--//*/
var x = "This is both valid HTML and valid JavaScript.";
//--></script></body></html>

CORB skips confirmation sniffing in the presence of
the existing X-Content-Type-Options: nosniff response
header, which disables the browser’s existing MIME sniff-
ing logic. When this header is present, responses with incor-
rect content types are already not allowed within subresource
contexts, making it safe for CORB to block them. Thus, we
recommend that web developers use this header for CORB-
eligible URLs that contain sensitive data, to ensure protec-
tion without relying on confirmation sniffing.

If a cross-site response with one of the above confirmed
content types arrives, and if it is not allowed via CORS head-
ers [18], then CORB’s logic in the network component pre-
vents the response data from reaching the renderer process.

3.6 Enforcements
The above architecture changes are sufficient to mitigate
memory disclosure attackers as described in Section 2. For
example, transient execution attacks might leak data from
any cross-site documents present in the same process, but
such attacks cannot send forged messages to the browser pro-
cess to gain access to additional data. However, a renderer
exploit attacker that compromises the renderer process or
otherwise exploits a logic bug may indeed lie to the browser
process, claiming to be a different site to access its data.

The browser process must be robust to such attacks by
tracking which renderer processes are locked to which sites,
and thus restricting which data the process may access. Re-
quests for site data, actions that require permissions, access
to saved passwords, and attempts to fetch data can all be re-
stricted based on the site lock of the renderer process. In nor-
mal execution, a renderer process has its own checks to avoid
making requests for such data, so illegal requests can be in-
terpreted by the browser process as a sign that the renderer
process is compromised or malfunctioning and can thus be
terminated before additional harm is caused. The browser
process can record such events in the system log, to facilitate
audits and forensics within enterprises.

These enforcements may take various forms. If the ren-
derer process sends a message labeled with an origin, the
browser process must enforce that the origin is part of the
process’s site. Alternatively, communication channels can be
scoped to a site, such that a renderer process has no means to
express a request for data from another site.

The CORB filtering policy in Section 3.5 also requires en-
forcements against compromised renderers, so that a ren-
derer exploit attacker cannot forge a request’s initiator to
bypass CORB. One challenge is that extensions had been
allowed to request data from extension-specified sites us-
ing scripts injected into web documents. Because these re-
quests come from a potentially compromised renderer pro-
cess, CORB cannot distinguish them from an attacker’s re-
quests. This weakens CORB by allowing responses from any
site that an active extension can access, which in many cases
is all sites. To avoid having extensions weaken the security
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of Site Isolation, we are changing the extension system to
require these requests to be issued by an extension process
instead of by extension scripts in a web renderer process,
and we are helping extension developers migrate to the new
approach [9].

4 Implementation
With the Chrome team, we implemented the Site Isolation
architecture in Chrome’s C++ codebase. This was a signifi-
cant 5-year effort that spanned approximately 4,000 commits
from around 350 contributors (with the top 20 contributors
responsible for 72% of the commits), changing or adding ap-
proximately 450,000 lines of code in 9,000 files.

We needed to re-architect a widely deployed browser
without adversely affecting users, both during development
and when deploying the new architecture. This section de-
scribes the steps we took to minimize the impact on perfor-
mance and functionality, while Section 5 evaluates that im-
pact in practice.

4.1 Optimizations
Fundamentally, Site Isolation requires the browser to use a
larger number of OS processes. For example, a web page
with four cross-site iframes, all on different sites, will re-
quire five renderer processes versus one in the old architec-
ture. The overhead of additional processes presents a fea-
sibility risk, due to extra memory cost and process creation
latency during navigation. To address these challenges, we
have implemented several optimizations that help make Site
Isolation practical.

4.1.1 Process Consolidation

Our security model dictates that a renderer process may
never contain documents hosted at different sites, but a pro-
cess may still be shared across separate instances of doc-
uments from the same site. Fortunately, many users keep
several tabs open, which presents an opportunity for process
sharing across those tabs.

To reduce the process count, we have implemented a pro-
cess consolidation policy that looks for an existing same-site
process when creating an out-of-process iframe. For exam-
ple, when a document embeds an example.com iframe and
another browser tab already contains another example.com

frame (either an iframe or a main frame), we consolidate
them in the same process. This policy is a trade-off that
avoids process overhead by reducing performance isolation
and failure containment: a slow frame could slow down or
crash other same-site frames in the process. We found that
this trade-off is worthwhile for iframes, which tend to require
fewer resources than main frames.

The same policy could also be applied to main frames, but
doing this unconditionally is not desirable: when resource-
heavy documents from a site are loaded in several tabs, using
a single process for all of them leads to bloated processes

that perform poorly. Instead, we use process consolidation
for same-site main frames only after crossing a soft process
limit that approximates memory pressure. When the number
of processes is below this limit, main frames in independent
tabs don’t share processes; when above the limit, all new
frames start reusing same-site processes when possible. Our
threshold is calculated based on performance characteristics
of a given machine. Note that Site Isolation cannot support
a hard process limit, because the number of sites present in
the browser may always exceed it.

4.1.2 Avoiding Non-essential Isolation

Some web content is assigned to an opaque origin [29] with-
out crossing a site boundary, such as iframes with data:

URLs or sandboxed same-site iframes. These could utilize
separate processes, but we choose to keep these cases in-
process as an optimization, focusing our attention on true
cross-site content.

Other design decisions that help reduce process count in-
clude isolating at a site granularity rather than origin, keep-
ing cross-site images in-process, and allowing extensions to
share processes with each other. Section 6.3 discusses im-
proving isolation in these cases in the future.

4.1.3 Reducing the Cost of Process Swaps

Section 3.3 implies that many more navigations must create
a new process. We mask some of this latency by (1) starting
the process in parallel with the network request, and (2) run-
ning the old document’s unload handler in the background
after the new document is created in the new process.

However, in some cases (e.g., back/forward navigations)
documents may load very quickly from the cache. These
cases can be significantly slowed by adding process creation
latency. To address this, we maintain a warmed-up spare
renderer process, which may be used immediately by a new
navigation to any site. When a spare process is locked to a
site and used, a new one is created in the background, similar
to process pre-creation optimizations in OP2 [23]. To control
memory overhead, we avoid spare processes on low memory
devices, when the system experiences memory pressure, or
when the browser goes over the soft process limit.

4.2 Deployment
Shipping Site Isolation in a production browser is challeng-
ing. It is a highly disruptive architecture change affecting
significant portions of the browser, so enabling it all at once
would pose a high risk of functional regressions. Hence, we
deployed incrementally along two axes: isolation targets and
users. Before launching full Site Isolation, we shipped two
milestones to enable process isolation for selective targets:

1. Extensions. As the first use of out-of-process iframes
from Section 3.4, we isolated web iframes embedded
inside extension pages, and vice versa [50]. This pro-
vided a meaningful security improvement, keeping ma-
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licious web content out of higher-privileged extension
processes. It also affected only about 1% of all page
loads, reducing the risk of widespread functional re-
gressions.

2. Selective isolation. We created an enterprise policy al-
lowing administrators to optionally isolate a set of man-
ually selected high-value web sites [6].

Deploying these preliminary isolation modes provided a
valuable source of bug reports and performance data (e.g., at
least 24 early issues reported from enterprise policy users).
These modes also show how some form of isolation may be
deployed in environments where full Site Isolation may still
be prohibitively expensive, such as on mobile devices.

We also deployed each of these milestones incrementally
to users. All feature work was developed behind an opt-
in flag, and we recruited early adopters who provided bug
reports. For each milestone (including full Site Isolation),
we also took advantage of Chrome’s A/B testing mecha-
nism [13], initially deploying to only a certain percentage
of users to monitor performance and stability data.

5 Evaluation
To evaluate the effectiveness and practicality of deploying
Site Isolation, we answer the following questions: (1) How
well does Site Isolation upgrade existing security practices to
mitigate renderer exploit attacks? (2) How effectively does
Site Isolation mitigate transient execution attacks, compared
to other web browser mitigation strategies? (3) What is the
performance impact of Site Isolation in practice? (4) How
well does Site Isolation preserve compatibility with exist-
ing web content? Our findings have allowed us to success-
fully deploy Site Isolation to all desktop and laptop users of
Google Chrome.

5.1 Mitigating Renderer Vulnerabilities
We have added numerous enforcements to Chrome (version
76) to prevent a compromised renderer from accessing cross-
site data.3 This section evaluates these enforcements from
the perspective of web developers. Specifically, we ask
which existing web security practices have been transpar-
ently upgraded to defend against renderer exploit attackers,
who have complete control over the renderer process.

New Protections. The following web developer practices
were vulnerable to renderer exploit attackers before Site Iso-
lation but are now robust.

• Authentication. HttpOnly cookies are not delivered to
renderer processes, and document.cookie is restricted
based on a process’s site. Similarly, the password man-
ager only reveals passwords based on a process’s site.

• Cross-origin messaging. Both postMessage and
BroadcastChannel messages are only delivered to

3A list of these enforcements is included in Appendix C.

processes if their sites match the target origin, ensur-
ing that confidential data in the message does not leak
to other compromised renderers. Source origins are also
verified so that incoming messages are trustworthy.

• Anti-clickjacking. X-Frame-Options is enforced in
the browser process, and CSP frame-ancestors is en-
forced in the embedded frame’s renderer process. In
both cases, a compromised renderer process cannot by-
pass these policies to embed a cross-site document.

• Keeping data confidential. Many sites use HTML,
XML, and JSON to transfer sensitive data. This data
is now protected from cross-site renderer processes if it
is filtered by CORB (e.g., has a nosniff header or can
be sniffed), per Section 3.5.

• Storage and permissions. Data stored on the client
(e.g., in localStorage) and permissions granted to a
site (e.g., microphone access) are not available to pro-
cesses for other sites.

Potential Protections. The Site Isolation architecture
should be capable of upgrading the following practices to
mitigate compromised renderers as well, but our current im-
plementation does not yet fully cover them.

• Anti-CSRF. CSRF [3] tokens remain protected from
other renderers if they are only present in responses pro-
tected by CORB. Origin headers and SameSite cook-
ies can also be used for CSRF defenses, but our enforce-
ment implementation is still in progress.

• Embedding untrusted documents. The behavioral
restrictions of iframe sandbox (e.g., creating new
windows or dialogs, navigating other frames) and
Feature-Policy are currently enforced in the ren-
derer process, allowing compromised renderers to by-
pass them. If sandboxed iframes are given separate pro-
cesses, many of these restrictions could happen in the
browser process.

Renderer Vulnerability Analysis. We also analyzed secu-
rity bugs reported for Chrome for 2014-2018 (extending the
analysis by Moroz et al [41]) and found 94 UXSS-like bugs
that allow an attacker to bypass the SOP and access contents
of cross-origin documents. Site Isolation mitigates such bugs
by construction, subject to the limitations discussed in Sec-
tion 2.2. Similar analyses in prior studies have also shown
that isolating web principals in different processes prevents
a significant number of cross-origin bypasses [19, 63, 68].

In the six months after Site Isolation was deployed in mid-
2018, Chrome has received only 2 SOP bypass bug reports,
also mitigated by Site Isolation (compared to 9 reports in
the prior six months). The team continues to welcome and
fix such reports, since they still have value on mobile devices
where Site Isolation is not yet deployed. We also believe that
going forward, attention will shift to other classes of bugs
seen during this post-launch period, including:
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• Bypassing Site Isolation. These bugs exploit flaws in
the process assignment or other browser process logic
to force cross-site documents to share a process, or to
bypass the enforcement logic. For example, we fixed
a reported bug where incorrect handling of blob URLs
created in opaque origins allowed an attacker to share a
victim site’s renderer process.

• Targeting non-isolated data. For example, 14 bugs al-
lowed an attacker to steal cross-site images or media,
which are not isolated in our architecture, e.g., by ex-
ploiting memory corruption bugs or via timing attacks.

• Cross-process attacks. For example, 5 bugs are side
channel attacks that rely on timing events that work
even across processes, such as a frame’s onload event,
to reveal information about the frame.

In general, we find that Site Isolation significantly im-
proves robustness to renderer exploit attackers, protecting
users’ web accounts and lowering the severity of renderer
vulnerabilities.

5.2 Mitigating Transient Execution Attacks
Transient execution attacks represent memory disclosure at-
tackers from Section 2, where lying to the browser process
is not possible. Thus, Site Isolation mitigations here depend
on process isolation and CORB, but not the enforcements in
Section 3.6. This section compares the various web browser
mitigation strategies for such attacks, evaluating their effec-
tiveness against known variants.

Strategy Comparison. Web browser vendors have pursued
three types of strategies to mitigate transient execution at-
tacks on the web, with varying strengths and weaknesses.

First, most browsers attempted to reduce the availabil-
ity of precise timers that could be used for attacks [14,
39, 48, 67]. This focuses on the most commonly under-
stood exploitation approach for Spectre and Meltdown at-
tacks: a Flush+Reload cache timing attack [75]. This strat-
egy assumes the timing attack will be difficult to perform
without precise timers. Most major browsers reduced the
granularity of APIs like performance.now to 20 microsec-
onds or even 1 millisecond, introduced jitter to timer results,
and even removed implicit sources of precise time, such as
SharedArrayBuffers [59]. This strategy applies whether
the attack targets data inside the process or outside of it, but
it has a number of weaknesses that limit its effectiveness:

• It is likely incomplete: there are a wide variety of ways
to build a precise timer [35, 58], making it difficult to
enumerate and adjust all sources of time in the platform.

• It is possible to amplify the cache timing result to
the point of being effective even with coarse-grained
timers [25, 37, 58].

• Coarsening timers hurts web developers who have a le-
gitimate need for precise time to build powerful web

applications. Disabling SharedArrayBuffers was a
particularly unfortunate consequence of this strategy,
since it disrupted web applications that relied on them
(e.g., AutoCAD).

• Cache timing attacks are only one of several ways to
leak information from transient execution, so this ap-
proach may be insufficient for preventing data leaks [8].

As a result, we do not view coarsening timers or disabling
SharedArrayBuffers as an effective strategy for mitigat-
ing transient execution attacks.

Second, browser vendors pursued modifications to the
JavaScript compiler and runtime to prevent JavaScript code
from accessing victim data speculatively [37, 48, 65]. This
involved array index masking and pointer poisoning to limit
out of bounds access, lfence instructions as barriers to
speculation, and similar approaches. The motivation for
this strategy is to disrupt all “speculation gadgets” to avoid
leaking data within and across process boundaries. Un-
fortunately, there are an increasingly large number of vari-
ants of transient execution attacks [8], and it is difficult for
a compiler to prevent all the ways an attack might be ex-
pressed [37]. This is especially true for variants like Spectre-
STL (also known as Variant 4), where store-to-load forward-
ing can be used to leak data [28], or Meltdown-RW which
targets in-process data accessed after a CPU exception [8].
Additionally, some of these mitigations have large perfor-
mance overheads on certain workloads (up to 15%) [37, 65],
which risk slowing down legitimate applications. The dif-
ficulty to maintain a complete defense combined with the
performance cost led Chrome’s JavaScript team to conclude
that this approach was ultimately impractical [37, 49].

Site Isolation offers a third strategy. Rather than targeting
the cache timing attack or disrupting speculation, Site Isola-
tion assumes that transient execution attacks may be possible
within a given OS process and instead attempts to move data
worth stealing outside of the attacker’s address space, much
like kernel defenses against Meltdown-US [15, 24].

Variant Mitigation. Canella et al [8] present a systematic
evaluation of transient execution attacks and defenses, which
we use to evaluate Site Isolation. Spectre attacks rely on
branch mispredictions or data dependencies, while Melt-
down attacks rely on transient execution after a CPU excep-
tion [8]. Table 1 shows how both types of attacks are able to
target data inside or outside the attacker’s process, and thus
both Spectre and Meltdown are relevant to consider when
mitigating memory disclosure attacks.

Site Isolation mitigates same-address-space attacks by
avoiding putting vulnerable data in the same renderer pro-
cess as a malicious principal. This targets the most practical
variants of transient execution attacks, for which an attacker
has a large degree of control over the behavior of the process
(relative to attacks that target another process). Site Isola-
tion does not depend on the absence of precise timers for
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Spectre-PHT  G#  # G#  
Spectre-BTB  G#  # G#  
Spectre-RSB  G# G# # G# G#
Spectre-STL  G# # - - -

Meltdown-US - - - # G# #
Meltdown-P - - - # G# #
Meltdown-GP - - - # G# #
Meltdown-NM - - - # G# #
Meltdown-RW*  G# # - - -
Meltdown-PK*  G# # - - -
Meltdown-BR*  G# # - - -

Table 1: Web browser mitigations for Spectre and Meltdown
attacks, for targets inside and outside the attacker’s process.
Symbols show if an attack is mitigated ( ), partially mitigated (G#),
not mitigated (#), or not applicable (-). Site Isolation mitigates all
applicable same-process attacks, and it depends on other mitiga-
tions for cross-process attacks.
* Only affects browsers that use these hardware features.

mitigating same-process attacks, and it can mitigate attacks
like Spectre-STL that are difficult or costly for compilers to
prevent [37]. For Meltdown attacks that target same-process
data (e.g., Meltdown-RW, which can transiently overwrite
read-only data), Site Isolation applies as well. It is less clear
whether Meltdown-PK and Meltdown-BR [8] are relevant
in the context of the browser, but Site Isolation would miti-
gate them if browsers used protection keys [38] or hardware-
based array bounds checks, respectively.

Site Isolation does not attempt to mitigate attacks target-
ing data in other processes or the kernel, such as the “Out-
side Process” variants in Table 1 and Microarchitectural Data
Sampling (MDS) attacks [40, 57, 66]. Site Isolation can
and must be combined with hardware and OS mitigations
for such attacks to prevent web attackers from leaking data
across process boundaries or from the kernel. For example,
PTI is a widely used mitigation for Meltdown-US, eliminat-
ing kernel memory from the address space of each user pro-
cess [15, 24]. Similarly, microcode updates and avoiding
sibling Hyper-Threads for untrustworthy code may be useful
for mitigating MDS attacks [40, 57, 66].

Ultimately, cross-process and user/kernel boundaries must
fundamentally be preserved by the OS and hardware and
cannot be left to applications to enforce. Within a process,
however, the OS and hardware have much less visibility into
where isolation is needed. Thus, applications that run code
from untrustworthy principals (e.g., browsers) must align
their architectures with OS-enforced abstractions to isolate

these principals. As a result, we have chosen Site Isolation
as the most effective mitigation strategy for Chrome. When
it is enabled, Chrome re-enables SharedArrayBuffer and
other precise timers and removes JavaScript compiler mitiga-
tions, to restore powerful functionality to the web and regain
lost performance.

5.3 Performance
Enabling Site Isolation can affect the browser’s performance,
so we evaluate its effect on memory overhead, latency, and
CPU usage in the wild and in microbenchmarks. We find that
the new architecture has low enough overhead to be practical
to deploy.

5.3.1 Observed Workload

We first focus on measuring performance in the field, be-
cause this more accurately reflects real user workloads (e.g.,
many tabs, long-tail sites) than microbenchmarks do. The
data in this section was collected using pseudonymous met-
ric reporting over a two-week period starting October 1,
2018, from desktop and laptop users of Chrome (version 69)
on Windows who have this reporting enabled. We compare
results from equal-sized test and control groups within the
general user population. (These metrics are enabled by de-
fault, but users can opt out during installation or later in set-
tings. Our experimental design and data collection were re-
viewed under Google’s processes.)

Process Count. With Site Isolation, the browser process
must create more renderer processes to keep sites isolated
from each other: at least as many as unique sites open at a
time. Using periodic samples, we found that users had 6.0
unique sites open across the entire browser at the 50th per-
centile of the distribution, and 41.9 unique sites at the 99th
percentile. This only provides a lower bound for the num-
ber of renderer processes; each instance of a site might live
in a separate process. If this were the case, our metrics give
an upper bound estimate of 79.7 processes at the 99th per-
centile. However, thanks to the process sharing heuristics
described in Section 4.1.1, far fewer processes were used in
practice, as shown in Figure 2. At the 50th percentile, the
number of processes increased 43.5% from 4.4 without Site
Isolation to 6.2 with Site Isolation. At the 99th percentile, the
process count increased 50.6% from 35.0 to 52.7 processes.
This indicates that many more processes are needed for Site
Isolation, but also that the process consolidation heuristics
greatly reduce the count at the upper percentiles.

Memory Overhead. On its own, the 50% increase in ren-
derer process count is significant, but this does not necessar-
ily translate to an equivalent increase in memory overhead or
performance slowdowns. Site Isolation is effectively divid-
ing an existing workload across more processes, so each ren-
derer process is correspondingly smaller and shorter lived.
In reported metrics, we found that private memory use per
renderer process decreased 51.5% (87.2 MB to 42.3 MB) at
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Figure 3: Total browser memory usage across all processes.
Overall, Site Isolation has a 9-13% overhead.

the 50th percentile and 28.6% (from 714.2 MB to 509.7 MB)
at the 99th percentile. Renderer process lifetime decreased
4.3% at the 50th percentile and 55.5% at the 99th percentile.

This leaves an open question about the overhead of each
process relative to the workload of the process, which de-
termines the total memory use. Figure 3 compares the total
private memory use across all processes (including browser
process, renderer processes, and other types of utility pro-
cesses) with and without Site Isolation. In practice, we see
that total memory use increased only 12.6% at the 25th per-
centile, and only 8.6% at the 99th percentile. This is signif-
icantly lower than the 50% increase in process count might
suggest, indicating that the large number of extra processes
has a relatively small impact on the total memory use of the
browser. We confirmed that this is not due to a change in
workload size: there were no statistically significant differ-
ences in page load count, and we saw at most a 1.5% de-
crease in the number of open tabs (at the 99th percentile).

Due to the severity of transient execution attacks and the
drawbacks of other mitigation strategies in Section 5.2, the
Chrome team was willing to accept 9-13% memory overhead
for the security benefits of enabling Site Isolation.

Latency. Site Isolation also impacts latency in multiple
ways, from the time it takes to load a page to the responsive-
ness of input events. On one hand, more navigations need
to create new processes, which can incur latency due to pro-
cess startup time. There may also be greater contention for
IPC messages and input event routing, leading to some de-
lays. On the other hand, there is a significant amount of new
parallelism possible now that the workload for a given page
can be split across multiple independent threads of execu-
tion. We use observed metrics from the field to study the
combined impact of these changes in practice.

Site Isolation significantly increased the percentage of
navigations that cross a process boundary, from 5.73% to
56.0%. However, we mask some of the latency of process
creation in Chrome by starting the renderer process in par-
allel with making the network request. Combined with the
increased parallelism of loading cross-site iframes in differ-
ent processes, we see very little change to a key metric for
page load time: the time from navigation start to the first
paint of page content (e.g., text, images, etc) [22]. Across
all navigations, we observe this to increase at most 2.25%
at the 25th percentile (457 ms to 467 ms) and 1.58% (14.6
s to 14.8 s) at the 99th percentile. This metric also bene-
fits from the spare process optimization described in Sec-
tion 4.1.3, which avoids the process startup latency on many
navigations. Without the spare process, this “First Contentful
Paint” time increases 5.1% at the 25th percentile and 2.4%
at the 99th percentile.

If we look closer at various types of navigations, the most
significantly affected category is back/forward navigations,
which frequently load pages from the cache without waiting
for the network. This eliminates most of the benefit of paral-
lelizing process startup with the network request. Here, we
see time to First Contentful Paint increase 28.3% (177 ms to
227 ms) at the 25th percentile and 6.8% (4637 ms to 4952
ms) at the 99th percentile. Again, this is better than with-
out using a spare process, in which case we see increases of
40.7% and 12.5% at these percentiles, respectively.

We also looked at the latency impact on input events. The
current implementation uses slow path hit testing for mouse
and touch events over out-of-process iframes, which results
in small increases to input event latency. For key presses,
there are no statistically significant differences at the 50th or
99th percentiles, and only a 1.0% latency increase at the 75th
percentile (43.6 ms to 44.0 ms). For mouse scroll update
events, latency increased 1.3% (21.8 ms to 22.1 ms) at the
50th percentile and 8.6% (228.8 ms to 248.6 ms) at the 99th
percentile. For touch scroll update events, latency increased
2.6% (18.4 ms to 18.9 ms) and 10.7% (134.0 ms to 148.3 ms)
at these percentiles. We expect to improve these by updating
hit testing to avoid the slow path in most cases.

CPU Usage. Finally, we study the impact of Site Isolation
on CPU usage. Average CPU usage in the browser pro-
cess increased 8.2% (32.0% to 34.6%) at the 99th percentile,
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Figure 4: (a) Total browser memory usage and (b) Time to
First Contentful Paint for individual sites. Parentheses denote
the number of renderer processes required to load each site with
Site Isolation. Without Site Isolation, each site requires one ren-
derer process.

due to additional IPC messages and coordination across pro-
cesses. While there were more renderer processes, each ren-
derer’s average CPU usage dropped 33.5% (47.7% to 31.8%)
at the 99th percentile, since the workload was distributed
across more processes.

Overall, we found that enabling Site Isolation had a much
smaller performance impact than expected due to the prop-
erties of the workload. Given the importance of mitigating
the attacks in the threat model described in Section 2, the
Chrome team has chosen to keep Site Isolation enabled for
all users on desktop and laptop devices.

5.3.2 Microbenchmarks

We also report microbenchmark results showing the over-
head of Site Isolation on individual web pages when loaded
in a single tab, with nothing else running in the browser.
This setup does not benefit from process consolidation across
multiple tabs as discussed in Section 4.1.1, and hence it is
not representative of the real-world workloads used in the
previous section. However, these measurements establish a
baseline and provide a reproducible reference point for fu-
ture research.

To study a mix of the most popular (likely highly opti-
mized) and slightly less popular sites, we selected the top site
as well as the 50th-ranked site in Alexa categories for news,

sports, games, shopping, and home, as well as google.com as
the top overall URL.4 This set provides pages with a range
of cross-site iframe counts, showing how the browser scales
with more processes per page.

Next, we started Chrome version 69.0.3497.100 with a
clean profile, and we loaded each site in a single tab, both
with and without Site Isolation. We report the median of
five trials for each data point to reduce variability, and we re-
played recorded network data for all runs using WprGo [69].
Our experiments were performed on a Windows 10 desktop
with an Intel Core i7-8700K 3.7 GHz 6-core CPU and 16 GB
RAM. Our data collection script is available online [45].

Figure 4 (a) shows the total browser memory use for each
site, sorted by the number of renderer processes (shown in
parentheses) that each site utilizes when loaded with Site
Isolation. As expected, the relative memory overhead gen-
erally increases with the number of processes, peaking at
89% for wowprogress.com with 10 processes. Sites that use
more memory tend to have smaller relative overhead, as their
memory usage outweighs the cost of extra processes. For
example, a heavier amazon.com site has a 5% overhead com-
pared to seatguru.com’s 31%, even though both require five
processes. google.com does not have any cross-site iframes
and requires no extra processes, but it shows a 4% increase in
memory use due to the spare process that we maintain with
Site Isolation, as explained in Section 4.1.3.

The overhead seen in these results is significantly higher
than the 9-13% overhead we reported from real-world user
workloads in the previous section. This underscores the limi-
tations of microbenchmarks: users tend to have multiple tabs
(four at 50th percentile) and a variety of open URLs. In prac-
tice, this helps reduce memory overhead via process consol-
idation, while iframe-heavy sites like wowprogress.com may
represent only a small part of users’ browsing sessions.

Figure 4 (b) shows time to First Contentful Paint [22] for
each site, to gauge impact on page load time. Most paint
times improve with Site Isolation because the spare process
helps mask process startup costs, which play a larger role
than network latency due to the benchmark’s use of recorded
network traffic. The speedups are not correlated with process
counts; Site Isolation offloads some of the work from the
main frame into iframe renderers, which may make the main
frame more responsive regardless of process count.

5.4 Compatibility
Site Isolation strives to avoid web-visible changes. For ex-
ample, we found that CORB blocks less than 1% of re-
sponses, most of which are not observable; if it only relied
on content type and not confirmation sniffing, it would block
20% of responses [17]. Also, since cross-origin frame in-
teractions had been mostly asynchronous prior to our work,
making these interactions cross-process is largely transpar-

4If a site’s main content required logging in, we picked the next highest-
ranked site.
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ent to web pages. During deployment, we closely monitored
bug reports for several months to judge the impact on actual
users and content. We have received around 20 implemen-
tation bugs, most of which are now fixed. We did uncover
some behavior changes, described below. Overall, however,
none of the bug reports warranted turning Site Isolation off,
indicating that our design does not result in major compati-
bility problems when deployed widely.

Asynchronous Full-page Layout. With Site Isolation, full-
page layout is no longer synchronous, since the frames of a
page may be spread across multiple processes. For exam-
ple, if a page changes the size of a frame and then sends
it a postMessage, the receiving frame may not yet know
its new size when receiving the message. We found that this
disrupted behavior for some pages, but since the HTML spec
does not guarantee this behavior and relatively few sites were
affected, we chose not to preserve the old ordering. Instead,
we provided guidance for web developers to fix the few af-
fected pages [7] and are pursuing specification changes to
explicitly note that full-page layout is asynchronous [27].

Partial Failures. Site Isolation can expose new failure
modes to web pages, because out-of-process iframes may
crash or become unresponsive independently from their em-
bedder, after having been loaded. Although this may lead to
unexpected behavior in the page, it happens rarely enough to
avoid being a problem in practice, and for users, losing an
iframe is usually preferable to losing the entire page.

Detecting Site Isolation. A web page should not know
if it is rendered with or without Site Isolation, and we
have avoided introducing APIs for doing so: a browser’s
process model is an implementation detail that developers
should not depend on. We did encounter and fix some
bugs that allowed detection of Site Isolation, such as dif-
fering JavaScript exception behavior for in-process and out-
of-process frames. Fundamentally, though, it is possible to
detect Site Isolation via timing attacks. For example, a cross-
process postMessage will take longer than a same-process
postMessage, due to an extra IPC hop through the browser
process; a web page could perform a timing analysis to de-
tect whether a frame is in a different process. However, such
timing differences are unlikely to affect compatibility, and
we have not received any such reports.

6 Future Directions
Site Isolation protects a great deal of site data against ren-
derer exploit attackers and memory disclosure attackers, but
there is a strong incentive to address the limitations outlined
in Section 2.2.

It is worth noting that web browsers are not alone in fac-
ing a new security landscape. Other software systems that
isolate untrustworthy code may require architecture changes
to avoid leaking data via microarchitectural state. For exam-
ple, SQL queries in databases might pose similar risks [47].

Applications that download and render untrustworthy con-
tent from the web, such as document editors, should likewise
leverage OS abstractions to isolate their own principals [42].

6.1 Protecting More Data
CORB currently only protects HTML, XML, and JSON re-
sponses, and only when the browser can confirm them using
sniffing or headers. There are several options for protect-
ing additional content, from using headers to protect partic-
ular responses, to expanding CORB to cover more types, to
changing how browsers request subresources.

First, web developers can explicitly protect sen-
sitive resources without relying on CORB, using a
Cross-Origin-Resource-Policy response header [21]
or refusing to serve cross-site requests based on the
Sec-Fetch-Site request header [71].

Second, the Chrome team is working to isolate cross-site
PDFs and other types [2, 60]. Developer outreach may also
cut down on mislabeled subresources, eliminating the need
for CORB confirmation sniffing.

Third, recent proposals call for browsers to make cross-
origin subresource requests without credentials by de-
fault [73]. This would prevent almost all sensitive cross-site
data from entering a renderer process, apart from cases of
ambient authority (e.g., intranet URLs which require no cre-
dentials).

These options may close the gaps to ensure essentially all
sensitive web data is protected by Site Isolation.

6.2 Additional Layers of Mitigation
Because Site Isolation uses OS process boundaries as an iso-
lation mechanism, it is straightforward to combine it with
additional OS-level mitigations for attacks. This may in-
clude other sandboxing mechanisms (e.g., treating different
sites as different user accounts) or mitigations for additional
types of transient execution attacks. For example, microcode
updates and OS mitigations (e.g., PTI or disabling Hyper-
Threading) may be needed for cross-process or user/kernel
attacks [15, 24, 40, 57, 66]. These are complementary to
the mitigations Site Isolation offers for same-process attacks,
where the OS and hardware have less visibility.

6.3 Practical Next Steps
Mobile Devices. This paper has described deploying Site
Isolation to users on desktop and laptop devices, but the new
web attackers are important to consider for mobile phone
browsers as well. Site Isolation faces greater challenges on
mobile devices due to fewer device resources (e.g., mem-
ory, CPU cores) and a different workload: there are fewer
renderer processes in the working set due to proactive dis-
carding by the mobile OS, and thus fewer opportunities for
process sharing. We are investigating options for deploying
similar mitigations on mobile browsers, such as isolating a
subset of sites that need the protection the most.
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Isolation in Other Browsers. There are opportunities for
other browsers to provide a limited form of process isola-
tion without the significant implementation requirements of
out-of-process iframes. For example, sites might adopt head-
ers like Cross-Origin-Opener-Policy to opt into a mode
that can place a top-level document in a new process by dis-
rupting some cross-window scripting [44].

Origin Isolation. Within browsers with Site Isolation, fur-
ther isolation may be practical by selectively moving from a
site granularity to a finer origin granularity. Too many web
sites rely on modifying document.domain to deploy ori-
gin isolation by default, but browsers may allow sites to opt
out of this feature and thus become eligible for origin isola-
tion [72]. Making this optional may reduce the impact on the
process count. Similarly, we plan to evaluate the overhead
impact of isolating opaque origins, especially to improve se-
curity for sandboxed same-site iframes.

Performance. Finally, there are performance opportunities
to explore to reduce overhead and take advantage of the new
architecture. More aggressive renderer discarding may be
possible with less cross-site sharing of renderer processes.
Isolating cross-origin iframes from some web applications
may also provide performance benefits by parallelizing the
workload, moving slower frames to a different process than
the primary user interface to keep the latter more responsive.

7 Related Work
Prior to this work, all major production browsers, including
IE/Edge [76], Chrome [52], Safari [70], and Firefox [43],
had multi-process architectures that rendered untrustworthy
web content in sandboxed renderer processes, but they did
not enforce process isolation between web security princi-
pals, and they lacked architectural support for rendering em-
bedded content such as iframes out-of-process. Site Isolation
makes Chrome the first widely-adopted browser to add such
support. Other research demonstrated a need for an archi-
tecture like Site Isolation by showing how existing browsers
are vulnerable to cross-site data leaks, local file system ac-
cess via sync from cloud services, and transient execution
attacks [25, 33, 53].

Several research browsers have proposed isolating web
principals in different OS processes, including Gazelle [68],
OP and its successor OP2 [23, 62], and IBOS [63]. Com-
pared to these proposals, Site Isolation is the first to sup-
port the web platform in its entirety, with practical per-
formance and compatibility. First, these proposals all de-
fine principals as origins, but this cannot support pages that
change document.domain [12]. Other research browsers
isolate web applications with principals that are similarly
incompatible: Tahoma [16] uses custom manifests, while
SubOS [31, 32] uses full URLs that include path in addi-
tion to origin. To preserve compatibility, we adopt the site
principal proposed in [52]; this also helps reduce process

count compared to origins. Second, we describe new opti-
mizations that make Site Isolation practical, and we evaluate
our architecture on a real workload of Chrome users. This
shows that Site Isolation introduces almost no additional
page load latency and only 9-13% memory overhead, lower
than expected from microbenchmark evaluations. Third,
we comprehensively evaluate the implications of new tran-
sient execution attacks [8] for browser security. Fourth, we
show that protecting cross-origin network responses requires
new forms of confirmation sniffing to preserve compatibility;
content types and even traditional MIME sniffing are insuf-
ficient. Finally, while Gazelle, OP2, and IBOS have out-
of-process iframes, our work overcomes many challenges to
support these in a production browser, such as supporting the
full set of cross-process JavaScript interactions, challenges
with painting and input event routing, and updating affected
features (e.g., find-in-page, printing).

The OP and OP2 browsers [23, 62] also use OS processes
to isolate other browser components, including the network
stack, storage, and display. Such additional process separa-
tion is orthogonal to Site Isolation and offers complementary
benefits, such as making the browser more modular, reduc-
ing the size of the browser process, and keeping crashes in
one component isolated from the rest of the browser.

Dong et al [19] argued that practical browser designs will
require a trade-off between finer-grained isolation and per-
formance. Our experience echoes this finding, and we in-
deed make trade-offs to reduce memory overhead, such as
isolating sites rather than origins. Dong et al’s evaluation
relied on sequentially browsing top Alexa sites; we addition-
ally collect measurements from browsing workloads in the
wild, providing a more realistic performance evaluation. For
example, this factors in process sharing across multiple tabs,
which significantly reduces overhead in practice.

Other researchers propose disabling risky JavaScript fea-
tures unless user-defined policies indicate they are safe for a
desired site [56, 61]. These approaches aim to disrupt a wide
variety of attacks (including microarchitectural), but they im-
pose barriers to adoption of powerful web features, and they
rely on users or third parties to know when features are safe
to enable. Site Isolation’s scope is more limited by compati-
bility, but it does not require actions from users or disabling
powerful features.

8 Conclusion
The web browser threat model has changed significantly.
Web sites face greater threats of data leaks within the
browser due to compromised renderer processes and tran-
sient execution attacks. Site Isolation offers the best path to
mitigating these attacks in the browser, protecting a signif-
icant amount of site data today with future opportunities to
expand the coverage. We have shown that Site Isolation is
practical to deploy in a production desktop web browser, in-
curring a 9-13% total memory overhead on real-world work-
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loads. We recommend that web developers and browser ven-
dors continue down this path, protecting additional sensi-
tive resources, adding more mitigations, and pursuing sim-
ilar isolation in environments like mobile browsers.
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A Determining Site Principals
This appendix provides additional details on how we define
principals used in Site Isolation. Figure 5 compares principal
definitions in monolithic browsers, multi-process browsers
that isolate coarser-grained groups of principals, Site Isola-
tion, and Origin Isolation. Origin Isolation, where principals
are defined as origins, offers stronger security guarantees at
the cost of breaking document.domain compatibility and
performance challenges due to a larger number of principals.

As noted in Section 3.1, computing site URL for most
HTTP(S) URLs is straightforward, but some web platform
features require special treatment. For example, frames may
be navigated to about:blank, a special URL which must in-
herit the security origin, and hence the site, from the frame
initiating the navigation. The web also supports nested
URLs such as blob: URLs. These URLs embed an ori-
gin; e.g., blob:http://example.com/UUID addresses an in-
memory blob of data controlled by the http://example.com

origin. In these cases, we extract the inner origin from the
URL and then convert it to a site.

A document may also embed a frame and specify
its HTML content inline rather than from the net-
work, either using the srcdoc attribute (e.g., <iframe

srcdoc="<html>content</html>">) or a data: URL

(e.g., data:text/html,<html>content</html>).
Srcdoc frames inherit their creator’s origin and must stay
in the principal of their embedding document. In contrast,
data: URLs load in an opaque origin [29], which cannot
be accessed from any other origin. Browsers may choose
to load each data: URL in its own separate principal and
process, but our current implementation uses the creator’s
principal (which typically controls the content) to reduce
the number of processes required. Similarly, our current
implementation keeps same-site iframes with the sandbox

attribute, which typically load in an opaque origin, in the
principal of their URL’s site. In practice, sites often use
sandboxed iframes for untrustworthy content that they wish
to isolate from the rest of the site; we discuss opportunities
for finer-grained isolation within a site in Section 6.3.

Non-web Principals. Many browsers can load documents
that do not originate from the web, including content from
local files, extensions, browser UI pages, and error pages.
These forms of content utilize the web platform for render-
ing, so the browser must define principals for them. Each
local URL (e.g., file:///homes/foo/a.html) is typically
treated as its own origin by the browser, so each path could
use a separate principal and process. Our current implemen-
tation treats all local files as part of the same file principal
to reduce the process count, since they ultimately belong to
a local user. We may revise this to isolate each file in the
future, since this group of local files may contain less trust-
worthy pages saved from the web.

We assign content from extensions to a separate shared
principal, and we isolate all browser UI pages, such as set-
tings or download manager, from one another. These pages
require vastly different permissions and privileges, and a
compromise of one page (e.g., a buggy extension) should not
be able to take advantage of permissions granted to a more
powerful page (e.g., a download management page that can
download and open files). We do allow extensions to share
processes with each other to reduce the process count; thus,
Figure 5 (c) shows extensions in a shared principal. How-
ever, extensions never share processes with other types of
pages.

B Features Updated to Support Out-of-
process iframes

This appendix lists a subset of Chrome features that needed
to be updated to support out-of-process iframes, beyond
those discussed in Section 3.4.

• Accessibility (e.g., screen readers).

• Developer tools.

• Drag and drop.

• Extensions (e.g., injecting scripts into frames of a page).

• Find-in-page.
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Figure 5: Evolution of security principals in browser architectures. Compared to prior browser architectures, Site Isolation defines
finer-grained principals that correspond to sites. Origin Isolation (d) further refines sites to origins and is the most desirable principal model
in the long term, but backward compatibility and performance challenges currently limit its practicality.
* In pre-Site-Isolation browsers (b), extensions were isolated in higher-privileged processes, but with a caveat: extensions could embed web
URL iframes which would stay in the extension’s process. With Site Isolation (c), process sharing across the web/extension boundary is no
longer possible, though extensions may still share a process with one another.

• Focus (e.g., tracking focused page and frame, focus
traversal when pressing Tab).

• Form autofill.

• Fullscreen.

• IME (Input Method Editor).

• Input gestures.

• JavaScript dialogs.

• Mixed content handling.

• Multiple monitor and device scale factor support.

• Password manager.

• Pointer Lock API.

• Printing.

• Task manager.

• Resource optimizations (e.g., deprioritizing offscreen
content).

• Malware and phishing detection.

• Save page to disk.

• Screen Orientation API.

• Scroll bubbling.

• Session restore.

• Spellcheck.

• Tooltips.

• Unresponsive renderer detector and dialog.

• User gesture tracking.

• View source.

• Visibility APIs.

• Webdriver automation.

• Zoom.

C Compromised Renderer Enforcements
This appendix lists the current places that privileged browser
components in Chrome (version 76) limit the behavior of
a renderer process based on its associated site, to mitigate
compromised renderers.

• Cookie reads and writes (document.cookie,
HttpOnly cookies).

• Cross-Origin Read Blocking implementation [20].

• Cross-Origin-Resource-Policy blocking [21].

• Frame embedding (X-Frame-Options).

• JavaScript code cache.

• Messaging (postMessage, BroadcastChannel).

• Password manager, Credential Management API.

• Storage (localStorage, sessionStorage,
indexedDB, blob storage, Cache API, WebSQL).

• Preventing web page access to file:// URLs.

• Web permissions (e.g., geolocation, camera).

We expect the following enforcements to be possible as
well, with additional implementation effort.

• Address bar origin.

• Custom HTTP headers requiring CORS.

• Feature Policy.

• iframe sandbox behaviors.

• Origin Header and CORS implementation.

• SameSite cookies.

• Sec-Fetch-Site [71].

• User gestures.
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