usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Misleading Authorship Attribution of
Source Code using Adversarial Learning
Erwin Quiring, Alwin Maier, and Konrad Rieck, TU Braunschweig

https://www.usenix.org/conference/usenixsecurity19/presentation/quiring

This paper is included in the Proceedings of the

28th USENIX Security Symposium.
August 14-16, 2019 « Santa Clara, CA, USA
978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium
is sponsored by USENIX.

https://www.usenix.org/conference/usenixsecurity19/presentation/quiring

Misleading Authorship Attribution of Source Code
using Adversarial Learning

Erwin Quiring, Alwin Maier and Konrad Rieck

Technische Universitdt Braunschweig, Germany

Abstract

In this paper, we present a novel attack against authorship
attribution of source code. We exploit that recent attribution
methods rest on machine learning and thus can be deceived
by adversarial examples of source code. Our attack performs
a series of semantics-preserving code transformations that
mislead learning-based attribution but appear plausible to a de-
veloper. The attack is guided by Monte-Carlo tree search that
enables us to operate in the discrete domain of source code.
In an empirical evaluation with source code from 204 pro-
grammers, we demonstrate that our attack has a substantial
effect on two recent attribution methods, whose accuracy
drops from over 88% to 1% under attack. Furthermore, we
show that our attack can imitate the coding style of developers
with high accuracy and thereby induce false attributions. We
conclude that current approaches for authorship attribution
are inappropriate for practical application and there is a need
for resilient analysis techniques.

1 Introduction

The source code of a program often contains peculiarities that
reflect individual coding style and can be used for identifying
the programmer. These peculiarities—or stylistic patterns—
range from simple artifacts in comments and code layout to
subtle habits in the use of syntax and control flow. A pro-
grammer might, for example, favor while-loops even though
the use of for-loops would be more appropriate. The task of
identifying a programmer based on these stylistic patterns
is denoted as authorship attribution, and several methods
have been proposed to recognize the authors of source code
[1, 4,9, 13] and compiled programs [3, 10, 17, 22].

While techniques for authorship attribution have made
great progress in the last years, their robustness against at-
tacks has received only little attention so far, and the majority
of work has focused on achieving high accuracy. The recent
study by Simko et al. [25], however, shows that developers
can manually tamper with the attribution of source code and

thus it becomes necessary to reason about attacks that can
forge stylistic patterns and mislead attribution methods.

In this paper, we present the first black-box attack against
authorship attribution of source code. Our attack exploits
that recent attribution methods employ machine learning and
thus can be vulnerable to adversarial examples [see 20]. We
combine concepts from adversarial learning and compiler
engineering, and create adversarial examples in the space of
semantically-equivalent programs.

Our attack proceeds by iteratively transforming the source
code of a program, such that stylistic patterns are changed
while the underlying semantics are preserved. To deter-
mine these transformations, we interpret the attack as a
game against the attribution method and develop a variant
of Monte-Carlo tree search [24] for constructing a sequence
of adversarial but plausible transformations. This black-box
strategy enables us to construct untargeted attacks that thwart
a correct attribution as well as targeted attacks that imitate
the stylistic patterns of a developer.

As an example, Figure 1 shows two transformations per-
formed by our attack on a code snippet from the Google
Code Jam competition. The first transformation changes the
for-loop to a while-loop, while the second replaces the C++
operator << with the C-style function printf. Note that the
format string is automatically inferred from the variable type.
Both transformations change the stylistic patterns of author A
and, in combination, mislead the attribution to author B.

Code snippet from author A

for (i = K; i > 0; i--)
- = -- cout << ans[il;

1

1

l .
1 R 1 0

. Transformed code to imitate author B !

1

1

1 i = K; <« -=-=-=f--!

e, while (i > 0) { <~ ---- - - -

I———-) printf ("%11d", ans[il]); 1

i-=3 <----t--!

}

Figure 1: Two iterations of our attack: Transformation @ changes the control
statement for — while and transformation ® manipulates the API usage
ostream — printf to imitate the stylistic patterns of author B.

USENIX Association

28th USENIX Security Symposium 479

We conduct a series of experiments to evaluate the effi-
cacy of our attack using the source code of 204 programmers
from the Google Code Jam competition. As targets we con-
sider the recent attribution methods by Caliskan et al. [9] and
Abuhamad et al. [1], which provide superior performance
compared to related approaches. In our first experiment, we
demonstrate that our attack considerably affects both attribu-
tion methods [1, 9], whose accuracy drops from over 88%
to 1% under attack, indicating that authorship attribution can
be automatically thwarted at large scale. In our second ex-
periment, we investigate the effect of targeted attacks. We
show that in a group of programmers, each individual can be
impersonated by 77% to 81% of the other developers on aver-
age. Finally, we demonstrate in a study with 15 participants
that code transformed by our attack is plausible and hard to
discriminate from unmodified source code.

Our work has implications on the applicability of author-
ship attribution in practice: We find that both, untargeted and
targeted attacks, are effective, rendering the reliable identifi-
cation of programmers questionable. Although our approach
builds on a fixed set of code transformations, we conclude
that features regularly manipulated by compilers, such as spe-
cific syntax and control flow, are not reliable for constructing
attribution methods. As a consequence, we suggest to move
away from these features and seek for more reliable means
for identifying authors in source code.

Contributions. In summary, we make the following major
contributions in this paper:

* Adversarial learning on source code. We present the
first automatic attack against authorship attribution of
source code. We consider targeted as well as untargeted
attacks of the attribution method.

e Monte-Carlo tree search. We introduce Monte-Carlo
tree search as a novel approach to guide the creation of
adversarial examples, such that feasibility constraints in
the domain of source code are satisfied.

e Black-box attack strategy. The devised attack does not
require internal knowledge of the attribution method,
so that it is applicable to any learning algorithm and
suitable for evading a wide range of attribution methods.

e Large-scale evaluation. We empirically evaluate our
attack on a dataset of 204 programmers and demonstrate
that manipulating the attribution of source code is possi-
ble in the majority of the considered cases.

The remainder of this paper is organized as follows: We
review the basics of program authorship attribution in Section
2. The design of our attack is lay out in Section 3, while
Section 4 and 5 discuss technical details on code transfor-
mation and adversarial learning, respectively. An empirical
evaluation of our attack is presented in Section 6 along with
a discussion of limitations in Section 7. Section 8 discusses
related work and Section 9 concludes the paper.

2 Authorship Attribution of Source Code

Before introducing our attack, we briefly review the design
of methods for authorship attribution. To this end, we denote
the source code of a program as x and refer to the set of all
possible source codes by X'. Moreover, we define a finite set
of authors). Authorship attribution is then the task of identi-
fying the author y €) of a given source code x € X using a
classification function f such that f(x) = y. In line with the
majority of previous work, we assume that the programs in
X can be attributed to a single author, as the identification of
multiple authors is an ongoing research effort [see 12, 17].

Equipped with this basic notation, we proceed to discuss
the two main building blocks of current methods for author-
ship attribution: (a) the extraction of features from source
code and (b) the application of machine learning for construct-
ing the classification function.

2.1 Feature Extraction

The coding habits of a programmer can manifest in a variety
of stylistic patterns. Consequently, methods for authorship
attribution need to extract an expressive set of features from
source code that serve as basis for inferring these patterns. In
the following, we discuss the major types of these features
and use the code sample in Figure 2 as a running example
throughout the paper.

int foo(int a){

1

2 int b;

3 if (a < 2) // base case
4 return 1;

5 b = foo(a - 1); // recursion
6 return a * b;

711

Figure 2: Exemplary code sample (see Figure 3, 5, and 6)

Layout features. Individual preferences of a programmer
often manifest in the layout of the code and thus correspond-
ing features are a simple tool for characterizing coding style.
Examples for such features are the indentation, the form of
comments and the use of brackets. In Figure 2, for instance,
the indentation width is 2, comments are provided in C++
style, and curly braces are opened on the same line.

Layout features are trivial to forge, as they can be eas-
ily modified using tools for code formatting, such as GNU
indent. Moreover, many integrated development editors auto-
matically normalize source code, such that stylistic patterns
in the layout are unified.

Lexical features. A more advanced type of features can
be derived from the lexical analysis of source code. In this
analysis stage, the source code is partitioned into so-called
lexems, tokens that are matched against the terminal symbols
of the language grammar. These lexems give rise to a strong

480 28th USENIX Security Symposium

USENIX Association

(decl int (")
Iél oper < return
i ;

Figure 3: Abstract syntax tree (AST) for code sample in Figure 2.

[assign] return]

[call foo] oper * '

set of string-based features jointly covering keywords and
symbols. For example, in Figure 2, the frequency of the
lexem int is 3, while it is 2 for the lexem foo.

In contrast to code layout, lexical features cannot be eas-
ily manipulated, as they implicitly describe the syntax and
semantics of the source code. While the lexem foo in the
running example could be easily replaced by another string,
adapting the lexem int requires a more involved code trans-
formation that introduces a semantically equivalent data type.
We introduce such a transformation in Section 4.

Syntactic features. The use of syntax and control flow also
reveals individual stylistic patterns of programmers. These
patterns are typically accessed using the abstract syntax tree
(AST), a basic data structure of compiler design [2]. As an
example, Figure 3 shows a simplified AST of the code snippet
from Figure 2. The AST provides the basis for constructing
an extensive set of syntactic features. These features can
range from the specific use of syntactic constructs, such as
unary and ternary operators, to generic features characterizing
the tree structure, such as the frequency of adjacent nodes. In
Figure 3, there exist 21 pairs of adjacent nodes including, for
example, (func foo)— (arg int) and (return)—(1).
Manipulating features derived from an AST is challenging,
as even minor tweaks in the tree structure can fundamentally
change the program semantics. As a consequence, transforma-
tions to the AST need to be carefully designed to preserve the
original semantics and to avoid unintentional side effects. For
example, removing the node pair (decl int)— (b) from the
AST in Figure 3 requires either replacing the type or the name
of the variable without interfering with the remaining code.
In practice, such transformations are often non-trivial and we
discuss the details of manipulating the AST in Section 4.

2.2 Machine Learning

The three feature types (layout, lexical, syntactic) provide
a broad view on the characteristics of source code and are
used by many attribution methods as the basis for applying
machine-learning techniques [e.g., 1,4, 9, 21]

From code to vectors. Most learning algorithms are de-
signed to operate on vectorial data and hence the first step
for application of machine learning is the mapping of code
to a vector space using the extracted features. Formally, this
mapping can be expressed as ¢ : X — F = R? where F
is a d dimensional vector space describing properties of the
extracted features. Different techniques can be applied for
constructing this map, which may include the computation
of specific metrics as well as generic embeddings of features
and their relations, such as a TF-IDF weighting [1, 9].

Surprisingly, the feature map ¢ introduces a non-trivial
hurdle for the construction of attacks. The map ¢ is usually
not bijective, that is, we can map a given source code x to a
feature space but are unable to automatically construct the
source code x’ for a given point ¢ (x'). Similarly, it is dif-
ficult to predict how a code transformation x — x’ changes
the position in feature space ¢ (x) — ¢(x’). We refer to this
problem as the problem-feature space dilemma and discuss
its implications in Section 3.

Multiclass classification. Using a feature map ¢, we can
apply machine learning for identifying the author of a source
code. Typically, this is done by training a multiclass classifier
g: X — R that returns scores for all authors). An
attribution is obtained by simply computing

£(x) = arg max g, (x).
yey

This setting has different advantages: First, one can inves-
tigate all top-ranked authors. Second, one can interpret the
returned scores for determining the confidence of an attribu-
tion. We make use of the latter property for guiding our attack
strategy and generating adversarial examples of source code
(see Section 5)

Different learning algorithms have been used for construct-
ing the multiclass classifier g, as for example, support vector
machines [21], random forests [9], and recurrent neural net-
works [1, 4]. Attacking each of these learning algorithms
individually is a tedious task and thus we resort to a black-
box attack for misleading authorship attribution. This attack
does not require any knowledge of the employed learning
algorithm and operates with the output g(x) only. Conse-
quently, our approach is agnostic to the learning algorithm as
we demonstrate in the evaluation in Section 6.

3 Misleading Authorship Attribution

With a basic understanding of authorship attribution, we are
ready to investigate the robustness of attribution methods and
to develop a corresponding black-box attack. To this end,
we first define our threat model and attack scenario before
discussing technical details in the following sections.

USENIX Association

28th USENIX Security Symposium 481

3.1 Threat Model

For our attack, we assume an adversary who has black-box
access to an attribution method. That is, she can send an
arbitrary source code x to the method and retrieve the corre-
sponding prediction f(x) along with prediction scores g(x).
The training data, the extracted features, and the employed
learning algorithm, however, are unknown to the adversary,
and hence the attack can only be guided by iteratively probing
the attribution method and analyzing the returned prediction
scores. This setting resembles a classic black-box attack as
studied by Tramer et al. [26] and Papernot et al. [19]. As
part of our threat model, we consider two types of attacks—
untargeted and targeted attacks—that require different capa-
bilities of the adversary and have distinct implications for the
involved programmers.

Untargeted attacks. In this setting, the adversary tries
to mislead the attribution of source code by changing the
classification into any other programmer. This attack is also
denoted as dodging [23] and impacts the correctness of the
attribution. As an example, a benign programmer might
use this attack strategy for concealing her identity before
publishing the source code of a program.

Targeted attacks. The adversary tries to change the classifi-
cation into a chosen target programmer. This attack resembles
an impersonation and is technically more advanced, as we
need to transfer the stylistic patterns from one developer to
another. A targeted attack has more severe implications: A
malware developer, for instance, could systematically change
her source code to blame a benign developer.

Furthermore, we consider two scenarios for targeted at-
tacks: In the first scenario, the adversary has no access to
source code from the target programmer and thus certain fea-
tures, such as variable names and custom types, can only be
guessed. In the second scenario, we assume that the adver-
sary has access to two files of source code from the target
developer. Both files are not part of the training- or test set
and act as external source for extracting template information,
such as recurring custom variable names.

In addition, we test a scenario where the targeted attack solely
rests on a separate training set, without access to the output of
the original classifier. This might be the case, for instance, if
the attribution method is secretly deployed, but code samples
are available from public code repositories. In this scenario,
the adversary can learn a substitute model with the aim that
her adversarial example—calculated on the substitute—also
transfers to the original classifier.

3.2 Attack Constraints

Misleading the attribution of an author can be achieved with
different levels of sophistication. For example, an adversary

may simply copy code snippets from one developer for imper-
sonation or heavily obfuscate source code for dodging. These
trivial attacks, however, generate implausible code and are
easy to detect. As a consequence, we define a set of con-
straints for our attack that should make it hard to identify
manipulated source code.

Preserved semantics. We require that source code gener-
ated by our attack is semantically equivalent to the original
code. That is, the two codes produce identical outputs given
the same input. As it is undecidable whether two programs
are semantically equivalent, we take care of this constraint
during the design of our code transformations and ensure that
each transformation is as semantics-preserving as possible.

Plausible code. We require that all transformations change
the source code, such that the result is syntactically correct,
readable and plausible. The latter constraint corresponds to
the aspect of imperceptibility when adversarial examples are
generated in the image domain [11]. In our context, plau-
sibility is important whenever the adversary wants to hide
the modification of a source file, for instance, when blaming
another developer. For this reason, we do not include junk
code or unusual syntax that normal developers would not use.

No layout changes. Layout features such as the tendency to
start lines with spaces or tabs are trivial to change with tools
for code formatting (see Section 6.4). Therefore, we restrict
our attack to the forgery of lexical and syntactic features of
source code. In this way, we examine our approach under
a more difficult scenario for the attacker where no layout
features are exploitable to mislead the attribution.

3.3 Problem-Feature Space Dilemma

The described threat model and attack constraints pose unique
challenges to the design of our attack. Our attack jointly op-
erates in two domains: On the one hand, we aim at attacking
a classifier in the feature space F. On the other hand, we
require the source code to be semantically equivalent and
plausible in the problem space X. For most feature maps ¢, a
one-to-one correspondence, however, does not exist between
the two spaces and thus we encounter a dilemma.

Problem space ~~ feature space. Each change in the source
code x may impact a set of features in ¢ (x). The exact amount
of change is generally not controllable. The correlation of
features and post-processing steps in ¢, such as a TF-IDF
weighting, may alter several features, even if only a single
statement is changed in the source code. This renders target-
oriented modification of the source code difficult.

For example, if the declaration of the variable b in line 2 of
Figure 2 is moved to line 5, a series of lexical and syntactic
features change, such as the frequency of the lexem b or the
subtree under the node assign in Figure 3.

482 28th USENIX Security Symposium

USENIX Association

Feature space
(Vectors)

Code transformations

Problem space
(Source code)

Figure 4: Schematic depiction of our approach. The attack is realized by
moving in the problem space using code transformations while being guided
by Monte-Carlo tree search in the feature space.

Feature space ~~ problem space. Any change to a feature
vector @ (x) must ensure that there exists a plausible source
code x in the problem space. Unfortunately, determining x
from ¢ (x) is not tractable for non-bijective feature maps, and
it is impossible to directly apply techniques from adversarial
learning that operate in the feature space.

For example, if we calculate the difference of two vectors
0(z) = ¢(x) — ¢(x’), we have no means for determining the
resulting source code z. Even worse, it might be impossible to
construct z, as the features in ¢(z) can violate the underlying
programming language specification, for example, due to
feature combinations inducing impossible AST edges.

This dilemma has received little attention in the literature
on adversarial learning so far, and it is often assumed that
an adversary can change features almost arbitrarily [e.g. 6,
11, 18]. Consequently, our attack does not only pinpoint
weaknesses in authorship attribution but also illustrates how
adversarial learning can be conducted when the problem and
feature space are disconnected.

3.4 Our Attack Strategy

To tackle this challenge, we adopt a mixed attack strategy
that combines concepts from compiler engineering and ad-
versarial learning. For the problem space, we develop code
transformations (source-to-source compilations) that enable
us to maneuver in the problem space and alter stylistic pat-
terns without changing the semantics. For the feature space,
we devise a variant of Monte-Carlo tree search that guides the
transformations towards a target. This variant considers the
attack as a game against the attribution method and aims at
reaching a desired output with few transformations.

An overview of our attack strategy is illustrated in Figure 4.
As the building blocks of our approach originate from dif-
ferent areas of computer science, we discuss their technical
details in separate sections. First, we introduce the concept
of semantics-preserving code transformations and present
five families of source-to-source transformations (Section 4).
Then, we introduce Monte-Carlo tree search as a generic
black-box attack for chaining transformations together such
that a target in the feature space is reached (Section 5).

4 Code Transformations

The automatic modification of code is a well-studied problem
in compiler engineering and source-to-source compilation [2].
Consequently, we build our code transformations on top of
the compiler frontend Clang [28], which provides all neces-
sary primitives for parsing, transforming and synthesizing
C/C++ source code. Note that we do not use code obfusca-
tion methods, since their changes are (a) clearly visible, and
(b) cannot mislead a classifier to a targeted author. Before
presenting five families of transformations, we formally de-
fine the task of code transformation and introduce additional
program representations.

Definition 1. A code transformation 7 : X — X, x — X’
takes a source code x and generates a transformed version x/,
such that x and x’ are semantically equivalent.

While code transformations can serve various purposes
in general [2], we focus on targeted transformations that
modify only minimal aspects of source code. If multiple
source locations are applicable for a transformation, we use a
pseudo-random seed to select one location. To chain together
targeted transformations, we define transformation sequences
as follows:

Definition 2. A transformation sequence T =T7j07,0---0T,
is the subsequent application of multiple code transformations
to a source code x.

To efficiently perform transformations, we make use of
different program representations, where the AST is the most
important one. To ease the realization of involved transforma-
tions, however, we employ two additional program represen-
tations that augment our view on the source code.

Control-flow graph with use-define chains. The control
flow of a program is typically represented by a control-flow
graph (CFG) where nodes represent statements and edges the
flow of control. Using the CFG, it is convenient to analyze
the execution order of statements. We further extend the CFG
provided by Clang with use-define chains (UDCs). These
chains unveil dependencies between usages and the defini-
tions of a variable. With the aid of UDCs, we can trace the
flow of data through the program and identify data dependen-
cies between local variables and function arguments. Figure 5
shows a CFG with use-define chains.

Declaration-reference mapping. = We additionally intro-
duce a declaration-reference mapping (DRM) that extends
the AST and links each declaration to all usages of the de-
clared variable. As an example, Figure 6 shows a part of the
AST together with the respective DRM for the code sample
from Figure 2. This code representation enables navigation
between declarations and variables, which allows us to effi-
ciently rename variables or check for the sound transforma-
tion of data types. Note the difference between use-define

USENIX Association

28th USENIX Security Symposium 483

a /

[b= ftlno(a -1 Jalse if (a < 2) B |
ai =
'\\ 1) b 1 true
| return a * b I | return 1 |
i i

Figure 5: Control-flow graph with use-define chains for the code snippet
from Figure 2. The control flow is shown in red (solid), use-define chains in
blue (dashed).

Table 1: Implemented families of transformations.

Transformation family # AST CFG UDC DRM

Control transformations 5 . . °
Declaration transformations 14 o .
API transformations 9 . . .
Template transformations 4) .
Miscellaneous transformations 4)

chains and declaration-reference mappings. The former con-
nects variable usages to variable definitions, while the latter
links variable usages to variable declarations.

Based on these program representations, we develop a set
of generic code transformations that are suitable for chang-
ing different stylistic patterns. In particular, we implement
36 transformers that are organized into five families. Table 1
provides an overview of each family together with the pro-
gram representation used by the contained transformers.

In the following, we briefly introduce each of the five fami-
lies. For a detailed listing of all 36 transformations, we refer
the reader to Table 8 in Appendix C.

Control transformations. The first family of source-to-
source transformations rewrites control-flow statements or
modifies the control flow between functions. In total, the fam-
ily contains 5 transformations. For example, the control-flow
statements while and for can be mutually interchanged by two
transformers. These transformations address a developer’s
preference to use a particular iteration type. As another exam-
ple, Figure 7 shows the automatic creation of a function. The
transformer moves the inner block of the for-statement to a
newly created function. This transformation involves passing
variables as function arguments, updating their values and
changing the control flow of the caller and callee.

Declaration transformations. This family consists of
14 transformers that modify, add or remove declarations in
source code. For example, in a widening conversion, the
type of a variable is changed to a larger type, for example,
int to long. This rewriting mimics a programmer’s prefer-
ence for particular data types. Declaration transformations
make it necessary to update all usages of variables which

(decl int (i)

]) (
nla

Figure 6: Abstract syntax tree with declaration-reference mapping for the
code snippet from Figure 2. Declaration references are shown in green
(dashed).

[assign]

]\EI/[)

for (int j = i; j < i + k; j++) {
if (s[jl == °>-7) -
s[il = 2+ !
else Fmmmmmmm - T
s[il = >-2; \

inline void setarray(string& s, int& j) {

if (s[jl == ’-7)
s[31 = 2425 < o
else
s[jl = -7
}
[...]
for (int j = i; j < i + k; j++) [2)
setarray (s, j); €« ——— - I

Figure 7: Example of a control transformation. @ moves the compound
statement into an own function and passes all variables defined outside the
block as parameters. @ calls the new function at the previous location.

can be elegantly carried out using the DRM representation.
Replacing an entire data type is a more challenging transfor-
mation, as we need to adapt all usages to the type, including
variables, functions and return values. Figure 8 shows the
replacement of the C++ string object with a conventional
char array, where the declaration and also API functions, such
as size, are modified. Note that in our current implementation
of the transformer the char array has a fixed size and thus is
not strictly equivalent to the C++ string object.

API transformations. The third family contains 9 transfor-
mations and exploits the fact that various APIs can be used

string s;
cin >> s;
for (int i

= 0; i < s.size(); i++) {
if (s[il =

H
= 240)

char s[1000]; G- = -
cin >> s; o
for (int i

if (s[i]

(2)
0; i < strlen(s); i++) { <--F--

= 240)

Figure 8: Example of a declaration transformation. @ replaces the declaration
of the C++ string object with a char array, @ adapts all uses of the object.

484 28th USENIX Security Symposium

USENIX Association

cout << fixed << setprecision(10); < - -
[...]
for (long long t = 0; (1)
t < (long long) (T); t++) {
[...]
cout << "Case #" << t + 1 << ": " 1
<< d / 1 << ’\n’; F--

for (long long t = 0;
t < (long long) (T); t++) {
[...1] (2}
printf ("Case #J11d: %.10f\n", <-----4 - -
t+ 1, 4d/ 1);

}

Figure 9: Example of an API transformation. @ determines the current
precision for output; @ replaces the C++ API with a C-style printf. The
format specifier respects the precision and the data type of the variable.

to solve the same problem. Programmers are known to favor
different APIs and thus tampering with API usage is an ef-
fective strategy for changing stylistic patterns. For instance,
we can choose between various ways to output information
in C++, such as printf, cout, OI ofstream.

As an example, Figure 9 depicts the replacement of the ob-
ject cout by a call to printf. To this end, the transformer first
checks for the decimal precision of floating-point values that
cout employs, that is, we use the CFG to find the last executed
fixed and setprecision statement. Next, the transformer uses
the AST to resolve the final data type of each cout entry and
creates a respective format string for printf.

Template transformations. The fourth family contains
4 transformations that insert or change code patterns based on
a give template. For example, authors tend to reuse specific
variable names, constants, and type definitions. If a template
file is given for a target developer, these information are
extracted and used for transformations. Otherwise, default
values that represent general style patterns are employed.
For instance, variable names can be iteratively renamed into
default names like i, j, or k until a developer’s tendency to
declare control statement variables is lost (dodging attack) or
gets matched (impersonation attack).

Miscellaneous transformations. The last family covers
4 transformations that conduct generic changes of code state-
ments. For example, the use of curly braces around compound
statements is a naive but effective stylistic pattern for identify-
ing programmers. The compound statement transformer thus
checks if the body of a control statement can be enclosed by
curly braces or the other way round. In this way, we can add
or remove a compound statement in the AST.

Another rather simple stylistic pattern is the use of return
statements, where some programmers omit these statements
in the main function and others differ in whether they return
a constant, integer or variable. Consequently, we design a
transformer that manipulates return statements.

5 Monte-Carlo Tree Search

Equipped with different code transformations for changing
stylistic patterns, we are ready to determine a sequence of
these transformations for untargeted and targeted attacks. We
aim at a short sequence, which makes the attack less likely
to be detected. Formally, our objective is to find a short
transformation sequence T that manipulates a source file x,
such that the classifier f predicts the target label y*:

F(T(x) =y*. (1)

In the case of an untargeted attack, y* represents any other
developer than the original author y*, that is, y* # y*. In the
case of a targeted attack, y* is defined as a particular target
author y'.

As we are unable to control how a transformation 7 (x)
moves the feature vector ¢(x), several standard techniques
for solving the problem in (1) are not applicable, such as
gradient-based methods [e.g. 11]. Therefore, we require an
algorithm that works over a search space of discrete objects
such as the different transformations of the source code. As a
single transformation does not necessarily change the score
of the classifier, simple approximation techniques like Hill
Climbing that only evaluate the neighborhood of a sample
fail to provide appropriate solutions.

As a remedy, we construct our attack algorithm around
the concept of Monte-Carlo tree search (MCTS)—a strong
search algorithm that has proven effective in Al gaming with
AlphaGo [24]. Similar to a game tree, our variant of MCTS
creates a search tree for the attack, where each node repre-
sents a state of the source code and the edges correspond
to transformations. By moving in this tree, we can evaluate
the impact of different transformation sequences before de-
ciding on the next move. Figure 10 depicts the four basic
steps of our algorithm: selection, simulation, expansion and
backpropagation.

Selection. As the number of possible paths in the search tree
grows exponentially, we require a selection policy to identify
the next node for expansion. This policy balances the tree’s
exploration and exploitation by alternately selecting nodes
that have not been evaluated much (exploration) and nodes
that seem promising to obtain a better result (exploitation).
Following this policy, we start at the root node and recursively
select a child node until we find a node # which was not
evaluated before. Appendix A gives more information about
the used selection policy.

Simulation & Expansion. We continue by generating a set
of unique transformation sequences with varying length that
start at u. We bound the length of each sequence by a prede-
fined value. In our experiments, we create sequences with up
to 5 transformations. For each sequence, we determine the
classifier score by providing the modified source code to the
attribution method. The right plot in Figure 10 exemplifies

USENIX Association

28th USENIX Security Symposium 485

53

S1 52

Figure 10: Basic steps of Monte-Carlo tree search. The left plot shows the
selection step, the right plot the simulation, expansion and backpropagation.

the step: we create three sequences where two have the same
first transformation. Next, we create the respective tree nodes.
As two sequences start with the same transformation, they
also share a node in the search tree.

Backpropagation. As the last step, we propagate the ob-
tained classifier scores from the leaf node of each sequence
back to the root. During this propagation, we update two
statistics in each node on the path: First, we increment a
counter that keeps track of how often a node has been part of
a transformation sequence. In Figure 10, we increase the visit
count of node u and the nodes above by 3. Second, we store
the classifier scores in each node that have been observed
in its subtree. For example, node u in Figure 10 stores the
scores from sy, s> and s3. Both statistics are used by the
selection policy and enable us to balance the exploration and
exploitation of the tree in the next iterations.

Iteration. We repeat these four basic steps until a predefined
iteration constraint is reached. After obtaining the resulting
search tree, we identify the root’s child node with the highest
average classifier score and make it the novel root node of the
tree. We then repeat the entire process again. The attack is
stopped if we succeed, we reach a previously fixed number of
iterations, or we do not obtain any improvement over multiple
iterations.

Appendix A provides more implementation details on our
variant of MCTS. We finally note that the algorithm resembles
a black-box attack, as the inner working of the classifier f is
not considered.

6 Evaluation

We proceed with an empirical evaluation of our attacks and
investigate the robustness of source-code authorship attribu-
tion in a series of experiments. In particular, we investigate
the impact of untargeted and targeted attacks on two recent
attribution methods (Section 6.2 & 6.3). Finally, we verify in
Section 6.4 that our initially imposed attack constraints are
fulfilled.

6.1 Experimental Setup

Our empirical evaluation builds on the methods developed
by Caliskan et al. [9] and Abuhamad et al. [1], two recent ap-
proaches that operate on a diverse set of features and provide
superior performance in comparison to other attribution meth-
ods. For our evaluation, we follow the same experimental
setup as the authors, re-implement their methods and make
use of a similar dataset.

Dataset & Setup. We collect C++ files from the 2017
Google Code Jam (GCJ) programming competition [29]. This
contest consists of various rounds where several participants
solve the same programming challenges. This setting enables
us to learn a classifier for attribution that separates stylistic
patterns rather than artifacts of the different challenges. More-
over, for each challenge, a test input is available that we can
use for checking the program semantics. Similar to previous
work, we select eight challenges from the competition and
collect the corresponding source codes from all authors who
solved these challenges.

In contrast to prior work [1, 9], however, we set more strin-
gent restrictions on the source code. We filter out files that
contain incomplete or broken solutions. Furthermore, we for-
mat each source code using clang-format and expand macros,
which removes artifacts that some authors introduce to write
code more quickly during the contest. Our final dataset con-
sists of 1,632 files of C++ code from 204 authors solving the
same 8 programming challenges of the competition.

For the evaluation, we use a stratified and grouped k-fold
cross-validation where we split the dataset into k — 1 chal-
lenges for training and 1 challenge for testing. In this way,
we ensure that training is conducted on different challenges
than testing. For each of the k folds, we perform feature se-
lection on the extracted features and then train the respective
classifier as described in the original publications. We report
results averaged over all 8 folds.

Implementation. We implement the attribution methods
and our attack on top of Clang [28], an open-source C/C++
frontend for the LLVM compiler framework. For the method
of Caliskan et al. [9], we re-implement the AST extraction
and use the proposed random forest classifier for attributing
programmers. The approach by Abuhamad et al. [1] uses
lexical features that are passed to a long short-term mem-
ory (LSTM) neural network for attribution. Table 2 provides
an overview of both methods. For further details on the fea-

Method Lex Syn Classifier Accuracy
Caliskan et al. [9] . . RF 90.4% + 1.7%
Abuhamad et al. [1] . LSTM 88.4% + 3.7%

Table 2: Implemented attribution methods and their reproduced accuracy.
(Lex = Lexical features, Syn = Syntactic features)

486 28th USENIX Security Symposium

USENIX Association

Success rate of our attack

Method Untargeted ‘ Targeted T+ Targeted T-
Caliskan et al. [9] 99.2% 77.3% 71.2%
Abuhamad et al. [1] 99.1% 81.3% 69.1%

Table 3: Performance of our attack as average success rate. The targeted
attack is conducted with template (T+) and without template (T-).

ture extraction and learning process, we refer the reader to
the respective publications [1, 9].

As a sanity check, we reproduce the experiments conducted
by Caliskan et al. [9] and Abuhamad et al. [1] on our dataset.
Table 2 shows the average attribution accuracy and standard
deviation over the 8 folds. Our re-implementation enables
us to differentiate the 204 developers with an accuracy of
90% and 88% on average, respectively. Both accuracies come
close to the reported results with a difference of less than 6%,
which we attribute to omitted layout features and the stricter
dataset.

6.2 Untargeted Attack

In our first experiment, we investigate whether an adversary
can manipulate source code such that the original author is
not identified. To this end, we apply our untargeted attack to
each correctly classified developer from the 204 authors. We
repeat the attack for all 8 challenges and aggregate the results.

Attack performance. Table 3 presents the performance of
the attack as the ratio of successful evasion attempts. Our
attack has a strong impact on both methods and misleads the
attribution in 99% of the cases, irrespective of the consid-
ered features and learning algorithm. As a result, the source
code of almost all authors can be manipulated such that the
attribution fails.

Attack analysis. To investigate the effect of our attack in
more detail, we compute the ratio of changed features per
adversarial sample. Figure 11 depicts the distribution over all
samples. The method by Caliskan et al. [9] exhibits a bimodal
distribution. The left peak shows that a few changes, such
as the addition of include statements, are often sufficient to
mislead attribution. For the majority of samples, however, the
attack alters 50% of the features, which indicates the tight
correlation between different features (see Section 3.3). A
key factor to this correlation is the TF-IDF weighting that
distributes minor changes over a large set of features.

In comparison, less features are necessary to evade the
approach by Abuhamad et al. [1], possibly due to the higher
sparsity of the feature vectors. Each author has 12.11% non-
zero features on average, while 53.12% are set for the method
by Caliskan et al. [9]. Thus, less features need to be changed
and in consequence each changed feature impacts fewer other
features that remain zero.

10 | | |
Caliskan et al. [9]

B Abuhamad etal. [1] | |

Density

0 20 40 60 80 100

Changed features per evasive sample [%]

Figure 11: Untargeted attack: Histogram over the number of changed features
per successful evasive sample for both attribution methods.

(a) Caliskan et al. [9] (b) Abuhamad et al. [1]
— T T T T T T [T T T T T T 1

0.75 n

Frequency
=)
W
|

0.25 n

oA = — — — s s e e
5O E DB 5O LD DO
ST TSN Wg;:@,\

Number of changed LOC per evasive sample

| B Removed LOC B Changed LOC M Added LOC |

Figure 12: Untargeted attack: Stacked histogram over the number of changed
lines of code (LOC) per successful evasive sample for both attribution meth-
ods. The original source files have 74 lines on average (std: 38.44).

Although we observe a high number of changed features,
the corresponding changes to the source code are minimal.
Figure 12 shows the number of added, changed and removed
lines of code (LOC) determined by a context-diff with difflib
for each source file before and after the attack. For the ma-
jority of cases in both attribution methods, less than 5 lines
of code are added, removed or changed. This low number
exemplifies the targeted design of our code transformations
that selectively alter characteristics of stylistic patterns.

Summary. Based on the results from this experiment, we
summarize that our untargeted attack severely impacts the per-
formance of the methods by Caliskan et al. [9] and Abuhamad
et al. [1]. We conclude that other attribution methods employ-
ing similar features and learning algorithms also suffer from
this problem and hence cannot provide a reliable attribution
in presence of an adversary.

6.3 Targeted Attack

We proceed to study the targeted variant of our attack. We
consider pairs of programmers, where the code of the source
author is transformed until it is attributed to the target author.
Due to the quadratic number of pairs, we perform this experi-
ment on a random sample of 20 programmers. This results
in 380 source-target pairs each covering the source code of
8 challenges. Table 7 in Appendix B provides a list of the

USENIX Association

28th USENIX Security Symposium 487

-100%

- 8 SElle 8|48 8 8 8 8 8 6 8

» 8 88 s/ 5fs 8 88 8 8 8 8 8

o 8 6 Sl 7[5 7 8 8 8 8

o TRl s ¢ 8 6 8 8 777 0%

a 8 8 8 8|ciPN3 |48 8 8 8 7 8 6 *

o 8 8 8 sPMNls 8 8 7 8 7 8 8 8

= 78 6 7TWEN8[5 6 7 78 8 8 8

5= 8 7 6 spppNs 7 8 s IRy 8 5|8 8 o0t

£~ 8 88 8 4KN8 8 8 8 slls 8 8 8

3 x 8 8 6 8 5[0ls 787 spls 8 8 8

g- 8 8 7 8 [EN 76 8 8 sfplls 7 8 8

3- 7EFl7 69 76 8 8 7|65 84 0%,

- 7 s 8 8 7 8 8 sjff4 5 8 8 8 ’

© sEl4 Bl 8 8 86 "l 7 8 8

w 8 8 s 580 7 8 8 s/5pW8 7 8 6

w 8 8 8NN 7 8 8 8 8 7TN7 8 8 8 o

o 6 ENFNERN 6 ¢ N ¢ Nl 6 14 6 6 -20%

o 8 88 85487 8828858282838

@ 8888 76858487

< 7 7 7 TN 7 6 7 7 TRR7 7 7[5 %
DEFGHI JKLMNOPQRST

Target author

(a) Caliskan et al. [9]

-100%

~[4E6 8 s 5 W55 64 8 6 5 84

w|6 87888687783 ENGENs s 8

«|6 778786 87838 74648 87
o517 788878778 8[Bl6 74 86 8 .
o|8 8888888878887 7 828288 80%
o e 788787673838 7Kl N8 8 78

=|7 8888888388888 87888 8

5|48 783877 cEl6 8 8 68888 o0%

£-158 78886386386 sEI7ENS7 s 8

sx |54 7 87 sjfls 8 7 6[4FEN8 5 8 7 7 8

g-|8 8Bls saBl7 8 8 8 8 7|N8 58 8 7 8

- |4s85 78768 a7 saBMcEl7 67 8 a0

wz|68 7 8 8Bl 64388 6EE5ENs 85l °
ol|48 7888 87783885 s s s 8

w|7 7688 [BIs 88838 8567788 8

w 53 |5 s [Aana 6 5 7 7 .
o477 77l s 6 s5EMoENs 7 6 8 -20%
o 7 8877857383 skEN7TENS 8 8 8

|5 88888868838 8 48NS 8 8 7

< 77 777777777 (KM T 7177 oo,
ABCDEFGH I JKLMNOPQRST °

Target author

(b) Abuhamad et al. [1]

Figure 13: Impersonation matrix for both attribution methods. Each cell indicates the number of successful attack attempts for the 8 challenges.

(a) Caliskan et al. [9]
T ——

(b) Abuhamad et al. [1]
T T T T T 1T

Frequency
=)
n

0 lllllll
S S PO S o N
SEBSEELL SADSE S
RIS S NN SIS SN

Number of changed LOC per successful sample

| B Removed LOC B Changed LOC B Added LOC |

Figure 14: Targeted attack: Stacked histogram over the number of changed
lines of code (LOC) per successful impersonation for both attribution meth-
ods. The original source files have 74 lines on average (std: 38.44).

selected authors. We start with the scenario where we retrieve
two samples of source code for each of the 20 programmers
from various GCJ challenges—not part of the fixed 8 train-test
challenges—to support the template transformations.

Attack performance. Table 3 depicts the success rate of
our attack for both attribution methods. We can transfer the
prediction from one to another developer in 77% and 81% of
all cases, respectively, indicating that more than three out of
four programmers can be successfully impersonated.

In addition, Figure 13 presents the results as a matrix,
where the number of successful impersonations is visually
depicted. Note that the value in each cell indicates the abso-
Iute number of successful impersonations for the 8 challenges
associated with each author pair. We find that a large set of
developers can be imitated by almost every other developer.
Their stylistic patterns are well reflected by our transformers
and thus can be easily forged. By contrast, only the develop-
ers I and P have a small impersonation rate for Caliskan et al.
[9], yet 68% and 79% of the developers can still imitate the
style of I and P in at least one challenge.

10 | \ |
sl Caliskan et al. [9]

z 6l B Abuhamad etal. [1]

g

g af |
0 T | T T

[=)]
=]

80 100

Changed features per successful sample [%]

Figure 15: Targeted attack: Histogram over the number of changed features
per successful impersonation for both attribution methods.

Attack analysis. The number of altered lines of code also
remains small for the targeted attacks. Figure 14 shows that
in most cases only O to 10 lines of code are affected. At the
same time, the feature space is substantially changed. Fig-
ure 15 depicts that both attribution methods exhibit a similar
distribution as before in the untargeted attack—except that
the left peak vanishes for the method of Caliskan et al. [9].
This means that each source file requires more than a few
targeted changes to achieve an impersonation.

Table 4: Usage of transformation families for impersonation

Transformation Family Cal.[9] Abu.[1]
Control Transformers 8.43% 9.72%
Declaration Transformers 14.11% 17.88%
API Transformers 29.90% 19.60%
Miscellaneous Transformers 9.15% 4.76%
Template Transformers 38.42% 48.04%

Table 4 shows the contribution of each transformation fam-
ily to the impersonation success. All transformations are
necessary to achieve the reported attack rates. A closer look
reveals that the method by Abuhamad et al. [1] strongly rests
on the usage of template transformers, while the families are
more balanced for the approach by Caliskan et al. [9]. This

488 28th USENIX Security Symposium

USENIX Association

Source Author I

Source — Target

1 cout << std::fixed; 1 | typedef double td_d; (1)
5 20 [...]

3 3 | long long ccr = 1; il

4 | for (long long ccr = 1; ccr <= t; ++ccr) { 4 | while (ccr <= t) { ————--------0
5 double d, n, ans = INT_MIN; 5 td_d d, n, ans = INT_MIN; !

6 cin >> d >> n; 6 cin >> d >> n; :

7 for (double i = 0; i < n; ++i) { 7 td_d 1i; | 3)
8 double k, s; 8 for (i = 0; i < n; ++i) { !

9 cin >> k >> s; 9 td_d k, s; :

10 [...1 10 cin >> k >> s; 1

11 } 11 [...] !

12 12 } \

13 ans = d / ans; 13 ans = d / ans; 1

14 cout << "Case #" << ccr << ": " << 14 printf ("Case #%11ld: %.7f\n", 1 o

setprecision(7) << ans << "\n"; 15 ccr, ans); :
15 16 ++ccr; == mm=-==—-
16 | ¥ 17 | ¥
Target Author P Iteration Transformer Description

1] int T, cas = 0; (1] Typedef adds typedef and replaces all locations with
2| cin >> T; previous type by novel typedef.

3 | while (T--) { o) . .

4 int d, n; For statement ~ converts for-statement into an equivalent
5 cin >> d >> n; while-statement, as target tends to solve
6 double t = 0; problems via while-loops.

7 while (n--) { (3] Init-Decl moves a declaration out of the control state-
8 int k, s; ment which mimics the declaration behavior
9 cin >> k >> s; of while-statements.
}(1) 3 K max((1.0 * d - k) /s, t); (4] Output API substitutes C++ API for writing output by
12 double ans = d / t; C API printf. To this end, it delermipes
13 printf ("Case #%d: %.10f\n", ++cas, ans); thepreqswnofoulputslalememsbyﬁndmg
14| ¥ fixed (line 1) and setprecision (line 14)

commands.

Figure 16: Impersonation example from our evaluation for the GCJ problem Steed 2: Cruise Control. The upper left listing shows the original source file, the
upper right its modified version such that it is classified as the target author. For comparison, the lower left listing shows the original source file from the target
author (which was not available for the attacker). The table lists the necessary transformations.

difference can be attributed to the feature sets, where the
former method relies on simple lexical features only and the
latter extracts more involved features from the AST.

Case Study. To provide further intuition for a successful
impersonation, Figure 16 shows a case study from our evalua-
tion. The upper two panels present the code from the source
author in original and transformed form. The lower left panel
depicts the original source text from the target author for the
same challenge. Note that the attack has no access to this file.
The table lists four conducted transformations. For instance,
the target author has the stylistic pattern to use while state-
ments, C functions for the output, and particular typedefs. By
changing these patterns, our attack succeeds in misleading
the attribution method.

Attack without template. We additionally examine the
scenario when the adversary has no access to a template file
of the target developer. In this case, our template transformers
can only try common patterns, such as the iteration variables
i, j, ..., k or typedef 11 for the type long long. Table 3 shows
the results of this experiment as well. Still, we achieve an
impersonation rate of 71% and 69%—solely by relying on
the feedback from the classifier. The number of altered lines
of code and features correspond to Figures 14 and 15.

Contrary to expectation, without a template, the approach
by Abuhamad et al. [1] is harder to fool than the method by
Caliskan et al. [9]. As the lexical features rest more on simple
declaration names and included libraries, they are harder to
guess without a template file. However, if a template file is
available, this approach is considerably easier to evade.

Attack with substitute model. We finally demonstrate that
an impersonation is even possible without access to the pre-
diction of the original classifier, only relying on a substitute
model trained from separate data. We split our training set
into disjoint sets with three files per author to train the original
and substitute model, respectively. We test the attack on the
method by Caliskan et al. [9], which is the more robust attribu-
tion under attack. By the nature of this scenario, the adversary
can use two files to support the template transformations.

Adversarial examples—generated with the substitute
model—transfer in 79% of the cases to the original model,
that is, attacks successful against the substitute model are
also effective against the original in the majority of the cases.
This indicates that our attack successfully changes indicative
features for a target developer across models. The success
rate of our attack on the original model is 52%. Due to the
reduced number of training files in this experiment, the attack

USENIX Association

28th USENIX Security Symposium 489

is harder, as the coding habits are less precisely covered by
the original and substitute models. Still, we are able to imper-
sonate every second developer with no access to the original
classifier.

Summary. Our findings show that an adversary can auto-
matically impersonate a large set of developers without and
with access to a template file. We conclude that both con-
sidered attribution methods can be abused to trigger false
allegations—rendering a real-world application dangerous.

6.4 Preserved Semantics and Plausibility

In the last experiment, we verify that our adversarial code
samples comply with the attack constraints specified in Sec-
tion 3.2. That is, we empirically check that (a) the semantics
of the transformed source code are preserved, (b) the gen-
erated code is plausible to a human analyst, and (c) layout
features can be trivially evaded.

Preserved semantics. We begin by verifying the semantics
of the transformed source code. In particular, we use the test
file from each challenge of the GCJ competition to check that
the transformed source code provides the same solution as
the original code. In all our experiments, we can verify that
the output remains unchanged for each manipulated source
code sample before and after our attack.

Plausible code. Next, we check that our transformations
lead to plausible code and conduct a discrimination test with
15 human subjects. The group consists of 4 undergraduate
students, 6 graduate students and 5 professional computer
scientists. The structure of the test follows an AXY-fest: Ev-
ery participant obtains 9 files of source code—each from a
different author but for the same GCJ challenge. These 9 files
consists of 3 unmodified source codes as reference (A) and
6 sources codes (XY) that need to be classified as either orig-
inal or modified. The participants are informed that 3 of the
samples are modified. We then ask each participant to identify
the unknown samples and to provide a short justification.

The results of this empirical study are provided in Table 5.
On average, the participants are able to correctly classify
60% of the provided files which is only marginally higher
than random guessing. This result highlights that it is hard
to decide whether source code has been modified by our
attack or not. In several cases, the participants falsely assume
that unused typedef statements or an inconsistent usage of
operators are modifications.

Evasion of layout features. Finally, we demonstrate that
layout features can be trivially manipulated, so that it is valid
to restrict our approach to the forgery of lexical and syntactic
features. To this end, we train a random forest classifier only
on layout features as extracted by Caliskan et al. [9]. We then
compare the attribution accuracy of the classifier on the test

Table 5: Study on plausibility of transformed source code.

Participant Group Accuracy Std
Undergraduate students 66.7% 23.6%
Graduate students 55.6% 15.7%
Professionals 60.0% 24.9%
Total 60.0% 21.8%
Random guessing 50.0% —

set with and without the application of the formatting tool
clang-format, Which normalizes the layout of the code.
While the attribution method can identify 27.5% of the
programmers based on layout features if the code is not for-
matted, the performance decreases to 4.5% if we apply the
formatting tool to the source code. We thus conclude that it is
trivial to mislead an attribution based on layout features.

7 Limitations

Our previous experiments demonstrate the impact of our at-
tack on program authorship attribution. Nonetheless, our
approach has limitations which we discuss in the following.

Adversarial examples # anonymization. Our attack en-
ables a programmer to hide their identity in source code by
misleading an attribution. While such an attack protects the
privacy of the programmer, it is not sufficient for achieving
anonymity. Note that k-anonymity would require a set of
k developers that are equally likely to be attributed to the
source code. In our setting, the code of the programmer is
transformed to match a different author and an anonymity set
of sufficient size is not guaranteed to exist. Still, we consider
anonymization as promising direction for further research,
which can build on the concepts of code transformations de-
veloped in this paper.

Verification of semantics. Finally, we consider two pro-
grams to be semantically equivalent if they return the same
output for a given input. In particular, we verify that the trans-
formed source code is semantically equivalent by applying
the test cases provided by the GCJ competition. Although
this approach is reasonable in our setting, it cannot guaran-
tee strict semantic equivalence in all possible cases. Some
of the exchanged API functions, for example, provide the
same functionality but differ in corner cases, such as when
the memory is exhausted. We acknowledge this limitation,
yet it does not impact the general validity of our results.

8 Related Work

The automatic attack of source-code authorship attribution
touches different areas of security research. In this section,
we review related methods and concepts.

490 28th USENIX Security Symposium

USENIX Association

Authorship attribution of source code. Identifying the au-
thor of a program is a challenging task of computer security
that has attracted a large body of work in the last years. Start-
ing from early approaches experimenting with hand-crafted
features [14, 16], the techniques for examining source code
have constantly advanced, for example, by incorporating ex-
pressive features, such as n-grams [e.g., 1, 8, 13] and abstract
syntax trees [e.g., 4, 9, 21]. Similarly, techniques for analyz-
ing native code and identifying authors of compiled programs
have advanced in the last years [e.g., 3, 10, 17, 22].

Two notable examples for source code are the approach by
Caliskan et al. [9] and by Abuhamad et al. [1]. The former
inspects features derived from code layout, lexical analysis
and syntactic analysis. Regarding comprehensiveness, this
work can be considered as the current state of the art. The
work by Abuhamad et al. [1] focuses on lexical features as
input for recurrent neural networks. Their work covers the
largest set of authors so far and makes use of recent advances
in deep learning. Table 6 shows the related approaches.

Method Lay Lex Syn Authors Results
*Abuhamad et al. [1] . 8903 92 %
*Caliskan et al. [9] . ° . 250 95%
Alsulami et al. [4] . 70 89%
Frantzeskou et al. [13] . ° 30 97%
Krsul and Spafford [14] . ° . 29 73%
Burrows et al. [8] . ° 10 77%

Table 6: Comparison of approaches for source code authorship attribution.
Lay = Layout features, Lex = Lexical features, Syn = Syntactic features.
*Attacked in this paper.

Previous work, however, has mostly ignored the problem
of untargeted and targeted attacks. Only the empirical study
by Simko et al. [25] examines how programmers can mislead
the attribution by Caliskan et al. [9] by mimicking the style
of other developers. While this study provides valuable in-
sights into the risk of forgeries, it does not consider automatic
attacks and thus is limited to manipulations by humans. In
this paper, we demonstrate that such attacks can be fully auto-
mated. Our generated forgeries even provide a higher success
rate than the handcrafted samples in the study. Moreover,
we evaluate the impact of different feature sets and learning
algorithms by evaluating two attribution methods.

Adversarial machine learning. The security of machine
learning techniques has also attracted a lot of research re-
cently. A significant fraction of work on attacks has focused
on scenarios where the problem and feature space are mainly
identical [see 6, 11, 18]. In these scenarios, changes in the
problem space, such as the modification of an image pixel,
have a one-to-one effect on the feature space, such that so-
phisticated attack strategies can be applied. By contrast, a
one-to-one mapping between source code and the extracted
features cannot be constructed and thus we are required to
introduce a mixed attack strategy (see Section 3).

Creating evasive PDF malware samples [27, 31] and adver-
sarial examples for text classifiers [e.g., 5, 15] represent two
similar scenarios, where the practical feasibility needs to be
ensured. These works typically operate in the problem space,
where search algorithms such as hill climbing or genetic pro-
gramming are guided by information from the feature space.
MCTS represents a novel concept in the portfolio of creating
adversarial examples under feasibility constraints, previously
examined by Wicker et al. [30] in the image context only.

Also related is the approach by Sharif et al. [23] for mis-
leading face recognition systems using painted eyeglasses.
The proposed attack operates in the feature space but en-
sures practical feasibility by refining the optimization prob-
lem. In particular, the calculated adversarial perturbations
are required to match the form of eyeglasses, to be printable,
and to be invariant to slight head movements. In our attack
scenario, such refinements of the optimization problem are
not sufficient for obtaining valid source code, and thus we
resort to applying code transformations in the problem space.

9 Conclusion

Authorship attribution of source code can be a powerful tool
if an accurate and robust identification of programmers is
possible. In this paper, however, we show that the current
state of the art is insufficient for achieving a robust attribution.
We present a black-box attack that seeks adversarial examples
in the domain of source code by combining Monte-Carlo
tree search with concepts from source-to-source compilation.
Our empirical evaluation shows that automatic untargeted
and targeted attacks are technically feasible and successfully
mislead recent attribution methods.

Our findings indicate a need for alternative techniques for
constructing attribution methods. These techniques should
be designed with robustness in mind, such that it becomes
harder to transfer stylistic patterns from one source code to
another. A promising direction are generative approaches of
machine learning, such as generative adversarial networks,
that learn a decision function while actively searching for its
weak spots. Similarly, it would help to systematically seek
for stylistic patterns that are inherently hard to manipulate,
either due to their complexity or due to their tight coupling
with program semantics.

Public dataset and implementation. To encourage further
research on program authorship attribution and, in particular,
the development of robust methods, we make our dataset and
implementation publicly available.! The attribution methods,
the code transformers as well as our attack algorithm are all
implemented as individual modules, such that they can be
easily combined and extended.

Iwww.tu-braunschweig.de/sec/research/code/imitator

USENIX Association

28th USENIX Security Symposium 491

Acknowledgment

The authors would like to thank Johannes Heidtmann for his
assistance during the project, and the anonymous reviewers
for their suggestions and comments. Furthermore, the authors
acknowledge funding by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972 and the
research grant RI 2469/3-1.

References

[1] M. Abuhamad, T. AbuHmed, A. Mohaisen, and
D. Nyang. Large-scale and language-oblivious code au-
thorship identification. In Proc. of ACM Conference on
Computer and Communications Security (CCS), 2018.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Prin-
ciples, Techniques, and Tools (2nd Edition). Addison-
Wesley, 2006.

[3] S. Alrabaee, P. Shirani, L. Wang, M. Debbabi, and
A. Hanna. On leveraging coding habits for effective
binary authorship attribution. In Proc. of European Sym-
posium on Research in Computer Security (ESORICS),
2018.

[4] B. Alsulami, E. Dauber, R. E. Harang, S. Mancoridis,
and R. Greenstadt. Source code authorship attribution
using long short-term memory based networks. In Proc.
of European Symposium on Research in Computer Se-

curity (ESORICS), 2017.

[5] M. Alzantot, Y. Sharma, A. Elgohary, B.-J. Ho, M. Sri-
vastava, and K.-W. Chang. Generating natural language
adversarial examples. In Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), 2018.

[6] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. §rndié,
P. Laskov, G. Giacinto, and F. Roli. Evasion attacks
against machine learning at test time. In Machine Learn-

ing and Knowledge Discovery in Databases. Springer,
2013.

[7] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lu-
cas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,
S. Samothrakis, and S. Colton. A survey of monte carlo
tree search methods. IEEE Transactions on Computa-
tional Intelligence and Al in Games, 4(1), 2012.

[8] S. Burrows, A. L. Uitdenbogerd, and A. Turpin. Ap-
plication of information retrieval techniques for source
code authorship attribution. In Proc. of Conference
on Database Systems for Advanced Applications (DAS-
FAA), 2009.

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

A. Caliskan, R. Harang, A. Liu, A. Narayanan,
C. R. Voss, F. Yamaguchi, and R. Greenstadt. De-
anonymizing programmers via code stylometry. In Proc.
of USENIX Security Symposium, 2015.

A. Caliskan, F. Yamaguchi, E. Tauber, R. Harang,
K. Rieck, R. Greenstadt, and A. Narayanan. When
coding style survives compilation: De-anonymizing pro-
grammers from executable binaries. In Proc. of Network
and Distributed System Security Symposium (NDSS),
2018.

N. Carlini and D. A. Wagner. Towards evaluating the
robustness of neural networks. In Proc. of IEEE Sympo-
sium on Security and Privacy (S&P), 2017.

E. Dauber, A. Caliskan, R. E. Harang, and R. Green-
stadt. Git blame who?: Stylistic authorship attribution
of small, incomplete source code fragments. Techni-
cal Report abs/1701.05681, arXiv, Computing Research
Repository, 2017.

G. Frantzeskou, E. Stamatatos, S. Gritzalis, and S. Kat-
sikas. Effective identification of source code authors
using byte-level information. In Proc. of International
Conference on Software Engineering (ICSE), 2006.

I. Krsul and E. H. Spafford. Authorship analysis: identi-

fying the author of a program. Computers & Security,
16(3), 1997.

J.Li, S. Ji, T. Du, B. Li, and T. Wang. Textbugger: Gen-
erating adversarial text against real-world applications.
In Proc. of Network and Distributed System Security
Symposium (NDSS), 2019.

S. MacDonell, A. Gray, G. MacLennan, and P. Sallis.
Software forensics for discriminating between program
authors using case-based reasoning, feed-forward neural
networks and multiple discriminant analysis. In Proc.
of International Conference on Neural Information Pro-
cessing (ICONIP), 1999.

X. Meng, B. P. Miller, and K.-S. Jun. Identifying mul-
tiple authors in a binary program. In Proc. of Euro-

pean Symposium on Research in Computer Security
(ESORICS), 2017.

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B.
Celik, and A. Swami. The limitations of deep learn-
ing in adversarial settings. In Proc. of IEEE European
Symposium on Security and Privacy (EuroS&P), 2016.

N. Papernot, P. McDaniel, I. Goodfellow, S. Jha,
Z. Berkay Celik, and A. Swami. Practical black-box
attacks against machine learning. In Proc. of ACM Asia

Conference on Computer Computer and Communica-
tions Security (ASIA CCS), 2017.

492 28th USENIX Security Symposium

USENIX Association

[20] N. Papernot, P. D. McDaniel, A. Sinha, and M. P. Well-
man. Sok: Security and privacy in machine learning.
In Proc. of IEEE European Symposium on Security and
Privacy (EuroS&P), 2018.

[21] B. N. Pellin. Using classification techniques to deter-
mine source code authorship. Technical report, Depart-
ment of Computer Science, University of Wisconsin,
2000.

[22] N. E. Rosenblum, X. Zhu, and B. P. Miller. Who wrote
this code? identifying the authors of program binaries.
In Proc. of European Symposium on Research in Com-
puter Security (ESORICS), 2011.

[23] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Re-
iter. Accessorize to a Crime: real and stealthy attacks
on state-of-the-art face recognition. In Proc. of ACM

Conference on Computer and Communications Security
(CCS), 2016.

[24] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of Go with deep neural networks
and tree search. Nature, 529, 2016.

[25] L. Simko, L. Zettlemoyer, and T. Kohno. Recognizing
and imitating programmer style: Adversaries in pro-
gram authorship attribution. Proceedings on Privacy
Enhancing Technologies, 1, 2018.

[26] F. Tramer, F. Zhang, A. Juels, M. K. Reiter, and T. Ris-
tenpart. Stealing machine learning models via prediction
apis. In Proc. of USENIX Security Symposium, 2016.

[27] N. Srndi¢ and P. Laskov. Practical evasion of a learning-
based classifier: A case study. In Proc. of IEEE Sympo-
sium on Security and Privacy (S&P), 2014.

[28] Website. Clang: C language family frontend for LLVM.
LLVM Project, https://clang.1llvm.org, 2019. last
visited May 2019.

[29] Website.
https://code.google.com/codejam/,
last visited May 2019.

[30] M. Wicker, X. Huang, and M. Kwiatkowska. Feature-
guided black-box safety testing of deep neural networks.
In Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS), 2018.

[31] W. Xu, Y. Qi, and D. Evans. Automatically evading
classifiers: A case study on pdf malware classifiers.
In Proc. of Network and Distributed System Security
Symposium (NDSS), 2016.

Google Code Jam.
2019.

A Monte-Carlo Tree Search

In this section, we provide further details about our variant of
Monte-Carlo tree search. Algorithm 1 gives an overview of
the attack. The procedure Artack starts with the root node ry
that represents the original source code x. The algorithm then
works in two nested loops:

* The outer loop in lines 3-5 repetitively builds a search
tree for the current state of source code r, and takes a
single move (i.e. a single transformation). To do so, in
each iteration, we choose the child node with the highest
average classifier score. This process is repeated until the
attack succeeds or a stop criterion is fulfilled (we reach
a fixed number of outer iterations or we do not observe
any improvement over multiple iterations) (line 3).

* The procedure MCTS represents the inner loop. It it-
eratively builds and extends the search tree under the
current root node r. As this procedure is the main build-
ing block of our attack, we discuss the individual steps
in more detail in the following.

Algorithm 1 Monte-Carlo Tree Search

1: procedure ATTACK(rp)
r<ro
while not SUCCESS(r) and not STOPCRITERION(r) do

MCTS(r) > Extend the search tree under r
r <— CHILDWITHBESTSCORE(r) > Perform next move
: procedure MCTS(r)
for i< 1,N do

u <— SELECTION(r, i)

T < SIMULATIONS(u)
EXPANSION(u, T)
BACKPROPAGATION(T)

eI AN A T

—_—

Selection. Algorithm 2 shows the pseudocode to find the
next node which is evaluated. The procedure recursively
selects a child node according to a selection policy. We stop if
the current node has no child nodes or if we have not marked
it before in the current procedure SeLection. The procedure
finally returns the node that will be evaluated next.

As the number of possible paths grows exponentially (we
have up to 36 transformations as choice at each node), we
cannot evaluate all possible paths. The tree creation thus
crucially depends on a selection policy. We use a simple
heuristic to approximate the Upper Confidence Bound for
Trees algorithm that is often used as selection policy (see [7]).
Depending on the current iteration index i of SELEcTION, the
procedure SELEcTIONPOLICY alternately returns the decision
rule to choose the child with the highest average score, the
lowest visit count or the highest score standard deviation.
This step balances the exploration of less-visited nodes and
the exploitation of promising nodes with a high average score.

Simulations. Equipped with the node u that needs to be
evaluated, the next step generates a set of transformation

USENIX Association

28th USENIX Security Symposium 493

Algorithm 2 Selection Procedure of MCTS

1: procedure SELECTION(r, i)

2 D < SELECTIONPOLICY (i)

3 Ur

4 while « has child nodes do

5 v <= SELECTCHILD(u, D) > Child of u w.r.t. to D
6: if v not marked as visited then

7 Mark v as visited

8 return v

9 else

0 U+v

—_

sequences 7 that start at u:
T=A{T;|j=1,....k and |T;| <M}, 2)

where |T|| is the number of transformations in T;. The se-
quences are created randomly and have a varying length
which is, however, limited by M. In our experiments, we
set M = 5 to reduce the number of possible branches.

In contrast to the classic game use-case, we can use the
returned scores g(x) as early feedback and thus we do not
need to play out a full game. In other words, it is not necessary
to evaluate the complete path to obtain feedback. For each
sequence, we determine the classifier score by passing the
modified source code at the end of each sequence to the
attribution method. We further pinpoint a difference to the
general MCTS algorithm. Instead of evaluating only one path,
we create a batch of sequences that can be efficiently executed
in parallel. In this way, we reduce the computation time and
obtain the scores for various paths.

Expansion. We continue by inserting the respective trans-
formations from the sequences as novel tree nodes under u
(see Algorithm 3). For each sequence, we start with u and the
first transformation. We check if a child node with the same
transformation already exists under u. If not, a new node v
is created and added as child under u. Otherwise, we use the
already existing node v. We repeat this step with v and the
next transformation. Figure 10 from Section 5 exemplifies
this expansion step.

Algorithm 3 Expansion Procedure of MCTS

1: procedure EXPANSION(u, T)
2: for T in 7 do > For each sequence
3: 74 u
4: for 7 in T do > For each transformer
5: if z has no child with 7 then
6: v <~ CREATENEWNODE(T)
7. z.add_child(v)
8: else
9: v ¢ z.GETCHILDWITH(T)
10: 2+
Backpropagation. Algorithm 4 shows the last step that

backpropagates the classifier scores to the root. For each
sequence, the procedure first determines the last node n of the

current sequence and the observed classifier score s at node
n. Next, all nodes on the path from 7 to the root node of the
search tree are updated. First, the visit count of each path
node is incremented. Second, the final classifier score s is
added to the score list of each path node. Both statistics are
used by SELECTCHILD to choose the next promising node for
evaluation. Furthermore, CHILDWITHBESTSCORE uses the score
list to obtain the child node with the highest average score.

Algorithm 4 Backpropagation Procedure of MCTS

1: procedure BACKPROPAGATION(T)

2 for T in 7 do

3 s <— GETSCORE(T)

4: get n as tree leaf of current sequence

5: while 7 is not None do > Backpropagate to root
6: > Increase visit count
7 > Append score
8 > Will be None for root node

n.visitCount <— n.visitCount + 1
n.scores = n.scores U s
n < n.parent

We finally note a slight variation for the scenario with a
substitute model (see Section 3.1). To improve the transfer-
ability rate from the substitute to the original model, we do
not terminate at the first successful adversarial example. In-
stead, we collect all successful samples and stop the outer
loop after a predefined number of iterations. We choose the
sample with the highest score on the substitute to be tested
on the original classifier.

B List of Developers For Impersonation

Table 7 maps the letters to the 20 randomly selected program-
mers from the 2017 GCJ contest.

Table 7: List of developers for impersonation

Letter Author Letter Author
A 4yn K chocimir
B ACMonster L csegura
C ALOHA Brcps M eugenus
D Alireza.bh N fragusbot
E DAle (0] iPeter

F ShayanH P jiian

G SummerDAway Q liymouse
H TungNP R sdya

I aman.chandna S thatprogrammer
J ccsnoopy T vudduu

C List of Code Transformations

A list of all 36 developed code transformations is presented
in Table 8. The transformers are grouped accordingly to the
family of their implemented transformations, i.e, transforma-
tions altering the control flow, transformations of declarations,
transformations replacing the used API, template transforma-
tions, and miscellaneous transformations.

494 28th USENIX Security Symposium

USENIX Association

Table 8: List of Code Transformations

Transformer

Control Transformations

Description of Transformations

For statement transformer
While statement transformer

Function creator

Deepest block transformer
If statement transformer

Transformer

Replaces a for-statement by an equivalent while-statement.
Replaces a while-statement by an equivalent for-statement.

Moves a whole block of code to a standalone function and creates a call to the new function at the respective position.
The transformer identifies and passes all parameters required by the new function. It also adapts statements that change
the control flow (e.g. the block contains a return statement that also needs to be back propagated over the caller).

Moves the deepest block in the AST to a standalone function.

Split the condition of a single if-statement at logical operands (e.g., && or | |) to create a cascade or a sequence of two
if-statements depending on the logical operand.

Declaration Transformations

Description of Transformation

Array transformer

String transformer

Integral type transformer
Floating-point type transformer
Boolean transformer

Typedef transformer

Include-Remove transformer

Unused code transformer

Init-Decl transformer

Transformer

Converts a static or dynamically allocated array into a C++ vector object.

Array option: Converts a char array (C-style string) into a C++ string object. The transformer adapts all usages in the
respective scope, for instance, it replaces all calls to strlen by calling the instance methods size.

String option: Converts a C++ string object into a char array (C-style string). The transformer adapts all usages in the
respective scope, for instance, it deletes all calls to c_str ().

Promotes integral types (char, short, int, long, long long) to the next higher type, e.g., int is replaced by long.
Converts float to double as next higher type.

Bool option: Converts true or false by an integer representation to exploit the implicit casting.
Int option: Converts an integer type into a boolean type if the integer is used as boolean value only.

Convert option: Convert a type from source file to a new type via typedef, and adapt all locations where the new type
can be used.

Delete option: Deletes a type definition (typedef) and replace all usages by the original data type.

Removes includes from source file that are not needed.

Function option: Removes functions that are never called.
Variable option: Removes global variables that are never used.

Move into option: Moves a declaration for a control statement if defined outside into the control statement. For instance,
int i; .; for(i = 0; i < N; i++) becomes for(int i = 0; i < N; i++).
Move out option: Moves the declaration of a control statement’s initialization variable out of the control statement.

API Transformations

Description of Transformations

Input interface transformer

Output interface transformer

Input API transformer
Output API transformer

Sync-with-stdio transformer

Stdin option: Instead of reading the input from a file (e.g. by using the API ifstream or freopen), the input to the
program is read from stdin directly (e.g. cin or scanf).

File option: Instead of reading the input from stdin, the input is retrieved from a file.

Stdout option: Instead of printing the output to a file (e.g. by ofstream or freopen), the output is written directly to
stdout (e.g. cout or printf).

File option: Instead of writing the output directly to stdout, the output is written to a file.

C++-Style option: Substitutes C APIs used for reading input (e.g., scanf) by C++ APIs (e.g., usage of cin).

C-Style option: Substitutes C++ APIs used for reading input (e.g., usage of cin) by C APIs (e.g., scanf).

C++-Style option: Substitutes C APIs used for writing output (e.g., printf) by C++ APIs (e.g., usage of cout).
C-Style option: Substitutes C++ APIs used for writing output (e.g., usage cout) by C APIs (e.g., printf).

Enable or remove the synchronization of C++ streams and C streams if possible.

USENIX Association

28th USENIX Security Symposium 495

Table 8: List of Code Transformations (continued)

Transformer

Template Transformers

Description of Transformations

Identifier transformer

Include transformer

Global declaration transformer
Include-typedef transformer

Transformer

Renames an identifier, i.e., the name of a variable or function. If no template is given, default values are extracted from
the 2016 Code Jam Competition set that was used by Caliskan et al. [9] and that is not part of the training- and test set.
We test default values such as T, t, ..., i.

Adds includes at the beginning of the source file. If no template is given, the most common includes from the 2016
Code Jam Competition are used as defaults.

Adds global declarations to the source file. Defaults are extracted from the 2016 Code Jam Competition.

Inserts a type using typedef, and updates all locations where the new type can be used. Defaults are extracted from the
2016 Code Jam Competition.

Miscellaneous Transformers

Description of Transformations

Compound statement transformer

Return statement transformer

Literal transformer

Insert option: Adds a compound statement ({...}). The transformer adds a new compound statement to a control
statement (if, while, etc.) given their body is not already wrapped in a compound statement.

Delete option: Deletes a compound statement ({...}). The transformer deletes compound statements that have no
effect, i.e., compound statements containing only a single statement.

Adds a return statement. The transformer adds a return statement to the main function to explicitly return O (meaning
success). Note that main is a non-void function and is required to return an exit code. If the execution reaches the end
of main without encountering a return statement, zero is returned implicitly.

Substitutes a return statement returning an integer literal, by a statement that returns a variable. The new variable is
declared by the transformer and initialized accordingly.

496 28th USENIX Security Symposium USENIX Association

