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Abstract

Remote Attestation (RA) is a distinct security service that al-

lows a trusted verifier (V rf) to measure the software state of

an untrusted remote prover (P rv). If correctly implemented,

RA allows V rf to remotely detect if P rv is in an illegal or com-

promised state. Although several RA approaches have been

explored (including hardware-based, software-based, and hy-

brid) and many concrete methods have been proposed, compar-

atively little attention has been devoted to formal verification.

In particular, thus far, no RA designs and no implementations

have been formally verified with respect to claimed security

properties.

In this work, we take the first step towards formal verifica-

tion of RA by designing and verifying an architecture called

VRASED: Verifiable Remote Attestation for Simple Embedded

Devices. VRASED instantiates a hybrid (HW/SW) RA co-

design aimed at low-end embedded systems, e.g., simple IoT

devices. VRASED provides a level of security comparable to

HW-based approaches, while relying on SW to minimize ad-

ditional HW costs. Since security properties must be jointly

guaranteed by HW and SW, verification is a challenging task,

which has never been attempted before in the context ofRA. We

believe that VRASED is the first formally verified RA scheme.

To the best of our knowledge, it is also the first formal verifi-

cation of a HW/SW co-design implementation of any security

service. To demonstrate VRASED’s practicality and low over-

head, we instantiate and evaluate it on a commodity platform

(TI MSP430). VRASED was deployed using the Basys3 Artix-7

FPGA and its implementation is publicly available.

1 Introduction

The number and variety of special-purpose computing devices

is increasing dramatically. This includes all kinds of embedded

devices, cyber-physical systems (CPS) and Internet-of-Things

(IoT) gadgets, that are utilized in various “smart” settings, such

as homes, offices, factories, automotive systems and public

venues. As society becomes increasingly accustomed to being

surrounded by, and dependent on, such devices, their security

becomes extremely important. For actuation-capable devices,

malware can impact both security and safety, e.g., as demon-

strated by Stuxnet [49]. Whereas, for sensing devices, malware

can undermine privacy by obtaining ambient information. Fur-

thermore, clever malware can turn vulnerable IoT devices into

zombies that can become sources for DDoS attacks. For exam-

ple, in 2016, a multitude of compromised “smart” cameras and

DVRs formed the Mirai Botnet [2] which was used to mount a

massive-scale DDoS attack (the largest in history).

Unfortunately, security is typically not a key priority for low-

end device manufacturers, due to cost, size or power constraints.

It is thus unrealistic to expect such devices to have the means to

prevent current and future malware attacks. The next best thing

is detection of malware presence. This typically requires some

form of Remote Attestation (RA) – a distinct security service

for detecting malware on CPS, embedded and IoT devices. RA

is especially applicable to low-end embedded devices that are

incapable of defending themselves against malware infection.

This is in contrast to more powerful devices (both embedded

and general-purpose) that can avail themselves of sophisticated

anti-malware protection. RA involves verification of current

internal state (i.e., RAM and/or flash) of an untrusted remote

hardware platform (prover or P rv) by a trusted entity (verifier

or V rf). If V rf detects malware presence, P rv’s software can

be re-set or rolled back and out-of-band measures can be taken

to prevent similar infections. In general, RA can help V rf es-

tablish a static or dynamic root of trust in P rv and can also be

used to construct other security services, such as software up-

dates [43] and secure deletion [40]. Hybrid RA (implemented

as a HW/SW co-design) is a particularly promising approach

for low-end embedded devices. It aims to provide the same

security guarantees as (more expensive) hardware-based ap-

proaches, while minimizing modifications to the underlying

hardware.

Even though numerous RA techniques with different as-

sumptions, security guarantees, and designs, have been pro-

posed [9, 10, 14–16, 20, 21, 25, 30, 35, 38, 38–40, 43], a major

missing aspect of RA is the high-assurance and rigor derivable

from utilizing computer-aided formal verification to guarantee

security of the design and implementation of RA techniques.

Because all aforementioned architectures and their implemen-

tations are not systematically designed from abstract models,

their soundness and security can not be formally argued. In

fact, our RA verification efforts revealed that a previous hybrid

RA design – SMART [21] – assumed that disabling interrupts

is an atomic operation and hence opened the door to compro-

mise of P rv’s secret key in the window between the time of
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the invocation of disable interrupts functionality and the time

when interrupts are actually disabled. Another low/medium-

end architecture – Trustlite [30] – does not achieve our formal

definition of RA soundness. As a consequence, this architecture

is vulnerable to self-relocating malware (See [13] for details).

Formal specification of RA properties and their verification

significantly increases our confidence that such subtle issues

are not overlooked.

In this paper we take a “verifiable-by-design” approach

and develop, from scratch, an architecture for Verifiable

Remote Attestation for Simple Embedded Devices (VRASED).

VRASED is the first formally specified and verified RA archi-

tecture accompanied by a formally verified implementation.

Verification is carried out for all trusted components, including

hardware, software, and the composition of both, all the way

up to end-to-end notions for RA soundness and security. The

resulting verified implementation – along with its computer

proofs – is publicly available [1]. Formally reasoning about,

and verifying, VRASED involves overcoming major challenges

that have not been attempted in the context of RA and, to the

best of our knowledge, not attempted for any security service

implemented as a HW/SW co-design. These challenges in-

clude:

1 – Formal definitions of: (i) end-to-end notions for RA

soundness and security; (ii) a realistic machine model for

low-end embedded systems; and (iii) VRASED’s guaran-

tees. These definitions must be made in single formal system

that is powerful enough to provide a common ground for rea-

soning about their interplay. In particular, our end goal is to

prove that the definitions for RA soundness and security are

implied by VRASED’s guarantees when applied to our machine

model. Our formal system of choice is Linear Temporal Logic

(LTL). A background on LTL and our reasons for choosing it

are discussed in Section 2.

2 – Automatic end-to-end verification of complex systems such

as VRASED is challenging from the computability perspective,

as the space of possible states is extremely large. To cope with

this challenge, we take a “divide-to-conquer” approach. We

start by dividing the end-to-end goal of RA soundness and

security into smaller sub-properties that are also defined in

LTL. Each HW sub-module, responsible for enforcing a given

sub-property, is specified as a Finite State Machine (FSM),

and verified using a Model Checker. VRASED’s SW relies on

an F* verified implementation (see Section 4.3) which is also

specified in LTL. This modular approach allows us to efficiently

prove sub-properties enforced by individual building blocks in

VRASED.

3 – All proven sub-properties must be composed together in

order to reason about RA security and soundness of VRASED

as one whole system. To this end, we use a theorem prover

to show (by using LTL equivalences) that the sub-properties

that were proved for each of VRASED’s sub-modules, when

composed, imply the end-to-end definitions of RA soundness

and security. This modular approach enables efficient system-

wide formal verification.

1.1 The Scope of Low-End Devices

This work focuses on low-end devices based on low-power

single core microcontrollers with a few KBytes of program

and data memory. A representative of this class of devices is

the Texas Instrument’s MSP430 microcontroller (MCU) fam-

ily [26]. It has a 16-bit word size, resulting in ≈ 64 KBytes of

addressable memory. SRAM is used as data memory and its

size ranges between 4 and 16KBytes (depending on the spe-

cific MSP430 model), while the rest of the address space can

be used for program memory, e.g., ROM and Flash. MSP430 is

a Von Neumann architecture processor with common data and

code address spaces. It can perform multiple memory accesses

within a single instruction; its instruction execution time varies

from 1 to 6 clock cycles, and instruction length varies from 16

to 48 bits. MSP430 was designed for low-power and low-cost.

It is widely used in many application domains, e.g., automotive

industry, utility meters, as well as consumer devices and com-

puter peripherals. Our choice is also motivated by availability

of a well-maintained open-source MSP430 hardware design

from Open Cores [22]. Nevertheless, our machine model is ap-

plicable to other low-end MCUs in the same class as MSP430

(e.g., Atmel AVR ATMega).

1.2 Organization

Section 2 provides relevant background on RA and formal ver-

ification. Section 3 contains the details of the VRASED archi-

tecture and an overview of the verification approach. Section 4

contains the formal definitions of end-to-endRA soundness and

security and the formalization of the necessary sub-properties

along with the implementation of verified components to re-

alize such sub-properties. Due to space limitation, the proofs

for end-to-end soundness and security derived from the sub-

properties are discussed in Appendix A. Section 5 discusses

alternative designs to guarantee the same required properties

and their trade-offs with the standard design. Section 6 presents

experimental results demonstrating the minimal overhead of

the formally verified and synthesized components. Section 7

discusses related work. Section 8 concludes with a summary

of our results. End-to-end proofs of soundness and security,

optional parts of the design, VRASED’s API, and discussion

on VRASED’s prototype can be found in Appendices A to C.

2 Background

This section overviews RA and provides some background on

computer-aided verification.
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2.1 RA for Low-end Devices

As mentioned earlier, RA is a security service that facilitates

detection of malware presence on a remote device. Specifi-

cally, it allows a trusted verifier (V rf) to remotely measure the

software state of an untrusted remote device (P rv). As shown

in Figure 1, RA is typically obtained via a simple challenge-

response protocol:

1. V rf sends an attestation request containing a challenge

(Chal) to P rv. This request might also contain a token

derived from a secret that allows P rv to authenticate V rf.

2. P rv receives the attestation request and computes an au-

thenticated integrity check over its memory and Chal. The

memory region might be either pre-defined, or explicitly

specified in the request. In the latter case, authentication

of V rf in step (1) is paramount to the overall security/pri-

vacy of P rv, as the request can specify arbitrary memory

regions.

3. P rv returns the result to V rf.

4. V rf receives the result from P rv, and checks whether it

corresponds to a valid memory state.

ProverVerifier

(2) Authenticated

Integrity Check

(4) Verify

Report

(1) Request

(3) Report

Figure 1: Remote attestation (RA) protocol

The authenticated integrity check can be realized as a Mes-

sage Authentication Code (MAC) over P rv’s memory. How-

ever, computing a MAC requires P rv to have a unique secret

key (denoted by K ) shared with V rf. This K must reside in

secure storage, where it is not accessible to any software run-

ning on P rv, except for attestation code. Since most RA threat

models assume a fully compromised software state on P rv,

secure storage implies some level of hardware support.

Prior RA approaches can be divided into three groups:

software-based, hardware-based, and hybrid. Software-based

(or timing-based) RA is the only viable approach for legacy

devices with no hardware security features. Without hardware

support, it is (currently) impossible to guarantee that K is not

accessible by malware. Therefore, security of software-based

approaches [35, 44] is attained by setting threshold communi-

cation delays between V rf and P rv. Thus, software-based RA

is unsuitable for multi-hop and jitter-prone communication, or

settings where a compromised P rv is aided (during attestation)

by a more powerful accomplice device. It also requires strong

constraints and assumptions on the hardware platform and at-

testation usage [31, 34]. On the other extreme, hardware-based

approaches require either i) P rv’s attestation functionality to

be housed entirely within dedicated hardware, e.g., Trusted

Platform Modules (TPMs) [47]; or ii) modifications to the

CPU semantics or instruction sets to support the execution

of trusted software, e.g., SGX [27] or TrustZone [3]. Such

hardware features are too expensive (in terms of physical area,

energy consumption, and actual cost) for low-end devices.

While neither hardware- nor software-based approaches are

well-suited for settings where low-end devices communicate

over the Internet (which is often the case in the IoT), hybrid

RA (based on HW/SW co-design) is a more promising ap-

proach. Hybrid RA aims at providing the same security guar-

antees as hardware-based techniques with minimal hardware

support. SMART [21] is the first hybrid RA architecture target-

ing low-end MCUs. In SMART, attestation’s integrity check is

implemented in software. SMART’s small hardware footprint

guarantees that the attestation code runs safely and that the

attestation key is not leaked. HYDRA [20] is a hybrid RA

scheme that relies on a secure boot hardware feature and on

a secure micro-kernel. Trustlite [30] modifies Memory Pro-

tection Unit (MPU) and CPU exception engine hardware to

implement RA. Tytan [9] is built on top of Trustlite, extending

its capabilities for applications with real-time requirements.

Despite much progress, a major missing aspect in RA re-

search is high-assurance and rigor obtained by using formal

methods to guarantee security of a concrete RA design and

its implementation We believe that verifiability and formal

security guarantees are particularly important for hybrid RA

designs aimed at low-end embedded and IoT devices, as their

proliferation keeps growing. This serves as the main motiva-

tion for our efforts to develop the first formally verified RA

architecture.

2.2 Formal Verification, Model Checking &

Linear Temporal Logic

Computer-aided formal verification typically involves three ba-

sic steps. First, the system of interest (e.g., hardware, software,

communication protocol) must be described using a formal

model, e.g., a Finite State Machine (FSM). Second, properties

that the model should satisfy must be formally specified. Third,

the system model must be checked against formally specified

properties to guarantee that the system retains such properties.

This checking can be achieved via either Theorem Proving or

Model Checking.

In Model Checking, properties are specified as formulae

using Temporal Logic and system models are represented as

FSMs. Hence, a system is represented by a triple (S,S0,T ),
where S is a finite set of states, S0 ⊆ S is the set of possible

initial states, and T ⊆ S× S is the transition relation set, i.e.,

it describes the set of states that can be reached in a single

step from each state. The use of Temporal Logic to specify

properties allows representation of expected system behavior

over time.

We apply the model checker NuSMV [17], which can be
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used to verify generic HW or SW models. For digital hardware

described at Register Transfer Level (RTL) – which is the

case in this work – conversion from Hardware Description

Language (HDL) to NuSMV model specification is simple.

Furthermore, it can be automated [28]. This is because the

standard RTL design already relies on describing hardware as

an FSM.

In NuSMV, properties are specified in Linear Temporal

Logic (LTL), which is particularly useful for verifying se-

quential systems. This is because it extends common logic

statements with temporal clauses. In addition to propositional

connectives, such as conjunction (∧), disjunction (∨), negation

(¬), and implication (→), LTL includes temporal connectives,

thus enabling sequential reasoning. We are interested in the

following temporal connectives:

• Xφ – neXt φ: holds if φ is true at the next system state.

• Fφ – Future φ: holds if there exists a future state where φ

is true.

• Gφ – Globally φ: holds if for all future states φ is true.

• φ U ψ – φ Until ψ: holds if there is a future state where ψ

holds and φ holds for all states prior to that.

This set of temporal connectives combined with propositional

connectives (with their usual meanings) allows us to specify

powerful rules. NuSMV works by checking LTL specifications

against the system FSM for all reachable states in such FSM.

In particular, all VRASED’s desired security sub-properties

are specified using LTL and verified by NuSMV. Finally, a

theorem prover [19] is used to show (via LTL equivalences)

that the verified sub-properties imply end-to-end definitions of

RA soundness and security.

3 Overview of VRASED

VRASED is composed of a HW module (HW-Mod) and a SW

implementation (SW-Att) of P rv’s behavior according to the

RA protocol. HW-Mod enforces access control to K in addition

to secure and atomic execution of SW-Att (these properties

are discussed in detail below). HW-Mod is designed with min-

imality in mind. The verified FSMs contain a minimal state

space, which keeps hardware cost low. SW-Att is responsible

for computing an attestation report. As VRASED’s security

properties are jointly enforced by HW-Mod and SW-Att, both

must be verified to ensure that the overall design conforms to

the system specification.

3.1 Adversarial Capabilities & Verification Ax-

ioms

We consider an adversary, A , that can control the entire soft-

ware state, code, and data of P rv. A can modify any writable

memory and read any memory that is not explicitly protected

by access control rules, i.e., it can read anything (including

secrets) that is not explicitly protected by HW-Mod. It can also

re-locate malware from one memory segment to another, in

order to hide it from being detected. A may also have full con-

trol over all Direct Memory Access (DMA) controllers on P rv.

DMA allows a hardware controller to directly access main

memory (e.g., RAM, flash or ROM) without going through the

CPU.

We focus on attestation functionality of P rv; verification of

the entire MCU architecture is beyond the scope of this paper.

Therefore, we assume the MCU architecture strictly adheres to,

and correctly implements, its specifications. In particular, our

verification approach relies on the following simple axioms:

• A1 - Program Counter: The program counter (PC) al-

ways contains the address of the instruction being exe-

cuted in a given cycle.

• A2 - Memory Address: Whenever memory is read or

written, a data-address signal (Daddr) contains the address

of the corresponding memory location. For a read access,

a data read-enable bit (Ren) must be set, and for a write

access, a data write-enable bit (Wen) must be set.

• A3 - DMA: Whenever a DMA controller attempts to

access main system memory, a DMA-address signal

(DMAaddr) reflects the address of the memory location

being accessed and a DMA-enable bit (DMAen) must be

set. DMA can not access memory when DMAen is off

(logical zero).

• A4 - MCU reset: At the end of a successful reset routine,

all registers (including PC) are set to zero before resuming

normal software execution flow. Resets are handled by

the MCU in hardware; thus, reset handling routine can

not be modified.

• A5 - Interrupts: When interrupts happen, the correspond-

ing irq signal is set.

Remark: Note that Axioms A1 to A5 are satisfied by the Open-

MSP430 design.

SW-Att uses the HACL* [52] HMAC-SHA256 function

which is implemented and verified in F*1. F* can be auto-

matically translated to C and the proof of correctness for

the translation is provided in [41]. However, even though ef-

forts have been made to build formally verified C compilers

(CompCert [33] is the most prominent example), there are

currently no verified compilers targeting lower-end MCUs,

such as MSP430. Hence, we assume that the standard compiler

can be trusted to semantically preserve its expected behavior,

especially with respect to the following:

• A6 - Callee-Saves-Register: Any register touched in a

function is cleaned by default when the function returns.

• A7 - Semantic Preservation: Functional correctness of

the verified HMAC implementation in C, when converted

to assembly, is semantically preserved.

Remark: Axioms A6 and A7 reflect the corresponding compiler

specification (e.g., msp430-gcc).

Physical hardware attacks are out of scope in this paper.

1https://www.fstar-lang.org/
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generated SMV description for the conjunction is proved to

simultaneously hold for all specifications. We also define end-

to-end soundness and security goals which are derived from

the verified sub-properties (See Appendix A for the proof).

4.1 Notation

To facilitate generic LTL specifications that represent

VRASED’s architecture (see Figure 3) we use the following:

• ARmin and ARmax: first and last physical addresses of the

memory region to be attested;

• CRmin and CRmax: physical addresses of first and last in-

structions of SW-Att in ROM;

• Kmin and Kmax: first and last physical addresses of the ROM
region where K is stored;

• XSmin and XSmax: first and last physical addresses of the

RAM region reserved for SW-Att computation;

• MACaddr: fixed address that stores the result of SW-Att

computation (HMAC);

• MACsize: size of HMAC result;

Table 1 uses the above definitions and summarizes the notation

used in our LTL specifications throughout the rest of this paper.

To simplify specification of defined security properties, we

use [A,B] to denote a contiguous memory region between A

and B. Therefore, the following equivalence holds:

C ∈ [A,B]⇔ (C ≤ B∧C ≥ A) (1)

For example, expression PC ∈ CR holds when the current

value of PC signal is within CRmin and CRmax, meaning

that the MCU is currently executing an instruction in CR,

i.e, a SW-Att instruction. This is because in the notation

introduced above: PC ∈CR⇔ PC ∈ [CRmin,CRmax]⇔ (PC ≤
CRmax∧PC ≥CRmin).

FSM Representation. As discussed in Section 3, HW-Mod sub-

modules are represented as FSMs that are verified to hold for

LTL specifications. These FSMs correspond to the Verilog

hardware design of HW-Mod sub-modules. The FSMs are im-

plemented as Mealy machines, where output changes at any

time as a function of both the current state and current input val-

ues4. Each FSM has as inputs a subset of the following signals

and wires: {PC, irq, Ren,Wen, Daddr, DMAen, DMAaddr}.

Each FSM has only one output, reset, that indicates whether

any security property was violated. For the sake of presen-

tation, we do not explicitly represent the value of the reset

output for each state. Instead, we define the following implicit

representation:

1. reset output is 1 whenever an FSM transitions to the Reset

state;

2. reset output remains 1 until a transition leaving the Reset

state is triggered;

4This is in contrast with Moore machines where the output is defined solely

based on the current state.

Table 1: Notation summary
Notation Description

PC Current Program Counter value

Ren Signal that indicates if the MCU is reading from memory (1-bit)

Wen Signal that indicates if the MCU is writing to memory (1-bit)

Daddr Address for an MCU memory access

DMAen Signal that indicates if DMA is currently enabled (1-bit)

DMAaddr Memory address being accessed by DMA, if any

irq Signal that indicates if and interrupt is occurring (1-bit)

CR (Code ROM) Memory region where SW-Att is stored: CR = [CRmin,CRmax]

KR (K ROM) Memory region where K is stored: KR = [Kmin,Kmax]

XS (eXclusive Stack) secure RAM region reserved for SW-Att computations: XS =
[XSmin,XSmax]

MR (MAC RAM) RAM region in which SW-Att computation result is written: MR =
[MACaddr ,MACaddr +MACsize−1]. The same region is also used to pass the attestation chal-

lenge as input to SW-Att

AR (Attested Region) Memory region to be attested. Can be fixed/predefined or specified in an
authenticated request from V rf: AR = [ARmin,ARmax]

reset A 1-bit signal that reboots the MCU when set to logic 1

A1, A2, ..., A7 Verification axioms (outlined in section 3.1)

P1, P2, ..., P7 Properties required for secure RA (outlined in section 3.2)

3. reset output is 0 in all other states.

4.2 Formalizing RA Soundness and Security

We now define the notions of soundness and security. Intu-

itively, RA soundness corresponds to computing an integrity

ensuring function over memory at time t. Our integrity ensur-

ing function is an HMAC computed on memory AR with a

one-time key derived from K and Chal. Since SW-Att com-

putation is not instantaneous, RA soundness must ensure that

attested memory does not change during computation of the

HMAC. This is the notion of temporal consistency in remote

attestation [14]. In other words, the result of SW-Att call must

reflect the entire state of the attested memory at the time when

SW-Att is called. This notion is captured in LTL by Defini-

tion 1.

Definition 1. End-to-end definition for soundness of RA computation

G : { PC =CRmin ∧AR = M∧MR = Chal ∧ [(¬reset) U (PC =CRmax)]→

F : [PC =CRmax ∧MR = HMAC(KDF(K ,Chal),M)] }

where M is any AR value and KDF is a secure key derivation function.

In Definition 1, PC =CRmin captures the time when SW-Att

is called (execution of its first instruction). M and Chal are

the values of AR and MR. From this pre-condition, Defini-

tion 1 asserts that there is a time in the future when SW-Att

computation finishes and, at that time, MR stores the result of

HMAC(KDF(K ,Chal),M). Note that, to satisfy Definition 1,

Chal and M in the resulting HMAC must correspond to the

values in AR and MR, respectively, when SW-Att was called.

RA security is defined using the security game in Figure 6.
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It models an adversary A (that is a probabilistic polynomial

time, ppt, machine) that has full control of the software state

of P rv (as the one described in Section 3.1). It can modify

AR at will and call SW-Att a polynomial number of times in

the security parameter (K and Chal bit-lengths). However, A

can not modify SW-Att code, which is stored in immutable

memory. The game assumes that A does not have direct access

to K , and only learns Chal after it receives from V rf as part

of the attestation request.

Definition 2.

2.1 RA Security Game (RA-game):

Assumptions:
- SW-Att is immutable, and K is not known to A
- l is the security parameter and |K |= |Chal|= |MR|= l

- AR(t) denotes the content in AR at time t

- A can modify AR and MR at will; however, it loses its ability to modify them

while SW-Att is running

RA-game:
1. Setup: A is given oracle access to SW-Att.

2. Challenge: A random challenge Chal ← ${0,1}l is generated and

given to A . A continues to have oracle access to SW-Att.

3. Response: Eventually, A responds with a pair (M,σ), where σ is either

forged by A , or the result of calling SW-Att at some arbitrary time t.

4. A wins if and only if σ = HMAC(KDF(K ,Chal),M) and M 6= AR(t).

2.2 RA Security Definition:

An RA protocol is considered secure if there is no ppt A , polynomial in l, capable

of winning the game defined in 2.1 with Pr[A ,RA-game]> negl(l)

Figure 6: RA security definition for VRASED

In the following sections, we define SW-Att functional

correctness, LTL specifications 2-10 and formally verify that

VRASED’s design guarantees such LTL specifications. We de-

fine LTL specifications from the intuitive properties discussed

in Section 3.2 and depicted in Figure 2. In Appendix A we

prove that the conjunction of such properties achieves sound-

ness (Definition 1) and security (Definition 2). For the security

proof, we first show that VRASED guarantees that A can never

learn K with more than negligible probability, thus satisfying

the assumption in the security game. We then complete the

proof of security via reduction, i.e., show that existence of an

adversary that wins the game in Definition 2 implies the exis-

tence of an adversary that breaks the conjectured existential

unforgeability of HMAC.

Remark: The rest of this section focuses on conveying the intu-

ition behind the specification of LTL sub-properties. Therefore,

our references to the MCU machine model are via Axioms A1 -

A7 which were described in high level. The interested reader

can find an LTL machine model formalizing these notions in

Appendix A, where we describe how such machine model is

used construct computer proofs for Definitions 1 and 2.

4.3 VRASED SW-Att

To minimize required hardware features, hybrid RA approaches

implement integrity ensuring functions (e.g., HMAC) in soft-

ware. VRASED’s SW-Att implementation is built on top of

1 void Hacl_HMAC_SHA2_256_hmac_entry ( ) {

2 u i n t 8 _ t key [ 6 4 ] = { 0 } ;

3 memcpy ( key , ( u i n t 8 _ t * ) KEY_ADDR, 64) ;

4 hacl_hmac ( ( u i n t 8 _ t * ) key , ( u i n t 8 _ t * ) key , ( u i n t 3 2 _ t ) 64 , ( u i n t 8 _ t * )

CHALL_ADDR, ( u i n t 3 2 _ t ) 32) ;

5 hacl_hmac ( ( u i n t 8 _ t * ) MAC_ADDR, ( u i n t 8 _ t * ) key , ( u i n t 3 2 _ t ) 32 , ( u i n t 8 _ t * )

ATTEST_DATA_ADDR, ( u i n t 3 2 _ t ) ATTEST_SIZE ) ;

6 return ( ) ;

7 }

Figure 7: SW-Att C Implementation

HACL*’s HMAC implementation [52]. HACL* code is veri-

fied to be functionally correct, memory safe and secret indepen-

dent. In addition, all memory is allocated on the stack making

it predictable and deterministic.

SW-Att is simple, as depicted in Figure 7. It first derives

a new unique context-specific key (key) from the master key

(K ) by computing an HMAC-based key derivation function,

HKDF [32], on Chal. This key derivation can be extended to

incorporate attested memory boundaries if V rf specifies the

range (see Appendix B). Finally, it calls HACL*’s HMAC,

using key as the HMAC key. AT T EST _DATA_ADDR and

AT T EST _SIZE specify the memory range to be attested (AR

in our notation). We emphasize that SW-Att resides in ROM,

which guarantees P5 under the assumption of no hardware

attacks. Moreover, as discussed below, HW-Mod enforces that

no other software running on P rv can access memory allocated

by SW-Att code, e.g., key[64] buffer allocated in line 2 of

Figure 7.

HACL*’s verified HMAC is the core for guaranteeing P4

(Functional Correctness) in VRASED’s design. SW-Att func-

tional correctness means that, as long as the memory regions

storing values used in SW-Att computation (CR, AR, and KR)

do not change during its computation, the result of such compu-

tation is the correct HMAC. This guarantee can be formally ex-

pressed in LTL as in Definition 3. We note that since HACL*’s

HMAC functional correctness is specified in F*, instead of

LTL, we manually convert its guarantees to the LTL expressed

by Definition 3. By this definition, the value in MR does not

need to remain the same, as it will eventually be overwritten

by the result of SW-Att computation.

Definition 3. SW-Att functional correctness

G : { PC =CRmin ∧MR = Chal ∧ [(¬reset ∧ ¬irq ∧ CR = SW-Att ∧ KR = K ∧ AR = M) U PC =CRmax ]

→ F : [PC =CRmax ∧MR = HMAC(KDF(K ,Chal),M)] }

where M is any arbitrary value for AR.

In addition, some HACL* properties, such as stack-based

and deterministic memory allocation, are used in alternative

designs of VRASED to ensure P2 – see Section 5.

Functional correctness implies that the HMAC implemen-

tation conforms to its published standard specification on all

possible inputs, retaining the specification’s cryptographic se-

curity. It also implies that HMAC executes in finite time. Secret
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independence ensures that there are no branches taken as a

function of secrets, i.e., K and key in Figure 7. This mitigates

K leakage via timing side-channel attacks. Memory safety

guarantees that implemented code is type safe, meaning that

it never reads from, or writes to: invalid memory locations,

out-of-bounds memory, or unallocated memory. This is par-

ticularly important for preventing ROP attacks, as long as P7

(controlled invocation) is also preserved5.

Having all memory allocated on the stack allows us to either:

(1) confine SW-Att execution to a fixed size protected memory

region inaccessible to regular software (including malware)

running on P rv; or (2) ensure that SW-Att stack is erased

before the end of execution. Note that HACL* does not provide

stack erasure, in order to improve performance. Therefore, P2

does not follow from HACL* implementation. This practice

is common because inter-process memory isolation is usually

provided by the Operating System (OS). However, erasure

before SW-Att terminates must be guaranteed. Recall that

VRASED targets low-end MCUs that might run applications

on bare-metal and thus can not rely on any OS features.

As discussed above, even though HACL* implementation

guarantees P4 and storage in ROM guarantees P5, these must

be combined with P6 and P7 to provide safe execution. P6 and

P7 – along with the key protection properties (P1, P2, and P3)

– are ensured by HW-Mod and are described next.

4.4 Key Access Control (HW-Mod)

If malware manages to read K from ROM, it can reply to V rf

with a forged result. HW-Mod access control (AC) sub-module

enforces that K can only be accessed by SW-Att (P1).

4.4.1 LTL Specification

The invariant for key access control (AC) is defined in LTL

Specification (2). It stipulates that system must transition to

the Reset state whenever code from outside CR tries to read

from Daddr within the key space.

G : {¬(PC ∈CR)∧Ren ∧ (Daddr ∈ KR)→ reset } (2)

4.4.2 Verified Model

Figure 8 shows the FSM implemented by the AC sub-module

which is verified to hold for LTL Specification 2. This FSM has

two states: Run and Reset. It outputs reset = 1 when the AC

sub-module transitions to state Reset. This implies a hard-reset

of the MCU. Once the reset process completes, the system

leaves the Reset state.

5Otherwise, even though the implementation is memory-safe and correct

as a whole, chunks of a memory-safe code could still be used in ROP attacks.

Run Reset

otherwise otherwise

¬(PC ∈CR) ∧Ren ∧ (Daddr ∈ KR)

PC = 0

Figure 8: Verified FSM for Key AC

4.5 Atomicity and Controlled Invocation

(HW-Mod)

In addition to functional correctness, safe execution of attes-

tation code requires immutability (P5), atomicity (P6), and

controlled invocation (P7). P5 is achieved directly by placing

SW-Att in ROM. Therefore, we only need to formalize invari-

ants for the other two properties: atomicity and controlled

execution.

4.5.1 LTL Specification

To guarantee atomic execution and controlled invocation, LTL

Specifications (3), (4) and (5) must hold:

G : {[¬reset ∧ (PC ∈CR)∧¬(X(PC) ∈CR)]→ [PC =CRmax ∨X(reset)] } (3)

G : {[¬reset ∧¬(PC ∈CR)∧ (X(PC) ∈CR)]→ [X(PC) =CRmin ∨X(reset)] } (4)

G : {irq ∧ (PC ∈CR) → reset } (5)

LTL Specification (3) enforces that the only way for SW-Att

execution to terminate is through its last instruction: PC =
CRmax. This is specified by checking current and next PC val-

ues using LTL neXt operator. In particular, if current PC value

is within SW-Att region, and next PC value is out of SW-Att

region, then either current PC value is the address of the last

instruction in SW-Att (CRmax), or reset is triggered in the next

cycle. Also, LTL Specification (4) enforces that the only way

for PC to enter SW-Att region is through the very first in-

struction: CRmin. Together, these two invariants imply P7: it

is impossible to jump into the middle of SW-Att, or to leave

SW-Att before reaching the last instruction.

P6 is satisfied through LTL Specification (5). Atomicity

could be violated by interrupts. However, LTL Specification

(5) prevents an interrupt to happen while SW-Att is executing.

Therefore, if interrupts are not disabled by software running

on P rv before calling SW-Att, any interrupt that could violate

SW-Att atomicity will necessarily cause an MCU reset.

4.5.2 Verified Model

Figure 9 presents a verified model for atomicity and controlled

invocation enforcement. The FSM has five states. Two basic

states notCR and midCR represent moments when PC points

to an address: (1) outside CR, and (2) within CR, respectively,

not including the first and last instructions of SW-Att. Another
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Reset

notCR

f stCR

midCR

lastCR

PC = 0

otherwise

PC <CRmin ∨ PC >CRmax

PC =CRmin∧¬ irq
otherwise

PC =CRmin

∧¬ irq

(PC >CRmin ∧ PC <CRmax)
∧¬ irq

otherwise

(PC >CRmin ∧ PC <CRmax)
∧¬ irq

PC =CRmax∧¬ irq
otherwise

PC =CRmax

∧¬ irq

(PC <CRmin ∨ PC >CRmax)
∧¬ irq

otherwise

Figure 9: Verified FSM for atomicity and controlled invocation.

two: f stCR and lstCR represent states when PC points to the

first and last instructions of SW-Att, respectively. Note that

the only possible path from notCR to midCR is through f stCR.

Similarly, the only path from midCR to notCR is through lstCR.

The FSM transitions to the Reset state whenever: (1) any se-

quence of values for PC does not obey the aforementioned

conditions; or (2) irq is logical 1 while executing SW-Att.

4.6 Key Confidentiality (HW-Mod)

To guarantee secrecy of K and thus satisfy P2, VRASED must

enforce the following:

1. No leaks after attestation: any registers and memory ac-

cessible to applications must be erased at the end of each

attestation instance, i.e., before application execution re-

sumes.

2. No leaks on reset: since a reset can be triggered during

attestation execution, any registers and memory accessible

to regular applications must be erased upon reset.

Per Axiom A4, all registers are zeroed out upon reset and at

boot time. Therefore, the only time when register clean-up is

necessary is at the end of SW-Att. Such clean-up is guaranteed

by the Callee-Saves-Register convention: Axiom A6.

Nonetheless, the leakage problem remains because of RAM
allocated by SW-Att. Thus, we must guarantee that K is not

leaked through "dead" memory, which could be accessed by

application (possibly, malware) after SW-Att terminates. A

simple and effective way of addressing this issue is by reserv-

ing a separate secure stack in RAM that is only accessible (i.e.,

readable and writable) by attestation code. All memory allo-

cations by SW-Att must be done on this stack, and access

control to the stack must be enforced by HW-Mod. As discussed

in Section 6, the size of this stack is constant – 2.3KBytes.

This corresponds to ≈ 3% of MSP430 16-bit address space.

We discuss VRASED variants that do not require a reserved

stack and trade-offs between them in Section 5.

Run Reset

otherwise otherwise

(¬(PC ∈CR)∧ (Ren∨Wen)∧ (Daddr ∈ XS))

∨

((PC ∈CR)∧ (Wen)∧¬(Daddr ∈ XS)∧¬(Daddr ∈MR))

PC = 0

Figure 10: Verified FSM for Key Confidentiality

4.6.1 LTL Specification

Recall that XS denote a contiguous secure memory region

reserved for exclusive access by SW-Att. LTL Specification

for the secure stack sub-module is as follows:

G : {¬(PC ∈CR)∧ (Ren ∨Wen)∧ (Daddr ∈ XS)→ reset } (6)

We also want to prevent attestation code from writing into

application memory. Therefore, it is only allowed to write to

the designated fixed region for the HMAC result (MR).

G : {(PC ∈CR)∧ (Wen)∧¬(Daddr ∈ XS)∧¬(Daddr ∈MR)→ reset } (7)

In summary, invariants (6) and (7) enforce that only attestation

code can read from/write to the secure reserved stack and that

attestation code can only write to regular memory within the

space reserved for the HMAC result. If any of these conditions

is violated, the system resets.

4.6.2 Verified Model

Figure 10 shows the FSM verified to comply with invariants (6)

and (7).

4.7 DMA Support

So far, we presented a formalization of HW-Mod sub-modules

under the assumption that DMA is either not present or disabled

on P rv. However, when present, a DMA controller can access

arbitrary memory regions. Such memory access is performed

concurrently in the memory backbone and without MCU inter-

vention, while the MCU executes regular instructions.

DMA data transfer is performed using dedicated memory

buses, e.g., DMAen and DMAaddr. Hence, regular memory ac-

cess control (based on monitoring Daddr) does not apply to

memory access by DMA controller. Thus, if DMA controller is

compromised, it may lead to violation of P1 and P2 by directly

reading K and values in the attestation stack, respectively. In

addition, it can assist P rv-resident malware to escape detection

by either copying it out of the measurement range or deleting

it, which results in a violation of P6.

4.7.1 LTL Specification

We introduce three additional LTL Specifications to protect

against aforementioned attacks. First, we enforce that DMA
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At the same time, we note that, even with verified erasure

as a part of SW-Att, P2 is still not guaranteed if the MCU

does not guarantee erasure of the entire RAM upon boot. This

is necessary in order to consider the case when P rv re-boots

in the middle of SW-Att execution. Without a reserved stack,

K might persist in RAM. Since the memory range for SW-Att

execution is not fixed, hardware support is required to bootstrap

secure RAM erasure before starting any software execution. In

fact, such support is necessary for all approaches without a

separate secure stack.

5.2 Compiler-Based Clean-Up

While stack erasure in HACL* would integrate nicely with

the overall proof of SW-Att, the assurance would be at the

language abstraction level, and not necessarily at the machine

level. The latter would require additional assumptions about

the compilation tool chain. We could also consider performing

stack erasure directly in the compiler. In fact, a recent proposal

to do exactly that was made in zerostack [45], an extension

to Clang/LLVM. In case of VRASED, this feature could be

used on unmodified HACL* (at compilation time), to add in-

structions to erase the stack before the return of each function

enabling P2, assuming the existence of a verified RAM erasure

routine upon boot. We emphasize that this approach may in-

crease the compiler’s trusted code base. Ideally, it should be

implemented and formally verified as part of a verified com-

piler suite, such as CompCert [33].

5.3 Double-HMAC Call

Finally, complete stack erasure could also be achieved directly

using currently verified HACL* properties, without any fur-

ther modifications. This approach involves invoking HACL*

HMAC function a second time, after the computation of the

actual HMAC. The second "dummy" call would use the same

input data, however, instead of using K , an independent con-

stant, such as {0}512, would be used as the HMAC key.

Recall that HACL* is verified to only allocate memory on

the stack in a deterministic manner. Also, due to HACL*’s

verified properties that mitigate side-channels, software flow

does not change based on the secret key. Therefore, this de-

terministic allocation implies that, for inputs of the same size,

any variable allocated by the first "real" HMAC call (tainted by

K ), would be overwritten by the corresponding variable in the

second "dummy" call. Note that the same guarantee discussed

in Section 5.1 is provided here and secure RAM erasure at boot

would still be needed for the same reasons. Admittedly, this

double-HMAC approach would consume twice as many CPU

cycles. Still, it might be a worthwhile trade-off, especially, if

there is memory shortage and lack of previously discussed

HACL* or compiler extension.

6 Evaluation

We now discuss implementation details and evaluate

VRASED’s overhead and performance. Section 6.2 reports on

verification complexity. Section 6.3 discusses performance in

terms of time and space complexity as well as its hardware

overhead. We also provide a comparison between VRASED

and other RA architectures targeting low-end devices, namely

SANCUS [38] and SMART [21], in Section 6.4.

6.1 Implementation

As mentioned earlier, we use OpenMSP430 [22] as an open

core implementation of the MSP430 architecture. Open-

MSP430 is written in the Verilog hardware description lan-

guage (HDL) and can execute software generated by any

MSP430 toolchain with near cycle accuracy. We modified

the standard OpenMSP430 to implement the hardware archi-

tecture presented in Section 3.3, as shown in Figure 3. This

includes adding ROM to store K and SW-Att, adding HW-Mod,

and adapting the memory backbone accordingly. We use Xilinx

Vivado [50] – a popular logic synthesis tool – to synthesize

an RTL description of HW-Mod into hardware in FPGA. FPGA

synthesized hardware consists of a number of logic cells. Each

consists of Look-Up Tables (LUTs) and registers; LUTs are

used to implement combinatorial boolean logic while registers

are used for sequential logic elements, i.e., FSM states and

data storage. We compiled SW-Att using the native msp430-

gcc [46] and used Linker scripts to generate software images

compatible with the memory layout of Figure 3. Finally, we

evaluated VRASED on the FPGA platform targeting Artix-

7 [51] class of devices.

6.2 Verification Results

As discussed in Section 3.2, VRASED’s verification consists

of properties P1–P7. P5 is achieved directly by executing

SW-Att from ROM. Meanwhile, HACL* HMAC verification

implies P4. All other properties are automatically verified us-

ing NuSMV model checker. Table 2 shows the verification

results of VRASED’s HW-Mod composition as well as results

for individual sub-modules. It shows that VRASED success-

fully achieves all the required security properties. These results

also demonstrate feasibility of our verification approach, since

the verification process – running on a commodity desktop

computer – consumes only small amount of memory and time:

< 14MB and 0.3sec, respectively, for all properties.
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Table 3: Evaluation of cost, overhead, and performance of RA

Method
RAM Erasure

Required Upon Boot?

FPGA Hardware Verilog

LoC

Memory (byte) Time to attest 4KB

LUT Reg Cell ROM Sec. RAM CPU cycles ms (at 8MHz)

Core (Baseline) N/A 1842 684 3044 4034 0 0 N/A N/A

Secure Stack (Section 4) No 1964 721 3237 4621 4500 2332 3601216 450.15

Erasure on SW-Att (Section 5.1) Yes 1954 717 3220 4516 4522 0 3613283 451.66

Compiler-based Clean-up (Section 5.2) 6 Yes 1954 717 3220 4516 4522 0 3613283 451.66

Double-HMAC Call (Section 5.3) Yes 1954 717 3220 4516 4570 0 7201605 900.20

Table 2: Verification results running on a desktop @ 3.40 GHz.
HW Submod. LTL Spec. Mem. (MB) Time (s) Verified

Key AC 2,11 7.5 .02 ✓

Atomicity 3,4,5,11 8.5 .05 ✓

Exclusive Stack 6,7,11 8.1 .03 ✓

DMA Support 8-11 8.2 .04 ✓

HW-Mod 2-11 13.6 .28 ✓

Table 4: Qualitative comparison between RA architectures

targeting low-end devices
VRASED SMART SANCUS

Design Type Hybrid (HW/SW) Hybrid (HW/SW) Pure HW

RA function HMAC-SHA256 HMAC-SHA1 SPONGENT-128/128/8

ROM for RA code Yes Yes No

DMA Support Yes No No

Formally Verified Yes No No

6.3 Performance and Hardware Cost

We now report on VRASED’s performance considering the stan-

dard design (described in Section 4) and alternatives discussed

in Section 5. We evaluate the hardware footprint, memory

(ROM and secure RAM), and run-time. Table 3 summarizes the

results.

Hardware Footprint. The secure stack approach adds around

587 lines of code in Verilog HDL. This corresponds to around

15% of the code in the original OpenMSP430 core. In terms of

synthesized hardware, it requires 122 (6.6%) and 37 (5.4%) ad-

ditional LUTs and registers respectively. Overall, VRASED con-

tains 193 logic cells more than the unmodified OpenMSP430

core, corresponding to a 6.3% increase.

Memory. VRASED requires ∼4.5KB of ROM; most of which

(96%) is for storing HACL* HMAC-SHA256 code. The se-

cure stack approach has the smallest ROM size, as it does not

need to perform a memory clean-up in software. However, this

advantage is attained at the price of requiring 2.3KBytes of

reserved RAM. This overhead corresponds to 3.5% of MSP430

16-bit address space.

Attestation Run-time. Attestation run-time is dominated by

the time it takes to compute the HMAC of P rv’s memory. The

secure stack, erasure on SW-Att and compiler-based clean-

up approaches take roughly .45s to attest 4KB of RAM on an

MSP430 device with a clock frequency at 8MHz. Whereas, the

6As mentioned in Section 5.2, there is no formally verified msp430 com-

piler capable of performing stack erasure. Thus, we estimate overhead of

this approach by manually inserting code required for erasing the stack in

SW-Att.

double MAC approach requires invoking the HMAC function

twice, leading its run-time to be roughly two times slower.

Discussion. We consider VRASED’s overhead to be affordable.

The additional hardware, including registers, logic gates and ex-

clusive memory, resulted in only a 3-6% increase. The number

of cycles required by SW-Att exhibits a linear increase with

the size of attested memory. As MSP430 typically runs at 8-

25MHz, attestation of the entire RAM on a typical MSP430 can

be computed in less than a second. VRASED’s RA is relatively

cheap to the P rv. As a point of comparison we can consider

a common cryptographic primitive such as the Curve25519

Elliptic-Curve Diffie-Hellman (ECDH) key exchange. A single

execution of an optimized version of such protocol on MSP430

has been reported to take ≈ 9 million cycles [24]. As Table 3

shows, attestation of 4KBytes (typical size of RAM in some

MSP430 models) can be computed three times faster.

6.4 Comparison with Other Low-End RA Ar-

chitectures

We here compare VRASED’s overhead with two widely

known RA architectures targeting low-end embedded systems:

SMART [21] and SANCUS [38]. We emphasize, however,

that both SMART and SANCUS were designed in an ad hoc

manner. Thus, they can not be formally verified and do not pro-

vide any guarantees offered by VRASED’s verified architecture.

Nevertheless, it is considered important to contrast VRASED’s

cost with such architectures to demonstrate its affordability.

Table 4 presents a comparison between features offered and

required by aforementioned architectures. SANCUS is, to the

best of our knowledge, the cheapest pure HW-based architec-

ture, while SMART is a minimal HW/SW RA co-design. Since

SANCUS’s RA routine is implemented entirely in HW, it does

not require ROM to store the SW implementation of the in-

tegrity ensuring function. VRASED implements a MAC with

digest sizes of 256-bits. SMART and SANCUS, on the other

hand, use SHA1-based MAC and SPONGENT-128/128/8 [7],

respectively. Such MACs do not offer strong collision resis-

tance due to the small digest sizes (and known collisions). Of

the three architectures, VRASED is the only one secure in the

presence of DMA and the only one to be rigorously specified

and formally verified.

Figure 13 presents a quantitative comparison between the

RA architectures. It considers additional overhead in relation to

the latest version of the unmodified OpenMSP430 (Available
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Figure 13: Comparison between RA architectures targeting

low-end devices

at [22]). Compared to VRASED, SANCUS requires 12× more

Look-Up Tables, 22× more registers, and its (unverified) TCB

is 2.5 times larger in lines of Verilog code. This comparison

demonstrates the cost of relying on a HW-only approach even

when designed for minimality. SMART’s overhead is slightly

smaller than that of VRASED due to lack of DMA support. In

terms of attestation execution time, SMART is the slowest, re-

quiring 9.2M clock cycles to attest 4KB of memory. SANCUS

achieves the fastest attestation time (1.3M cycles) due to the

HW implementation of SPONGENT-128/128/8. VRASED sits

in between the two with a total attestation time of 3.6M cycles.

7 Related Work

We are unaware of any previous work that yielded a formally

verified RA design (RA architectures are overviewed in Sec-

tion 2.1). To the best of our knowledge, VRASED is the first

verification of a security service implemented as HW/SW co-

design. Nevertheless, formal verification has been widely used

as the de facto means to guarantee that a system is free of

implementation errors and bugs. In recent years, several efforts

focused on verifying security-critical systems.

In terms of cryptographic primitives, Hawblitzel et al. [23]

verified new implementations of SHA, HMAC, and RSA.

Beringer et al. [4] verified the Open-SSL SHA-256 implemen-

tation. Bond et al. [8] verified an assembly implementation of

SHA-256, Poly1305, AES and ECDSA. More recently, Zinzin-

dohoué, et al. [52] developed HACL*, a verified cryptographic

library containing the entire cryptographic API of NaCl [5].

As discussed earlier, HACL*’s verified HMAC forms the core

of VRASED’s software component.

Larger security-critical systems have also been successfully

verified. For example, Bhargavan [6] implemented the TLS

protocol with verified cryptographic security. CompCert [33]

is a C compiler that is formally verified to preserve C code se-

mantics in generated assembly code. Klein et al. [29] designed

and proved functional correctness of seL4 – the first veri-

fied general-purpose microkernel. More recently, Tuncay et al.

verified a design for Android OS App permissions model [48].

The importance of verifying RA has been recently acknowl-

edged by Lugou et al. [36], which discussed methodologies

for specifically verifying HW/SW RA co-designs. A follow-on

result proposed the SMASH-UP tool [37]. By modeling a hard-

ware abstraction, SMASH-UP allows automatic conversion of

assembly instructions to the effects on hardware representa-

tion. Similarly, Cabodi et al. [11, 12] discussed the first steps

towards formalizing hybrid RA properties. However, none of

these results yielded a fully verified (and publicly available)

RA architecture, such as VRASED.

8 Conclusion

This paper presents VRASED – the first formally verified RA

method that uses a verified cryptographic software implementa-

tion and combines it with a verified hardware design to guaran-

tee correct implementation of RA security properties. VRASED

is also the first verified security service implemented as a

HW/SW co-design. VRASED was designed with simplicity

and minimality in mind. It results in efficient computation

and low hardware cost, realistic even for low-end embedded

systems. VRASED’s practicality is demonstrated via publicly

available implementation using the low-end MSP430 platform.

The design and verification methodology presented in this pa-

per can be extended to other MCU architectures. We believe

that this work represents an important and timely advance in

embedded systems security, especially, with the rise of hetero-

geneous ecosystems of (inter-)connected IoT devices.

The most natural direction for future work is to adapt

VRASED to other MCU architectures. Such an effort could

follow the same verification methodology presented in this

paper. It would involve: (1) mapping MCUs specifications

to a set of axioms (as we did for MSP430 in Section 3), and

(2) adapting the proofs by modifying the LTL Specifications

and hardware design (as in Section 4) accordingly. A second

direction is to extend VRASED’s capabilities to include and

verify other trusted computing services such as secure updates,

secure deletion, and remote code execution. It would also be

interesting to verify and implement other RA designs with

different requirements and trade-offs, such as software- and

hardware-based techniques. In the same vein, one promising
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direction would be to verify HYDRA RA architecture [20],

which builds on top of the formally verified seL4 [29]

microkernel. Finally, the optimization of VRASED’s HMAC,

with respect to computation and memory allocation, while

retaining its verified properties, is an interesting open problem.
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APPENDIX

A RA Soundness and Security Proofs

A.1 Proof Strategy

We present the proofs for RA soundness (Definition 1) and

RA security (Definition 2). Soundness is proved entirely via

LTL equivalences. In the proof of security we first show, via

LTL equivalences, that VRASED guarantees that adversary

A can never learn K with more than negligible probability.

We then prove security by showing a reduction of HMAC’s

existential unforgeability to VRASED’s security. In other words,

we show that existence of A that breaks VRASED implies

existence of HMAC-A able to break conjectured existential

unforgeability of HMAC. The full machine-checked proofs

for the LTL equivalences (using Spot 2.0 [19] proof assistant)

discussed in the remainder of this section are available in [1].

A.2 Machine Model

To prove that VRASED’s design satisfies end-to-end definitions

of soundness and security for RA, we start by formally defining

(in LTL) memory and execution models corresponding to the

architecture introduced in Section 3.

Definition 4 (Memory model).

1. K is stored in ROM↔ G : {KR = K }

2. SW-Att is stored in ROM↔ G : {CR = SW-Att}

3. MR, CR, AR, KR, and XS are non-overlapping memory regions

The memory model in Definition 4 captures that KR and CR

are ROM regions, and are thus immutable. Hence, the values

stored in those regions always correspond to K and SW-Att

code, respectively. Finally, the memory model states that MR,

CR, AR, KR, and XS are disjoint regions in the memory layout,

corresponding to the architecture in Figure 3.

Definition 5 (Execution model).

1. Modify_Mem(i)→ (Wen ∧Daddr = i)∨ (DMAen ∧DMAaddr = i)

2. Read_Mem(i)→ (Ren ∧Daddr = i)∨ (DMAen ∧DMAaddr = i)

3. Interrupt→ irq

Our execution model, in Definition 5, translates MSP430

behavior by capturing the effects on the processor signals when

reading and writing from/to memory. We do not model the

effects of instructions that only modify register values (e.g.,

ALU operations, such as add and mul) because they are not

necessary in our proofs.

The execution model defines that a given memory address

can be modified in two cases: by a CPU instruction or by

DMA. In the first case, the Wen signal must be on and Daddr

must contain the memory address being accessed. In the second

case, DMAen signal must be on and DMAaddr must contain the

address being modified by DMA. The requirements for reading

from a given address are similar, except that instead of Wen,

Ren must be on. Finally, the execution model also captures the

fact that an interrupt implies setting the irq signal to 1.

A.3 RA Soundness Proof

The proof follows from SW-Att functional correctness (ex-

pressed by Definition 3) and LTL specifications 3, 5, 7, and

10

Theorem 1. VRASED is sound according to Definition 1.

Proof.

De f inition 3 ∧ LT L3 ∧LT L5 ∧LT L7 ∧LT L10→ T heorem 1
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The formal computer proof for Theorem 1 can be found

in [1]. Due to space limitations, we only provide some intu-

ition, by splitting the proof into two parts. First, SW-Att func-

tional correctness (Definition 3) would imply Theorem 1 if AR,

CR, KR never change and an interrupt does not happen during

SW-Att computation. However, memory model Definitions 4.1

and 4.2 already guarantee that CR and KR never change. Also,

LTL 5 states that an interrupt cannot happen during SW-Att

computation, otherwise the device resets. Therefore, it remains

for us to show that AR does not change during SW-Att com-

putation. This is stated in Lemma 1.

Lemma 1. Temporal Consistency – Attested memory does not change during

SW-Att computation

G : {

PC =CRmin ∧AR = M∧¬reset U (PC =CRmax)→

(AR = M) U (PC =CRmax) }

In turn, Lemma 1 can be proved by:

LT L3 ∧LT L7 ∧LT L10→ Lemma 1 (12)

The reasoning for Equation 12 is as follows:

• LT L3 prevents the CPU from stopping execution of

SW-Att before its last instruction.

• LT L7 guarantees that the only memory regions written by

the CPU during SW-Att execution are XS and MR, which

do not overlap with AR.

• LT L10 prevents DMA from writing to memory during

SW-Att execution.

Therefore, there are no means for modifying AR during

SW-Att execution, implying Lemma 1. As discussed above, it

is easy to see that:

Lemma 1∧LT L5 ∧De f inition 3→ T heorem 1 (13)

A.4 RA Security Proof

Recall the definition of RA security in the game in Figure 6.

The game makes two key assumptions:

1. SW-Att call results in a temporally consistent HMAC of

AR using a key derived from K and Chal. This is already

proved by VRASED’s soundness.

2. A never learns K with more than negligible probability.

By proving that VRASED’s design satisfies assumptions 1 and

2, we show that the capabilities of untrusted software (any

DMA or CPU software other than SW-Att) on P rv are equiv-

alent to the capabilities of A in RA-game. Therefore, we still

need to prove item 2 before we can use such game to prove

VRASED’s security. The proof of A’s inability to learn K with

Lemma 2. Key confidentiality – K can not be accessed directly by untrusted

software (¬(PC ∈CR)) and any memory written to by SW-Att can never be read

by untrusted software.

G : {

(¬(PC ∈CR)∧Read_Mem(i)∧ i ∈ KR→ reset)∧

(DMAen ∧DMAaddr = i∧ i ∈ KR→ reset)∧

[¬reset ∧PC ∈CR∧Modi f y_Mem(i)∧¬(i ∈MR)→

G : {(¬(PC ∈CR)∧Read_Mem(i)∨DMAen ∧DMAaddr = i)

→ reset}]

}

more than negligible probability is facilitated by A6 - Callee-

Saves-Register convention stated in Section 3. A6 directly

implies no leakage of information through registers on the re-

turn of SW-Att. This is because, before the return of a function,

registers must be restored to their state prior to the function call.

Thus, untrusted software can only learn K (or any function

of K ) through memory. However, if untrusted software can

never read memory written by SW-Att, it never learns anything

about K (the secret-independence of SW-Att at the HACL*

level even implies a lack of timing side-channels, subject to

our assumption that this property is preserved by msp430-gcc

and the MCU implementation). Now, it suffices to prove that

untrusted software can not access K directly and that it can

never read memory written by SW-Att. These conditions are

stated in LTL in Lemma 2. We prove that VRASED satisfies

Lemma 2 by writing a computer proof (available in [1]) for

Equation 14. The reasoning for this proof is similar to that of

RA soundness and omitted due to space constraints.

LT L2 ∧LT L6 ∧LT L7 ∧LT L8 ∧LT L9 ∧LT L10→ Lemma 2 (14)

We emphasize that Lemma 2 does not restrict reads and writes

to MR, since this memory is used for inputting Chal and re-

ceiving SW-Att result. Nonetheless, the already proved RA

soundness and LTL 4 (which makes it impossible to execute

fractions of SW-Att) guarantee that MR will not leak anything,

because at the end of SW-Att computation it will always con-

tain an HMAC result, which does not leak information about K .

After proving Lemma 2, the capabilities of untrusted software

on P rv are equivalent to those of adversary A in RA-game of

Definition 2. Therefore, in order to prove VRASED’s security,

it remains to show a reduction from HMAC security according

to the game in Definition 2. VRASED’s security is stated and

proved in Theorem 2.

Theorem 2. VRASED is secure according to Definition 2 as

long as HMAC is a secure MAC.

Proof. A MAC is defined as tuple of algorithms

{Gen,Mac,Vrf}. For the reduction we construct a

slightly modified HMAC′, which has the same Mac and Vrf
algorithms as standard HMAC but Gen← KDF(K ,Chal)
where Chal← ${0,1}l . Since KDF function itself is imple-

mented as a Mac call, it is easy to see that the outputs of
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Gen are indistinguishable from random. In other words, the

security of this slightly modified construction follows from the

security of HMAC itself. Assuming that there exists A such

that Pr[A ,RAgame] > negl(l), we show that such adversary

can be used to construct HMAC-A that breaks existential

unforgeability of HMAC’ with probability Pr[HMAC-A ,MAC-

game] > negl(l). To that purpose HMAC-A behaves as

follows:

1. HMAC-A selects msg to be the same M 6= AR as in RA-

game and asks A to produce the same output used to win

RA-game.

2. HMAC-A outputs the pair (msg,σ) as a response for the

challenge in the standard existential unforgeability game,

where σ is the output produced by A in step 1.

By construction, (msg,σ) is a valid response to a challenge in

the existential unforgeability MAC game considering HMAC′

as defined above. Therefore, HMAC-A is able to win the exis-

tential unforgeability game with the same > negl(l) probability

that A has of winning RA-game in Definition 2.

B Optional Verifier Authentication

1 void Hacl_HMAC_SHA2_256_hmac_entry ( ) {

2 u i n t 8 _ t key [ 6 4 ] = { 0 } ;

3 u i n t 8 _ t v e r i f i c a t i o n [ 3 2 ] = { 0 } ;

4 if (memcmp(CHALL_ADDR, CTR_ADDR, 32) > 0)

5 {

6 memcpy ( key , KEY_ADDR, 64) ;

7

8 hacl_hmac ( ( u i n t 8 _ t * ) v e r i f i c a t i o n , ( u i n t 8 _ t * ) key ,

9 ( u i n t 3 2 _ t ) 64 , * ( ( u i n t 8 _ t * )CHALL_ADDR) ,

10 ( u i n t 3 2 _ t ) 32) ;

11

12 if ( ! memcmp(VRF_AUTH, v e r i f i c a t i o n , 32)

13 {

14 hacl_hmac ( ( u i n t 8 _ t * ) key , ( u i n t 8 _ t * ) key ,

15 ( u i n t 3 2 _ t ) 64 , ( u i n t 8 _ t * ) v e r i f i c a t i o n ,

16 ( u i n t 3 2 _ t ) 32) ;

17 hacl_hmac ( ( u i n t 8 _ t * ) MAC_ADDR, ( u i n t 8 _ t * ) key ,

18 ( u i n t 3 2 _ t ) 32 , ( u i n t 8 _ t * ) ATTEST_DATA_ADDR,

19 ( u i n t 3 2 _ t ) ATTEST_SIZE ) ;

20 memcpy (CTR_ADDR, CHALL_ADDR, 32) ;

21 }

22 }

23

24 return ( ) ;

25 }

Figure 14: SW-Att Implementation with V rf authentication

Depending on the setting where P rv is deployed, authenti-

cating the attestation request before executing SW-Att may

be required. For example, if P rv is in a public network, the

adversary may try to communicate with it. In particular, the

adversary can impersonate V rf and send fake attestation re-

quests to P rv, attempting to cause denial-of-service. This is

particularly relevant if P rv is a safety-critical device. If P rv re-

ceives too many attestation requests, regular (and likely honest)

software running on P rv would not execute because SW-Att

would run all the time. Thus, we now discuss an optional part

of VRASED’s design suitable for such settings. It supports

authentication of V rf as part of SW-Att execution. Our imple-

mentation is based on the protocol in [10].

Figure 14 presents an implementation of SW-Att that in-

cludes V rf authentication. It also builds upon HACL* ver-

ified HMAC to authenticate V rf, in addition to computing

the authenticated integrity check. In this case, V rf’s request

additionally contains an HMAC of the challenge computed

using K . Before calling SW-Att, software running on P rv is

expected to store the received challenge on a fixed address

CHALL_ADDR and the corresponding received HMAC on

V RF_AUT H. SW-Att discards the attestation request if (1)

the received challenge is less than or equal to the latest chal-

lenge, or (2) HMAC of the received challenge is mismatched.

After that, it derives a new unique key using HKDF [32] from

K and the received HMAC and uses it as the attestation key.

HW-Mod must also be slightly modified to ensure security of

V rf’s authentication. In particular, regular software must not

be able modify the memory region that stores P rv’s counter.

Notably, the counter requires persistent and writable storage,

because SW-Att needs to modify it at the end of each attesta-

tion execution. Therefore, CT R region resides on FLASH. We

denote this region as:

• CT R = [CT Rmin,CT Rmax];

LTL Specifications (15) and (16) must hold (in addition to

the ones discussed in Section 4).

G : {¬(PC ∈CR)∧Wen ∧ (Daddr ∈CT R)→ reset } (15)

G : {DMAen ∧ (DMAaddr ∈CT R)→ reset} (16)

LTL Specification (15) ensures that regular software does not

modify P rv’s counter, while (16) ensures that the same is not

possible via the DMA controller. FSMs in Figures 8 and 11, cor-

responding to HW-Mod access control and DMA sub-modules,

must be modified to transition into Reset state according to

these new conditions. In addition, LTL Specification (7) must

be relaxed to allow SW-Att to write to CT R. Implementation

and verification of the modified version of these sub-modules

are publicly available at VRASED’s repository [1] as an op-

tional part of the design.

C API & Sample Application

VRASED ensures that any violation of secure RA properties is

detected and causes the system to reset. However, benign appli-

cations running on the MCU must also comply with VRASED

rules to execute successfully. To ease the process of setting up

the system for a call to SW-Att, VRASED provides an API that

takes care of necessary configuration on the application’s be-

half. This API and a sample application deployed using FPGAs

are described in the extended version of this paper, available

at [18].
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