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Abstract
LDP (Local Differential Privacy) has been widely studied to
estimate statistics of personal data (e.g., distribution underly-
ing the data) while protecting users’ privacy. Although LDP
does not require a trusted third party, it regards all personal
data equally sensitive, which causes excessive obfuscation
hence the loss of utility. In this paper, we introduce the notion
of ULDP (Utility-optimized LDP), which provides a privacy
guarantee equivalent to LDP only for sensitive data. We first
consider the setting where all users use the same obfuscation
mechanism, and propose two mechanisms providing ULDP:
utility-optimized randomized response and utility-optimized
RAPPOR. We then consider the setting where the distinction
between sensitive and non-sensitive data can be different from
user to user. For this setting, we propose a personalized ULDP
mechanism with semantic tags to estimate the distribution of
personal data with high utility while keeping secret what is
sensitive for each user. We show theoretically and experimen-
tally that our mechanisms provide much higher utility than
the existing LDP mechanisms when there are a lot of non-
sensitive data. We also show that when most of the data are
non-sensitive, our mechanisms even provide almost the same
utility as non-private mechanisms in the low privacy regime.

1 Introduction

DP (Differential Privacy) [21,22] is becoming a gold standard
for data privacy; it enables big data analysis while protecting
users’ privacy against adversaries with arbitrary background
knowledge. According to the underlying architecture, DP
can be categorized into the one in the centralized model and
the one in the local model [22]. In the centralized model, a
“trusted” database administrator, who can access to all users’
personal data, obfuscates the data (e.g., by adding noise, gen-
eralization) before providing them to a (possibly malicious)
data analyst. Although DP was extensively studied for the
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centralized model at the beginning, the original personal data
in this model can be leaked from the database by illegal access
or internal fraud. This issue is critical in recent years, because
the number of data breach incidents is increasing [15].

The local model does not require a “trusted” administra-
tor, and therefore does not suffer from the data leakage is-
sue explained above. In this model, each user obfuscates her
personal data by herself, and sends the obfuscated data to
a data collector (or data analyst). Based on the obfuscated
data, the data collector can estimate some statistics (e.g., his-
togram, heavy hitters [45]) of the personal data. DP in the
local model, which is called LDP (Local Differential Pri-
vacy) [19], has recently attracted much attention in the aca-
demic field [5, 12, 24, 29, 30, 39, 43, 45, 46, 50, 56], and has
also been adopted by industry [16, 23, 49].

However, LDP mechanisms regard all personal data as
equally sensitive, and leave a lot of room for increasing data
utility. For example, consider questionnaires such as: “Have
you ever cheated in an exam?” and “Were you with a prostitute
in the last month?” [11]. Obviously, “Yes” is a sensitive re-
sponse to these questionnaires, whereas “No” is not sensitive.
A RR (Randomized Response) method proposed by Man-
gat [37] utilizes this fact. Specifically, it reports “Yes” or “No”
as follows: if the true answer is “Yes”, always report “Yes”;
otherwise, report “Yes” and “No” with probability p and 1− p,
respectively. Since the reported answer “Yes” may come from
both the true answers “Yes” and “No”, the confidentiality of
the user reporting “Yes” is not violated. Moreover, since the
reported answer “No” is always come from the true answer
“No”, the data collector can estimate a distribution of true
answers with higher accuracy than Warner’s RR [52], which
simply flips “Yes” and ”No” with probability p. However,
Mangat’s RR does not provide LDP, since LDP regards both
“Yes” and “No” as equally sensitive.

There are a lot of “non-sensitive” data for other types of
data. For example, locations such as hospitals and home can
be sensitive, whereas visited sightseeing places, restaurants,
and coffee shops are non-sensitive for many users. Divorced
people may want to keep their divorce secret, while the oth-
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ers may not care about their marital status. The distinction
between sensitive and non-sensitive data can also be different
from user to user (e.g., home address is different from user to
user; some people might want to keep secret even the sight-
seeing places). To explain more about this issue, we briefly
review related work on LDP and variants of DP.

Related work. Since Dwork [21] introduced DP, a number
of its variants have been studied to provide different types of
privacy guarantees; e.g., LDP [19], d-privacy [8], Pufferfish
privacy [32], dependent DP [36], Bayesian DP [53], mutual-
information DP [14], Rényi DP [38], and distribution privacy
[31]. In particular, LDP [19] has been widely studied in the
literature. For example, Erlingsson et al. [23] proposed the
RAPPOR as an obfuscation mechanism providing LDP, and
implemented it in Google Chrome browser. Kairouz et al.
[29] showed that under the l1 and l2 losses, the randomized
response (generalized to multiple alphabets) and RAPPOR are
order optimal among all LDP mechanisms in the low and high
privacy regimes, respectively. Wang et al. [51] generalized
the RAPPOR and a random projection-based method [6], and
found parameters that minimize the variance of the estimate.

Some studies also attempted to address the non-uniformity
of privacy requirements among records (rows) or among items
(columns) in the centralized DP: Personalized DP [28], Het-
erogeneous DP [3], and One-sided DP [17]. However, obfus-
cation mechanisms that address the non-uniformity among
input values in the “local” DP have not been studied, to our
knowledge. In this paper, we show that data utility can be
significantly increased by designing such local mechanisms.

Our contributions. The goal of this paper is to design obfus-
cation mechanisms in the local model that achieve high data
utility while providing DP for sensitive data. To achieve this,
we introduce the notion of ULDP (Utility-optimized LDP),
which provides a privacy guarantee equivalent to LDP only for
sensitive data, and obfuscation mechanisms providing ULDP.
As a task for the data collector, we consider discrete distribu-
tion estimation [2, 23, 24, 27, 29, 39, 46, 56], where personal
data take discrete values. Our contributions are as follows:

• We first consider the setting in which all users use the
same obfuscation mechanism, and propose two ULDP
mechanisms: utility-optimized RR and utility-optimized
RAPPOR. We prove that when there are a lot of non-
sensitive data, our mechanisms provide much higher util-
ity than two state-of-the-art LDP mechanisms: the RR
(for multiple alphabets) [29, 30] and RAPPOR [23]. We
also prove that when most of the data are non-sensitive,
our mechanisms even provide almost the same utility as
a non-private mechanism that does not obfuscate the per-
sonal data in the low privacy regime where the privacy
budget is ε = ln |X | for a set X of personal data.

• We then consider the setting in which the distinction
between sensitive and non-sensitive data can be different

from user to user, and propose a PUM (Personalized
ULDP Mechanism) with semantic tags. The PUM keeps
secret what is sensitive for each user, while enabling the
data collector to estimate a distribution using some back-
ground knowledge about the distribution conditioned on
each tag (e.g., geographic distributions of homes). We
also theoretically analyze the data utility of the PUM.

• We finally show that our mechanisms are very promising
in terms of utility using two large-scale datasets.

The proofs of all statements in the paper are given in the
extended version of the paper [40].
Cautions and limitations. Although ULDP is meant to pro-
tect sensitive data, there are some cautions and limitations.

First, we assume that each user sends a single datum and
that each user’s personal data is independent (see Section 2.1).
This is reasonable for a variety of personal data (e.g., locations,
age, sex, marital status), where each user’s data is irrelevant
to most others’ one. However, for some types of personal
data (e.g., flu status [48]), each user can be highly influenced
by others. There might also be a correlation between sensi-
tive data and non-sensitive data when a user sends multiple
data (on a related note, non-sensitive attributes may lead to
re-identification of a record [41]). A possible solution to these
problems would be to incorporate ULDP with Pufferfish pri-
vacy [32, 48], which is used to protect correlated data. We
leave this as future work (see Section 7 for discussions on the
case of multiple data per user and the correlation issue).

We focus on a scenario in which it is easy for users to
decide what is sensitive (e.g., cheating experience, location
of home). However, there is also a scenario in which users do
not know what is sensitive. For the latter scenario, we cannot
use ULDP but can simply apply LDP.

Apart from the sensitive/non-sensitive data issue, there are
scenarios in which ULDP does not cover. For example, ULDP
does not protect users who have a sensitivity about “informa-
tion disclosure” itself (i.e., those who will not disclose any
information). We assume that users have consented to infor-
mation disclosure. To collect as much data as possible, we can
provide an incentive for the information disclosure; e.g., pro-
vide a reward or point-of-interest (POI) information nearby
a reported location. We also assume that the data collector
obtains a consensus from users before providing reported data
to third parties. Note that these cautions are common to LDP.

There might also be a risk of discrimination; e.g., the data
collector might discriminate against all users that provide a
yes-answer, and have no qualms about small false positives.
False positives decrease with increase in ε. We note that LDP
also suffer from this attack; the false positive probability is
the same for both ULDP and LDP with the same ε.

In summary, ULDP provides a privacy guarantee equivalent
to LDP for sensitive data under the assumption of the data
independence. We consider our work as a building-block of
broader DP approaches or the basis for further development.
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2 Preliminaries

2.1 Notations

Let R≥0 be the set of non-negative real numbers. Let n be the
number of users, [n] = {1,2, . . . ,n}, X (resp. Y ) be a finite
set of personal (resp. obfuscated) data. We assume continuous
data are discretized into bins in advance (e.g., a location map
is divided into some regions). We use the superscript “(i)”
to represent the i-th user. Let X (i) (resp. Y (i)) be a random
variable representing personal (resp. obfuscated) data of the i-
th user. The i-th user obfuscates her personal data X (i) via her
obfuscation mechanism Q(i), which maps x∈X to y∈Y with
probability Q(i)(y|x), and sends the obfuscated data Y (i) to a
data collector. Here we assume that each user sends a single
datum. We discuss the case of multiple data in Section 7.

We divide personal data into two types: sensitive data and
non-sensitive data. Let XS ⊆ X be a set of sensitive data com-
mon to all users, and XN = X \XS be the remaining personal
data. Examples of such “common” sensitive data x ∈ XS are
the regions including public sensitive locations (e.g., hos-
pitals) and obviously sensitive responses to questionnaires
described in Section 11.

Furthermore, let X (i)
S ⊆ XN (i ∈ [n]) be a set of sensitive

data specific to the i-th user (here we do not include XS into
X (i)

S because XS is protected for all users in our mechanisms).

X (i)
S is a set of personal data that is possibly non-sensitive

for many users but sensitive for the i-th user. Examples of
such “user-specific” sensitive data x ∈ X (i)

S are the regions
including private locations such as their home and workplace.
(Note that the majority of working population can be uniquely
identified from their home/workplace location pairs [25].)

In Sections 3 and 4, we consider the case where all users
divide X into the same sets of sensitive data and of non-
sensitive data, i.e., X (1)

S = · · ·= X (n)
S = /0, and use the same

obfuscation mechanism Q (i.e., Q = Q(1) = · · · = Q(n)). In
Section 5, we consider a general setting that can deal with the
user-specific sensitive data X (i)

S and user-specific mechanisms
Q(i). We call the former case a common-mechanism scenario
and the latter a personalized-mechanism scenario.

We assume that each user’s personal data X (i) is inde-
pendently and identically distributed (i.i.d.) with a proba-
bility distribution p, which generates x ∈ X with probability
p(x). Let X = (X (1), · · · ,X (n)) and Y = (Y (1), · · · ,Y (n)) be
tuples of all personal data and all obfuscated data, respec-
tively. The data collector estimates p from Y by a method
described in Section 2.5. We denote by p̂ the estimate of
p. We further denote by C the probability simplex; i.e.,
C = {p|∑x∈X p(x) = 1,p(x)≥ 0 for any x ∈ X }.

1Note that these data might be sensitive for many/most users but not for all
in practice (e.g., some people might not care about their cheating experience).
However, we can regard these data as sensitive for all users (i.e., be on the
safe side) by allowing a small loss of data utility.

2.2 Privacy Measures
LDP (Local Differential Privacy) [19] is defined as follows:

Definition 1 (ε-LDP). Let ε ∈ R≥0. An obfuscation mecha-
nism Q from X to Y provides ε-LDP if for any x,x′ ∈ X and
any y ∈ Y ,

Q(y|x)≤ eεQ(y|x′). (1)

LDP guarantees that an adversary who has observed y can-
not determine, for any pair of x and x′, whether it is come from
x or x′ with a certain degree of confidence. As the privacy
budget ε approaches to 0, all of the data in X become almost
equally likely. Thus, a user’s privacy is strongly protected
when ε is small.

2.3 Utility Measures
In this paper, we use the l1 loss (i.e., absolute error) and
the l2 loss (i.e., squared error) as utility measures. Let l1
(resp. l2

2) be the l1 (resp. l2) loss function, which maps
the estimate p̂ and the true distribution p to the loss; i.e.,
l1(p̂,p) = ∑x∈X |p̂(x)−p(x)|, l2

2(p̂,p) = ∑x∈X (p̂(x)−p(x))2.
It should be noted that X is generated from p and Y is gener-
ated from X using Q(1), · · · ,Q(n). Since p̂ is computed from
Y, both the l1 and l2 losses depend on Y.

In our theoretical analysis in Sections 4 and 5, we take the
expectation of the l1 loss over all possible realizations of Y.
In our experiments in Section 6, we replace the expectation of
the l1 loss with the sample mean over multiple realizations of
Y and divide it by 2 to evaluate the TV (Total Variation). In
Appendix C, we also show that the l2 loss has similar results to
the ones in Sections 4 and 6 by evaluating the expectation of
the l2 loss and the MSE (Mean Squared Error), respectively.

2.4 Obfuscation Mechanisms
We describe the RR (Randomized Response) [29, 30] and a
generalized version of the RAPPOR [51] as follows.
Randomized response. The RR for |X |-ary alphabets was
studied in [29, 30]. Its output range is identical to the input
domain; i.e., X = Y .

Formally, given ε ∈ R≥0, the ε-RR is an obfuscation mech-
anism that maps x to y with the probability:

QRR(y|x) =

{
eε

|X |+eε−1 (if y = x)
1

|X |+eε−1 (otherwise).
(2)

It is easy to check by (1) and (2) that QRR provides ε-LDP.
Generalized RAPPOR. The RAPPOR (Randomized Ag-
gregatable Privacy-Preserving Ordinal Response) [23] is an
obfuscation mechanism implemented in Google Chrome
browser. Wang et al. [51] extended its simplest configura-
tion called the basic one-time RAPPOR by generalizing two
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probabilities in perturbation. Here we call it the generalized
RAPPOR and describe its algorithm in detail.

The generalized RAPPOR is an obfuscation mechanism
with the input alphabet X = {x1,x2, · · · ,x|X |} and the output
alphabet Y = {0,1}|X |. It first deterministically maps xi ∈ X
to ei ∈ {0,1}|X |, where ei is the i-th standard basis vector. It
then probabilistically flips each bit of ei to obtain obfuscated
data y = (y1,y2, · · · ,y|X |) ∈ {0,1}|X |, where yi ∈ {0,1} is the
i-th element of y. Wang et al. [51] compute ε from two pa-
rameters θ ∈ [0,1] (representing the probability of keeping
1 unchanged) and ψ ∈ [0,1] (representing the probability of
flipping 0 into 1). In this paper, we compute ψ from two
parameters θ and ε.

Specifically, given θ ∈ [0,1] and ε ∈ R≥0, the (θ,ε)-
generalized RAPPOR maps xi to y with the probability:

QRAP(y|xi) = ∏1≤ j≤|X |Pr(y j|xi),

where Pr(y j|xi) = θ if i = j and y j = 1, and Pr(y j|xi) = 1−θ

if i = j and y j = 0, and Pr(y j|xi) = ψ = θ

(1−θ)eε+θ
if i 6= j and

y j = 1, and Pr(y j|xi) = 1−ψ otherwise. The basic one-time
RAPPOR [23] is a special case of the generalized RAPPOR
where θ = eε/2

eε/2+1
. QRAP also provides ε-LDP.

2.5 Distribution Estimation Methods
Here we explain the empirical estimation method [2, 27, 29]
and the EM reconstruction method [1,2]. Both of them assume
that the data collector knows the obfuscation mechanism Q
used to generate Y from X.
Empirical estimation method. The empirical estimation
method [2,27,29] computes an empirical estimate p̂ of p using
an empirical distribution m̂ of the obfuscated data Y. Note that
p̂, m̂, and Q can be represented as an |X |-dimensional vector,
|Y |-dimensional vector, and |X | × |Y | matrix, respectively.
They have the following equation:

p̂Q = m̂. (3)

The empirical estimation method computes p̂ by solving (3).
Let m be the true distribution of obfuscated data; i.e.,

m = pQ. As the number of users n increases, the empiri-
cal distribution m̂ converges to m. Therefore, the empirical
estimate p̂ also converges to p. However, when the number
of users n is small, many elements in p̂ can be negative. To
address this issue, the studies in [23, 51] kept only estimates
above a significance threshold determined via Bonferroni
correction, and discarded the remaining estimates.
EM reconstruction method. The EM (Expectation-
Maximization) reconstruction method [1, 2] (also called the
iterative Bayesian technique [2]) regards X as a hidden vari-
able and estimates p from Y using the EM algorithm [26] (for
details of the algorithm, see [1, 2]). Let p̂EM be an estimate
of p by the EM reconstruction method. The feature of this
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Figure 1: Overview of ULDP. It has no transitions from XS to
YI , and every output in YI reveals the corresponding input in
XN . It also provides ε-LDP for YP.

algorithm is that p̂EM is equal to the maximum likelihood
estimate in the probability simplex C (see [1] for the proof).
Since this property holds irrespective of the number of users
n, the elements in p̂EM are always non-negative.

In this paper, our theoretical analysis uses the empirical
estimation method for simplicity, while our experiments use
the empirical estimation method, the one with the significance
threshold, and the EM reconstruction method.

3 Utility-Optimized LDP (ULDP)

In this section, we focus on the common-mechanism sce-
nario (outlined in Section 2.1) and introduce ULDP (Utility-
optimized Local Differential Privacy), which provides a pri-
vacy guarantee equivalent to ε-LDP only for sensitive data.
Section 3.1 provides the definition of ULDP. Section 3.2
shows some theoretical properties of ULDP.

3.1 Definition
Figure 1 shows an overview of ULDP. An obfuscation mech-
anism providing ULDP, which we call the utility-optimized
mechanism, divides obfuscated data into protected data and
invertible data. Let YP be a set of protected data, and YI =
Y \YP be a set of invertible data.

The feature of the utility-optimized mechanism is that it
maps sensitive data x ∈ XS to only protected data y ∈ YP.
In other words, it restricts the output set, given the input
x ∈ XS, to YP. Then it provides ε-LDP for YP; i.e., Q(y|x)≤
eεQ(y|x′) for any x,x′ ∈ X and any y ∈ YP. By this property,
a privacy guarantee equivalent to ε-LDP is provided for any
sensitive data x ∈ XS, since the output set corresponding to
XS is restricted to YP. In addition, every output in YI reveals
the corresponding input in XN (as in Mangat’s randomized
response [37]) to optimize the estimation accuracy.

We now formally define ULDP and the utility-optimized
mechanism:

Definition 2 ((XS,YP,ε)-ULDP). Given XS ⊆ X , YP ⊆ Y ,
and ε ∈ R≥0, an obfuscation mechanism Q from X to Y pro-
vides (XS,YP,ε)-ULDP if it satisfies the following properties:
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1. For any y ∈ YI , there exists an x ∈ XN such that

Q(y|x)> 0 and Q(y|x′) = 0 for any x′ 6= x. (4)

2. For any x,x′ ∈ X and any y ∈ YP,

Q(y|x)≤ eεQ(y|x′). (5)

We refer to an obfuscation mechanism Q providing (XS,YP,
ε)-ULDP as the (XS,YP,ε)-utility-optimized mechanism.

Example. For an intuitive understanding of Definition 2,
we show that Mangat’s randomized response [37] provides
(XS,YP,ε)-ULDP. As described in Section 1, this mechanism
considers binary alphabets (i.e., X = Y = {0,1}), and regards
the value 1 as sensitive (i.e., XS = YP = {1}). If the input
value is 1, it always reports 1 as output. Otherwise, it reports
1 and 0 with probability p and 1− p, respectively. Obviously,
this mechanism does not provide ε-LDP for any ε ∈ [0,∞).
However, it provides (XS,YP, ln 1

p )-ULDP.

(XS,YP,ε)-ULDP provides a privacy guarantee equivalent
to ε-LDP for any sensitive data x ∈ XS, as explained above.
On the other hand, no privacy guarantees are provided for
non-sensitive data x ∈ XN because every output in YI reveals
the corresponding input in XN . However, it does not matter
since non-sensitive data need not be protected. Protecting
only minimum necessary data is the key to achieving locally
private distribution estimation with high data utility.

We can apply any ε-LDP mechanism to the sensitive data
in XS to provide (XS,YP,ε)-ULDP as a whole. In Sections 4.1
and 4.2, we propose a utility-optimized RR (Randomized
Response) and utility-optimized RAPPOR, which apply the
ε-RR and ε-RAPPOR, respectively, to the sensitive data XS.

In Appendix B, we also consider OSLDP (One-sided LDP),
a local model version of OSDP introduced in a preprint [17],
and explain the reason for using ULDP in this paper.

It might be better to generalize ULDP so that different
levels of ε can be assigned to different sensitive data. We
leave introducing such granularity as future work.
Remark. It should also be noted that the data collector needs
to know Q to estimate p from Y (as described in Section 2.5),
and that the (XS,YP,ε)-utility-optimized mechanism Q itself
includes the information on what is sensitive for users (i.e.,
the data collector learns whether each x ∈ X belongs to XS or
not by checking the values of Q(y|x) for all y ∈ Y ). This does
not matter in the common-mechanism scenario, since the set
XS of sensitive data is common to all users (e.g., public hospi-
tals). However, in the personalized-mechanism scenario, the
(XS∪X (i)

S ,YP,ε)-utility-optimized mechanism Q(i), which ex-

pands the set XS of personal data to XS ∪X (i)
S , includes the

information on what is sensitive for the i-th user. Therefore,
the data collector learns whether each x ∈ XN belongs to X (i)

S
or not by checking the values of Q(i)(y|x) for all y ∈ Y , de-
spite the fact that the i-th user wants to hide her user-specific

sensitive data X (i)
S (e.g., home, workplace). We address this

issue in Section 5.

3.2 Basic Properties of ULDP
Previous work showed some basic properties of differential
privacy (or its variant), such as compositionality [22] and im-
munity to post-processing [22]. We briefly explain theoretical
properties of ULDP including the ones above.

Sequential composition. ULDP is preserved under adap-
tive sequential composition when the composed obfuscation
mechanism maps sensitive data to pairs of protected data.
Specifically, consider two mechanisms Q0 from X to Y0 and
Q1 from X to Y1 such that Q0 (resp. Q1) maps sensitive data
x ∈ XS to protected data y0 ∈ Y0P (resp. y1 ∈ Y1P). Then the
sequential composition of Q0 and Q1 maps sensitive data
x ∈ XS to pairs (y0,y1) of protected data ranging over:

(Y0×Y1)P = {(y0,y1) ∈ Y0×Y1 | y0 ∈ Y0P and y1 ∈ Y1P} .

Then we obtain the following compositionality.

Proposition 1 (Sequential composition). Let ε0,ε1 ≥ 0. If
Q0 provides (XS,Y0P,ε0)-ULDP and Q1(y0) provides (XS,
Y1P,ε1)-ULDP for each y0 ∈ Y0, then the sequential composi-
tion of Q0 and Q1 provides (XS,(Y0×Y1)P,ε0 + ε1)-ULDP.

For example, if we apply an obfuscation mechanism
providing (XS,YP,ε)-ULDP for t times, then we obtain
(XS,(YP)

t ,εt)-ULDP in total (this is derived by repeatedly
using Proposition 1).

Post-processing. ULDP is immune to the post-processing by
a randomized algorithm that preserves data types: protected
data or invertible data. Specifically, if a mechanism Q0 pro-
vides (XS,YP,ε)-ULDP and a randomized algorithm Q1 maps
protected data over YP (resp. invertible data) to protected data
over ZP (resp. invertible data), then the composite function
Q1 ◦Q0 provides (XS,ZP,ε)-ULDP.

Note that Q1 needs to preserve data types for utility; i.e.,
to make all y ∈ YI invertible (as in Definition 2) after post-
processing. The DP guarantee for y ∈ YP is preserved by any
post-processing algorithm. See Appendix A.1 for details.

Compatibility with LDP. Assume that data collectors A
and B adopt a mechanism providing ULDP and a mechanism
providing LDP, respectively. In this case, all protected data
in the data collector A can be combined with all obfuscated
data in the data collector B (i.e., data integration) to perform
data analysis under LDP. See Appendix A.2 for details.

Lower bounds on the l1 and l2 losses. We present lower
bounds on the l1 and l2 losses of any ULDP mechanism by
using the fact that ULDP provides (5) for any x,x′ ∈ XS and
any y ∈ YP. Specifically, Duchi et al. [20] showed that for
ε ∈ [0,1], the lower bounds on the l1 and l2 losses (minimax
rates) of any ε-LDP mechanism can be expressed as Θ( |X |√

nε2 )
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Figure 2: Utility-optimized RR in the case where XS = YP =
{x1,x2,x3} and XN = YI = {x4,x5,x6}.

and Θ( |X |nε2 ), respectively. By directly applying these bounds
to XS and YP, the lower bounds on the l1 and l2 losses of
any (XS,YP,ε)-ULDP mechanisms for ε ∈ [0,1] can be ex-
pressed as Θ( |XS|√

nε2 ) and Θ( |XS|
nε2 ), respectively. In Section 4.3,

we show that our utility-optimized RAPPOR achieves these
lower bounds when ε is close to 0 (i.e., high privacy regime).

4 Utility-Optimized Mechanisms

In this section, we focus on the common-mechanism scenario
and propose the utility-optimized RR (Randomized Response)
and utility-optimized RAPPOR (Sections 4.1 and 4.2). We then
analyze the data utility of these mechanisms (Section 4.3).

4.1 Utility-Optimized Randomized Response
We propose the utility-optimized RR, which is a generaliza-
tion of Mangat’s randomized response [37] to |X |-ary alpha-
bets with |XS| sensitive symbols. As with the RR, the output
range of the utility-optimized RR is identical to the input do-
main; i.e., X = Y . In addition, we divide the output set in the
same way as the input set; i.e., XS = YP, XN = YI .

Figure 2 shows the utility-optimized RR with XS = YP =
{x1,x2,x3} and XN = YI = {x4,x5,x6}. The utility-optimized
RR applies the ε-RR to XS. It maps x ∈ XN to y ∈ YP (= XS)
with the probability Q(y|x) so that (5) is satisfied, and maps
x ∈ XN to itself with the remaining probability. Formally, we
define the utility-optimized RR (uRR) as follows:

Definition 3 ((XS,ε)-utility-optimized RR). Let XS ⊆ X
and ε ∈ R≥0. Let c1 = eε

|XS|+eε−1 , c2 = 1
|XS|+eε−1 , and c3 =

1−|XS|c2 =
eε−1

|XS|+eε−1 . Then the (XS,ε)-utility-optimized RR
(uRR) is an obfuscation mechanism that maps x ∈ X to y ∈ Y
(= X ) with the probability QuRR(y|x) defined as follows:

QuRR(y|x) =



c1 (if x ∈ XS, y = x)
c2 (if x ∈ XS, y ∈ XS \{x})
c2 (if x ∈ XN , y ∈ XS)
c3 (if x ∈ XN , y = x)
0 (otherwise).

(6)

Proposition 2. The (XS,ε)-uRR provides (XS,XS, ε)-ULDP.
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Figure 3: Utility-optimized RAPPOR in the case where XS =
{x1, · · · ,x4} and XN = {x5, · · · ,x10}.

4.2 Utility-Optimized RAPPOR
Next, we propose the utility-optimized RAPPOR with the
input alphabet X = {x1,x2, · · · ,x|X |} and the output alpha-
bet Y = {0,1}|X |. Without loss of generality, we assume
that x1, · · · ,x|XS| are sensitive and x|XS|+1, · · · ,x|X | are non-
sensitive; i.e., XS = {x1, · · · ,x|XS|}, XN = {x|XS|+1, · · · ,x|X |}.

Figure 3 shows the utility-optimized RAPPOR with XS =
{x1, · · · ,x4} and XN = {x5, · · · ,x10}. The utility-optimized
RAPPOR first deterministically maps xi ∈ X to the i-th stan-
dard basis vector ei. It should be noted that if xi is sensitive
data (i.e., xi ∈ XS), then the last |XN | elements in ei are al-
ways zero (as shown in the upper-left panel of Figure 3).
Based on this fact, the utility-optimized RAPPOR regards
obfuscated data y = (y1,y2, . . . ,y|X |) ∈ {0,1}|X | such that
y|XS|+1 = · · ·= y|X | = 0 as protected data; i.e.,

YP = {(y1, . . . ,y|XS|,0, · · · ,0)|y1, . . . ,y|XS| ∈ {0,1}}. (7)

Then it applies the (θ,ε)-generalized RAPPOR to XS, and
maps x ∈ XN to y ∈ YP (as shown in the lower-left panel of
Figure 3) with the probability Q(y|x) so that (5) is satisfied.
We formally define the utility-optimized RAPPOR (uRAP):

Definition 4 ((XS,θ,ε)-utility-optimized RAPPOR). Let
XS ⊆ X , θ ∈ [0,1], and ε ∈ R≥0. Let d1 = θ

(1−θ)eε+θ
, d2 =

(1−θ)eε+θ

eε . Then the (XS,θ,ε)-utility-optimized RAPPOR
(uRAP) is an obfuscation mechanism that maps xi ∈ X to
y ∈ Y = {0,1}|X | with the probability QuRAP(y|x) given by:

QuRAP(y|xi) = ∏1≤ j≤|X |Pr(y j|xi), (8)

where Pr(y j|xi) is written as follows:

(i) if 1≤ j ≤ |XS|:

Pr(y j|xi) =


1−θ (if i = j, y j = 0)
θ (if i = j, y j = 1)
1−d1 (if i 6= j, y j = 0)
d1 (if i 6= j, y j = 1).

(9)

(ii) if |XS|+1≤ j ≤ |X |:

Pr(y j|xi) =


d2 (if i = j, y j = 0)
1−d2 (if i = j, y j = 1)
1 (if i 6= j, y j = 0)
0 (if i 6= j, y j = 1).

(10)
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Proposition 3. The (XS,θ,ε)-uRAP provides (XS,YP,ε)-
ULDP, where YP is given by (7).

Although we used the generalized RAPPOR in XS and YP

in Definition 4, hereinafter we set θ = eε/2

eε/2+1
in the same

way as the original RAPPOR [23]. There are two reasons for
this. First, it achieves “order” optimal data utility among all
(XS,YP,ε)-ULDP mechanisms in the high privacy regime, as
shown in Section 4.3. Second, it maps xi ∈ XN to y ∈ YI with
probability 1−d2 = 1− e−ε/2, which is close to 1 when ε is
large (i.e., low privacy regime). Wang et al. [51] showed that
the generalized RAPPOR with parameter θ= 1

2 minimizes the
variance of the estimate. However, our uRAP with parameter
θ = 1

2 maps xi ∈ XN to y ∈ YI with probability 1−d2 =
eε−1
2eε

which is less than 1− e−ε/2 for any ε > 0 and is less than 1
2

even when ε goes to infinity. Thus, our uRAP with θ = eε/2

eε/2+1
maps xi ∈ XN to y ∈ YI with higher probability, and therefore
achieves a smaller estimation error over all non-sensitive data.
We also consider that an optimal θ for our uRAP is different
from the optimal θ (= 1

2 ) for the generalized RAPPOR. We
leave finding the optimal θ for our uRAP (with respect to the
estimation error over all personal data) as future work.

We refer to the (XS,θ,ε)-uRAP with θ = eε/2

eε/2+1
in short-

hand as the (XS,ε)-uRAP.

4.3 Utility Analysis

We evaluate the l1 loss of the uRR and uRAP when the em-
pirical estimation method is used for distribution estimation2.
In particular, we evaluate the l1 loss when ε is close to 0 (i.e.,
high privacy regime) and ε = ln |X | (i.e., low privacy regime).
Note that ULDP provides a natural interpretation of the latter
value of ε. Specifically, it follows from (5) that if ε = ln |X |,
then for any x ∈ X , the likelihood that the input data is x is
almost equal to the sum of the likelihood that the input data
is x′ 6= x. This is consistent with the fact that the ε-RR with
parameter ε = ln |X | sends true data (i.e., y = x in (2)) with
probability about 0.5 and false data (i.e., y 6= x) with probabil-
ity about 0.5, and hence provides plausible deniability [29].

uRR in the general case. We begin with the uRR:

Proposition 4 (l1 loss of the uRR). Let ε ∈ R≥0, u = |XS|+
eε− 1, u′ = eε− 1, and v = u

u′ . Then the expected l1 loss of

2We note that we use the empirical estimation method in the same way
as [29], and that it might be possible that other mechanisms have better utility
with a different estimation method. However, we emphasize that even with
the empirical estimation method, the uRAP achieves the lower bounds on
the l1 and l2 losses of any ULDP mechanisms when ε≈ 0, and the uRR and
uRAP achieve almost the same utility as a non-private mechanism when
ε = ln |X | and most of the data are non-sensitive.

the (XS,ε)-uRR mechanism is given by:

E [l1(p̂,p)]≈
√

2
nπ

(
∑

x∈XS

√(
p(x)+1/u′

)(
v−p(x)−1/u′

)
+ ∑

x∈XN

√
p(x)

(
v−p(x)

))
, (11)

where f (n)≈ g(n) represents limn→∞ f (n)/g(n) = 1.

Let pUN be the uniform distribution over XN ; i.e., for any
x ∈ XS, pUN (x) = 0, and for any x ∈ XN , pUN (x) =

1
|XN | . Sym-

metrically, let pUS be the uniform distribution over XS.
For 0 < ε < ln(|XN |+1), the l1 loss is maximized by pUN :

Proposition 5. For any 0 < ε < ln(|XN |+1) and |XS| ≤ |XN |,
(11) is maximized by pUN :

E [l1(p̂,p)]. E [l1(p̂,pUN )]

=
√

2
nπ

(
|XS|
√
|XS|+eε−2
eε−1 +

√
|XS||XN |

eε−1 + |XN |−1
)
, (12)

where f (n). g(n) represents limn→∞ f (n)/g(n)≤ 1.

For ε≥ ln(|XN |+1), the l1 loss is maximized by a mixture
distribution of pUN and pUS :

Proposition 6. Let p∗ be a distribution over X defined by:

p∗(x) =


1−|XN |/(eε−1)
|XS|+|XN | (if x ∈ XS)

1+|XS|/(eε−1)
|XS|+|XN | (otherwise)

(13)

Then for any ε≥ ln(|XN |+1), (11) is maximized by p∗:

E [l1(p̂,p)]. E [l1(p̂,p∗)] =
√

2(|X |−1)
nπ

· |XS|+eε−1
eε−1 , (14)

where f (n). g(n) represents limn→∞ f (n)/g(n)≤ 1.

Next, we instantiate the l1 loss in the high and low privacy
regimes based on these propositions.
uRR in the high privacy regime. When ε is close to 0, we
have eε−1≈ ε. Thus, the right-hand side of (12) in Proposi-
tion 5 can be simplified as follows:

E [l1(p̂,pUN )]≈
√

2
nπ
· |XS|
√
|XS|−1
ε

. (15)

It was shown in [29] that the expected l1 loss of the ε-RR is

at most
√

2
nπ

|X |
√
|X |−1
ε

when ε ≈ 0. The right-hand side of
(15) is much smaller than this when |XS| � |X |. Although
both of them are “upper-bounds” of the expected l1 losses, we
show that the total variation of the (XS,ε)-uRR is also much
smaller than that of the ε-RR when |XS| � |X | in Section 6.
uRR in the low privacy regime. When ε = ln |X | and
|XS| � |X |, the right-hand side of (14) in Proposition 6 can
be simplified by using |XS|/|X | ≈ 0:

E [l1(p̂,p∗)]≈
√

2(|X |−1)
nπ

.
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It should be noted that the expected l1 loss of the non-private
mechanism, which does not obfuscate the personal data at

all, is at most
√

2(|X |−1)
nπ

[29]. Thus, when ε = ln |X | and
|XS| � |X |, the (XS,ε)-uRR achieves almost the same data
utility as the non-private mechanism, whereas the expected l1
loss of the ε-RR is twice larger than that of the non-private
mechanism [29].
uRAP in the general case. We then analyze the uRAP:

Proposition 7 (l1 loss of the uRAP). Let ε∈R≥0, u′ = eε/2−
1, and vN = eε/2

eε/2−1
. The expected l1-loss of the (XS,ε)-uRAP

mechanism is:

E [l1(p̂,p)]≈
√

2
nπ

(|XS|

∑
j=1

√(
p(x j)+1/u′

)(
vN−p(x j)

)
+
|X |

∑
j=|XS|+1

√
p(x j)

(
vN−p(x j)

))
, (16)

where f (n)≈ g(n) represents limn→∞ f (n)/g(n) = 1.

When 0 < ε < 2ln( |XN |
2 +1), the l1 loss is maximized by

the uniform distribution pUN over XN :

Proposition 8. For any 0 < ε < 2ln( |XN |
2 + 1) and |XS| ≤

|XN |, (16) is maximized when p = pUN :

E [l1(p̂,p)]. E [l1(p̂,pUN )]

=
√

2
nπ

(
eε/4|XS|
eε/2−1

+

√
eε/2|XN |
eε/2−1

−1
)
, (17)

where f (n). g(n) represents limn→∞ f (n)/g(n)≤ 1.

Note that this proposition covers a wide range of ε. For
example, when |XS| ≤ |XN |, it covers both the high privacy
regime (ε ≈ 0) and low privacy regime (ε = ln |X |), since
ln |X |< 2ln( |XN |

2 +1). Below we instantiate the l1 loss in the
high and low privacy regimes based on this proposition.
uRAP in the high privacy regime. If ε is close to 0, we have
eε/2−1≈ ε/2. Thus, the right-hand side of (17) in Proposi-
tion 8 can be simplified as follows:

E [l1(p̂,pUN )]≈
√

2
nπ
· 2|XS|

ε
. (18)

It is shown in [29] that the expected l1 loss of the ε-RAPPOR

is at most
√

2
nπ
· 2|X |

ε
when ε≈ 0. Thus, by (18), the expected

l1 loss of the (XS,ε)-uRAP is much smaller than that of the
ε-RAPPOR when |XS| � |X |.

Moreover, by (18), the expected l1 loss of the (XS,ε)-uRAP
in the worst case is expressed as Θ( |XS|√

nε2 ) in the high privacy
regime. As described in Section 3.2, this is “order” optimal
among all (XS,YP,ε)-ULDP mechanisms (in Appendix C.1,
we also show that the expected l2 of the (XS,ε)-uRAP is
expressed as Θ( |XS|

nε2 )).

uRAP in the low privacy regime. If ε = ln |X | and |XS| �
|X | 34 , the right-hand side of (17) can be simplified, using
|XS|/|X |

3
4 ≈ 0, as follows:

E [l1(p̂,pUN )]≈
√

2(|X |−1)
nπ

.

Thus, when ε = ln |X | and |XS| � |X |
3
4 , the (XS,ε)-uRAP

also achieves almost the same data utility as the non-private
mechanism, whereas the expected l1 loss of the ε-RAPPOR
is
√
|X | times larger than that of the non-private mechanism

[29].
Summary. In summary, the uRR and uRAP provide much
higher utility than the RR and RAPPOR when |XS| � |X |.
Moreover, when ε = ln |X | and |XS| � |X | (resp. |XS| �
|X | 34 ), the uRR (resp. uRAP) achieves almost the same utility
as a non-private mechanism.

5 Personalized ULDP Mechanisms

We now consider the personalized-mechanism scenario (out-
lined in Section 2.1), and propose a PUM (Personalized ULDP
Mechanism) to keep secret what is sensitive for each user
while enabling the data collector to estimate a distribution.

Sections 5.1 describes the PUM. Section 5.2 explains its
privacy properties. Section 5.3 proposes a method to esti-
mate the distribution p from Y obfuscated using the PUM.
Section 5.4 analyzes the data utility of the PUM.

5.1 PUM with κ Semantic Tags
Figure 4 shows the overview of the PUM Q(i) for the i-th
user (i = 1,2, . . . ,n). It first deterministically maps personal
data x ∈ X to intermediate data using a pre-processor f (i)pre,
and then maps the intermediate data to obfuscated data y ∈ Y
using a utility-optimized mechanism Qcmn common to all
users. The pre-processor f (i)pre maps user-specific sensitive
data x ∈ X (i)

S to one of κ bots: ⊥1,⊥2, · · · , or ⊥κ. The κ

bots represent user-specific sensitive data, and each of them is
associated with a semantic tag such as “home” or “workplace”.
The κ semantic tags are the same for all users, and are useful
when the data collector has some background knowledge
about p conditioned on each tag. For example, a distribution of
POIs tagged as “home” or “workplace” can be easily obtained
via the Fousquare venue API [54]. Although this is not a user
distribution but a “POI distribution”, it can be used to roughly
approximate the distribution of users tagged as “home” or
“workplace”, as shown in Section 6. We define a set Z of
intermediate data by Z = X ∪{⊥1, · · · ,⊥κ}, and a set ZS of
sensitive intermediate data by ZS = XS∪{⊥1, · · · ,⊥κ}.

Formally, the PUM Q(i) first maps personal data x ∈ X to
intermediate data z ∈ Z using a pre-processor f (i)pre : X → Z
specific to each user. The pre-processor f (i)pre maps sensitive
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Figure 4: Overview of the PUM Q(i) (= Qcmn ◦ f (i)pre).

data x ∈ X (i)
S associated with the k-th tag (1≤ k ≤ κ) to the

corresponding bot⊥k, and maps other data to themselves. Let
X (i)

S,k be a set of the i-th user’s sensitive data associated with the
k-th tag (e.g., set of regions including her primary home and
second home). Then, X (i)

S is expressed as X (i)
S =

⋃
1≤k≤κ X (i)

S,k ,

and f (i)pre is given by:

f (i)pre(x) =

{
⊥k (if x ∈ X (i)

S,k)
x (otherwise).

(19)

After mapping personal data x ∈ X to intermediate data z ∈
Z, the (ZS,YP,ε)-utility-optimized mechanism Qcmn maps
z to obfuscated data y ∈ Y . Examples of Qcmn include the
(ZS,ε)-uRR (in Definition 3) and (ZS,ε)-uRAP (in Defini-
tion 4). As a whole, the PUM Q(i) can be expressed as:
Q(i) = Qcmn ◦ f (i)pre. The i-th user stores f (i)pre and Qcmn in a
device that obfuscates her personal data (e.g., mobile phone,
personal computer). Note that if f (i)pre is leaked, x ∈ XN corre-
sponding to each bot (e.g., home, workplace) is leaked. Thus,
the user keeps f (i)pre secret. To strongly prevent the leakage
of f (i)pre, the user may deal with f (i)pre using a tamper-resistant
hardware/software. On the other hand, the utility-optimized
mechanism Qcmn, which is common to all users, is available
to the data collector.

The feature of the proposed PUM Q(i) is two-fold: (i) the
secrecy of the pre-processor f (i)pre and (ii) the κ semantic tags.
By the first feature, the i-th user can keep X (i)

S (i.e., what is
sensitive for her) secret, as shown in Section 5.2. The second
feature enables the data collector to estimate a distribution p
with high accuracy. Specifically, she estimates p from obfus-
cated data Y using Qcmn and some background knowledge
about p conditioned on each tag, as shown in Section 5.3.

In practice, it may happen that a user has her specific sen-
sitive data x ∈ X (i)

S that is not associated with any semantic
tags. For example, if we prepare only tags named “home”
and “workplace”, then sightseeing places, restaurants, and
any other places are not associated with these tags. One way
to deal with such data is to create another bot associated with
a tag named “others” (e.g., if ⊥1 and ⊥2 are associated with

“home” and “workplace”, respectively, we create ⊥3 associ-
ated with “others”), and map x to this bot. It would be difficult
for the data collector to obtain background knowledge about
p conditioned on such a tag. In Section 5.3, we will explain
how to estimate p in this case.

5.2 Privacy Properties
We analyze the privacy properties of the PUM Q(i). First, we
show that it provides ULDP.

Proposition 9. The PUM Q(i) (= Qcmn ◦ f (i)pre) provides (XS∪
X (i)

S , YP,ε)-ULDP.

We also show that our PUM provides DP in that an ad-
versary who has observed y ∈ YP cannot determine, for any
i, j ∈ [n], whether it is obfuscated using Q(i) or Q( j), which
means that y ∈ YP reveals almost no information about X (i)

S :

Proposition 10. For any i, j ∈ [n], any x∈ X , and any y∈ YP,

Q(i)(y|x)≤ eεQ( j)(y|x).

We then analyze the secrecy of X (i)
S . The data collector,

who knows the common-mechanism Qcmn, cannot obtain any
information about X (i)

S from Qcmn and y ∈ YP. Specifically,
the data collector knows, for each z ∈ Z, whether z ∈ ZS or
not by viewing Qcmn. However, she cannot obtain any infor-
mation about X (i)

S from ZS, because she does not know the

mapping between X (i)
S and {⊥1, · · · ,⊥κ} (i.e., f (i)pre). In ad-

dition, Propositions 9 and 10 guarantee that y ∈ YP reveals
almost no information about both input data and X (i)

S .
For example, assume that the i-th user obfuscates her home

x∈XS∪X (i)
S using the PUM Q(i), and sends y∈YP to the data

collector. The data collector cannot infer either x ∈ XS∪X (i)
S

or z ∈ ZS from y ∈ YP, since both Qcmn and Q(i) provide
ULDP. This means that the data collector cannot infer the fact
that she was at home from y. Furthermore, the data collector
cannot infer where her home is, since X (i)

S cannot be inferred
from Qcmn and y ∈ YP as explained above.

We need to take a little care when the i-th user obfuscates
non-sensitive data x∈XN \X (i)

S using Q(i) and sends y∈YI to
the data collector. In this case, the data collector learns x from
y, and therefore learns that x is not sensitive (i.e., x /∈ X (i)

S ).
Thus, the data collector, who knows that the user wants to hide
her home, would reduce the number of possible candidates
for her home from X to X \{x}. However, if |X | is large (e.g.,
|X | = 625 in our experiments using location data), the number
|X | − 1 of candidates is still large. Since the data collector
cannot further reduce the number of candidates using Qcmn,
her home is still kept strongly secret. In Section 7, we also
explain that the secrecy of X (i)

S is achieved under reasonable
assumptions even when she sends multiple data.
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5.3 Distribution Estimation
We now explain how to estimate a distribution p from data
Y obfuscated using the PUM. Let r(i) be a distribution of
intermediate data for the i-th user:

r(i)(z) =


∑x∈X (i)

S,k
p(x) (if z =⊥k for some k = 1, . . . ,κ)

0 (if z ∈ X (i)
S )

p(z) (otherwise).

and r be the average of r(i) over n users; i.e., r(z) =
1
n ∑

n
i=1 r(i)(z) for any z ∈ Z. Note that ∑x∈X p(x) = 1 and

∑z∈Z r(z) = 1. Furthermore, let πk be a distribution of per-
sonal data x ∈ X conditioned on ⊥k defined by:

πk(x) =
∑

n
i=1 p(i)

k (x)

∑x′∈X ∑
n
i=1 p(i)

k (x′)
, (20)

p(i)
k (x) =

{
p(x) (if f (i)pre(x) =⊥k)
0 (otherwise).

πk(x) in (20) is a normalized sum of the probability p(x) of
personal data x whose corresponding intermediate data is ⊥k.
Note that although x∈ X is deterministically mapped to z∈Z
for each user, we can consider the probability distribution πk
for n users. For example, if ⊥k is tagged as “home”, then πk
is a distribution of users at home.

We propose a method to estimate a distribution p from
obfuscated data Y using some background knowledge about
πk as an estimate π̂k of πk (we explain the case where we have
no background knowledge later). Our estimation method first
estimates a distribution r of intermediate data from obfuscated
data Y using Qcmn. This can be performed in the same way as
the common-mechanism scenario. Let r̂ be the estimate of r.

After computing r̂, our method estimates p using the esti-
mate π̂k (i.e., background knowledge about πk) as follows:

p̂(x) = r̂(x)+
κ

∑
k=1

r̂(⊥k)π̂k(x), ∀x ∈ X . (21)

Note that p̂ in (21) can be regarded as an empirical estimate
of p. Moreover, if both r̂ and π̂k are in the probability simplex
C , then p̂ in (21) is always in C .

If we do not have estimates π̂k for some bots (like the
one tagged as “others” in Section 5.1), then we set π̂k(x) in
proportion to r̂(x) over x ∈ XN (i.e., π̂k(x) =

r̂(x)
∑x′∈XN

r̂(x′) ) for

such bots. When we do not have any background knowledge
π̂1, · · · , π̂κ for all bots, it amounts to simply discarding the
estimates r̂(⊥1), · · · , r̂(⊥κ) for κ bots and normalizing r̂(x)
over x ∈ XN so that the sum is one.

5.4 Utility Analysis
We now theoretically analyze the data utility of our PUM.
Recall that p̂, r̂, and π̂k are the estimate of the distribution

of personal data, intermediate data, and personal data condi-
tioned on ⊥k, respectively. In the following, we show that the
l1 loss of p̂ can be upper-bounded as follows:

Theorem 1 (l1 loss of the PUM).

l1(p̂,p)≤ l1(r̂,r)+
κ

∑
k=1

r̂(⊥k)l1(π̂k,πk). (22)

This means the upper-bound on the l1 loss of p̂ can be
decomposed into the l1 loss of r̂ and of π̂k weighted by r̂(⊥k).

The first term in (22) is the l1 loss of r̂, which depends
on Qcmn. For example, if we use the uRR or uRAP as Qcmn,
the expectation of l1(r̂,r) is given by Propositions 4 and 7,
respectively. In Section 6, we show they are very small.

The second term in (22) is the summation of the l1 loss
of π̂k weighted by r̂(⊥k). If we accurately estimate πk, the
second term is very small. In other words, if we have enough
background knowledge about πk, we can accurately estimate
p in the personalized-mechanism scenario.

It should be noted that when the probability r̂(⊥k) is small,
the second term in (22) is small even if we have no background
knowledge about πk. For example, when only a small number
of users map x ∈ X (i)

S to a tag named “others”, they hardly
affect the accuracy of p̂. Moreover, the second term in (22) is
upper-bounded by 2∑

κ
k=1 r̂(⊥k), since the l1 loss is at most 2.

Thus, after computing r̂, the data collector can easily compute
the worst-case value of the second term in (22) to know the
effect of the estimation error of π̂k on the accuracy of p̂.

Last but not least, the second term in (22) does not depend
on ε (while the first term depends on ε). Thus, the effect of
the second term is relatively small when ε is small (i.e., high
privacy regime), as shown in Section 6.
Remark. Note that different privacy preferences might skew
the distribution πk. For example, doctors might not consider
hospitals as sensitive as compared to patients. Consequently,
the distribution πk conditioned on “hospital” might be a dis-
tribution of patients (not doctors) in hospitals. This kind of
systematic bias can increase the estimation error of π̂k. Theo-
rem 1 and the above discussions are also valid in this case.

6 Experimental Evaluation

6.1 Experimental Set-up
We conducted experiments using two large-scale datasets:
Foursquare dataset. The Foursquare dataset (global-scale
check-in dataset) [54] is one of the largest location datasets
among publicly available datasets (e.g., see [10], [44], [55],
[57]); it contains 33278683 check-ins all over the world, each
of which is associated with a POI ID and venue category (e.g.,
restaurant, shop, hotel, hospital, home, workplace).

We used 359054 check-ins in Manhattan, assuming that
each check-in is from a different user. Then we divided Man-
hattan into 25×25 regions at regular intervals and used them
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as input alphabets; i.e., |X |= 625. The size of each region is
about 400m (horizontal) × 450m (vertical). We assumed a
region that includes a hospital visited by at least ten users as a
sensitive region common to all users. The number of such re-
gions was |XS|= 15. In addition, we assumed a region in XN
that includes a user’s home or workplace as her user-specific
sensitive region. The number of users at home and workplace
was 5040 and 19532, respectively.
US Census dataset. The US Census (1990) dataset [35] was
collected as part of the 1990 U.S. census. It contains responses
from 2458285 people (each person provides one response),
each of which contains 68 attributes.

We used the responses from all people, and used age, in-
come, marital status, and sex as attributes. Each attribute has
8, 5, 5, and 2 categories, respectively. (See [35] for details
about the value of each category ID.) We regarded a tuple
of the category IDs as a total category ID, and used it as an
input alphabet; i.e., |X |= 400 (= 8×5×5×2). We consid-
ered the fact that “divorce” and “unemployment” might be
sensitive for many users [34], and regarded such categories
as sensitive for all users (to be on the safe side, as described
in Section 2.1). Note that people might be students until their
twenties and might retire in their fifties or sixties. Children
of age twelve and under cannot get married. We excluded
such categories from sensitive ones. The number of sensitive
categories was |XS|= 76.

We used a frequency distribution of all people as a true
distribution p, and randomly chose a half of all people as
users who provide their obfuscated data; i.e., n = 179527 and
1229143 in the Foursquare and US Census datasets, respec-
tively. Here we did not use all people, because we would like
to evaluate the non-private mechanism that does not obfuscate
the personal data; i.e., the non-private mechanism has an esti-
mation error in our experiments due to the random sampling
from the population.

As utility, we evaluated the TV (Total Variation) by com-
puting the sample mean over a hundred realizations of Y.

6.2 Experimental Results
Common-mechanism scenario. We first focused on the
common-mechanism scenario, and evaluated the RR, RAP-
POR, uRR, and uRAP. As distribution estimation methods,
we used empirical estimation, empirical estimation with the
significance threshold, and EM reconstruction (denoted by
“emp”, “emp+thr”, and “EM”, respectively). In “emp+thr”,
we set the significance level α to be α = 0.05, and uniformly
assigned the remaining probability to each of the estimates
below the significance threshold in the same way as [51].

Figure 5 shows the results in the case where ε is changed
from 0.1 to 10. “no privacy” represents the non-private mech-
anism. It can be seen that our mechanisms outperform the
existing mechanisms by one or two orders of magnitude.
Our mechanisms are effective especially in the Foursquare
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Figure 5: ε vs. TV (common-mechanism). A bold line parallel
to the y-axis represents ε = ln |X |.

dataset, since the proportion of sensitive regions is very
small (15/625 = 0.024). Moreover, the uRR provides almost
the same performance as the non-private mechanism when
ε = ln |X |, as described in Section 4.3. It can also be seen that
“emp+thr” and “EM” significantly outperform “emp”, since
the estimates in “emp+thr” and “EM” are always non-negative.
Although “EM” outperforms “emp+thr” for the RAPPOR and
uRAP when ε was large, the two estimation methods provide
very close performance as a whole.

We then evaluated the relationship between the number
of sensitive regions/categories and the TV. To this end, we
randomly chose XS from X , and increased |XS| from 1 to |X |
(only in this experiment). We attempted one hundred cases
for randomly choosing XS from X , and evaluated the TV by
computing the sample mean over one hundred cases.

Figure 6 shows the results for ε = 0.1 (high privacy regime)
or ln |X | (low privacy regime). Here we omit the performance
of “emp+thr”, since it is very close to that of “EM” in the
same way as in Figure 5. The uRAP and uRR provide the
best performance when ε = 0.1 and ln |X |, respectively. In
addition, the uRR provides the performance close to the non-
private mechanism when ε = ln |X | and the number |XS| of
sensitive regions/categories is less than 100. The performance
of the uRAP is also close to that of the non-private mechanism
when |XS| is less than 20 (note that |X | 34 = 125 and 89 in the
Foursquare and US Census datasets, respectively). However, it
rapidly increases with increase in |XS|. Overall, our theoretical
results in Section 4.3 hold for the two real datasets.

We also evaluated the performance when the number of
attributes was increased from 4 to 9 in the US Census dataset.
We added, one by one, five attributes as to whether or not a
user has served in the military during five periods (“Sept80”,
“May75880”, “Vietnam”, “Feb55”, and “Korean” in [18]; we
added them in this order). We assumed that these attributes
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are non-sensitive. Since each of the five attributes had two
categories (1: yes, 0: no), |X | (resp. |XS|) was changed from
400 to 12800 (resp. from 76 to 2432). We randomly chose
n = 240000 people as users who provide obfuscated data, and
evaluated the TV by computing the sample mean over ten
realizations of Y (only in this experiment).

Figure 7 shows the results in the case where ε = 0.1, 1.0,
or 6.0 (=ln400). Here we omit the performance of “emp+thr”
in the same way as Figure 6. Although the TV increases with
an increase in the number of attributes, overall our utility-
optimized mechanisms remain effective, compared to the ex-
isting mechanisms. One exception is the case where ε = 0.1
and the number of attributes is 9; the TV of the RR (EM),
RAPPOR (EM), and uRR (EM) is almost 1. Note that when
we use the EM reconstruction method, the worst value of
the TV is 1. Thus, as with the RR and RAPPOR, the uRR
fails to estimate a distribution in this case. On the other hand,
the TV of the uRAP (EM) is much smaller than 1 even in
this case, which is consistent with the fact that the uRAP is
order optimal in the high privacy regime. Overall, the uRAP
is robust to the increase of the attributes at the same value of
ε (note that for large |X |, ε = 1.0 or 6.0 is a medium privacy
regime where 0� ε� ln |X |).

We also measured the running time (i.e., time to estimate p
from Y) of “EM” (which sets the estimate by “emp+thr” as
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Figure 9: Visualization of the distributions ((II): POI distribu-
tion, (III): true distribution).

an initial value of p̂) on an Intel Xeon CPU E5-2620 v3 (2.40
GHz, 6 cores, 12 logical processors) with 32 GB RAM. We
found that the running time increases roughly linearly with the
number of attributes. For example, when ε = 6.0 and the num-
ber of attributes is 9, the running time of “EM” required 3121,
1258, 5225, and 1073 seconds for “RR”, “uRR”, “RAP”, and
“uRAP”, respectively. We also measured the running time of
‘emp” and “emp+thr”, and found that they required less than
one second even when the number of attributes is 9. Thus, if
“EM” requires too much time for a large number of attributes,
“emp+thr” would be a good alternative to “EM”.

Personalized-mechanism scenario. We then focused on the
personalized-mechanism scenario, and evaluated our utility-
optimized mechanisms using the Foursquare dataset. We used
the PUM with κ = 2 semantic tags (described in Section 5.1),
which maps “home” and ‘workplace” to bots ⊥1 and ⊥2,
respectively. As the background knowledge about the bot
distribution πk (1 ≤ k ≤ 2), we considered three cases: (I)
we do not have any background knowledge; (II) we use a
distribution of POIs tagged as “home” (resp. “workplace”),
which is computed from the POI data in [54], as an estimate
of the bot probability π̂1 (resp. π̂2); (III) we use the true
distributions (i.e., π̂k = πk). Regarding (II), we emphasize
again that it is not a user distribution but a “POI distribution”,
and can be easily obtained via the Foursquare venue API [54].

Figure 8 shows the results. We also show the POI and true
distributions in Figure 9. It can be seen that the performance
of (II) lies in between that of (I) and (III), which shows that
the estimate π̂k of the bot distribution affects utility. However,
when ε is smaller than 1, all of (I), (II), and (III) provide almost
the same performance, since the effect of the estimation error
of π̂k does not depend on ε, as described in Section 5.4.

We also computed the l1 loss l1(p̂,p) and the first and
second terms in the right-hand side of (22) to investigate
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Table 1: l1 loss l1(p̂,p) and the first and second terms in the
right-hand side of (22) in the case where ε = ln |X | and the
EM reconstruction method is used.

Method l1(p̂,p) first term second term
uRR (I) 6.73×10−2 2.70×10−2 7.34×10−2

uRR (II) 4.24×10−2 2.70×10−2 2.96×10−2

uRR (III) 2.62×10−2 2.70×10−2 0
uRAP (I) 6.77×10−2 2.76×10−2 7.35×10−2

uRAP (II) 4.28×10−2 2.76×10−2 2.96×10−2

uRAP (III) 2.67×10−2 2.76×10−2 0

whether Theorem 1 holds. Table 1 shows the results (we
averaged the values over one hundred realizations of Y). It
can be seen that l1(p̂,p) is smaller than the summation of the
first and second terms in all of the methods, which shows that
Theorem 1 holds in our experiments.

From these experimental results, we conclude that our
proposed methods are very effective in both the common-
mechanism and personalized-mechanism scenarios. In Ap-
pendix C.2, we show the MSE has similar results to the TV.

7 Discussions

On the case of multiple data per user. We have so far
assumed that each user sends only a single datum. Now
we discuss the case where each user sends multiple data
based on the compositionality of ULDP described in Sec-
tion 3.2. Specifically, when a user sends t (> 1) data, we
obtain (XS,(YP)

t ,ε)-ULDP in total by obfuscating each data
using the (XS,YP,ε/t)-utility-optimized mechanism. Note,
however, that the amount of noise added to each data increases
with increase in t. Consequently, for ε∈ [0, t], the lower bound
on the l1 (resp. l2) loss (described in Section 3.2) can be ex-
pressed as Θ(

√
t|XS|√
nε2 ) (resp. Θ( t|XS|

nε2 )), which increases with
increase in t. Thus, t cannot be large for distribution estima-
tion in practice. This is also common to all LDP mechanisms.

Next we discuss the secrecy of X (i)
S . Assume that the i-

th user obfuscates t data using different seeds, and sends
tP protected data in YP and tI invertible data in YI , where
t = tP + tI > 1 (she can also use the same seed for the same
data to reduce tI as in [23]). If all the tI data in YI are different
from each other, the data collector learns tI original data in
XN . However, tI (≤ t) cannot be large in practice, as explained
above. In addition, in many applications, a user’s personal
data is highly non-uniform and sparse. In locations data, for
example, a user often visits only a small number of regions
in the whole map X . Let T (i) ⊆ XN be a set of possible input
values for the i-th user in XN . Then, even if tI is large, the data
collector cannot learn more than |T (i)| data in XN .

Moreover, the tP data in YP reveal almost no information
about X (i)

S , since Q(i) provides (XS,(YP)
t ,ε)-ULDP. Qcmn

provides no information about X (i)
S , since f (i)pre is kept secret.

Thus, the data collector, who knows that the user wants to
hide her home, cannot reduce the number of candidates for
her home from max{|X |− tI , |X |− |T (i)|} using the tP data
and Qcmn. If either tI or |T (i)| is much smaller than |X |, her
home is kept strongly secret.

Note that p can be estimated even if X (i)
S changes over time.

X (i)
S is also kept strongly secret if tI or |T (i)| is small.

On the correlation between XS and XN . It should also be
noted that there might be a correlation between sensitive data
XS and non-sensitive data XN . For example, if a user discloses
a non-sensitive region close to a sensitive region including
her home, the adversary might infer approximate information
about the original location (e.g., the fact that the user lives
in Paris). However, we emphasize that if the size of each
region is large, the adversary cannot infer the exact location
such as the exact home address. Similar approaches can be
seen in a state-of-the-art location privacy measure called geo-
indistinguishability [4, 7, 42, 47]. Andrés et al. [4] considered
privacy protection within a radius of 200m from the original
location, whereas the size of each region in our experiments
was about 400m × 450m (as described in Section 6.1). We
can protect the exact location by setting the size of each
region to be large enough, or setting all regions close to a
user’s sensitive location to be sensitive.

There might also be a correlation between two attributes
(e.g., income and marital status) in the US Census dataset.
However, we combined the four category IDs into a total
category ID for each user as described in Section 6.1. Thus,
there is only “one” category ID for each user. Assuming
that each user’s data is independent, there is no correlation
between data. Therefore, we conclude that the sensitive data
are strongly protected in both the Foursquare and US Census
datasets in our experiments.

It should be noted, however, that the number of total cate-
gory IDs increases exponentially with the number of attributes.
Thus, when there are many attributes as in Figure 7, the es-
timation accuracy might be increased by obfuscating each
attribute independently (rather than obfuscating a total ID)
while considering the correlation among attributes. We also
need to consider a correlation among “users” for some types
of personal data (e.g., flu status). For rigorously protecting
such correlated data, we should incorporate Pufferfish pri-
vacy [32, 48] into ULDP, as described in Section 1.

8 Conclusion

In this paper, we introduced the notion of ULDP that guar-
antees privacy equivalent to LDP for only sensitive data. We
proposed ULDP mechanisms in both the common and person-
alized mechanism scenarios. We evaluated the utility of our
mechanisms theoretically and demonstrated the effectiveness
of our mechanisms through experiments.
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A Properties of ULDP

In this section, we describe the properties of ULDP (the im-
munity to post-processing and the compatibility with LDP)
in more details.
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A.1 Post-processing
We first define a class of post-processing randomized algo-
rithms that preserve data types:

Definition 5 (Preservation of data types). Let YP and ZP be
sets of protected data, and YI and ZI be sets of invertible data.
Given a randomized algorithm Q1 from YP∪YI to ZP∪ZI ,
we say that Q1 preserves data types if it satisfies:

• for any z ∈ ZP and any y ∈ YI , Q1(z|y) = 0, and

• for any z∈ZI , there exists a y∈YI such that Q1(z|y)> 0
and Q1(z|y′) = 0 for any y′ 6= y.

Then we show that ULDP is immune to the post-processing
by this class of randomized algorithms.

Proposition 11 (Post-processing). Let ε ≥ 0. Let ZP and
ZI be sets of protected and invertible data respectively, and
Z = ZP∪ZI . Let Q1 be a randomized algorithm from Y to
Z that preserves data types. If an obfuscation mechanism Q0
from X to Y provides (XS,YP,ε)-ULDP then the composite
function Q1 ◦Q0 provides (XS,ZP,ε)-ULDP.

For example, ULDP is immune to data cleaning operations
(e.g., transforming values, merging disparate values) [33] as
long as they are represented as Q1 explained above.

Note that Q1 needs to preserve data types for utility (i.e.,
to make all y ∈ YI invertible, as in Definition 2, after post-
processing), and the DP guarantee for y ∈ YP is preserved by
any post-processing algorithm. Specifically, by (5), for any
randomized post-processing algorithm Q∗1, any obfuscated
data z ∈ Z obtained from y ∈ YP via Q∗1, and any x,x′ ∈ X ,
we have: Pr(z|x)≤ eε Pr(z|x′).

A.2 Compatibility with LDP
Assume that data collectors A and B adopt a mechanism QA
providing (XS,YP,εA)-ULDP and a mechanism QB providing
εB-LDP, respectively. In this case, all protected data in the
data collector A can be combined with all obfuscated data
in the data collector B (i.e., data integration) to perform data
analysis under LDP. More specifically, assume that Alice
transforms her sensitive personal data in XS into yA ∈ YP
(resp. yB ∈ Y ) using QA (resp. QB), and sends yA (resp. yB) to
the data collector A (resp. B) to request two different services
(e.g., location check-in for A and point-of-interest search
for B). Then, the composition (QA,QB) in parallel has the
following property:

Proposition 12 (Compatibility with LDP). If QA and QB
respectively provide (XS,YP,εA)-ULDP and εB-LDP, then
for any x,x′ ∈ X , yA ∈ YP, and yB ∈ Y , we have:

(QA,QB)(yA,yB|x)≤ eεA+εB(QA,QB)(yA,yB|x′).

Proposition 12 implies that Alice’s sensitive personal data
in XS is protected by (εA + εB)-LDP after the data integration.

B Relationship between LDP, ULDP and
OSLDP

In this section, we introduce the notion of OSLDP (One-
sided LDP), a local model version of OSDP (One-sided DP)
proposed in a preprint [17]:

Definition 6 ((XS,ε)-OSLDP). Given XS ⊆ X and ε ∈ R≥0,
an obfuscation mechanism Q from X to Y provides (XS,ε)-
OSLDP if for any x ∈ XS, any x′ ∈ X and any y ∈ Y , we have

Q(y|x)≤ eεQ(y|x′). (23)

OSLDP is a special case of OSDP [17] that takes as input
personal data of a single user. Unlike ULDP, OSLDP allows
the transition probability Q(y|x′) from non-sensitive data x′ ∈
XN to be very large for any y∈ Y , and hence does not provide
ε-LDP for Y (whereas ULDP provides ε-LDP for YP). Thus,
OSLDP can be regarded as a “relaxation” of ULDP. In fact,
the following proposition holds:

Proposition 13. If an obfuscation mechanism Q provides
(XS,YP,ε)-ULDP, then it also provides (XS,ε)-OSLDP.

It should be noted that if an obfuscation mechanism pro-
vides ε-LDP, then it obviously provides (XS,YP,ε)-ULDP,
where YP =Y . Therefore, (XS,YP,ε)-ULDP is a privacy mea-
sure that lies between ε-LDP and (XS,ε)-OSLDP.

We use ULDP instead of OSLDP for the following two
reasons. The first reason is that ULDP is compatible with
LDP, and makes it possible to perform data integration and
data analysis under LDP (Proposition 12). OSLDP does not
have this property in general, since it allows the transition
probability Q(y|x′) from non-sensitive data x′ ∈ XN to be very
large for any y ∈ Y , as explained above.

The second reason, which is more important, is that the
utility of OSLDP is not better than that of ULDP. Intuitively,
it can be explained as follows. First, although YP is not ex-
plicitly defined in OSLDP, we can define YP in OSLDP as the
image of XS, and YI as YI = Y \YP, analogously to ULDP.
Then, OSLDP differs from ULDP in the following two points:
(i) it allows the transition probability Q(y|x′) from x′ ∈ XN
to y ∈ YP to be very large (i.e., (5) may not satisfied); (ii) it
allows y ∈ YI to be non-invertible. (i.e., (4) may not satis-
fied). Regarding (i), it is important to note that the transition
probability from x′ ∈ XN to YI decreases with increase in
the transition probability from x′ to YP. Thus, (i) and (ii)
only allow us to mix non-sensitive data with sensitive data
or other non-sensitive data, and reduce the amount of output
data y ∈ YI that can be inverted to x ∈ XN .

Then, each OSLDP mechanism can be decomposed into
a ULDP mechanism and a randomized post-processing that
mixes non-sensitive data with sensitive data or other non-
sensitive data. Note that this post-processing does not pre-
serve data types (in Definition 5), and hence OSLDP does
not have a compatibility with LDP as explained above. In
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addition, although the post-processing might improve privacy
for non-sensitive data, we would like to protect sensitive data
in this paper and ULDP is sufficient for this purpose; i.e., it
guarantees ε-LDP for sensitive data.

Since the information is generally lost (never gained) by
mixing data via the randomized post-processing, the utility
of OSLDP is not better than that of ULDP (this holds for
the information-theoretic utility such as mutual information
and f -divergences [30] because of the data processing in-
equality [9, 13]; we also show this for the expected l1 and l2
losses at the end of Appendix B). Thus, it suffices to consider
ULDP for our goal of designing obfuscation mechanisms that
achieve high utility while providing LDP for sensitive data
(as tdescribed in Section 1).

We now formalize our claim as follows:

Proposition 14. Let MO be the class of all mechanisms from
X to Y providing (XS,ε)-OSLDP. For any QO ∈MO, there
exist two sets Z and ZP, a (XS,ZP,ε)-ULDP mechanism QU
from X to Z, and a randomized algorithm QR from Z to Y
such that:

QO = QR ◦QU . (24)

From Proposition 14, we show that the expected l1 and l2
losses of OSLDP are not better than those of ULDP as follows.
For any OSLDP mechanism QO ∈MO and any estimation
method λO from data in Y , we can construct a ULDP mecha-
nism QU in (24) and an estimation method λU that perturbs
data in Z via QR and then estimates a distribution from data
in Y via λO. QU and λU provide the same expected l1 and l2
losses as QO and λO, and there might also exist ULDP mech-
anisms and estimation methods from data in Z that provide
smaller expected l1 and l2 losses. Thus, the expected l1 and l2
losses of OSLDP are not better than those of ULDP.

C L2 loss of the utility-optimized Mechanisms

C.1 Utility Analysis

uRR in the general case. We first present the l2 loss of the
(XS,ε)-uRR.

Proposition 15 (l2 loss of the uRR). The expected l2 loss of
the (XS,ε)-uRR mechanism is given by:

E[l2
2(p̂,p)] =

2(eε−1)(|XS|−p(XS))+ |XS|(|XS|−1)
n(eε−1)2

+
1
n

(
1− ∑

x∈X
p(x)2). (25)

When 0 < ε < ln(|XN |+1), the l2 loss is maximized by the
uniform distribution pUN over XN .

Proposition 16. For any 0 < ε < ln(|XN |+1), (25) is maxi-
mized by pUN :

E
[
l2
2(p̂,p)

]
≤ E

[
l2
2(p̂,pUN )

]
= |XS|(|XS|+2eε−3)

n(eε−1)2 + 1
n

(
1− 1

|XN |
)
. (26)

When ε≥ ln(|XN |+1), the l2 loss is maximized by a mix-
ture of the uniform distribution pUS over XS and the uniform
distribution pUN over XN .

Proposition 17. For any ε≥ ln(|XN |+1), (25) is maximized
by p∗ in (13):

E
[
l2
2(p̂,p)

]
≤ E

[
l2
2(p̂,p

∗)
]
=

(|XS|+ eε−1)2

n(eε−1)2

(
1− 1
|X |

)
.

uRR in the high privacy regime. Consider the high privacy
regime where ε ≈ 0. In this case, eε− 1 ≈ ε. By using this
approximation, the right-hand side of (26) in Proposition 16
can be simplified as follows:

E
[
l2
2(p̂,p)

]
≤ E

[
l2
2(p̂,pUN )

]
≈ |XS|(|XS|−1)

nε2 .

It is shown in [29] that the expected l2 loss of the ε-RR is
at most |X |(|X |−1)

nε2 when ε ≈ 0. Thus, the expected l2 loss of
the (XS,ε)-uRR is much smaller than that of the ε-RR when
|XS| � |X |.
uRR in the low privacy regime. Consider the low privacy
regime where ε = ln |X | and |XS| � |X |. By Proposition 17,
the expected l2

2 loss of the (XS,ε)-uRR is given by:

E
[
l2
2(p̂,p)

]
≤ E

[
l2
2(p̂,p

∗)
]
≈ 1

n
.

It should be noted that the expected l2 loss of the non-private
mechanism is at most 1

n (1−
1
|X | ) [29], and that 1

n (1−
1
|X | )≈

1
n

when |X | � 1. Thus, when ε = ln |X | and |XS| � |X |, the
(XS,ε)-uRR achieves almost the same data utility as the non-
private mechanism, whereas the expected l1 loss of the ε-RR is
four times larger than that of the non-private mechanism [29].

Utility-optimized RAPPOR in the general case. We then
present the l2 loss of the (XS,ε)-uRAP.

Proposition 18 (l2 loss of the uRAP). Then the expected
l2-loss of the (XS,ε)-uRAP mechanism is given by:

E
[
l2
2(p̂,p)

]
=

1
n

(
1+ (|XS|+1)eε/2−1

(eε/2−1)2 − 1
eε/2−1

p(XS)−
|X |

∑
j=1

p(x j)
2
)
. (27)

For any 0 < ε < 2ln( |XN |
2 +1), the l2 loss is maximized by

the uniform distribution pUN over XN .

USENIX Association 28th USENIX Security Symposium    1893



RR RAP uRR uRAP no privacy

M
S

E

104

102

100

10-2

10-4

10-6

10-1

10-2

10-3

10-4

10-5

10-6

100

10-1

10-2

10-3

10-4

10-5

10-6

100

M
S

E

103

101

10-1

10-3

10-5

10-7

10-2

10-3

10-4

10-5

10-6

10-7

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-1

(a) Foursquare (left: emp, middle: emp+thr, right: EM)

(b) US Census (left: emp, middle: emp+thr, right: EM)

0.1 1 10
epsilon

0.1 1 10
epsilon

0.1 1 10
epsilon

0.1 1 10
epsilon

0.1 1 10
epsilon

0.1 1 10
epsilon

Figure 10: ε vs. MSE (common-mechanism). A bold line
parallel to the y-axis represents ε = ln |X |.
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Figure 11: |XS| vs. MSE when ε = 0.1 or ln |X |.

Proposition 19. For any 0 < ε < 2ln( |XN |
2 + 1), the l2-loss

E
[
l2
2(p̂,p)

]
is maximized when p = pUN :

E
[
l2
2(p̂,p)

]
≤ E

[
l2
2(p̂,pUN )

]
=

1
n

(
1+ (|XS|+1)eε/2−1

(eε/2−1)2 − 1
|XN |

)
. (28)

uRAP in the high privacy regime. Consider the high pri-
vacy regime where ε ≈ 0. In this case, eε/2− 1 ≈ ε/2. By
using this approximation, the right-hand side of (28) in Propo-
sition 19 can be simplified as:

E
[
l2
2(p̂,p)

]
≤ E

[
l2
2(p̂,pUN )

]
≈ 4|XS|

nε2 .

Thus, the expected l2 loss of the uRAP is at most 4|XS|
nε2 in

the high privacy regime. It is shown in [29] that the expected
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l2 loss of the ε-RAPPOR is at most 4|X |
nε2 (1− 1

|X | ) when ε≈ 0.
Thus, the expected l2 loss of the (XS,ε)-uRAP is much smaller
than that of the ε-RAPPOR when |XS| � |X |.

Note that the expected l2 loss of the uRAP in the worst case
can also be expressed as Θ( |XS|

nε2 ) in this case. As described in
Section 3.2, this is “order” optimal among all ULDP mecha-
nisms.

uRAP in the low privacy regime. If ε = ln |X | and |XS| �√
|X |, the right-hand side of (28) in Proposition 19 can be

simplified as follows:

E
[
l2
2(p̂,p)

]
≤ E

[
l2
2(p̂,pUN )

]
≈ 1

n
. (29)

Note that the expected l2 loss of the non-private mechanism
is at most 1

n (1−
1
|X | ) [29], and that 1

n (1−
1
|X | ) ≈

1
n when

|X |� 1. Thus, when ε = ln |X | and |XS|�
√
|X |, the (XS,ε)-

uRAP achieves almost the same data utility as the non-private
mechanism, whereas the expected l2 loss of the ε-RAPPOR
is
√
|X | times larger than that of the non-private mechanism

[29].

C.2 Experimental Results of the MSE
Figures 10, 11, 12, and 13 show the results of the MSE corre-
sponding to Figures 5, 6, 7, and 8, respectively. It can be seen
that a tendency similar to the results of the TV is obtained for
the results of the MSE, meaning that our proposed methods
are effective in terms of both the l1 and l2 losses.
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