
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

Detecting Missing-Check Bugs via
Semantic- and Context-Aware Criticalness

and Constraints Inferences
Kangjie Lu, Aditya Pakki, and Qiushi Wu, University of Minnesota

https://www.usenix.org/conference/usenixsecurity19/presentation/lu

Detecting Missing-Check Bugs via Semantic- and Context-Aware
Criticalness and Constraints Inferences

Kangjie Lu, Aditya Pakki, and Qiushi Wu
University of Minnesota

Abstract
Missing a security check is a class of semantic bugs in

software programs where erroneous execution states are not
validated. Missing-check bugs are particularly common in
OS kernels because they frequently interact with external un-
trusted user space and hardware, and carry out error-prone
computation. Missing-check bugs may cause a variety of crit-
ical security consequences, including permission bypasses,
out-of-bound accesses, and system crashes. While missing-
check bugs are common and critical, only a few research
works have attempted to detect them, which is arguably be-
cause of the inherent challenges in the detection—whether a
variable requires a security check depends on its semantics,
contexts and developer logic, and understanding them is a
hard problem.

In this paper, we present CRIX, a system for detecting
missing-check bugs in OS kernels. CRIX can scalably and
precisely evaluate whether any security checks are missing
for critical variables, using an inter-procedural, semantic- and
context-aware analysis. In particular, CRIX’s modeling and
cross-checking of the semantics of conditional statements
in the peer slices of critical variables infer their criticalness,
which allows CRIX to effectively detect missing-check bugs.
Evaluation results show that CRIX finds missing-check bugs
with reasonably low false-report rates. Using CRIX, we have
found 278 new missing-check bugs in the Linux kernel that
can cause security issues. We submitted patches for all these
bugs; Linux maintainers have accepted 151 of them. The
promising results show that missing-check bugs are a com-
mon occurrence, and CRIX is effective and scalable in detect-
ing missing-check bugs in OS kernels.

1 Introduction

Security checks are a class of conditional statements that
validate program execution states. Security checks play an
important role in ensuring the security of OS kernels. Not
only do OS kernels accept arbitrary untrusted inputs, but they

also perform complicated tasks such as concurrent resource
management and multi-user/capability access control. There-
fore, OS kernels often enter into erroneous states and require
security checks to capture them.

A missing-check bug exists when an intended security
check is not enforced for a critical variable. Examples of
such critical variables include the ones used to indicate po-
tential erroneous execution states, e.g., the return value of
kmalloc(), and the ones used in critical operations, e.g., the
size variable in memcpy(). Figure 1 shows a concrete exam-
ple of missing-check bugs. ib_get_client_data() may fail
and return NULL. Since smcibdev is not checked, the following
uses of it may cause multiple problems—NULL-pointer deref-
erences, failures in removing and unregistering devices, and
memory leaks. To fix the problem, a security check should be
enforced between lines 6 and 8 to ensure that smcibdev is not
NULL.

1 /* Linux: net/smc/smc_ib.c */
2 static void smc_ib_remove_dev(struct ib_device *ibdev...)
3 {
4 struct smc_ib_device *smcibdev;
5 /* ib_get_client_data may fail and return NULL */
6 smcibdev = ib_get_client_data(ibdev, &smc_ib_client);
7 // ERROR1: NULL-pointer deference
8 list_del_init(&smcibdev->list);
9 /* ERROR2: device cannot be removed or unregistered */

10 smc_pnet_remove_by_ibdev(smcibdev);
11 ib_unregister_event_handler(&smcibdev->event_handler);
12 /* ERROR3: memory leak */
13 kfree(smcibdev);
14 /* No return value: caller cannot know the errors */
15 }

Figure 1: Example: A new missing-check bug found by CRIX. The
missed check against variable smcibdev will cause multiple prob-
lems, as annotated in the code.

Missing-check bugs may cause critical security impacts
because security checks are a main means for OS kernels to
ensure their security and reliability. To understand the impor-
tance of security checks, we first studied recently reported se-
curity vulnerabilities in the National Vulnerabilities Database
(NVD). We found that 59.5% security vulnerabilities stem

USENIX Association 28th USENIX Security Symposium 1769

from missing-check bugs, which were all fixed by inserting se-
curity checks. We then investigated these vulnerabilities and
found that at least 52% (excluding denial-of-service cases) of
them will cause severe security impacts such as permission
bypass, memory corruption, system crashes/hangs.

Although missing-check bugs are critical and prevalent,
only a few research works have attempted to detect them in
OS kernels and have several limitations. In particular, Van-
guard [32] assumes that some critical operations should al-
ways be checked. It however detects missing-check bugs for
only four specified critical operations such as arithmetical
division and array indexing. Some other approaches (e.g.,
Chucky [46], Juxta [23], Kremenek et al. [19], and Dillig
et al. [7]) employ cross-checking, inconsistency analysis, or
machine learning to reduce false positives in detecting bugs.
These approaches have non-trivial limitations. First, the man-
ual specification for critical variables covers only a small
set of critical variables. This leads to significant false neg-
atives. Second, most of these approaches are not semantic-
or context-aware. For example, they tend to treat any con-
ditional statement (i.e., an if or a switch statement) as a
security check. In fact, whether a variable requires a security
check highly depends on its semantics and contexts, with-
out considering which, the detection would suffer from high
false-negative and false-positive rates.

The lack of effective research in detecting missing-check
bugs is arguably because of several inherent challenges. (1)
Critical variables that require security checks take diverse
forms. For example, a critical variable can be a parameter of a
critical function (e.g., the size variable in memcpy()), a global
variable, or a return value of a function call that is used in only
security checks but not others such as arithmetic operations
(this case is missed by Vanguard [32]). Therefore, generally
checking for different kinds of critical variables is hard.

(2) Identifying security checks requires semantic under-
standing. Treating any conditional statement as a security
check will cause both significant false positives and false neg-
atives. In fact, according to our study §6, the majority (about
70%) of conditional statements are not security checks but
some normal selectors in which both branches of the condi-
tional statements lead to normal execution. (3) Missing-check
bugs are context dependent, and the detection should be con-
text aware. For example, an error code may not require a
security check at all if it is used in a debugging function. As
such, missing-check detection should be context aware. (4)
Last but not least, OS kernels are extremely large and complex.
Checking every variable will not scale, and corner cases such
as hand-written assembly will make the analysis error-prone.

In this paper, we present CRIX (Criticalness and constraints
Inferences for detecting missing checks), a system that over-
comes the aforementioned challenges to effectively detect
missing-check bugs in OS kernels. At a high level, CRIX first
employs an automated approach to identify critical variables
as the analysis targets. For each critical variable, CRIX con-

structs peer slices that share similar semantics and contexts.
After that, CRIX models constraints of conditional statements
in each slice. By cross-checking the modeled constraints of
the peer slices of a critical variable, CRIX finally identifies
deviations as potential missing-check bugs and reports them
for further confirmation.

While the high-level idea of CRIX is intuitive, it entails
overcoming multiple technical challenges. We thus have de-
veloped multiple new techniques to tackles these challenges.
(1) We first propose a two-layer type analysis to identify
indirect-call targets, which serves as a foundation of our data-
flow analysis engine. In addition to the function-type analysis
(the first layer) employed by traditional control-flow integrity
(CFI) techniques [4, 25, 40], the two-layer type analysis fur-
ther uses struct-type analysis, which is also employed by Ge
et al. [10], to refine indirect-call targets. (2) We then develop
an automated analysis that identifies security-checked vari-
ables as potential critical variables, which not only narrows
down the analysis scope and thus scales the detection to OS
kernels, but also significantly reduces false reports by filtering
out non-critical variables. (3) We further propose peer-slice
construction to collect slices of a critical variable that share
similar semantics and contexts. The set of peers enables ef-
fective cross-checking for potential missing check cases of
the critical variable. (4) At last, to precisely detect missing-
check cases, we construct constraints from the conditional
statements in the peer slices and model them based on their
semantics (e.g., the condition type in conditional statements).
The modeled constraints allow CRIX to cross-check slices for
detecting missing-check bugs, in a semantic-aware manner.

With the new techniques, CRIX’s analysis is scalable,
semantic- and context-aware, and the data-flow analysis en-
gine in CRIX is inter-procedural, flow-, context-, and field-
sensitive. By focusing on the small set of automatically iden-
tified critical variables, CRIX can scale to large programs like
the Linux kernel. The peer-slice construction allows CRIX
to reason about potential missing-check cases in a semantic-
and context-aware manner, and the constraint modeling and
cross-checking enable CRIX to infer the criticalness of crit-
ical variables. As a result, CRIX is able to effectively and
precisely detect missing-check bugs in complex and large
system software such as the Linux kernel.

We have implemented CRIX on top of LLVM as multiple
static-analysis passes. We chose the Linux kernel as the ex-
perimental target given its prevalence and complexity (more
than 25 million SLOC). CRIX finished the analysis for the
whole Linux kernel in about one hour and reported many
missing-check cases. By manually investigating the top 804
missing-check cases reported by CRIX, we confirmed 278
new missing-check bugs. We also submitted patches for all
of them to the Linux maintainers. Out of these patches, 151
have been accepted, with 134 applied to the mainline Linux
kernel and 17 confirmed. The results show that CRIX is highly
scalable and effective in finding missing-check bugs. We also

1770 28th USENIX Security Symposium USENIX Association

discuss CRIX’s portability in §6 and believe that CRIX can be
easily extended to detect missing-check bugs in other system
software.

We make the following contributions in this paper.

• A new system for missing-check bug detection. Missing-
check bugs constitute the root cause of the majority (59.5%)
of recent security vulnerabilities. We propose a semantic-
and context-aware approach to scalably and effectively
detect missing-check bugs in OS kernels. The resulting
system, CRIX, is open sourced 1 .

• Multiple new general techniques. We propose multiple
new general techniques in CRIX, which would benefit other
research. In particular, the peer-slice construction identi-
fies code paths that share similar semantics and contexts,
which is useful for general differential analysis. The auto-
mated critical-variable inference finds a small set of targets
that deserve precise analysis and protection, which narrows
down target scope and could improve the performance for
techniques such as fuzzing and data-flow integrity. The
two-layer type analysis refines indirect-call targets, with-
out introducing false negatives, which is also useful for
inter-procedural static analysis, control-flow integrity, and
program debloating.

• Numerous new bugs in the Linux kernel. With CRIX,
we found a large number of new missing-check bugs in
the Linux kernel, which may cause critical security and
reliability issues to the Linux kernel used by billions of
devices. We reported these new bugs and have worked with
Linux maintainers to fix many of them.

The rest of this paper is organized as follows. We present
the study on missing check bugs in §2, the design of CRIX in
§4, implementation of CRIX in §5, evaluation of CRIX in §6.
We further discuss the extension and limitations of CRIX in
§7. We present related work in §8, and conclude in §9.

2 Missing Checks in OS Kernels

To propose an effective approach to finding missing-check
bugs, we first study the characteristics of previously reported
missing-check bugs.

Bug-set collection. We collect previously reported missing-
check bugs from NVD [26]. We first selected the recent 200
vulnerabilities that were reported during 2017 and 2018. Out
of them, we then selected the ones fixed by enforcing security
checks, which returned us 119 (59.5%) vulnerabilities. We
finally took the missing-check bugs leading to these vulnera-
bilities as the bug set for our study.

1https://github.com/umnsec/crix/

2.1 Impact of Missing-Check Bugs

To assess the impact of missing-check bugs, we investigated
(1) what percent of security vulnerabilities are caused by
missing-check bugs, (2) common classes of security vulnera-
bilities caused by missing-check bugs, and (3) severe security
impact of missing check–related vulnerabilities.
Percent of missing check–related vulnerabilities. As we
mentioned in the bug-set collection, a majority (59.5%) of
recent security vulnerabilities were caused by missing-check
bugs. This is expected because common vulnerabilities such
as out-of-bound access and access-control errors are typically
fixed with security checks.
Common classes of missing-check impact. We then classi-
fied the security impact of the 119 missing-check bugs based
on the classification provided by CVEDetails [48]. We found
that missing-check bugs can introduce at least ten classes of
vulnerabilities. Table 1 shows the six most common classes.
In particular, more than half of the missing-check bugs may
result in denial-of-services, and more the 52% of them may
result in other severe impacts. Some missing-check bugs may
have multiple impacts, so the total number is > 100%.

DoS Over Bypass Info Memory Code
flow privi. leak corrupt exec.

51.2% 16.0% 14.3% 11.7% 6.7% 3.4%

Table 1: Common security impacts of missing-check bugs.

Severe security impact. We also looked into the most severe
vulnerabilities from 2017 to 2018 that have a CVSS (Common
Vulnerability Scoring System) score 10 (the highest severity
level) from the Linux kernel. We in total found 15 such vulner-
abilities. Specifically, we found that 11 of these vulnerabilities
are caused by missing-check bugs. The targets of the missing
checks in these vulnerabilities include buffer length, function
return value, pointer value, and permissions. Correspondingly,
the missing-check bugs will cause severe impacts, including
buffer overflow, use-after-free, memory corruption, permis-
sion pass, which will finally result in data losses, information
leaks, and even attackers control of the whole system. Figure 2
shows an example of a severe missing-check bug (CVE-2017-
18017) with a CVSS 10. The attacker-controllable len and
tcp_hdrlen are used as a loop-termination condition for mem-
ory access. Missing the security checks for these variables
will result in denial of service, information leak, and memory
corruption.

2.2 Targets of Security Checks

According to our analysis of the missing-check bugs, gener-
ally, security checks have two classes of targets: state variables
and critical-use variables.

USENIX Association 28th USENIX Security Symposium 1771

https://github.com/umnsec/crix/

1 /* Linux: net/netfilter/xt_TCPMSS.c (CVE-2017-18017) */
2 static int tcpmss_mangle_packet(struct sk_buff *skb,
3 unsigned int tcphoff, ...) {
4 tcph = (struct tcphdr *)(skb_network_header(skb) + tcphoff);
5 tcp_hdrlen = tcph->doff * 4;
6 /* Security checks for both "len" and "tcp_hdrlen" */
7 if (len < tcp_hdrlen || tcp_hdrlen < sizeof(struct tcphdr))
8 return -1;
9 }

Figure 2: A missing-check bug causing multiple severe security
impacts: denial of service, information leak, and memory corruption.
The bug is assigned with ID CVE-2017-18017.

State variables. State variables indicate if the current execu-
tion is in an erroneous state, e.g., if an operation is successful
or not. According to the C programming convention, a return
value of a function often serves as an indicator of execution
states. State variables are prevalent in OS kernels because ker-
nel operations are error-prone. OS kernels have to frequently
use and check state variables to ensure that an operation is
successful. A special feature of state variables is that they are
often used in only security checks but not any other function-
related operations such as arithmetic operations. Line 4 in
Figure 3 is an example of checking the state variable ret,
which is used only in the security check at line 4. In function
btrfs_search_slot(), different error codes are returned for
indicating various erroneous states, which should be checked
in callers.
Critical-use variables. Variables used in critical operations
are another common class of check targets. Intuitively, vari-
ables should be checked before being used in a critical op-
eration. Common critical-use variables include pointers in
dereferencing, offsets in array indexing, operands of binary
operations such as arithmetic division, and parameters in crit-
ical functions (e.g., memcpy()) that may cause security is-
sues. Line 9 in Figure 3 is an example of checking the vari-
able tx_out before it is being used in the critical function
dmaengine_submit() which internally dereferences tx_out.

1 /* Linux: fs/btrfs/inode-map.c */
2 ret = btrfs_search_slot(NULL, root, &key, path,0,0);
3 /* "ret" is a state variable for the search operation */
4 if(ret < 0)
5 goto out;
6

7 /* Linux: drivers/crypto/omap-des.c */
8 /* "tx_out" is checked before "dmaengine_submit" uses it */
9 if(!tx_out)

10 return-EINVAL;
11 dmaengine_submit(tx_out);

Figure 3: Examples of check targets. ret is a state variable checked
in line 4, and tx_out is checked at line 9 because it is used by the
critical function dmaengine_submit().

3 Overview of CRIX

The goal of CRIX is to detect missing-check bugs in OS ker-
nels. To this end, CRIX automatically infers whether a vari-

able in the target OS kernel requires a security check. The
detection of missing-check bugs, in general, is to answer the
following questions: (1) does a variable require a security
check, (2) if possible, what security check should be enforced
for the variable, and (3) is such a security check present. An-
swering these questions requires the understanding of the con-
texts and semantics of the code, which is challenging. Prior
research [41] has shown the promise of statistical inferences
in finding bugs. Such inferences identify inconsistent cases as
potential bugs, which avoids the hard problem of understand-
ing contexts and semantics. It makes sense that a deviation
from common patterns is often problematic and thus is likely
a potential bug, given that a majority of the code is correct.
In CRIX, we also employ the general idea of statistical infer-
ence to find missing-check bugs. However, compared to the
previous detection, CRIX is context and semantic aware.

Figure 4 shows the overview of CRIX. CRIX consists of
three phases: (1) preprocessing phase which prepares a global
call graph, control-flow graph, and alias results; (2) analysis
phase which performs the key analyses to identify critical
variables, construct peer slices for them, and construct con-
straints for peer slices, and (3) postprocessing phase which
cross-checks constraints of peer slices and reports missing-
check bugs.

In the first phase, given the LLVM IR (intermediate repre-
sentation), CRIX constructs a precise global call graph, which
is not only foundational to all the following data-flow anal-
ysis, but also enables the peer-slice construction, as will be
presented in §4.3. Since LLVM does not provide targets of
indirect calls, CRIX employs a technique, namely two-layer
type analysis, to precisely find indirect-call targets.

In the second phase, CRIX first identifies critical vari-
ables. Because a large number of variables are non-critical
in OS kernels, conservatively checking all variables would
cause significant scalability and false-positive issues. CRIX
therefore first identifies critical variables (see §2.2). The
intuition behind the critical-variable identification is that
security-checked variables are typically critical. Therefore,
CRIX identifies the security-checked variables as critical vari-
ables, which however requires CRIX to first identify security
checks. Since the majority of conditional statements are not
security checks [43], CRIX employs an approach to identify
security checks, as presented in §4.2.1.

Since the critical variables identified through security
checks have already been checked in the current code paths,
CRIX instead tries to identify missing-check bugs in the peer
code paths. To this end, CRIX constructs peer slices that share
similar semantics and contexts with the current code path
checking the critical variable. To find substantial peer slices,
given a critical variable, CRIX identifies the sources and uses
of the critical variable, and employs data-flow analysis to find
slices for each source and each use (see §4.3).

A slice of a source or a use of a critical variable may or
may not contain a security check. A naive approach is to iden-

1772 28th USENIX Security Symposium USENIX Association

Construct global call-graph
 - Two-layer type analysis
 - Type-escaping analysis
Loop unrolling
Pointer/alias analysis

.c files

source code LLVM IR

Preprocessing Phase

Postprocessing PhaseAnalysis Phase
.bc files

Missing
check
bugs

- Global call graph
- Control-flow graph
- Alias results

Identify critical variables
 - Find sources
 - Find uses

Construct peer slices for
each source/use
 - Categorize slice sets

Construct and model
constraints for each slice

Cross-check constraints in
peer slices
 - Infer criticalness
 - Detect deviations as bugs

Suggest bug fixes
and report bugs

Figure 4: The overview of CRIX. CRIX has three phases. It takes as input LLVM IR and produces missing-check bug reports.

tify any slices that do not have a security check as potential
missing-check bugs. This will however introduce significant
false positives because (1) the source or the use may not be
very “critical”; (2) even if security checks are present in some
slices, they may not be semantically equivalent. To address
this problem, CRIX first extracts the constraints from the con-
ditional statements in the peer slices and models them in a
special way (see §4.4) that can both preserve the semantics
and facilitate the following bug detection.

With the modeled constraints extracted from conditional
statements, in the last phase, CRIX cross-checks (statistical
analysis) them to infer the “criticalness” of the source or the
use based on how common the constraints are, i.e., how fre-
quently the source or use is checked in its peer slices. If the
criticalness is significant, not having a constraint would be
identified as a deviation, and a slice that does not have the
constraint would be identified as a potential missing-check
bug. In the end, CRIX suggests bug fixes based on the con-
straints in the peer slices and reports the details for further
manual confirmation.

4 Design of CRIX

In this section, we present the design of the key techniques
in CRIX, including the identification of indirect-call targets,
construction of peer slices, construction and modeling of con-
straints, and statistical analysis of constraints for reporting
missing-check cases. Other techniques such as alias analysis
and loop unrolling will be presented in the implementation
section (§5).

4.1 Identifying Targets of Indirect Calls

A precise call graph serves as a foundation for a variety of pro-
gram analyses and security defense mechanisms. In particular,
any inter-procedural data- and control-flow analysis requires a
precise call graph. Control-flow integrity (CFI) [1, 9, 10, 25]
and software debloating [28] techniques also require a precise
call graph. Unfortunately, in large programs, constructing a
precise call graph is an open problem in general because of
the challenge of finding the targets of indirect calls. At compi-
lation time, it is hard to know which address-taken functions
would be valid targets of an indirect call.

Existing approaches for finding the targets of indirect
calls can be classified into two categories: pointer analy-
sis [2, 3, 8, 22, 36, 37] and type analysis [4, 9, 25, 40, 42].
Pointer analysis–based approaches aim to find the point-to
relationships between dereferenced function pointers and
address-taken functions. Such approaches have fundamen-
tal limitations. While unsound pointer analysis will miss valid
function targets, sound pointer analysis often introduces a
large number of false positives—many unrelated functions
are included as potential targets of an indirect call. Further, the
pointer analysis itself requires a precise call graph. Whenever
the pointer analysis encounters an indirect call, an expensive
recursive analysis must be employed to find the targets.

Due to the limitations with pointer analysis–based ap-
proaches, recent CFI research opted for type analysis. Type
analysis–based approaches try to match the number and types
of arguments of an address-taken function with the ones of
an indirect call. Matched functions are considered potential
targets of the indirect call. Such approaches have been used
in practice. For example, LLVM-CFI [4] employs such a type
analysis. Type analysis–based approaches are conservative in

USENIX Association 28th USENIX Security Symposium 1773

that all possible targets are included as long as function-type
casting, which is rare, is handled properly [25]. However, they
tend to suffer from false positives—many unrelated functions
are included as valid targets. This will cause significant in-
accuracy in the following data-flow analysis. The problem
becomes even more critical in CRIX because the construction
of peer slices heavily relies on a precise call graph.

To the best of our knowledge, the hybrid approach pro-
posed by Ge et al. [10] for finding indirect-call targets in OS
kernels is the most precise one. It employs both taint analy-
sis and type analysis to find the targets. Specifically, it first
taint-tracks the propagations of function pointers to identify
indirect-call targets. Moreover, for function pointers stored in
struct-type objects, because the function pointers should typ-
ically be loaded from the objects of the same struct type, the
approach uses the struct type to further restrict the indirect-
call targets. To avoid false negatives, the approach has two
assumptions: (1) the only allowed operation on a function
pointer is assignment, and (2) there exists no data pointer to
a function pointer. The approach uses static taint analysis to
detect and report violations which will be fixed manually. In
addition to the hybrid analysis, the approach also analyzes
assembly code, which further restricts the indirect-call targets.

4.1.1 Two-Layer Type Analysis

To improve the existing type analysis–based approaches in
finding indirect-call targets, we propose two-layer type anal-
ysis, which aims to dramatically refine the targets produced
by previous type analyses. The first-layer type analysis uses
function types to restrict indirect-call targets. The second-
layer type analysis instead uses struct type to further restrict
the targets, which is based on a similar observation as in the
approach proposed by Ge et al. [10]. Specifically, in large
systems such as OS kernels, the majority of taken addresses
(e.g., 88% for the Linux kernel, according to our study in
§6) of functions are first stored to a function-pointer field of
a struct, and later, to dereference the addresses in indirect
calls, they must be loaded from the struct. In LLVM IR, the
type information of the struct in both store and load opera-
tions is present. Intuitively, in these cases, function addresses
that are never stored in the specific struct will not be valid
targets of the indirect calls that load the function addresses
from the struct. This way, by further matching the struct
types in the store and load operations, we can further refine
the indirect-call targets. 12% of function addresses in the
Linux kernel are not stored to struct. A common example
in the Linux kernel is that a function address is stored to a
function-pointer variable which is further used as an argument
of another function. Indirect calls dereferencing these func-
tion pointers will not benefit from the second-layer struct-type
matching.

Figure 5 shows an example, in which the addresses of
functions adp5589_reg and adp5585_reg are stored in the

reg field of a struct with type adp_constants, in line 10 and
16, respectively. Later on, the addresses are loaded from the
field of the struct of the same type and dereferenced at line
4. Our two-layer type analysis finds exactly only two targets
for the indirect call because there are no any other functions
whose addresses are ever stored to the field of the struct type.
In comparison, since the indirect call has only one argument
of a basic type, traditional one-layer type analysis matches 20
functions as targets for the indirect call, 18 of which are false
positives.

A struct may have multiple fields that hold function point-
ers. To further improve the analysis accuracy, our type anal-
ysis is field-sensitive. That is, it recognizes which field is
holding the particular function pointer, by analyzing the off-
set of the field in the data struct. In some rare cases, when
the offset is undecidable because the indices are non-constant,
we roll back the analysis to be field-insensitive.

1 /* drivers/input/keyboard/adp5589-keys.c */
2 static int adp5589_gpio_add(...) {
3 /* Indirect call: "kpad->var" is of type "adp_constants" */
4 kpad->var->reg(ADP5589_GPIO_DIRECTION_A);
5 }
6

7 unsigned char adp5589_reg(unsigned char reg)
8 static const struct adp_constants const_adp5589 = {
9 // address of "adp5589_reg" assigned to the field "reg"

10 .reg = adp5589_reg,
11 };
12

13 unsigned char adp5585_reg(unsigned char reg)
14 static const struct adp_constants const_adp5585 = {
15 // address of "adp5585_reg" assigned to the field "reg"
16 .reg = adp5585_reg,
17 };

Figure 5: An example of how a function pointer is stored to and
later loaded from a field of a struct.

4.1.2 Type-Escaping Analysis for False Negatives

Our two-layer type analysis is sound as long as the struct
types holding function addresses do not escape—we cannot
decide what function addresses a struct can hold. When a
struct, say structA, has escaped, a function address stored
to a different struct, say structB, can be loaded from the
memory with structA; however, in this case, the function ad-
dress will be missed by the type analysis because we cannot
find that the function address is ever stored to structA but
only structB. Such escaping cases exist when (1) the struct
holding the function addresses is cast to or from a differ-
ent type; (2) the function-pointer field of struct is stored to
with a value of a different type (e.g., unsigned long). These
cases may make the function addresses a struct can hold
undecidable.

To handle this problem, we use conservative type analysis
to find all store and casting operations and analyze the types
in the sources and destinations based on the aforementioned
criteria for deciding escaping cases. When an escaped type

1774 28th USENIX Security Symposium USENIX Association

is found, we conservatively discard the type in our two-layer
type analysis. That is, if the function pointer of an indirect
call is loaded from an escaped type, we use only one-layer
type analysis for this indirect call. This way, we ensure that
our two-layer type analysis does not introduce extra false
negatives to existing one-layer type analysis.

Although CRIX shares the similar insight into further re-
stricting indirect-call targets with the approach proposed by
Ge et al. [10], CRIX differentiates itself from the approach.
CRIX employs a two-layer design that allows the type anal-
ysis to be elastic. Whenever the second-layer type analysis
fails, CRIX falls back to the first-layer type analysis. Second,
the escaping analysis conservatively finds and discards invalid
types to ensure the soundness.

4.2 Identifying Critical Variables

System software has a large number of variables. Conserva-
tively checking all of them is not only unscalable but also
generates an overwhelming number of false reports. Intu-
itively, important variables are often protected with security
checks. We say that a variable is a (potential) critical variable
if it is validated in a security check. By identifying security
checks and their targets, we can identify critical variables.
Note that a critical variable has different levels of criticalness.
As will be shown §4.4, the criticalness is inferred based on
check ratio of the occurrences of the critical variable. In this
section, we first focus on identifying critical variables.

4.2.1 Identifying Security Checks for Critical Variables

Since we define validated variables in security checks as crit-
ical variables, CRIX first identifies security checks using a
similar approach proposed in LRSan [43]. Specifically, check-
ing failures typically require failure handling which has clear
patterns: returning an error code or calling an error-handling
function. We say that an if statement is a security check if
its two branches satisfy the following two conditions: (1) one
branch handles a checking failure, and (2) the other branch
continues the normal execution. Note that an if statement
whose two branches both handle checking failures is not a
security check. Therefore, the key step to identify security
checks is to determine whether the branches have the failure-
handling patterns. Two typical failure-handling primitives are
returning an error code and calling an error-handling function.
Since LRSan supports only error-returning cases, we extend
the idea by supporting error-handling functions.

System software such as the Linux kernel has a small num-
ber of basic error-handling functions. Such functions are often
critical and implemented in assembly. For example, BUG(),
panic(), and dump_stack() in Unix-like OS kernels are func-
tions for handling unrecoverable errors. Moreover, functions
such as pr_err() and dev_err() are used for reporting error
messages, which have clear patterns. Specifically, such func-

tions typically have a name or an argument with a severity
level (e.g., KERN_ERR, KERN_CRIT, and KERN_EMERG). Moreover,
such functions take a variable number of parameters. Detect-
ing these patterns is straightforward for a static analysis tool.
To ensure that our heuristic-based approach reports correct
error-handling functions, we manually investigated the re-
sults and filter out false-positive cases. In total, we found 531
error-handling functions (available in the code repository). In
comparison, while LRSan reports only 131K security checks,
CRIX reports 308K security checks. Once we identify security
checks, we extract the checked targets as critical variables.

4.2.2 Identifying Sources and Uses of Critical Variables

In the next step, CRIX collects the sources and uses of the
critical variables (i.e., checked variables). It is important to
identify sources (where a critical variable propagates from)
and uses (where a critical variable is used) of critical variables
for two reasons. First, criticalness of a variable can propagate.
When a critical variable is moved to another variable, the
destination variable also becomes critical. By identifying the
sources and uses, we can identify families of critical variables
that propagate from the same sources or propagate to the
same uses. Second, by identifying a family of critical vari-
ables, we can analyze how frequently they are checked, which
is used to infer the criticalness of a source or a use. We real-
ize the identification of sources and uses through a standard
inter-procedural data-flow analysis—backward analysis for
identifying sources and forward analysis for identifying uses.
The inter-procedural data-flow analysis uses the following
definitions to identify sources and uses.
Definition of sources. If a value is never critical, we do
not need to include it for further analysis. Therefore, we in-
clude only potentially-critical values as sources. The inter-
procedural backward data-flow analysis collects the following
variables as sources.

• Constants. Constants such as error codes are critical.
• Return values and parameters of certain functions. Input

functions (e.g., copy_from_user and get_user) obtain in-
puts from the external entities, which are untrusted. In addi-
tion, functions implemented as handwritten assembly often
perform critical operations. We include the corresponding
parameters or return values of such functions as sources.

• Global variables. Global variables may contain critical val-
ues that may propagate to the whole program.

• Others. When CRIX cannot find a predecessor instruction,
the current values are marked as sources.

Note that we do not include allocations as a source because
they become critical only when critical values are written to
the allocated memory.
Definition of uses. Further, the following operations are
defined as potentially critical uses of critical variables.

USENIX Association 28th USENIX Security Symposium 1775

• Pointer dereference. Any pointer dereferencing operation
is a critical use of the pointer variable.

• Indexing in memory accesses. Using the offset variable in
memory access is also a critical use.

• Binary operations. We conservatively treat binary opera-
tions such as arithmetic division as critical uses.

• Functions calls. When none of the above is found, we take
the closest function call that takes the critical variable as a
parameter as a critical use.

• None. If none of the above is found, we deem that this
critical variable does not have any use. This is common for
critical variables that are error codes.

Algorithm 1: Collect sources and uses of critical vari-
ables

1 collect_src_use_interprocedural(CVSet, FuncSet);
Input: CV Set: Critical variables, i.e., identified checked variables;

FuncSet: Input and assembly functions, collected in the
pre-processing phase

Output: SrcSet: Potentially critical sources of critical variables;
UseSet: Potentially critical uses of critical variables

2 SrcSet←UseSet←∅;
3 BackupSet←CV Set;
// Collect sources

4 while Is_Not_Empty(CVSet) do
5 CV ← pop top element from CVSet;
6 if CV is Constant and CV is ErrorCode then
7 SrcSet←{CV}

⋃
SrcSet;

8 else if CV is Global variable then
9 SrcSet←{CV}

⋃
SrcSet;

10 else if CV is return value or param. of a function in FuncSet
then

11 SrcSet←{CV}
⋃

SrcSet;
12 else if CV has no parents (predecessors) then
13 SrcSet←{CV}

⋃
SrcSet;

14 else
15 Parent← Predecessor of CV, via Backward Analysis;
16 CV Set←CV Set

⋃
Parent;

17 end
18 end
// Collect uses

19 CV Set← BackupSet;
20 while Is_Not_Empty(CVSet) do
21 CV ← pop top element from CVSet;
22 CVUseSet← Forwardly collect immediate uses of CV ;
23 for Use ∈CVUseSet do
24 if Use is a pointer dereference or memory access then
25 UseSet←{Use}

⋃
UseSet;

26 else if Use is a binary operation then
27 UseSet←{Use}

⋃
UseSet;

28 else if Use is a parameter of function then
29 UseSet←{Use}

⋃
UseSet;

30 else
31 CV Set←CV Set

⋃
{Use} ;

32 end
33 end
34 end
35 return SrcSet, UseSet;

Algorithm for identifying sources and uses. Based on the
definition of sources and uses, the algorithm presented in Al-

gorithm 1 collects all potentially critical sources and uses. The
algorithm takes as input the set of critical variables (CVSet),
and set of functions (FuncSet). CVSet are the checked vari-
able extracted from a security check, and FuncSet is the set of
pre-collected input functions (e.g., copy_from_user) and as-
sembly functions. FuncSet is collected in the pre-processing
phase of the CRIX, concurrently with security-check identifi-
cation, as will be shown in §5. The algorithm then produces
two sets as the output: SrcSet and UseSet, the source and
use sets, respectively. CVUseSet contains the immediate and
forward uses of the current CV, which are returned by LLVM’s
value.users() function. As shown in Algorithm 1, the anal-
ysis is recursive and inter-procedural. Note that the algorithm
is used to collect potentially critical sources and uses, but not
to infer criticalness. Criticalness is instead inferred by mea-
suring how frequently a critical variable is checked before
being used, as will be shown in §4.4.

4.3 Constructing Peer Slices

At this step, we have the sources and uses of critical variables.
Seemingly, we can construct slices for the critical variables
forwardly from their sources and backwardly from their uses,
and cross-check the slices to find check deviations as potential
missing-check cases. Such a naive approach will suffer from
at least two problems. First, the slicing will easily lead to path
explosion [15] given the complexity of OS kernels. Second,
if slices do not share similar semantics and contexts, we can-
not effectively detect missing-check bugs because missing
a check in an unrelated slice does not necessarily indicate a
potential bug. Consequently, such an approach will lead to
significant false positives.

To solve these problems, for a source or a use, we must
construct its peer slices. Such peer-slice construction should
satisfy two requirements: (1) the construction should yield
sufficient peer slices to enable cross-checking; (2) the peer
slices should share similar semantics and contexts. Given a
control-flow graph, we observed that call (both direct and
indirect) and return instructions often generate peer paths.
In particular, for sources, indirect calls and return instructions
often have substantial targets. As the example shown in Fig-
ure 5, indirect call pad->var->reg() serves as a dispatcher
that may target multiple semantically similar callee functions
(e.g., adp5589_reg and adp5585_reg). Since the arguments
in the callee functions all come from the same caller, they
also share the similar contexts. For uses, when the used criti-
cal variable comes from an argument of the current function,
direct calls to the function also generate substantial edges
from the callers to the function (callee). Since the arguments
passed from various callers to the same callee function, they
are used as similar semantics in similar contexts.

Figure 6 illustrates how we find different classes of peer
paths for sources and uses. For each critical-variable source,
we perform forward data-flow analysis for it. When encoun-

1776 28th USENIX Security Symposium USENIX Association

indirect call with
sources as arguments

peer callees taking

same source

the same callee using
the critical variables

return with sources as
return value or param.

... ...

...

peer callers taking
same source

peer callers passing
param. for uses

icall ret

func

Case A Case B

Case C

Figure 6: Different cases generating peer paths. icall is indirect
call; func is the callee taking critical variables from peer callers.

tering an indirect call that takes the source as a parameter,
we collect all the indirect-call callees as a set of peer paths.
Similarly, when encountering a return instruction, we analyze
whether the critical variable is returned or written into the
memory pointed to by an argument (in this case, the critical
variable may be further used in the callers through a pointer
parameter). If so, we collect callers (starting from the next
instruction following the call) as a set of peer paths. Our
analysis is recursive. That is, the forward data-flow analysis
continues to find more sets of peer paths until the end of the
propagation of the critical variable or a critical use of the
variable is found. For uses, we instead perform backward
data-flow analysis from a use of a critical variable. If the criti-
cal variable comes from an argument of the current function,
all callers of the function are collected as peer paths. The
backward analysis is also recursive and ends until the source
of the critical variable is found. Since a peer path may further
contain multiple sub-paths, we use a simple BFS algorithm to
flatten all sub-paths. Therefore, each peer path can be viewed
as a single path. Finally, we construct peer slices by slicing
the peer paths. The slicing ends at a conditional statement or
the end of the path. Therefore, each slice has at most one con-
ditional statement. Note that ending at the closest conditional
statement would not cause false negatives because the slices
sets are collected in a recursive manner, and our detection in
§4.4.2 will cross-check each peer set.

For each critical-variable source and use, the peer-slice con-
struction produces multiple sets of peer slices and categorizes
them into four classes, each corresponds to a case in Figure 6.

• Source-Ret corresponds to case B. A critical variable is
returned as the return value to multiple peer callers.

• Source-Param also corresponds to case B. However, in this
case, a critical variable is “returned” an output parameter
to multiple peer callers.

• Source-Arg corresponds to case A. A critical variable is
passed to peer callees through an indirect call.

• Use-Param corresponds to case C. A critical variable used
in a function is passed in from multiple peer callers.

4.4 Constructing and Cross-Checking Check
Constraints

Until now, CRIX has produced multiple sets of peer slices
of different classes for each critical-variable source and use.
Each slice may or may not contain a conditional statement.
The next step of CRIX is to cross-check the slices to detect de-
viations in the absence of security checks as potential missing-
check cases. We choose to cross-check conditional statements
instead of security checks (a subset of conditional statements)
in this step for two reasons. First, the security-check identifi-
cation part in CRIX have false negatives and may not identify
all security checks; cross-checking security checks only may
have significant false negatives because deviations can be
normalized. Second, although cross-checking all conditional
statements may introduce false positives, our fine-grained
modeling for conditional statements can mitigate this issue.

A simple approach to cross-check slices for deviations is
to treat conditional statements equally and quickly find devi-
ating slices that do not have any conditional statement. Such
coarse-grained analysis may have false negatives because con-
ditional statements may have completely different semantics,
and having a conditional statement does not mean the slice
has checked the source or use. On the other hand, exactly
comparing concrete values in conditional statements would
be too restrictive, leading to false positives. For example,
when two slices have if (len < 8) and if (len < 16), re-
spectively, treating them as different checks is too aggressive
because both of them indeed enforce length checks. To avoid
these problems, we must “qualitatively” understand the se-
mantics of conditional statements in the slices. To this end, we
propose to construct and model constraints from conditional
statements. Note that the modeling focuses on the seman-
tics of conditional statements, which does not consider their
positions in the slices.

4.4.1 Modeling Conditional Statements as Constraints

As described in §4.3, a slice is flattened as a single code path
using BFS, and a slice has at most one conditional statement.
The goal of this step is to answer what classes of semantics a
conditional statement has, with a proper granularity. We thus
use two empirical rules to model the conditional statements
based on the semantics of typical conditions and comparison
operators. The modeled conditional statements will be cross-
checked for missing-check bugs, as shown in §4.4.2.

1. If the conditional statement checks the return value of a
function call, we identify the function’s signature as the
constraint. For example, if a variable is checked in a con-
ditional statement, if (IS_ERR(ret)), we model the con-
straint as “IS_ERR(int)”. This is, the slice uses IS_ERR()
to check the source or use.

2. Otherwise, we model the conditional statement as
“<opcode_type, operand_type>”, where opcode_type

USENIX Association 28th USENIX Security Symposium 1777

represents the type of the comparison, such as eq, ne, and
lt; and operand_type represents the type of the condition
operand. The type can be var (a variable), zero, positive
constant, and negative constant. For example, if a con-
dition statement is if (len < 8), the constraint will be
modeled as “lt positive”.

4.4.2 Detecting Deviations as Potential Bugs

With the modeled constraints for all slices in a set, we cross-
check them to find deviations. The idea of the detection is to
calculate the relative frequency (RF) [18] for each con-
straint in the set. Since different constraints have different fre-
quency distributions, we calculate the RF for each constraint
in the set separately. More specifically, given a constraint, we
define Nnc as the number of slices that do not have the con-
straint, and define Nt as the total number of slices in the set.
With these two numbers, the RF is defined as in Equation 1.

RF =
Nnc

Nt
(1)

The detection works as follows. Given a constraint in a
peer-slice set, the detection counts how many slices do not
have this particular constraint. Note that a slice that has a
different constraint will also be counted. The count serves as
Nnc. Since Nt is the total number of slices in the set, we can
quickly obtain it and calculate the RF for the given constraint.
If the RF is very small, i.e., most slices have the constraint,
the detection reports slices that do not have the constraint as
potential missing-check cases. A slice set may have multiple
constraints, and the detection will go through the steps for
each constraint in the slice set.

5 Implementation

We have implemented CRIX as multiple passes on top of
LLVM, including a pass for constructing call graph and un-
rolling loops, a pass for finding security checks and critical
variables, and a pass for detecting and reporting missing-check
cases. CRIX’s source code contains 4.5K lines of C++ code.
The rest of the section describes some interesting implemen-
tation details in each phase.

5.1 Preprocessing Phase

Disabling inlining and IR pruning. To facilitate peer-slice
construction, we aim to preserve callsites as much as possible.
To this end, we chose to disable inlining by modifying Clang.
A side effect of disabling inlining is that inline functions
defined in header files will be copied to each module that
uses them, leading to significant redundancy in LLVM IR.
To prune the IR, we leverage debugging information to map
the functions to its source code. This way, we can figure out
multiple functions in IR share the same source code, and if

so, we keep only one copy in the IR and discard all other
copies. The pruning strategy reduces the original size of IR
by approximately 30%.

Identifying indirect-call targets. To realize the two-layer
type analysis, we first identify all store operations (either a
store instruction in LLVM or a struct initializer) that assign
a function address to a variable. We then analyze the type of
the memory holding the variable. At this step, our analysis is
conservative: the variable must be loaded from a pointer, and
the pointer must be pointing to a field of a data structure. That
is, the pointer must be a GetElementPtrInst in LLVM. With
the type information in LLVM IR, we can then extract the base
struct type from the pointer. Note that, we do not recursively
find the struct type; if the pointer is not GetElementPtrInst,
or the base type of the GetElementPtrInst is not a struct or
is an aggregated type (e.g., union), we stop the analysis for the
particular function address and roll back to the traditional one-
layer type analysis. The filed-sensitive analysis is realized
by analyzing the indices in the GetElementPtrInst which
includes the index of the accessed field into the base type. The
process of this step goes through all address-taken functions
in all modules. The output of this step is a map from the hash
of the type to the function addresses.

A challenge in implementing the two-layer type analysis to
conservatively capture escaping types. As described in §4.1.2,
we have a conservative policy to identify escaping types. To
implement the type-escaping analysis, we analyze the operand
types in cast and store operations (both instructions and global
static initializers). If the operand types satisfy the policy, we
identify them as escaping types.

After that, we match the second layer type for indirect calls.
Similarly, we analyze the type of the memory holding the
function pointer (address) in the same way—analyzing the
corresponding GetElementPtrInst. By querying the map, we
can find the matched functions for the indirect call. If we
cannot find a match, we again roll back to the one-layer type
analysis for the indirect call.

Unrolling loops. To avoid path explosion, we chose to unroll
loops by treating for and while statements as if statements,
which is a common strategy used in practice [45]. A loop has
two special basic components: header block, latch block. A
header block is the entrance node for a loop; a latch block
contains an edge back to the header block. In order to unroll
loops, we delete the back edge and add a new edge from the
latch block and the successor block of the loop.

Pointer analysis. We perform points-to analysis for each
pointer to a memory location within a function, relying on
LLVM’s AliasAnalysis infrastructure. The MayAlias results
conservatively include pointers that may refer to the same
object; two pointers referring to different fields of an object
may also be included as aliases. To refine the results, we
perform field-sensitive data-flow analysis for each pointer
that is ever used in memory load/store or function calls as

1778 28th USENIX Security Symposium USENIX Association

parameters. Pointers that are validated to refer to different
fields are excluded from the MayAlias results. A second issue
with the points-to analysis is its significant runtime overhead,
and we observed that this is mainly caused by a small number
of objects that have a large number of pointers. We mitigate
the problem by limiting the maximum number of pointers
an object can alias simultaneously. By setting the number to
1000, our results showed that only 23 functions in the Linux
kernel have aliased memory pointers with size greater than
this limit. After applying the two improvements, the running
time for points-to analysis is reduced from 103 minutes to
only 24 minutes, and the average number of alias pointers of
a object is reduced by 65%.

5.2 Analysis Phase

Modeling input functions and collecting assembly func-
tions. In CRIX, specific return values and parameters of in-
put functions and assembly functions are defined as sources
(§4.2.2). As such, we need to collect a set of such functions.
We define a function as input function if it may fetch data from
outside. For example, copy_from_user(dst, src, size)
copies the content from user-space memory src into the
kernel-space memory dst. In total, we empirically collected
36 input functions (Table 3). We also specified which pa-
rameter or if the return value of these functions holds the
inputs. Similarly, the kernel contains lots of assembly code
as optimizations for performance reasons. Such functions are
typically critical. Since LLVM does not support analysis of as-
sembly code, we also model the assembly functions and treat
them as sources. Identification of assembly functions is real-
ized by scanning through LLVM IR files for isa<InlineAsm>
instructions.

5.3 Postprocessing Phase

Selecting threshold for relative frequency. Missing checks
within the Linux kernel are identified using various strategies
described in §4. A case in a peer-slice set that has low rela-
tive frequency will be reported as a potential missing-check
bug. The relative frequency is the ratio of occurrences of a
constraint or “non-constraint” to the size of the peer-slice
set. A uniform threshold for different categories might skew
the results in favor of a particular type of bugs. To solve this
challenge, we provided the relative frequency field as a tuning
parameter and tested the results on various runs for various
categories. We observed that the relative frequency works
best between [0.1, 0.15] to detect sufficient missing-check
bugs with reasonably low false reports, for all the categories.
Generating bug-fixing suggestions. Peer slices of the same
critical variable can reveal many interesting details about the
implementation. For each peer, we are able to reason about
the constraints of the critical variable. Since we have con-
straints for each of the peer slices, one can suggest a possible

security check in a possible location for missing-check cases.
Statistically analyzing the “suggestions” returns us a reason-
able bug fix. As such, CRIX always reports the most common
suggestion to facilitate bug fixing. The report includes the
most common constraint and which function the constraint
should be applied to.
Bug Reporting. After collecting the constraints from the
peer slices and using a user-defined relative frequency, we
rank the missing-check output based on the relative frequency.
we format the report to output the line contains the relative
frequency, the Linux source code, the module containing the
code, the number of times security check was checked, times
missed among the peers, and most importantly, the bug-fixing
suggestion. As expected, reported cases in the top of the
ranking are more likely to be true bugs.

6 Evaluation

We extensively evaluate the scalability and effectiveness of
CRIX using the Linux kernel. We also evaluate the effec-
tiveness of our two-layer type analysis. The experiments
were performed on Ubuntu 16.04 LTS with LLVM version
8.0 installed. The machine has a 64GB RAM and an Intel
CPU (Xeon R CPU E5-1660 v4, 3.20GHz) with 8 cores. We
tested the bug detection efficiency of CRIX, on the Linux
kernel version 4.20.0-rc5 with the top git commit number
b72f711a4efa, the latest patch as on Dec 6, 2018. Using the
allyessconfig, we generated 17,343 LLVM IR bitcode files
to cover as many modules as possible.

6.1 Precision in Finding Indirect-Call Targets

Results. In total, out of 57,299 indirect calls, 45,840 (80%)
enjoyed our two-layer type analysis. 5,019 (8.8%) indirect
calls suffer from type escaping thus disqualify the two-layer
type analysis. Others indirect calls do not load function point-
ers from a struct thus do not trigger the two-layer type
analysis. The high percentage confirms our observation that
most function pointers are stored to and loaded from memory
through data struct. We then calculate the average number
of targets for an indirect call before and after applying our
two-layer type analysis. The results show that the average
number over all indirect calls for traditional type analysis is
134 while it is only 33 for our two-layer type analysis. We fur-
ther calculate the average numbers over indirect calls that can
benefit the two-layer type analysis. The results show that the
average target number is 129 and 9 (i.e., 7%) before and after
using our two-layer type analysis, respectively, which con-
firms that the analysis can dramatically refine the indirect-call
targets.

Measuring the false positives of indirect-call targets is a
challenging problem because of the complexity of pointer
propagation and point-to relationships. Existing CFI tech-

USENIX Association 28th USENIX Security Symposium 1779

niques use the average number of targets to represent the
accuracy of target refinement. Given that CRIX reports only
an average number of 9 for indirect calls that benefited from
the two-layer type analysis, we expect the false-positive rate
of our analysis to be low. In comparison, the hybrid approach
proposed by Ge et al. [10] reports an average number of 6.64
for indirect calls in FreeBSD, and, the number is calculated
over all indirect calls. We believe that the accuracy of the
approach benefits from the combination of taint analysis and
type analysis.

6.2 Analysis Performance and Numbers

CRIX completed the analyses of the kernel for missing-check
cases in 64 minutes, of which pointer analysis required 24
minutes and the remaining analysis to identify and report
missing-check cases required 28 minutes. By running CRIX
over the whole kernel, with a threshold of 0.15, the output
contained 308K security checks from 1,028K conditional
statements, and reported 804 cases.

6.3 Bug Findings

Table 2 presents the bug detection statistics of CRIX, running
on the entire Linux kernel with a constant relative frequency
of 0.15, across categories. We used a fixed number for relative
frequency to avoid inconsistencies while comparing similar
bugs across the various categories. CRIX reported 804 poten-
tial bugs and manual analysis confirmed 278 new bugs. To
manually analyze all the bugs, it took three researchers, a total
of 36 man-hours. We found that the cross-checking results
over peer slices can significantly relieve the manual analysis
by suggesting how and why peers enforce the security checks.
The manual effort was mainly spent in checking if the criti-
cal variable is actually checked because the check may have
been missed by CRIX due to issues such as aliasing. In most
cases, the “suggested” source-check or check-use chains are
across one or two functions, so the manual analysis overall is
straightforward.

We submitted patches for all the bugs. Linux maintainers
accepted 151 of the submitted patches to be applied to the
latest Linux version or future releases. Maintainers confirmed
99 patches within a week of submission confirming the crit-
icalness of fixing missing-check bugs. Figure 1 shows an
example of the new bugs found by CRIX, which can cause
multiple security issues such as NULL-pointer dereferenc-
ing. A detailed list of all the bugs is available in Table 4 and
in Table 5, in the Appendix section. During our interaction
with the maintainers, we not only fixed missing-check bugs
determined by CRIX, but also fixed some other relevant bugs
present in the error paths of security checks including but not
limited to missing/incorrect error handling, missing resource
releases, use-after-free, and dead code.

Further 76 bugs are included in more than one bug category.
That is, these 76 bugs were detected twice, once each while
generating the source and use constraints. However, these
duplicates are within the chosen 804 cases, used to evaluate
CRIX. Accounting for the duplicate bug reporting, the false-
positive rate of CRIX is 65%. We believe this is an acceptable
number for critical software such as OS kernels.

The distribution of bugs is heavily skewed towards driver
code. The report showed 195 bugs in the driver modules and
at least 27 driver modules had more than one missing-check.
These bugs reinforce previous research studies that the driver
code is indeed buggy as well as confirm the effectiveness
of CRIX in detecting new missing checks. Second, we also
computed the latent period of the detected bugs and the av-
erage time between the initial patch and detection is 1,675
days or approximately 4 years and 7 months. A significant
observation is 27 out of these 278 bugs have a latent period
of greater than 10 years and 6 patches’ latent period is greater
than 13 years.

The third interesting finding of our bugs involves the type
of bugs. A total of 79 bugs involve memory allocation on the
heap. Linux developers strictly maintain that every pointer
returned by an alloc-like function be checked for empti-
ness. Interestingly, CRIX identified 11, 5, 11, and 12 calls
of (kzalloc, kmalloc, kcalloc and kmemdup) respectively;
all missing a check on the pointer to the allocated memory for
emptiness. All these bugs can crash a system while derefer-
encing the NULL pointer, as well as provide an attack vector
to launch a denial of service attack by unauthorized users.
The numerous missing-check bugs confirm the effectiveness
of CRIX in identifying security vulnerabilities.

One reason of concern in the output report is the duplica-
tion of bugs across various categories. CRIX performs back-
ward data-flow analysis from use, and a forward data-flow
analysis from source to identify missing-check bugs in var-
ious categories. With a constant relative frequency, a true
missing-check bug will often be reported in both directions.
To simplify our analysis, we ran CRIX performing both analy-
ses at the same time and then eliminated the duplicate records.
While this action does not impact the accuracy of the system,
we observed a non-trivial difference in ranking order of the
bug, when evaluating each category individually.

6.4 False Positives
As presented in §6.3, CRIX has false positives. We have in-
vestigated the causes of false positives. In this section, we
present the main classes of causes.
Inaccurate points-to analysis. Pointer analysis [14] is a
hard problem. CRIX’s data-flow analysis engine generally re-
lies on the Alias Analysis. However, the alias results provided
by LLVM are often inaccurate. Al through we have refined
the MayAlias results, there are still over 48% of false positives
that are caused by the inaccuracy of pointer analysis. We will

1780 28th USENIX Security Symposium USENIX Association

Category Example bug (related function) Latent Period R A C

Source-Ret drivers/net/hyperv/netvsc_drv.c +1377 (kvmalloc_array) 4y 10m 449 300 156
Use-Param net/ncsi/ncsi-netlink.c +253 (nla_nest_cancel) 2y 10m 247 150 115
Source-Param drivers/gpu/drm/i810/i810_dma.c +307 (drm_legacy_ioremap) 4y 1m 83 42 4
Source-Arg drivers/dma/ti/omap-dma.c +1056 (omap_dma_prep_dma_cyclic) 10y 25 8 3

Table 2: Bug detection statistics of CRIX on Linux kernel with relative frequency = 0.15. Columns R= bugs reported, A = Analyzed bugs, C =
Confirmed bugs. The Latent Period is the average time differential for all confirmed bugs(C), within the category.

discuss potential improvements of pointer analysis in §7.
Inconsequential checks. While checks are necessary to
guarantee the state of the kernel, programmers often ignore
security checks in cases such as debugging code, failure-
handling paths, driver-shutdown functions, resource cleanup
functions, unlikely failures (e.g., kmallocwith __GFP_NOFAIL)
or code that is already protected by synchronization primi-
tives. Checks are redundant in these cases as an erroneous
state has already existed or a valid state is guaranteed by the
kernel. Such cases account for 25% of false positives.
Implicit checks. Programmers can reason about the state
of the variable in an implicit way. For example, to test if an
allocation of an object is successful, developers may use the
object, without a security check, in a function, and use the
return values of the function to test if the object was allocated
successfully. In this case, although the object itself is never
explicitly checked, the function call checks the object implic-
itly. Such cases contribute about 8% of the false positives. A
potential solution to mitigating this problem is to maintain a
list of “checker” functions.
Other causes. Besides these above-mentioned causes, false
positives can also be caused by complex programmer logic,
imprecise static analysis techniques, etc. All these account
for the remaining 19% of the false positives.

6.5 False Negatives

CRIX provides a tuning parameter, the threshold of RF, while
detecting missing-check cases. In other words, the threshold
can influence the false-negative rate. In this section, we evalu-
ate (1) the absolute false negatives that are missed when the
RF threshold is set to 1; and (2) the relationship between the
false-negative rate and the RF threshold.

In §2, we collected 119 missing-check bugs that have a
clear security impact. To make the false-negative evaluation
more robust, we collect 231 recently reported missing-check
bugs in the Linux kernel based on its Git patch history. The
patches containing the fixes of these 350 missing-check bugs
are evaluated in our false-negative study. To reproduce these
bugs, we revert the patches in the Linux kernel to the version
used in our experiments.

By setting the RF threshold to 1, we determined 14 (4%)
patches as absolute false negatives. Absolute false negatives
are caused by two factors. First, the checked critical variables

are not captured by CRIX because the error code or error-
handling functions are not identified as part of a security
check. Second, inaccurate pointer analysis identifies incorrect
aliases for the critical variables. These aliases are mistakenly
identified as valid security checks, bypassing the identification
of actual missing-check bugs.

Second, we also evaluate the relationship between the
threshold and false-negative rate, presented in Figure 7. We
find that, as RF threshold increases, the false-negative rate
decreases as prior false negatives are identified as missing-
check bugs. We found that when the threshold is set to 0.13,
the false-negative rate is 5% and reaches its elbow point. Fur-
ther tuning the threshold has no impact on the false negative
rate.

Figure 7: Relationship between the relative frequency (RF) thresh-
old and the false-negative rate.

6.6 Portability
A program-specific component of CRIX is identifying security
checks. Determining if a conditional statement is a security
check, while scanning the kernel relies on the identification of
error handling functions, and error codes. Identifying the error
handling functions requires a limited amount of experience
with the target code base. In Unix-like kernels, these functions
share similar patterns, called "Single Unix Specification" [35],
as presented in §4.2.1. All these kernels, also have a single
global header file that defines the standard error codes.

Similarly, other kernels and programs like browsers also
have corresponding header files containing the error codes.

USENIX Association 28th USENIX Security Symposium 1781

Besides this step, the idea to generate an error control flow
graph is generic to adapt to other systems. Once security
checks, described in §4, are identified, the algorithm for iden-
tifying missing checks is easily adaptable to other software
systems such as BSD kernels and C++ code base such as web
browsers.

7 Discussion

Two-layer type analysis for more types. The current imple-
mentation of two-layer type analysis supports only struct
type because it is the most commonly used type for memory
holding function pointers. To further exploit the two-layer
type analysis, we could extend it to support more types such
as array, global variable, and vector. The type-escaping
analysis in CRIX will ensure to eliminate false negatives when
any type casting occurs or function pointers are moved across
different types.
RF threshold. We discussed the false positives and false
negatives of CRIX in §6. To balance false positives and false
negatives, we suggest setting the RF threshold to a value
between 0.1 and 0.15 for the Linux kernel. CRIX cross-checks
peer slices to detect deviations. CRIX may have higher false-
report rates in smaller target programs because they have
small sets of peer slices.
Pointer analysis. Another major cause of false reports is
the inaccuracy of alias analysis. To mitigate this problem, we
intend to use Andersen pointer analysis [13] and Steensgaard
pointer analysis [34] in the future. Given that, pointer analysis
is used extensively in CRIX, we believe that this addition can
significantly improve the overall accuracy.
Inconsequential checks. Besides alias analysis, the next
major portion of false positives are due to programmer in-
tended missing checks. Based on our interaction with Linux
maintainers, we found that they are reluctant to fix missing-
check cases in resource-release paths such as driver shutdown
or state reset. Previous work by Saha et.al [31] proposed a
pattern-based approach to find resource-release paths. As a
potential solution, we may leverage the approach to filter
out cases in resource-release paths and thus reduce the false
positives in CRIX.
Determining exploitability and security impact of
missing-check bugs. To automatically determine the ex-
ploitability of missing-check bugs, one can employ symbolic
execution [29] and a theorem prover like Z3 [6] to generate
inputs to trigger a missing-check bug. In addition, fuzzers
can complement the limitations with symbolic execution. To
automatically determine the security impact, one can analyze
the uses of the checked variable to understand the potential
security impact. For example, if a checked variable is used
as the size variable in memcpy(), the potential impact can be
memory corruption or information leak. For the identified new
bugs, we found that more than half of them will cause Denial-

of-Service, and quite a few of them will cause out-of-bound
access, as shown in Table 4 and Table 5.

In general, automatically determining exploitability and
security impact of a bug is a challenging research problem.
A number of recent works [47] have investigated into this
problem. If we can automatically decide the exploitability
and security impact of a potential miss-check case, we can
automatically confirm a missing-check bug/vulnerability and
thus automatically eliminate false positives. We will leave
such an analysis for future work.

8 Related Work
Missing-check detection. The most closely related works
to CRIX are about missing-check detection. LRSan [43] de-
tects lacking-recheck bugs, a subclass of missing-check bugs.
CRIX detects general missing-check bugs that include lacking-
recheck bugs. Juxta [23] detects semantic bugs using cross-
checking between semantically equivalent implementations
of file systems. Most bugs found by Juxta are missing-check
bugs. CRIX can detect missing-check bugs in all subsystems
in the OS kernels and do not require multiple implementa-
tions of a subsystem. Other works utilizing complementary
implementation techniques to detect missing-check include
Vanguard [32], Chucky [46], AutoISES [38], Rolecast [33],
and MACE [24]. To the best of our knowledge, none of the
tools are scalable to a system as large as the OS kernel nor
have an equivalent technique to reason about the semantics
and contexts of a critical variable.
Error-code propagation and handling. To detect missing-
check bugs, CRIX relies on error-handling primitives to
find critical variables. Techniques in error-code propagation
and handling, within the Linux kernel, include EIO [12],
Hector [31], and by Rubio-González et al.[30]. Similarly,
APEx [17], ErrDoc [39], and EPEx [16] reason about the
error-code propagation in open source SSL implementations,
either automatically or via user definitions. Unlike CRIX, all
the above systems target a limited range of error returning
code specifications and thus have significant false negatives.
Further, these techniques do not consider error-handling cases
that do not return any error code. According to our study, such
error-handling cases are common.
OS-kernel analysis. Given the complexity, analysis targeting
the entire OS kernels is challenging. Recent advances on ker-
nel analysis can be mainly categorized into kernel source-code
analysis and static IR analysis. Smatch [5] and Coccinelle [27]
find bugs in the Linux kernel. While Smatch [5] relies on
syntax tree–based intra-procedural analysis to find simple
bugs such as NULL-pointer dereferences. Coccinelle [27]
performs code-pattern matching to find specified bugs. In
comparison, CRIX leverages flow-sensitive, context-sensitive,
and field-sensitive inter-procedural analyses to identify miss-
ing check bugs.

To benefit from rich analysis passes in LLVM, recently,

1782 28th USENIX Security Symposium USENIX Association

many tools analyze OS kernels on LLVM IR. K-Miner [11]
improves the efficiency of data-flow analysis by partitioning
the kernel code along separate execution paths stating from
system-call entry points. Dr. Checker [21] is also a static data-
flow analysis tool that identifies bugs in the drivers. While
K-Miner and Dr. Checker serve as general bug detection tools,
there are also some detection tools specialized for detecting
a specific class of bugs in OS kernels. KINT [44] detects
integer overflows using taint analysis; UniSan [20] detects
information leaks caused by uninitialized data reads, also
using taint analysis.

9 Conclusion

Missing-check bugs are a common cause of critical security
vulnerabilities. In this paper, we have presented CRIX, a scal-
able and effective system for detecting missing-check bugs
in OS kernels. CRIX’s detection is semantic- and context-
aware with an inter-procedural and context-, flow- and field-
sensitive data-flow analysis engine. We realized the detection
by proposing multiple new and general techniques. In par-
ticular, the two-layer type analysis can dramatically improve
the precision in finding direct-call targets. The automated
critical-variable inference narrows down the analysis to a
very small scope, thus scaling expensive analyses to OS ker-
nels. The peer-slice construction and constraint modeling for
conditional statements enable semantic- and context-aware
analysis. With these techniques, CRIX has reasonably low
false-report rates and outstanding analysis performance. By
applying CRIX to the Linux kernel, we found 278 new bugs
and maintainers accepted 151 of our submitted patches. The
evaluation results show that CRIX is scalable and effective in
finding missing-check bugs in OS kernels.

10 Acknowledgment

We would like to thank our shepherd, Trent Jaeger, and the
anonymous reviewers for their helpful suggestions and com-
ments. We are also grateful to Stephen McCamant for provid-
ing valuable comments and to Linux maintainers for providing
prompt feedback on patching bugs. This research was sup-
ported in part by the NSF award CNS-1815621. Any opinions,
findings, conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of NSF.

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow In-
tegrity. In Proceedings of the 12th ACM Conference on Computer and
Communications Security (CCS), Alexandria, VA, Nov. 2005.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing
memory error exploits with wit. In Proceedings of the 29th IEEE

Symposium on Security and Privacy (Oakland), Oakland, CA, May
2008.

[3] T. Bletsch, X. Jiang, and V. Freeh. Mitigating code-reuse attacks with
control-flow locking. In Proceedings of the Annual Computer Security
Applications Conference (ACSAC), 2011.

[4] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer. Control-flow integrity: Precision, security, and performance.
ACM Computing Surveys (CSUR), 50(1):16, 2017.

[5] D. Carpenter. Smatch - the source matcher, 2009. http://smatch.
sourceforge.

[6] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, 2008.

[7] I. Dillig, T. Dillig, and A. Aiken. Static error detection using semantic
inconsistency inference. In Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), San Diego, CA, June 2007.

[8] X. Fan, Y. Sui, X. Liao, and J. Xue. Boosting the precision of vir-
tual call integrity protection with partial pointer analysis for c++. In
Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 329–340. ACM, 2017.

[9] R. M. Farkhani, S. Jafari, S. Arshad, W. Robertson, E. Kirda, and
H. Okhravi. On the effectiveness of type-based control flow integrity.
In Proceedings of the 34th Annual Computer Security Applications
Conference, pages 28–39. ACM, 2018.

[10] X. Ge, N. Talele, M. Payer, and T. Jaeger. Fine-grained control-flow
integrity for kernel software. In 2016 IEEE European Symposium on
Security and Privacy (EuroS P), pages 179–194, 2016.

[11] D. Gens, S. Schmitt, L. Davi, and A.-R. Sadeghi. K-miner: Uncovering
memory corruption in linux. In Proceedings of the 2018 Annual Net-
work and Distributed System Security Symposium (NDSS), San Diego,
CA, Feb. 2018.

[12] H. S. Gunawi, C. Rubio-González, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and B. Liblit. Eio: Error handling is occasionally correct. In
FAST, volume 8, pages 1–16, 2008.

[13] B. Hardekopf and C. Lin. The ant and the grasshopper: Fast and
accurate pointer analysis for millions of lines of code. In Proceedings
of the 2007 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), San Diego, CA, June 2007.

[14] M. Hind. Pointer analysis: Haven’t we solved this problem yet? In
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineering, PASTE ’01, pages
54–61, New York, NY, USA, 2001. ACM. ISBN 1-58113-413-4.

[15] J. Jaffar, V. Murali, J. A. Navas, and A. E. Santosa. Path-sensitive
backward slicing. In International Static Analysis Symposium, pages
231–247. Springer, 2012.

[16] S. Jana, Y. J. Kang, S. Roth, and B. Ray. Automatically detecting
error handling bugs using error specifications. In USENIX Security
Symposium, pages 345–362, 2016.

[17] Y. Kang, B. Ray, and S. Jana. Apex: Automated inference of error
specifications for c apis. In Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pages 472–482.
ACM, 2016.

[18] J. F. Kenney and E. S. Keeping. Mathematics of statistics-part one.
1954.

[19] T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler. From uncer-
tainty to belief: Inferring the specification within. In Proceedings of
the 7th Symposium on Operating Systems Design and Implementation,
OSDI ’06, 2006.

[20] K. Lu, C. Song, T. Kim, and W. Lee. UniSan: Proactive Kernel Memory
Initialization to Eliminate Data Leakages. In Proceedings of the 23rd

USENIX Association 28th USENIX Security Symposium 1783

http://smatch.sourceforge
http://smatch.sourceforge

ACM Conference on Computer and Communications Security (CCS),
Vienna, Austria, Oct. 2016.

[21] A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and G. Vi-
gna. DR. CHECKER: A soundy analysis for linux kernel drivers.
In Proceedings of the 26th USENIX Security Symposium (Security),
Vancouver, BC, Canada, Aug. 2017.

[22] A. Milanova, A. Rountev, and B. G. Ryder. Precise call graphs for c
programs with function pointers. Automated Software Engg., 11(1):
7–26, Jan. 2004. ISSN 0928-8910.

[23] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim. Cross-checking
semantic correctness: The case of finding file system bugs. In Pro-
ceedings of the 25th ACM Symposium on Operating Systems Principles
(SOSP), Monterey, CA, Oct. 2015.

[24] M. Monshizadeh, P. Naldurg, and V. Venkatakrishnan. Mace: Detecting
privilege escalation vulnerabilities in web applications. In Proceed-
ings of the 21st ACM Conference on Computer and Communications
Security (CCS), Scottsdale, Arizona, Nov. 2014.

[25] B. Niu and G. Tan. Modular control-flow integrity. In Proceedings
of the 2014 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Edinburgh, UK, June 2014.

[26] NVD. National vulnerability database, 2019. https://nvd.nist.
gov.

[27] Y. Padioleau, J. L. Lawall, R. R. Hansen, and G. Muller. Documenting
and automating collateral evolutions in linux device drivers. In EuroSys,
2008.

[28] A. Quach, A. Prakash, and L. K. Yan. Debloating software through
piece-wise compilation and loading. In 27th USENIX Security Sympo-
sium (USENIX Security 18). USENIX Association, 2018.

[29] D. A. Ramos and D. Engler. Under-Constrained Symbolic Execution:
Correctness Checking for Real Code. In Proceedings of the 24th
USENIX Security Symposium (Security), Washington, DC, Aug. 2015.

[30] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H. Arpaci-Dusseau,
and A. C. Arpaci-Dusseau. Error propagation analysis for file systems.
In ACM Sigplan Notices, volume 44, pages 270–280. ACM, 2009.

[31] S. Saha, J.-P. Lozi, G. Thomas, J. L. Lawall, and G. Muller. Hec-
tor: Detecting resource-release omission faults in error-handling code
for systems software. In 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 1–12.
IEEE, 2013.

[32] L. Situ, L. Wang, Y. Liu, B. Mao, and X. Li. Vanguard: Detecting
missing checks for prognosing potential vulnerabilities. In Proceedings
of the Tenth Asia-Pacific Symposium on Internetware, page 5. ACM,
2018.

[33] S. Son, K. S. McKinley, and V. Shmatikov. Rolecast: finding missing
security checks when you do not know what checks are. In ACM
SIGPLAN Notices, volume 46, pages 1069–1084. ACM, 2011.

[34] B. Steensgaard. Points-to analysis in almost linear time. In Proceed-
ings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’96, New York, NY, USA, 1996.
ACM. ISBN 0-89791-769-3.

[35] W. R. Stevens and S. A. Rago. Advanced programming in the UNIX
environment. Addison-Wesley, 2008.

[36] Y. Sui and J. Xue. Svf: interprocedural static value-flow analysis in
llvm. In Proceedings of the 25th International Conference on Compiler
Construction, pages 265–266. ACM, 2016.

[37] Y. Sui and J. Xue. Value-flow-based demand-driven pointer analysis
for c and c++. IEEE Transactions on Software Engineering, 2018.

[38] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou. Autoises: Auto-
matically inferring security specification and detecting violations. In
USENIX Security Symposium, pages 379–394, 2008.

[39] Y. Tian and B. Ray. Automatically diagnosing and repairing error
handling bugs in c. In Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering, pages 752–762. ACM, 2017.

[40] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike. Enforcing forward-edge control-flow integrity
in gcc & llvm. In USENIX Security Symposium, pages 941–955, 2014.

[41] O. Tripp, S. Guarnieri, M. Pistoia, and A. Aravkin. Aletheia: Improving
the usability of static security analysis. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
pages 762–774. ACM, 2014.

[42] V. van der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen,
S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida. A
tough call: Mitigating advanced code-reuse attacks at the binary level.
In Security and Privacy (SP), 2016 IEEE Symposium on, pages 934–
953. IEEE, 2016.

[43] W. Wang, K. Lu, and P. Yew. Check It Again: Detecting Lacking-
Recheck Bugs in OS Kernels. In Proceedings of the 25th ACM Confer-
ence on Computer and Communications Security (CCS), Toronto, ON,
Canada, Oct. 2018.

[44] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek. Improving
Integer Security for Systems with KINT. In Proceedings of the 10th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Hollywood, CA, Oct. 2012.

[45] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. Fitness-guided
path exploration in dynamic symbolic execution. In 2009 IEEE/IFIP
International Conference on Dependable Systems & Networks, pages
359–368. IEEE, 2009.

[46] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck. Chucky:
Exposing missing checks in source code for vulnerability discovery.
In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 499–510. ACM, 2013.

[47] W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and B. Liang.
Semfuzz: Semantics-based automatic generation of proof-of-concept
exploits. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2139–2154. ACM,
2017.

[48] S. Özkan. Common vulnerabilities and exposures details, 2019. https:
//www.cvedetails.com.

A Appendix

Data fetch functions

copy_from_user _copy_from_user
__copy_from_user raw_copy_from_user
strncpy_from_user _strncpy_from_user
__strncpy_from_user strndup_user
__copy_from_user_inatomic memdup_user
__copy_from_user_inatomic_nocache copyin
__constant_copy_from_user memdup_user_nul
rds_message_copy_from_user __get_user
snd_trident_synth_copy_from_user vmemdup_user
ivtv_buf_copy_from_user copyin_str
iov_iter_copy_from_user_atomic fusword
__generic_copy_from_user copyin_nofault
__copy_from_user_eva fuword
__arch_copy_from_user fubyte
__copy_from_user_flushcache fuswintr
__asm_copy_from_user get_user
copy_from_user_toio copy_from_user_page
copy_from_user_nmi copy_from_user_proc

Table 3: List of input functions collected based on heuristics.

1784 28th USENIX Security Symposium USENIX Association

https://nvd.nist.gov
https://nvd.nist.gov
https://www.cvedetails.com
https://www.cvedetails.com

Subsystem Filename Line# Impact CategoryStatusLP

net gvf.c 511 reliability P C 2
x86 ghv_init.c 107 DoS S A 1
x86 gtlb_uv.c 2013 DoS S S 8
char hpet.c 978 reliability S S 4
firmware gdriver.c 711 DoS S C 1
gpio gpio-exar.c 150 reliability U A 2
gpu gkfd_crat.c 404 DoS U S 1
gpu gi915_gpu_error.c 230 reliability S S 2
gpu gradeon_display.c 679 reliability S C 2
gpu gvkms_crtc.c 227 reliability U A <1
hid hid-logitech-hidpp.c 1954 reliability S A 3
iio gmax9611.c 531 DoS U S 2
iio gmxs-lradc-adc.c 466 DoS U A 2
iio ghmc5843_i2c.c 62 reliability S A 4
iio ghmc5843_spi.c 62 reliability S A 4
infiniband gcm.c 1921 DoS S C 6
infiniband gi40iw_cm.c 3257 DoS S A 2
infiniband gi40iw_cm.c 3260 DoS S A 2
input gpm8xxx-vibrator.c 198 DoS P S 2
isdn ghfcpci.c 2034 reliability S A 10
isdn ghfcsusb.c 265 DoS S A 10
isdn gmISDNinfineon.c 716 DoS S A 9
leds leds-pca9532.c 531 crash /DoS S A 2
media gstv090x.c 1449 reliability S S 10
media gstv090x.c 1452 reliability S S 10
media gstv090x.c 1456 reliability S S 10
media gstv090x.c 2229 reliability S S 5
media gstv090x.c 2607 reliability S S 10
media gstv090x.c 2913 reliability S S 10
media gstv090x.c 2957 reliability S S 10
media gstv090x.c 2975 reliability S S 10
media gvpss.c 520 DoS S A 6
media grcar-core.c 267 DoS S S 1
media grenesas-ceu.c 1684 DoS S S 1
media grga.c 894 memory leak S A 1
media grga.c 896 memory leak S A 1
media grga.c 910 reliability S A 1
media grga.c 875 reliability S A 2
media grga.c 915 use-after-free S A 1
media gvideo-mux.c 400 DoS U A 1
media gvideo-mux.c 402 DoS S A 1
media gusbvision-core.c 2301 reliability S S 9
memstick gms_block.c 2141 DoS U C 5
mfd sm501.c 1145 DoS S A 1
mmc gmmc_spi.c 821 concurrency U A 9
net gmcp251x.c 963 reliability S S 3
net glan9303-core.c 1081 system crash S S 1
net glan9303-core.c 1074 system crash S S <1
net gpcnet_cs.c 1424 DoS S A 8
net gpcnet_cs.c 290 DoS S A 8
net glio_main.c 1194 DoS S A 2
net glio_vf_main.c 1961 DoS S S 2
net glio_vf_main.c 612 DoS S S 2
net glio_core.c 1213 DoS S A 1
net glio_core.c 1685 DoS S A 3
net gnicvf_main.c 2264 DoS S A 1
net gfmvj18x_cs.c 549 DoS S A 8
net gfm10k_main.c 42 reliability A A 2
net gen_rx.c 721 DoS U S <1
net gocelot_board.c 256 DoS U C 1
net gqla3xxx.c 3888 system crash U A 12
net gqlge_main.c 4682 system crash S A 2
net gsh_eth.c 3133 reliability U A 5
net gravb_main.c 1996 reliability U A 3
net grocker_main.c 2799 DoS S A 1
net gdwmac-dwc-qos-eth.c 487 DoS S A 2
net gdwmac-sun8i.c 1150 system crash S A 2
net gfjes_main.c 1254 concurrency U S 3
net gfjes_main.c 1255 concurrency S S 3
net gnetvsc_drv.c 1377 DoS S A <1
net gadf7242.c 1269 DoS S A <1

Subsystem Filename Line# Impact CategoryStatusLP

net gcore.c 645 reliability S A 2
net gcore.c 646 reliability S A 2
net gcore.c 653 reliability S A 2
net gcore.c 662 reliability S A 1
net gcore.c 689 reliability S A 2
net gcore.c 714 reliability S A 2
net gcfg80211.c 5368 DoS S A 6
net gcfg80211.c 5384 DoS S A 6
net g3945-mac.c 3405 reliability U S 7
net g4965-mac.c 6241 reliability U S 7
net gcmdevt.c 342 DoS U A 7
net gray_cs.c 395 system crash U S 8
net gray_cs.c 409 system crash S S 8
net gray_cs.c 423 system crash S S 8
net gbase.c 471 system crash S S 4
net gfw_common.c 648 DoS S A 8
net gfw.c 600 DoS U A 8
net gfw_common.c 623 DoS U A 8
net gfw.c 744 DoS U A 8
net gfw.c 448 DoS U A 8
net gfw.c 562 DoS S A 8
net gfw.c 1623 DoS U A 8
net gfw.c 1759 DoS U A 8
staging gfw.c 745 DoS U A 8
net gcmdevt.c 342 DoS U A 8
net gqlcnic_ethtool.c 1050 DoS U A 8
net grsi_91x_mac80211.c 199 DoS S A 5
net grsi_91x_mac80211.c 208 DoS S A 5
net gmain.c 347 DoS S A 6
nfc gse.c 345 DoS S S 4
nvdimm btt_devs.c 200 DoS S C 3
nvdimm btt_devs.c 217 system crash S C 3
nvdimm namespace_devs.c 2250 DoS S A 2
pci gpci-tegra.c 1552 buffer overflow S S 1
pci gpcie-rcar.c 931 buffer overflow S A 5
pci gpcie-xilinx.c 343 buffer overflow S C 4
pci gpci-epf-test.c 571 DoS U A 2
pinctrl gpinctrl-baytrail.c 1711 DoS U A 3
pinctrl pinctrl-axp209.c 366 DoS S A <1
power gcharger-manager.c 2006 DoS U A 7
rapidio rio_cm.c 2147 DoS S A 2
scsi gcxgb4i.c 619 DoS S S 8
scsi gql4_os.c 3206 DoS S A 7
scsi gufs-hisi.c 546 DoS U A <1
spi spi-s3c64xx.c 294 DoS U S 5
spi spi-topcliff-pch.c 1304 DoS S A 8
spi spi-topcliff-pch.c 1307 DoS S A 8
staging gaudio_manager.c 47 system crash P A 3
staging grtw_xmit.c 1514 DoS S A 4
staging grtl_phydm.c 182 system crash S A 1
thunderbolt property.c 177 DoS S A 1
thunderbolt property.c 550 DoS S A 1
tty gmain.c 115 DoS S A 8
tty gmain.c 135 DoS U A 8
tty g8250_lpss.c 175 DoS U C 2
tty gatmel_serial.c 1285 DoS U A 5
tty gmxs-auart.c 1688 DoS S S 8
usb gu132-hcd.c 3203 DoS U C 11
usb galauda.c 438 DoS U S 13
usb galauda.c 439 DoS U S 13
video ghgafb.c 287 DoS S A 14
video gimsttfb.c 1517 DoS S A 13
video gomapdss-boot-init.c 113 DoS U A 3
affs file.c 940 DoS S C 14
btrfs extent-tree.c 7042 reliability S A 2
ipv6 gip6t_srh.c 212 DoS S A 1
ipv6 gip6t_srh.c 225 DoS S A 1
ipv6 gip6t_srh.c 235 DoS S A 1
openvswitch datapath.c 449 DoS U A 7
smc smc_ism.c 290 system crash S S <1
strparser strparser.c 552 DoS S A 2

Table 4: List of new bugs (1-142) detected with CRIX. LP = Latent Period of bugs in years. Column Category specifies the category of
peer-slice set used to identify the bugs. A, P, S, and U indicate categories Source-Arg, Source-Param, Source-Ret, and Use-Param respectively.
The S,C,A in the Status field represent patch status, Submitted, Confirmed, Applied, respectively.

USENIX Association 28th USENIX Security Symposium 1785

Subsystem Filename Line# Impact CategoryStatusLP

security inode.c 339 reliability S A 5
ceph osdmap.c 1900 DoS S S 7
isa gsb8.c 113 reliability U A 14
pci gechoaudio.c 1956 DoS U A 12
soc gcs43130.c 2324 DoS S A 1
soc grt5645.c 3452 system crash U A <1
soc soc-pcm.c 1236 system crash S S 4
md raid10.c 3958 system crash S A 7
md raid5.c 7399 system crash S A 7
usb gusb_stream.c 106 DoS S A 10
usb gusb_stream.c 107 DoS S A 10
ata sata_dwc_460ex.c 1055 DoS U S 4
block nbd.c 2117 DoS U S 2
net gbcmmii.c 217 DoS U S <1
slimbus qcom-ngd-ctrl.c 1351 reliability U A <1
ncsi ncsi-netlink.c 253 reliability U A 1
ncsi ncsi-netlink.c 257 DoS U A 1
openvswitch conntrack.c 2146 DoS U S 1
openvswitch datapath.c 466 DoS U A 4
openvswitch datapath.c 475 DoS U A 4
openvswitch datapath.c 477 reliability U A 4
tipc group.c 942 DoS U A <1
tipc group.c 946 system crash U A <1
tipc socket.c 3226 DoS U A 4
tipc socket.c 3231 reliability U A 4
extcon extcon-axp288.c 145 reliability S A 4
thunderbolt switch.c 1325 DoS S S 2
thunderbolt xdomain.c 540 DoS S A 1
usb gusb251xb.c 600 DoS U A 2
tty gmax310x.c 1421 DoS U A 5
tty gmvebu-uart.c 791 DoS S S 1
mtd gvf610_nfc.c 856 DoS S A 3
mfd mc13xxx-i2c.c 82 DoS U S 6
pinctrl gberlin-bg4ct.c 453 DoS U S 3
pinctrl gpinctrl-as370.c 334 DoS U S <1
mfd mc13xxx-spi.c 160 DoS S S 6
firmware gdriver.c 801 DoS S A 2
net gtls.c 227 DoS U A <1
mmc gdw_mmc-exynos.c 556 DoS U S 6
mmc gdw_mmc-k3.c 461 DoS S S 5
mmc gdw_mmc-pltfm.c 84 DoS S S 5
pci gpci-host-generic.c 85 DoS U S 3
scsi gtc-dwc-g210-pltfrm.c 63 DoS U S 3
soc gsirf-audio-codec.c 466 system crash S A 5
slimbus qcom-ngd-ctrl.c 1333 DoS S S <1
x86 ghpet.c 79 DoS U A 11
udf super.c 575 system crash S S 1
nfc llcp_sock.c 726 DoS S A 7
scsi gufshcd.c 1759 DoS S S <1
thunderbolt xdomain.c 771 DoS S A 1
scsi gufshcd.c 1786 DoS S S 1
thunderbolt icm.c 475 DoS U A 1
fmc fmc-fakedev.c 283 DoS S S 5
usb gsierra_ms.c 197 system crash S A 2
staging gvchiq_2835_arm.c 212 DoS S C 4
thunderbolt property.c 581 DoS S A 3
thunderbolt property.c 582 buffer overflow U A 1
x86 gtlb_uv.c 2144 DoS S A 2
x86 gtlb_uv.c 2147 DoS S A 4
nfc gse.c 329 DoS U S 1
gpio gpio-aspeed.c 1227 DoS S A 2
soc grt5663.c 3472 buffer overflow S C 2
soc grt5663.c 3513 DoS U C 1
gpu gv3d_drv.c 103 system crash S A 3
net gmcr20a.c 534 system crash S A 5
net gmcr20a.c 541 reliability S S 3
net gmcr20a.c 546 reliability S S 3
media gtda18250.c 705 reliability S C 2

Subsystem Filename Line# Impact CategoryStatusLP

soc gcs35l34.c 263 reliability S S 7
dma gomap-dma.c 1056 system crash A S 6
firmware edd.c 279 system crash A S 4
net gcfg80211.c 2302 system crash A S 4
rtc rtc-ds1374.c 449 reliability S S 2
rtc rtc-rx8010.c 193 system crash S S 2
mfd tps65010.c 431 DoS U S 2
net grx.c 732 DoS U C <1
net grx.c 733 DoS U S 3
usb grealtek_cr.c 815 reliability S S 5
net glag_conf.c 307 DoS U S 6
net gmesh.c 799 system crash S S 2
net gmesh.c 800 system crash S S 2
net lag_conf.c 307 DoS U S <1
net p2p.c 1527 concurrency S S 6
message mptctl.c 406 concurrency S S 10
message mptscsih.c 1617 concurrency S S 10
message mptsas.c 4803 concurrency S S 10
misc tifm_7xx1.c 280 concurrency S S 4
pci pcie-designware-host.c 309 DoS U S 1
gpu virtgpu_kms.c 62 DoS U S 4
gpu virtgpu_vq.c 48 DoS U S 6
input usbtouchscreen.c 1076 DoS U S 8
usb iuu_phoenix.c 369 DoS U S 12
usb iuu_phoenix.c 177 DoS U S 12
usb iuu_phoenix.c 729 DoS U S 12
usb iuu_phoenix.c 389 DoS U S 12
usb iuu_phoenix.c 253 DoS U S 12
usb kobil_sct.c 248 DoS U S 4
usb kobil_sct.c 339 DoS U S 4
usb kobil_sct.c 354 DoS U S 4
usb kobil_sct.c 284 DoS U S 3
ncsi ncsi-netlink.c 250 DoS U S 3
openvswitch conntrack.c 2131 reliability S S <1
media cx231xx-input.c 91 DoS U S 4
net testmode.c 242 DoS U S 8
dma fsl-edma-common.c 540 reliability S S <1
dma coh901318_lli.c 41 reliability S S 10
mtd generic.c 69 reliability S S 3
net e1000_hw.c 1046 buffer overflow S S 5
mfd vx855.c 104 reliability S S 8
mfd ab3100-core.c 926 reliability S S 8
crypto cryptd.c 745 reliability S S 1
hwmon ad7418.c 90 buffer overflow S S 3
hwmon lm92.c 135 buffer overflow S S 3
scsi gdth.c 5203 buffer overflow S S 4
staging mmal-vchiq.c 1847 DoS U S 1
fsi fsi-core.c 1250 DoS U S 2
net cxgb3_offload.c 1268 DoS U S 7
iio mxs-lradc-adc.c 470 DoS U S 1
net myri10ge.c 2287 reliability S S 11
gpu si.c 3614 reliability S S 6
slimbus qcom-ngd-ctrl.c 1343 DoS U S <1
net e1000_hw.c 141 reliability S S 10
net e1000_hw.c 1043 reliability S S 10
mtd bcm63xxpart.c 65 buffer overflow S S 3
gpu vc4_plane.c 1011 reliability S S 1
ext4 super.c 5866 reliability S S 8
net event.c 105 buffer overflow S S 3
net pch_gbe_main.c 1476 DoS U S 8
net isl_ioctl.c 190 reliability S S 13
gpu ast_mode.c 1201 reliability S S 7
hid wacom_sys.c 2351 reliability S S 5
media ov9650.c 609 buffer overflow S S <1
soc sti_uniperif.c 292 reliability S S 2
media em28xx-cards.c 3987 reliability S S 2
usb xhci-pci.c 269 reliability S S 1
net nic_main.c 1229 crash S S 3

Table 5: Continued list of new bugs (143-278) detected with CRIX. LP = Latent Period of bugs in years. Column Category specifies the
category of peer-slice set used to identify the bugs. A, P, S, and U indicate categories Source-Arg, Source-Param, Source-Ret, and Use-Param
respectively. The S,C,A in the Status field represent patch status, Submitted, Confirmed, Applied, respectively.

1786 28th USENIX Security Symposium USENIX Association

	Introduction
	Missing Checks in OS Kernels
	Impact of Missing-Check Bugs
	Targets of Security Checks

	Overview of Crix
	Design of Crix
	Identifying Targets of Indirect Calls
	Two-Layer Type Analysis
	Type-Escaping Analysis for False Negatives

	Identifying Critical Variables
	Identifying Security Checks for Critical Variables
	Identifying Sources and Uses of Critical Variables

	Constructing Peer Slices
	Constructing and Cross-Checking Check Constraints
	Modeling Conditional Statements as Constraints
	Detecting Deviations as Potential Bugs

	Implementation
	Preprocessing Phase
	Analysis Phase
	Postprocessing Phase

	Evaluation
	Precision in Finding Indirect-Call Targets
	Analysis Performance and Numbers
	Bug Findings
	False Positives
	False Negatives
	Portability

	Discussion
	Related Work
	Conclusion
	Acknowledgment
	Appendix

