
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

Protecting Cloud Virtual Machines from
Hypervisor and Host Operating System Exploits

Shih-Wei Li, John S. Koh, and Jason Nieh, Columbia University

https://www.usenix.org/conference/usenixsecurity19/presentation/li-shih-wei

Protecting Cloud Virtual Machines
from Commodity Hypervisor and Host Operating System Exploits

Shih-Wei Li John S. Koh Jason Nieh
Department of Computer Science

Columbia University
{shihwei,koh,nieh}@cs.columbia.edu

Abstract
Hypervisors are widely deployed by cloud computing

providers to support virtual machines, but their growing com-
plexity poses a security risk as large codebases contain many
vulnerabilities. We have created HypSec, a new hypervisor
design for retrofitting an existing commodity hypervisor using
microkernel principles to reduce its trusted computing base
while protecting the confidentiality and integrity of virtual ma-
chines. HypSec partitions the hypervisor into an untrusted host
that performs most complex hypervisor functionality without
access to virtual machine data, and a trusted core that provides
access control to virtual machine data and performs basic CPU
and memory virtualization. Hardware virtualization support
is used to isolate and protect the trusted core and execute it
at a higher privilege level so it can mediate virtual machine
exceptions and protect VM data in CPU and memory. HypSec
takes an end-to-end approach to securing I/O to simplify its
design, with applications increasingly using secure network
connections in the cloud. We have used HypSec to retrofit
KVM, showing how our approach can support a widely-used
full-featured hypervisor integrated with a commodity oper-
ating system. The implementation has a trusted computing
base of only a few thousand lines of code, many orders of
magnitude less than KVM. We show that HypSec protects
the confidentiality and integrity of virtual machines running
unmodified guest operating systems while only incurring
modest performance overhead for real application workloads.

1 Introduction

The availability of cost-effective, commodity cloud providers
has pushed increasing numbers of companies and users to
move their data and computation off site into virtual machines
(VMs) running on hosts in the cloud. The hypervisor provides
the VM abstraction and has full control of the hardware
resources. Modern hypervisors are often integrated with
a host operating system (OS) kernel to leverage existing
kernel functionality to simplify their implementation and

maintenance effort. For example, KVM [44] is integrated with
Linux and Hyper-V [56] is integrated with Windows. The
result is a huge potential attack surface with access to VM
data in CPU registers, memory, I/O data, and boot images.
The surge in outsourcing of computational resources to the
cloud and away from privately-owned data centers further
exacerbates this security risk of relying on the trustworthiness
of complex and potentially vulnerable hypervisor and host OS
infrastructure. Attackers that successfully exploit hypervisor
vulnerabilities can gain unfettered access to VM data, and
compromise the privacy and integrity of all VMs—an
undesirable outcome for both cloud providers and users.

Recent trends in application design and hardware virtual-
ization support provide an opportunity to revisit hypervisor
design requirements to address this crucial security problem.
First, modern hardware includes virtualization support to
protect and run the hypervisor at a higher privilege level
than VMs, potentially providing new opportunities to
redesign the hypervisor to improve security. Second, due
to greater security awareness because of the Snowden leaks
revealing secret surveillance of large portions of the network
infrastructure [49], applications are increasingly designed to
use end-to-end encryption for I/O channels, including secure
network connections [29, 50] and disk encryption [14]. This is
decreasing the need for hypervisors to themselves secure I/O
channels since applications can do a better job of providing
an end-to-end I/O security solution [68].

Based on these trends, we have created HypSec, a new
hypervisor design for retrofitting commodity hypervisors to
significantly reduce the code size of their trusted computing
base (TCB) while maintaining their full functionality. The
design employs microkernel principles, but instead of
requiring a clean-slate rewrite from scratch—a difficult task
that limits both functionality and deployment—applies them to
restructure an existing hypervisor with modest modifications.
HypSec partitions a monolithic hypervisor into a small trusted
core, the corevisor, and a large untrusted host, the hostvisor.
HypSec leverages hardware virtualization support to isolate
and protect the corevisor and execute it at a higher privilege

USENIX Association 28th USENIX Security Symposium 1357

level than the hostvisor. The corevisor enforces access control
to protect data in CPU and memory, but relies on VMs or
applications to use end-to-end encrypted I/O to protect I/O
data, simplifying the corevisor design.

The corevisor has full access to hardware resources, pro-
vides basic CPU and memory virtualization, and mediates all
exceptions and interrupts, ensuring that only a VM and the core-
visor can access the VM’s data in CPU and memory. More com-
plex operations including I/O and interrupt virtualization, and
resource management such as CPU scheduling, memory man-
agement, and device management are delegated to the hostvi-
sor, which can also leverage a host OS. The hostvisor may im-
port or export encrypted VM data from the system to boot VM
images or support hypervisor features such as snapshots and
migration, but otherwise has no access to VM data. HypSec re-
designs the hypervisor to improve security but does not strip it
of functionality. We expect that HypSec can be used to restruc-
ture existing hypervisors by encapsulating much of their code-
base in a hostvisor and augmenting security with a corevisor.

We have implemented a HypSec prototype by retrofitting
KVM. Our approach works with existing ARM hardware
virtualization extensions to provide VM confidentiality and
integrity in a full-featured commodity hypervisor with its own
integrated host OS kernel. Our implementation requires only
modest modifications to Linux and has a TCB of only a few
thousand lines of code (LOC), many orders of magnitude less
than KVM and other commodity hypervisors. HypSec signif-
icantly reduces the TCB of an existing widely-used hypervisor
and improves its security while retaining the same hypervisor
functionality, including multiprocessor, full device I/O, multi-
VM, VM management, and broad ARM hardware support. We
also show that HypSec provides strong security for VMs run-
ning unmodified guest operating systems while only incurring
modest performance overhead for real application workloads.

2 Assumptions and Threat Model

Assumptions. We assume VMs use end-to-end encrypted
channels to protect their I/O data. We assume hardware
virtualization support and an IOMMU similar to what is
available on x86 and ARM servers in the cloud. We assume
a Trusted Execution Environment (TEE) provided by secure
mode architectures such as ARM TrustZone [7] or a Trusted
Platform Module (TPM) [38] is available for trusted persistent
storage. We assume the hardware, including a hardware
security module if applicable, is bug-free and trustworthy. We
assume the HypSec TCB, the corevisor, does not have any
vulnerabilities and can thus be trusted. Given the corevisor’s
modest size as shown in Section 6.3, it may be possible to
formally verify the codebase. We assume it is computationally
infeasible to perform brute-force attacks on any encrypted VM
data, and any encrypted communication protocols are assumed
to be designed to defend against replay attacks. We assume
the system is initially benign, allowing signatures and keys

to be sealed in the TEE before a compromise of the system.
Threat Model. We consider an attacker with remote access

to a hypervisor and its VMs, including administrators without
physical access to the machine. The attacker’s goal is to com-
promise the confidentiality and integrity of VM data, which
includes: the VM boot image containing the guest kernel bi-
nary, data residing in memory addresses belonging to guests,
guest memory copied to hardware buffers, data on VM disks
or file systems, and data stored in VM CPU registers. VM
data does not include generic virtual hardware configuration
information, such as the CPU power management status or the
interrupt level being raised. An attacker could exploit bugs in
the hostvisor or control the VM management interface to access
VM data. For example, an attacker could exploit bugs in the
hostvisor to execute arbitrary code or access VM memory from
the VM or hypervisor host. Attackers may also control periph-
erals to perform malicious memory access via direct memory
access (DMA). We consider it out of scope if the entire cloud
provider, who provides the VM infrastructure, is malicious.

A remote attacker does not have physical access to the hard-
ware, so the following attacks are out of scope: physical tam-
pering with the hardware platform, cold boot attacks [31],
memory bus snooping, and physical memory access. These
threats are better handled with on-site security and tamper-
resistant hardware; cloud providers such as Google go to great
lengths to ensure the physical security of their data centers
and restrict physical access even for administrators [28]. We
also do not defend against side-channel attacks in virtualized
environments [39,53,65,93,94], or based on network I/O [10].
This is not unique to HypSec and it is the kernel’s responsibility
to obfuscate such patterns with defenses orthogonal to HypSec.

We assume a VM does not voluntarily reveal its own
sensitive data whether on purpose or by accident. A VM
can be compromised by a remote attacker that exploits
vulnerabilities in the VM. We do not provide security features
to prevent or detect VM vulnerabilities, so a compromised
VM that involuntarily reveals its own data is out of scope.
However, attackers may try to attack other hosted VMs from
a compromised VM for which we provide protection.

3 Design

HypSec introduces a new hypervisor design that reduces the
TCB necessary to protect VM confidentiality and integrity
while retaining full-fledged hypervisor functionality. We
observe that many hypervisor functions can be supported
without any access to VM data. For example, VM CPU
register data is unnecessary for CPU scheduling. Based on this
observation, HypSec leverages microkernel design principles
to split a monolithic hypervisor into two parts, as depicted in
Figure 1: a trusted and privileged corevisor with full access
to VM data, and an untrusted and deprivileged hostvisor
delegated with most hypervisor functionality. Unlike previous
microkernel approaches [1, 13, 51], HypSec is designed

1358 28th USENIX Security Symposium USENIX Association

Hardware TEE Secure Persistent Storage

Exception Vectors

1. VM CREATE 4. IOMMU OPS
2. VM BOOT 5. GET VM STATE
3. VM ENTER

Hostvisor

Corevisor

Host OS Kernel

VM Exits/Interrupts

HypSec API

Intermediate
State

VCPU State

VM

File
Storage

Cloud Services
Key

Management

VM Protection

MemoryCPU BootHost State

VM GPR Parameters

Figure 1: HypSec Architecture

specifically to restructure existing hypervisors with modest
modifications as opposed to requiring a clean-slate redesign.
Splitting the hypervisor this way results in a significantly
smaller TCB that is still flexible enough to implement modern
hypervisor features, as discussed in Section 4.

The corevisor is kept small by only performing VM data
access control and hypervisor functions that require full access
to VM data: secure VM boot, CPU virtualization, and page ta-
ble management. With applications increasingly using secure
communication channels to protect I/O data, HypSec takes an
end-to-end approach to simplify its TCB and allows the hostvi-
sor to provide I/O and interrupt virtualization. The hostvisor
also handles other complex functions which do not need ac-
cess to VM data, including resource management such as CPU
scheduling and memory allocation. The hostvisor may even
incorporate a full existing OS kernel to support its features.

HypSec leverages modern hardware virtualization support
in a new way to enforce the hypervisor partitioning. HypSec
runs the corevisor in a higher privileged CPU mode designed
for running hypervisors, giving it full control of hardware, in-
cluding virtualization hardware mechanisms such as nested
page tables (NPTs).1 The corevisor deprivileges the hostvisor
and VM kernel by running them in a less privileged CPU mode.
For example, in HypSec’s implementation using ARM Virtual-
ization Extensions (VE) shown in Figure 3, the corevisor runs
in hypervisor (EL2) mode while the hostvisor and VM kernel
run in a less privileged kernel (EL1) mode. The corevisor inter-
poses on all exceptions and interrupts, enabling it to provide ac-
cess control mechanisms that prevent the hostvisor from access-
ing VM CPU and memory data. For example, the corevisor has
its own memory and uses NPTs to enforce memory isolation be-
tween the hostvisor, VMs, and itself. A compromised hostvisor
or VM can neither control hardware virtualization mechanisms
nor access corevisor memory and thus cannot disable HypSec.

HypSec Interface. As shown in Figure 1, the corevisor
1Intel’s Extended Page Tables or ARM’s stage 2 page tables.

exposes a simple API to the hostvisor and interposes on all
hostvisor and VM interactions to ensure secure VM execution
throughout the lifecycle of a VM. The life of a VM begins when
the hostvisor calls the corevisor’s VM CREATE and VM BOOT
calls to safely bootstrap it with a verified VM image. The
hostvisor is deprivileged and cannot execute VMs. It must call
VM ENTER to request the corevisor to execute a VM. When the
VM exits execution because an interrupt or exception occurs, it
traps to the corevisor, which examines the cause of the exit and
if needed, will return to the hostvisor. The corevisor provides
the IOMMU OPS API to device drivers in the hostvisor for
managing the IOMMU, as discussed in Section 3.3. While
the hostvisor has no access to VM data in CPU or memory,
it may request the corevisor to provide an encrypted copy of
VM data via the GET VM STATE hypercall API. The hostvisor
can use the API to support virtualization features that require
exporting VM data to disk or across the network, such as
swapping VM memory to disk or VM management functions
like VM snapshot and migration. The corevisor only uses
encryption to export VM data. It never uses encryption, only
access control, to protect VM data in CPU or memory.

3.1 Boot and Initialization

Corevisor Boot. HypSec ensures that the trusted corevisor
binary is booted and the bootstrapping code itself is secure.
To ensure only the trusted corevisor binary is booted, HypSec
relies on Unified Extensible Firmware Interface (UEFI)
firmware and its signing infrastructure with a hardware root
of trust. The hostvisor and corevisor are linked as a single
HypSec binary which is cryptographically (“digitally”) signed
by the cloud provider, similar to how OS binaries are signed
by vendors like Red Hat or Microsoft. The HypSec binary
is verified using keys in secure storage provided by the TEE,
guaranteeing that only the signed binary can be loaded.

To ensure the bootstrapping code is secure, HypSec could
implement it in the trusted corevisor, but does not. Bare-metal
hypervisors implement bootstrapping, but this imposes a signif-
icant implementation and maintenance burden. The code must
be manually ported to each different device, making it more
difficult to support a wide range of systems. Instead, HypSec
relies on the hostvisor bootstrapping code to install the corevi-
sor securely at boot time since the hostvisor is initially benign.
At boot time, the hostvisor initially has full control of the sys-
tem to initialize hardware. The hostvisor installs the corevisor
before entering user space; network and serial input services
are not yet available, so remote attackers cannot compromise
the corevisor’s installation. After its installation, the corevisor
gains full control of the hardware and subsequently deprivi-
leges the hostvisor, ensuring the hostvisor can never control the
hardware or access the corevisor’s memory to disable HypSec.
Using information provided at boot time, the corevisor is self-
contained and can operate without any external data structures.

VM Boot. HypSec also guarantees the confidentiality and in-

USENIX Association 28th USENIX Security Symposium 1359

tegrity of VM data during VM boot and initialization. HypSec
keeps its TCB small by delegating complicated boot processes
to the untrusted hostvisor, and verifying any loaded VM images
in the corevsor before they are run. As shown in Figure 1, when
a new VM is created, the hostvisor participates with the corevi-
sor in a verified boot process. The hostvisor calls VM CREATE
to request the corevisor to allocate VM state in corevisor
memory, including an NPT and VCPU state, a per virtual CPU
(VCPU) data structure. It then calls VM BOOT to request the
corevisor to authenticate the loaded VM images. If successful,
the hostvisor can then call VM ENTER to execute the VM. In
other words, the hostvisor stores VM images and loads them
to memory, avoiding implementing this complex procedure
in the corevisor. The corevisor verifies the cryptographic
signatures of VM images using public key cryptography,
avoiding any shared secret between the user and HypSec.

Both the public keys and VM image signatures are stored
in TEE secure storage prior to any attack, as shown in Figure 1.
If the VM kernel binary is detached and can be mapped
separately to memory, the hostvisor calls the corevisor to
verify the image. If the VM kernel binary is in the VM
disk image’s boot partition, HypSec-aware virtual firmware
bootstraps the VM. The firmware is signed and verified like
VM boot images. The firmware then loads the signed kernel
binary or a signed bootloader such as GRUB from the cleartext
VM disk partition. The firmware then calls the corevisor to
verify the VM kernel binary or bootloader. In the latter case,
the bootloader verifies VM kernel binaries using the signatures
on the virtual disk; GRUB already supports this. GRUB can
also use public keys in the signed GRUB binary. The corevisor
ensures only images it verified, either a kernel binary, virtual
firmware, or a bootloader binary, can be mapped to VM
memory. Finally, the corevisor sets the VM program counter
to the entry point of the VM image to securely boot the VM.

As discussed in Section 3.5, HypSec expects that VM disk
images are encrypted as part of an end-to-end encryption
approach. HypSec ensures that any password or secret used to
decrypt the VM disk is not exposed to the hostvisor. Common
encrypted disk formats [6, 57] use user-provided passwords
to protect the decryption keys. HypSec can store the encrypted
key files locally or remotely using a cloud provider’s key
management service (KMS) [5, 58]. The KMS maintains a
secret key which is preloaded by administrators into hosts’
TEE secure storage. The corevisor decrypts the encrypted key
file using the secret key, and maps the resulting password to
VM memory, allowing VMs to obtain the password without
exposing it to the hostvisor. The same key scheme is used for
VM migration; HypSec encrypts and decrypts the VM state
using the secret key from the KMS.

3.2 CPU

Hypervisors provide CPU virtualization by performing four
main functions: handling traps from the VM; emulating

privileged CPU instructions executed by the guest OS to
ensure the hypervisor retains control of CPU hardware; saving
and restoring VM CPU state, including GPRs and system
registers such as page table base registers, as needed when
switching among VMs and between a VM and the hypervisor;
and scheduling VCPUs on physical CPUs. Hypervisors
typically have full access to VM CPU state when performing
any of these four functions, which can pose a problem for VM
security if the hypervisor is compromised.

HypSec protects VM CPU state from the hostvisor while
keeping its TCB small by restricting access to VM CPU state
to the corevisor while delegating complex CPU functions that
can be done without access to VM CPU state to the hostvisor.
This is done by having the corevisor handle all traps from the
VM, instruction emulation, and world switches between VMs
and the hostvisor, all of which require access to VM CPU state.
VCPU scheduling is delegated to the hostvisor as it can be done
without access to VM CPU state.

The corevisor configures the hardware to route all traps
from the VM, as well as interrupts as discussed in Section 3.4,
to go to the corevisor, ensuring that it retains full hardware
control. It also deprivileges the hostvisor to ensure that the
hostvisor has no access to corevisor state. Since all traps
from the VM go to the corevisor, the corevisor can trap and
emulate CPU instructions on behalf of the VM. The corevisor
multiplexes the CPU execution context between the hostvisor
and VMs on the hardware. The corevisor maintains VCPU
execution context in the VCPU state in-memory data structure
allocated on VM CREATE, and maintains the hostvisor’s CPU
context in a similar Host state data structure; both states are
only accessible to the corevisor. On VM exits, the corevisor
first saves the VM execution context from CPU hardware
registers to VCPU state, then restores the hostvisor’s execution
context from Host state to the CPU hardware registers. When
the hostvisor calls to the corevisor to re-enter the VM, the
corevisor first saves its execution context to Host state, then
restores the VM execution context from VCPU state to the
hardware. All saving and restoring of VM CPU state is done
by the corevisor, and only the corevisor can run a VM.

The hostvisor handles VCPU scheduling, which can
involve complex scheduling mechanisms especially for
multiprocessors. For example, the Linux scheduler code alone
is over 20K LOC, excluding kernel function dependencies
and data structures shared with the rest of the kernel. VCPU
scheduling requires no access to VM CPU state, as it simply
involves mapping VCPUs to physical CPUs. The hostvisor
schedules a VCPU to a physical CPU and calls to the corevisor
to run the VCPU. The corevisor then loads the VCPU state
to the hardware.

HypSec by default ensures that the hostvisor has no access to
any VM CPU state, but sometimes a VM may execute instruc-
tions that requiring sharing values with the hostvisor that may
be stored in general purpose registers (GPRs). For example, if
the VM executes a hypercall that includes some parameters and

1360 28th USENIX Security Symposium USENIX Association

the hypercall is handled by the hostvisor, it will be necessary to
pass the parameters to the hostvisor, and those parameters may
be stored in GPRs. In these cases, the instruction will trap to the
corevisor. The corevisor will identify the values that need to be
passed to the hostvisor, then copy the values from the GPRs to
an in-memory per VCPU intermediate VM state structure that
is accessible to the hostvisor. Similarly, hostvisor updates to the
intermediate VM state structure can be copied back to GPRs by
the corevisor to pass values back to the VM. Only values from
the GPRs explicitly identified by the corevisor for parameter
passing are copied to and from intermediate VM state; values
in other CPU registers are not accessible to the hostvisor.

The corevisor determines if and when to copy values from
GPRs, and the GPRs from which to copy, based on the specific
CPU instructions executed. The set of instructions are those
used to execute hypercalls and special instructions provided by
the architecture to access virtual hardware via model-specific
registers (MSRs), control registers in the x86 instruction set, or
memory-mapped I/O (MMIO). There are typically only a few
specific CPU instructions that involve parameter passing to
the hostvisor via GPRs, but the specific cases are architecture
dependent.

For example, on ARM, HypSec copies selected GPRs
to and from intermediate VM state for power management
hypercalls to the virtual firmware interface and selected
MMIO accesses to virtual hardware. For power management
hypercalls, the guest kernel passes input parameters in GPRs,
and the corevisor copies only those GPRs to intermediate VM
state to make the parameters available to the hostvisor. Upon
returning to the VM, the hostvisor provides output data as
return values to the power management hypercalls, which the
corevisor copies from intermediate VM state back to GPRs to
make them available to the VM. As discussed in Sections 3.4
and 3.5, values stored and loaded in GPRs on MMIO accesses
to the virtual interrupt controller interface or I/O devices are
also copied between the selected GPRs and the intermediate
VM state to make them available to the hostvisor.

3.3 Memory

Hypervisors provide memory virtualization by performing
three main functions: memory protection to ensure VMs can-
not access unauthorized physical memory, memory allocation
to provide physical memory to VMs, and memory reclamation
to reclaim physical memory from VMs. Other advanced
memory management features may also be performed that
build on these functions. All of these functions rely on NPTs.
A guest OS manages the traditional page tables to map guest
virtual memory addresses (gVA) to guest physical memory
addresses (gPA). The hypervisor manages the NPTs to map
from gPAs to host physical memory addresses (hPA) so it can
virtualize and restrict a VM’s access to physical memory. The
hypervisor has full access to physical memory so it can manage
VM memory either directly [11] or via a host OS kernel’s [23]

gVA

gPA

Hostvisor VM

Corevisor

sNPT

VM
PT

hPA

hVA

vhPA

hNPT

Host
PT

hPA

vNPT

NPT Base
Register

Shadow
①

②

③

④

⑤

⑥

Figure 2: HypSec Memory Virtualization

memory management APIs. A compromised hypervisor or
host OS kernel thus has unfettered access to VM memory and
can read and write any data stored by VMs in memory.

HypSec protects VM memory from the hostvisor while
keeping its TCB small by restricting access to VM memory
to the corevisor while delegating complex memory manage-
ment functions that can be done without access to actual VM
data in memory to the hostvisor. The corevisor is responsible
for memory protection, including configuring NPT hardware,
while memory allocation and reclamation is largely delegated
to the hostvisor. HypSec memory protection imposes an addi-
tional requirement, which is to also protect corevisor and VM
memory from the hostvisor.

Memory Protection. The corevisor uses the NPT hardware
in the same way as modern hypervisors to virtualize and restrict
a VM’s access to physical memory, but in addition leverages
NPTs to isolate hostvisor memory access. The corevisor config-
ures NPT hardware as shown in Figure 2. The hostvisor is only
allowed to manage its own page tables (Host PT) and can only
translate from host virtual memory addresses (hVAs) to what
we call virtualized host physical memory addresses (vhPAs).
vhPAs are then in turn translated to hPAs by the Host Nested
Page Table (hNPT) maintained by the corevisor. The corevisor
adopts a flat address space mapping; each vhPA is mapped to an
identical hPA. The hostvisor, if granted access, is given essen-
tially the same view of physical memory as the corevisor. The
corevisor prevents the hostvisor from accessing corevisor and
VM memory by simply unmapping the memory from the hNPT
to make the physical memory inaccessible to the hostvisor. Any
hostvisor accesses to corevisor or VM memory will trap to the
corevisor, enabling the corevisor to intercept unauthorized ac-
cesses. Physical memory is statically partitioned between the
hostvisor and corevisor, but dynamically allocated between the
hostvisor and VMs as discussed below. The corevisor allocates
NPTs from its own memory pool which is not accessible to the
hostvisor. All VCPU state is also stored in corevisor memory.

The corevisor also protects corevisor and VM memory
against DMA attacks [75] by retaining control of the IOMMU.
The corevisor allocates IOMMU page tables from its memory
and exports the IOMMU OPS API to device drivers in the

USENIX Association 28th USENIX Security Symposium 1361

hostvisor to update page table mappings. The corevisor
validates requests and ensures that attackers cannot control
the IOMMU to access memory owned by itself or the VMs.

Memory Allocation. Memory allocation for VMs is
largely done by the hostvisor, which can reuse memory
allocation functions available in an integrated host OS kernel
to dynamically allocate memory from its memory pool to
VMs. Traditional hypervisors simply manage one NPT
per VM. However, HypSec’s memory model disallows the
hostvisor from managing VM memory and therefore NPTs.
The hostvisor instead manages an analogous Virtual NPT
(vNPT) for each VM, and HypSec introduces a Shadow
Nested Page Table (sNPT) managed by the corevisor for each
VM as shown in Figure 2. The sNPT is used to manage the
hardware by shadowing the vNPT. The corevisor multiplexes
the hardware NPT Base Register between hNPT and sNPT
when switching between the hostvisor and a VM.

Figure 2 also depicts the steps in HypSec’s memory
virtualization strategy. When a guest OS tries to map a gVA
to an unmapped gPA, a nested page fault occurs which traps to
the corevisor (step 1). If the corevisor finds that the faulted gPA
falls within a valid VM memory region, it then points the NPT
Base Register to hNPT (step 2) and switches to the hostvisor
to allocate a physical page for the gPA (step 3). The hostvisor
allocates a virtualized physical page identified by a vhPA and
updates the entry in its vNPT corresponding to the faulting gPA
with the allocated vhPA. Because the vhPA is mapped to an
identical hPA, the hostvisor is able to implicitly manage host
physical memory. The hostvisor then traps to the corevisor
(step 4), which determines the faulting gPA and identifies the
updates made by the hostvisor to the vNPT. The corevisor
verifies the resulting vhPA is not owned by itself or other VMs,
the latter by tracking ownership of physical memory using a
unique VM identifier (VMID), and copies those updates to
its sNPT. The corevisor unmaps the vhPA from the hNPT, so
that the hostvisor no longer has access to the memory being
allocated to the VM. The corevisor updates the NPT Base
Register to point to the sNPT (step 5) and returns to the VM
(step 6) so that the VM has access to the allocated memory
identified by the hPA that is identical to the vhPA. Although
possible, HypSec does not scrub pages allocated to VMs by the
hostvisor. Guest OSes already scrub memory allocated from
their free list before use for security reasons, so the hostvisor
cannot allocate pages that contain malicious content to VMs.

HypSec’s use of shadow page tables differs significantly
from previous applications of it to collapse multi-level
page tables down into what is supported by hardware
[2, 11, 16, 52, 82]. In contrast, HypSec uses shadowing
to protect hardware page tables, not virtualize them. The
corevisor does not shadow guest OS updates in its page tables;
it only shadows hostvisor updates to the vNPT. HypSec
does not introduce additional traps from the VM for page
table synchronization. Overshadow [16] maintains multiple
shadow page tables for a given VM that provide different

views (plaintext/encrypted) of physical memory to protect
applications from an untrusted guest OS. In contrast, HypSec
manages one shadow page table for each VM that provides
a plaintext view of gPA to hPA. The shadowing mechanism in
HypSec is also orthogonal to recent work [19] that uses shadow
page tables to isolate kernel space memory from user space.

Memory Reclamation. HypSec supports VM memory
reclamation in the hostvisor while preserving the privacy and
integrity of VM data in memory in the corevisor. When a VM
voluntarily releases memory pages, such as on VM termina-
tion, the corevisor returns the pages to the hostvisor by first
scrubbing them to ensure the reclaimed memory does not leak
VM data, then mapping them back to the hNPT so they are
accessible to the hostvisor. To allow the hostvisor to reclaim
VM memory pages without accessing VM data in memory,
HypSec takes advantage of ballooning [82]. Ballooning is
widely supported in common hypervisors, so only modest ef-
fort is required in HypSec to support this approach. A paravir-
tual “balloon” device is installed in the VM. When the host is
low on free memory, the hostvisor requests the balloon device
to inflate. The balloon driver inflates by getting pages from the
free list, thereby increasing the VM’s memory pressure. The
guest OS may therefore start to reclaim pages or swap its pages
to the virtual disk. The balloon driver notifies the corevisor
about the pages in its balloon that are ready to be reclaimed.
The corevisor then unmaps these pages from the VM’s sNPT,
scrubs the reclaimed pages to ensure they do not leak VM data,
and assigns the pages to the hostvisor, which can then treat
them as free memory. Deflating the balloon releases memory
pressure in the guest, allowing the guest to reclaim pages.

HypSec also safely allows the hostvisor to swap VM
memory to disk when it feels memory pressure. The hostvisor
uses GET VM STATE to get access to the encrypted VM page
before swapping it out. Later, when the VM page is swapped
in, the corevisor unmaps the swapped-in page from hNPT,
decrypts the page, and maps it back to the VM’s sNPT.

Advanced VM Memory Management. HypSec by
default ensures that the hostvisor has no access to any VM
memory, but sometimes a VM may want to share its memory,
after encrypting it, with the hostvisor. HypSec provides the
GRANT_MEM and REVOKE_MEM hypercalls which can be explic-
itly used by a guest OS to share its memory with the hostvisor.
As described in Section 3.5, this can be used to support paravir-
tualized I/O of encrypted data in which a memory region owned
by the VM has to be shared between the VM and hostvisor
for communication and efficient data copying. The VM passes
the start of a guest physical frame number (GFN), the size of
the memory region, and the specified access permission to the
corevisor via the two hypercalls. The corevisor enforces the
access control policy by controlling the memory region’s map-
ping in hNPT. Only VMs can use these two hypercalls, so the
hostvisor cannot use it to request access to arbitrary VM pages.

HypSec can support advanced memory virtualization
features such as merging similar memory pages, KSM [46]

1362 28th USENIX Security Symposium USENIX Association

in Linux, by splitting the work into the simple corevisor
functions which require direct access to VM data, and the more
complicated hostvisor functions which do not require access
to VM data. For example, to support KSM, the hostvisor
requests the corevisor for the hash values of a VM’s memory
pages and maintains the data structure in its address space to
support the merging algorithm. The corevisor validates the
hostvisor’s decision for the pages to be merged, updates the
corresponding VM’s sNPT, and scrubs the freed page before
granting the hostvisor access. While KSM does not provide
the hostvisor or other VMs direct access to a VM’s memory
pages, it can be used to leak some information such as whether
the contents of memory pages are the same across different
VMs. To avoid this kind of information leakage, HypSec
disables KSM support by default.

3.4 Interrupts

Hypervisors trap and handle physical interrupts to retain full
control of the hardware while virtualizing interrupts for VMs.
Accesses to the interrupt controller interface can by done
via MSRs or MMIO. Hypervisors provide a virtual interrupt
controller interface and trap and emulate VM access to the
interface. Virtual devices in the hypervisors can also raise
interrupts to the interface. However, giving hypervisors full
control of hardware poses a problem for VM security if the
hypervisor is compromised.

To protect against a compromised hostvisor, the corevisor
configures the hardware to route all physical interrupts and trap
all accesses to the interrupt controller to the corevisor, ensuring
that it retains full hardware control. However, to simplify its
TCB, HypSec delegates almost all interrupt functionality to the
hostvisor, including handling physical interrupts and providing
the virtual interrupt controller interface. Before entering the
hostvisor to handle interrupts, the corevisor protects all VM
CPU and memory state, as discussed in Sections 3.2 and 3.3.

The hostvisor has no access to and requires no VM data
to handle physical interrupts. However, VM accesses to
the virtual interrupt controller interface involve passing
parameters between the VM and the hostvisor since the
hostvisor provides the interface. On ARM, this is done using
only MMIO via the intermediate state structure discussed
in Section 3.2. On an MMIO write to interrupt controller
interface, the VM passes the value to be stored in a GPR. The
write traps to the corevisor, which identifies the instruction and
memory address as corresponding to the interrupt controller
interface. The corevisor copies the value to be written from the
GPR to the intermediate VM state to make the value available
to the hostvisor. For example, when the guest OS in the VM
sends an IPI to a destination VCPU by doing an MMIO write
to the virtual interrupt controller interface, the identifier of the
destination VCPU is passed to the hostvisor by copying the
value from the respective GPR to the intermediate VM state.
Similarly, on an MMIO read from the interrupt controller

interface, the read traps to the corevisor, which identifies
the instruction and memory address as corresponding to the
interrupt controller interface. The corevisor copies the value
from the intermediate VM state updated by the hostvisor to the
GPR the VM is using to retrieve the value, updates the PC of
the VM to skip the faulting instruction, and returns to the VM.

3.5 Input/Output

To ease the burden of supporting a wide range of virtual devices,
modern hypervisors often rely on an OS kernel and its existing
device drivers to support I/O virtualization, which significantly
increase the hypervisor TCB. Similar to previous work [16,33],
HypSec assumes an end-to-end I/O security approach, relying
on VMs for I/O protection. VMs can leverage secure communi-
cation channels such as TLS/SSL for network communications
and full disk encryption for storage. This allows the corevi-
sor to relax its I/O protection requirements, simplifying the
TCB. HypSec offloads the support of I/O virtualization to the
untrusted hostvisor. Since I/O data is already encrypted by
VMs, a compromised hostvisor would at most gain access to
encrypted I/O data which would not reveal VM data.

HypSec, like other modern hypervisors, supports all
three classes of I/O devices: emulated, paravirtualized, and
passthrough devices; the latter two provide better I/O perfor-
mance. Emulated I/O devices are typically supported by hyper-
visors using trap-and-emulate to handle both port-mapped I/O
(PIO) and MMIO operations. In both cases, HypSec configures
the hardware to trap the operations to the corevisor which
hides all VM data other than actual I/O data and then allows
the hostvisor to emulate the operation. For example, to support
MMIO, the corevisor zeroes out the mappings for addresses in
the VM’s sNPT corresponds to virtual device I/O regions. Any
subsequent MMIO accesses from the VM result in a memory
access fault that traps to the corevisor. The corevisor then
securely supports MMIO accesses as discussed in Section 3.4.
We assume security aware users disable the use of emulated
devices such as the serial port, keyboard, or mouse to avoid
leaking private information to a compromised hostvisor.

Paravirtualized devices require that a front-end driver in
the VM coordinate with a back-end driver in the hypervisor;
the two drivers communicate through shared memory asyn-
chronously. HypSec allows back-end drivers to be installed as
part of the untrusted hostvisor. To support shared memory com-
munication, the front-end driver is modified to use GRANT_MEM
and REVOKE_MEM hypercalls to identify the shared data
structure and I/O memory buffers as accessible to the hostvisor
back-end driver. Since the I/O data is encrypted, hostvisor
access to the I/O memory buffers does not risk VM data.

Passthrough devices are assigned to a VM and managed by
the guest OS. To support passthrough I/O, HypSec configures
the hardware to trap sensitive operations such as Message
Signaled Interrupt (MSI) configuration in BAR to trap to
the corevisor for secure emulation, while granting VMs

USENIX Association 28th USENIX Security Symposium 1363

Xen KVM
Hyp

Sec

Boot and Initialization
Secure Boot ◦ ◦ ◦

Secure VM Boot 	 	 ◦
CPU
VM Symmetric Multiprocessing (SMP) ◦ ◦ ◦

VCPU Scheduling ◦ ◦ ◦
Memory

Dynamic Allocation ◦ ◦ ◦
Memory Reclamation - Ballooning ◦ ◦ ◦
Memory Reclamation - Swapping ◦ ◦ �

DMA ◦ ◦ ◦
Same Page Merging ◦ ◦ �

Interrupts Virtualization
Hardware Assisted ◦ ◦ ◦

I/O
Device Emulation ◦ ◦ ◦

Paravirtualized (PV) ◦ ◦ ◦
Device Passthrough ◦ ◦ ◦

VM Management
Multi-VM ◦ ◦ ◦

VM Snapshot ◦ ◦ ◦
VM Restore ◦ ◦ ◦

VM Migration ◦ ◦ ◦

Table 1: Supported features comparison. (◦ = Supported, 	 =
Not applicable, � = Not implemented.)

direct access to the non-sensitive device memory region.
The corevisor controls the IOMMU to enforce inter-device
isolation, and ensures the passthrough device can only access
the VM’s own I/O buffer. Since we assume the hardware is not
malicious, passthrough I/O can be done securely on HypSec.

4 Implementation

We demonstrate how HypSec can improve the security of ex-
isting commodity hypervisors by applying our approach to the
mainline Linux KVM/ARM [22,23] hypervisor, given ARM’s
increasing popularity in server systems [4, 63, 87]. Table 1
compares commodity hypervisors with the current HypSec im-
plementation, showing that this security improvement comes
without compromising on hypervisor features. Since KVM
is a hosted hypervisor tightly integrated with a host OS kernel,
retrofitting KVM also demonstrates the viability of HypSec
in supporting an entire OS kernel as part of the hostvisor.

HypSec requires a higher-privileged CPU mode, nested
page tables for memory virtualization, and an IOMMU for
DMA protection. These requirements are satisfied by the
ARM architecture. ARM VE provides Hyp (EL2) mode for
hypervisors that is strictly more privileged than user (EL0)
and kernel (EL1) modes. EL2 has its own execution context
defined by register and control state, and can therefore switch
the execution context of both EL0 and EL1 in software. Thus,
the hypervisor can run in an address space that is isolated
from EL0 and EL1. ARM VE provides stage 2 page tables

VM
Kernel

Host UserQEMU VM UserEL0

EL1

EL2

EL3

TEE Kernel

TA

SMC
TEE Firmware

SMC

Normal World Secure World (TEE)

CPU
Protection

Host OS Kernel

Highvisor

Memory
Protection

Boot
Protection

Lowvisor

TA

Hostvisor

Corevisor

KVM

Figure 3: HypSec on KVM/ARM

which are nested level page tables configured in EL2 that affect
software in EL0 and EL1. ARM provides the System Memory
Management Unit (SMMU) [8] to protect DMA.

HypSec’s corevisor is initialized at machine bootup and
runs in EL2 to fully control the hardware. HypSec’s code is
embedded in the Linux kernel binary, which is verified and
loaded via UEFI. The kernel boots in EL2 and installs a trap
handler to later return to EL2. The kernel then enters EL1 so the
hostvisor can bootstrap the machine. The hostvisor allocates
resources and configures the hardware for the corevisor. The
hostvisor then makes a hypercall to the corevisor in EL2 to
enable HypSec.

The HypSec ARM implementation leverages KVM/ARM’s
split into an EL2 lowvisor and an EL1 highvisor to support the
ARM virtualization architecture. This is done because EL2
is necessary for controlling hardware virtualization features,
but Linux and KVM are designed to run in kernel mode, EL1.
Thus, the lowvisor manages hardware virtualization features
and VM-hypervisor switches, while the highvisor contains
the rest of the hypervisor and Linux. However, the lowvisor
cannot protect VM data if any other part of Linux or KVM are
compromised; with KVM/ARM, the Linux host has unfettered
access to all VM data.

As shown in Figure 3, the corevisor encapsulates the KVM
lowvisor and runs in EL2. The hostvisor, including the KVM
highvisor and its integrated Linux OS kernel, runs in EL1. The
hostvisor has no access to EL2 registers and cannot compro-
mise the corevisor or disable VM protection. HypSec leverages
ARM VE to force VM operations that need hypervisor inter-
vention to trap into EL2. The corevisor either handles the trap
directly to protect VM data or world switches the hardware to
EL1 to run the hostvisor if more complex handling is necessary.
When the hostvisor finishes its work, it makes a hypercall to
trap to EL2 so the corevisor can securely restore the VM state
to hardware. The corevisor interposes on every switch between
the VM and hostvisor, thus protecting the VM’s execution
context. Our implementation ensures that the hostvisor cannot
invoke arbitrary corevisor functions via hypercalls.

1364 28th USENIX Security Symposium USENIX Association

HypSec leverages ARM VE’s stage 2 memory translation
support to virtualize VM memory and prevent accesses to pro-
tected physical memory. The corevisor routes stage 2 page
faults to EL2 and rejects illegal hostvisor and VM memory ac-
cesses. The corevisor allocates hNPTs and VMs’ sNPTs from
its protected physical memory and manages the page tables.

To secure DMA, the corevisor uses trap-and-emulate on
hostvisor accesses to the SMMU. HypSec ensures only the
corevisor has access to the SMMU hardware. The corevisor
manages the SMMU page tables in its protected memory to en-
sure hostvisor devices cannot access corevisor or VM memory,
and devices assigned to the VM can only access VM memory.

HypSec leverages the hardware features from VGIC
and KVM/ARM’s existing support to virtualize interrupts.
Our implementation supports ARM GIC 2.0. HypSec
relies on QEMU and KVM’s virtual device support for
I/O virtualization. Our implementation supports emulated
devices via MMIO, paravirtualized devices via virtio [67], and
passthrough devices. For virtio, we modified front-end drivers
to use GRANT/REVOKE_MEM hypercalls to share memory with
the hostvisor back-end drivers. To support passthrough
devices, HypSec configures the hardware to grant VMs direct
access to them. We modified the front-end virtio-balloon
driver to notify the corevisor about the pages allocated for
the balloon device. The corevisor scrubs and assigns these
pages to the hostvisor, allowing it to safely reclaim memory
as needed. Our current implementation does not support page
swapping and KSM, which are both left as future work.

HypSec supports secure VM boot using ARM TrustZone-
based TEE frameworks such as OP-TEE [61] to store the
signatures and keys securely. HypSec tasks QEMU to load the
VM boot images to VM memory, but the corevisor requires
QEMU to participate with its verified boot process. The corevi-
sor retrieves the VM boot image signatures and the user public
key from TrustZone for verifying the VM images remapped
to its address space. The corevisor uses Ed25519 [62] to
verify the boot images. HypSec builds the VM’s stage 2 page
table with mappings to the verified VM boot image. If the
verification fails, HypSec stops the VM boot process. The
same scheme can also verify VM firmware and other binaries.
HypSec also retrieves the encrypted password which protects
the VM’s encrypted disk from either TrustZone or from the
cloud provider’s key management service. A small AES imple-
mentation [45] ported to run in EL2 performs the decryption.
We include only two small yet sufficient crypto libraries in EL2
to keep the TCB small. This limits the number of crypto al-
gorithms, but avoids including comprehensive but excessively
large crypto libraries such as OpenSSL. HypSec leverages
AES to support encrypted VM migration and snapshot, and
ensures only encrypted VM data is exposed to the hostvisor.

HypSec’s hardware requirements can also be satisfied on
Intel’s x86 architecture by using Virtual Machine Extensions
(VMX) [35] and the IOMMU. Existing x86 hypervisors can be
retrofitted to run the corevisor in VMX root operation which

allows control of virtualization features for deprivileging the
hostvisor. The hostvisor runs in VMX non-root operation to
provide resource management and virtual I/O. The corevisor
protects VM execution state by managing a Virtual-Machine
Control Structure (VMCS) per CPU, and VM memory by using
Extended Page Tables (EPT) and controlling the IOMMU.

5 Security Analysis

We present five properties of the HypSec architecture, then
discuss how their combination provides a set of security
properties regarding HypSec’s ability to protect the integrity
and confidentiality of VM data.

Property 1. HypSec’s corevisor is trusted during the system’s
lifetime against remote attackers.

HypSec leverages hardware secure boot to ensure only the
signed and trusted HypSec binary can be booted. This prevents
an attacker from trying to boot or reboot the system to force it to
load a malicious corevisor. The hostvisor securely installs the
corevisor during the boot process before network access and
serial input service are available. Thus, remote attackers can-
not compromise the hostvisor prior to or during the installation
of the corevisor. The corevisor protects itself after initializa-
tion. It runs in a privileged CPU mode using a separate address
space from the hostvisor and the VMs. The corevisor has full
control of the hardware including the virtualization features
that prevent attackers from disabling its VM protection. The
corevisor also protects its page tables so an attacker cannot
map executable memory to the corevisor’s address space.

Property 2. HypSec ensures only trusted VM images can be
booted on VMs.

Based on Property 1, the trusted corevisor verifies the signa-
tures of the VM images loaded to VM memory before they are
booted. The public keys and signatures are stored using TEE
APIs for persistent secure storage. A compromised hostvisor
therefore cannot replace a verified VM with a malicious one.

Property 3. HypSec isolates a given VM’s memory from all
other VMs and the hostvisor.

Based on Property 1, HypSec prevents the hostvisor and
a given VM from accessing memory owned by other VMs.
The corevisor tracks ownership of physical pages and enforces
inter-VM memory isolation using nested paging hardware. A
compromised hostvisor could control a DMA capable device
to attempt to access VM memory or compromise the corevisor.
However, the corevisor controls the IOMMU and its page
tables, so the hostvisor cannot access corevisor or VM memory
via DMA. VM pages reclaimed by the hostvisor are scrubbed
by the corevisor, so they do not leak VM data. HypSec also
protects the integrity of VM nested page tables. The corevisor
manages shadow page tables for VMs. The MMU can only
walk the shadow page tables residing in a protected memory
region only accessible to the corevisor. The corevisor manages

USENIX Association 28th USENIX Security Symposium 1365

and verifies updates to the shadow page tables to protect VM
memory mappings.
Property 4. HypSec protects a given VM’s CPU registers
from the hostvisor and all other VMs.

HypSec protects VM CPU registers by only granting
the trusted corevisor (Property 1) full access to them. The
hostvisor cannot access VM registers without permission.
Attackers cannot compromise VM execution flow since only
the corevisor can update VM registers including program
counter (PC), link register (LR), and TTBR.
Property 5. HypSec protects the confidentiality of a given
VM’s I/O data against the hostvisor and all other VMs assum-
ing the VM employs an end-to-end approach to secure I/O.

Based on Properties 3 and 4, HypSec protects any I/O en-
cryption keys loaded to VM CPU registers or memory, so a
compromised hostvisor cannot steal these keys to decrypt en-
crypted I/O data. The same protection holds against other VMs.
Property 6. HypSec protects the confidentiality and integrity
of a given VM’s I/O data against the hostvisor and all other
VMs assuming the VM employs an end-to-end approach to
secure I/O and the I/O can be verified before it permanently
modifies the VM’s I/O data.

Using the reasoning in Property 5 with the additional
assumption that I/O can be verified before it permanently
modifies I/O data, HypSec also protects the integrity of VM
I/O data, as any tampered data will be detected and can be
discarded. For example, a network endpoint receiving I/O
from a VM over an encrypted channel with authentication can
detect modifications of the I/O data by any intermediary such
as the hostvisor. If verification is not possible, then HypSec
cannot prevent compromises of data availability that result in
destruction of I/O data, which can affect data integrity. As an
example, HypSec cannot prevent an attacker from arbitrarily
destroying a VM’s I/O data by blindly overwriting all or parts
of a VM’s local disk image; both the VM’s availability and
integrity are compromised since the data is destroyed. Secure
disk backups can protect against permanent data loss.
Property 7. Assuming a VM takes an end-to-end approach
for securing its I/O, HypSec protects the confidentiality of all
of the VM’s data against a remote attacker, including if the
attacker compromises any other VMs or the hostvisor itself.

Based on Properties 1, 3, and 4, a remote attacker cannot
compromise the corevisor, and any compromise of the
hostvisor or another VM cannot allow the attacker to access
VM data stored in CPU registers or memory. This combined
with Property 5 allows HypSec to ensure the confidentiality
of all of the VM’s data.
Property 8. Under the assumption that a VM takes an
end-to-end approach for securing its I/O and I/O can be
verified before it permanently modifies any VM data, HypSec
protects the integrity of all of the VM’s data against a remote
attacker, including if the attacker compromises any other VMs
or the hostvisor itself.

Based on Properties 1, 3, and 4, HypSec ensures a remote
attacker cannot compromise the corevisor, and that any
compromise of the hostvisor or another VM cannot allow the
attacker to access VM data stored in CPU registers or memory,
thereby preserving VM CPU and memory data integrity.
This combined with Property 6 allows HypSec to ensure the
integrity of all of the VM’s data.
Property 9. If the hypervisor is benign and responsible for
handling I/O, HypSec protects the confidentiality and integrity
of all of the VM’s data against any compromises of other VMs.

If both the hostvisor and corevisor are not compromised
and the hostvisor is responsible for handling I/O, then the
confidentiality and integrity of a VM’s I/O data will be
protected against other VMs. This combined with Properties 3
and 4 allows HypSec to ensure the confidentiality and integrity
of all of the VM’s data. This guarantee is equivalent to what
is provided by a traditional hypervisor such as KVM.

6 Experimental Results

We quantify the performance and TCB of HypSec compared to
other approaches, and demonstrate HypSec’s ability to protect
VM confidentiality and integrity. All of our experiments were
run on ARM server hardware with VE support, specifically
a 64-bit ARMv8 AMD Seattle (Rev.B0) server with 8
Cortex-A57 CPU cores, 16 GB of RAM, a 512 GB SATA3
HDD for storage, an AMD 10 GbE (AMD XGBE) NIC device,
and an IOMMU (SMMU-401) to support control over DMA
devices and direct device assignment. The hardware did not
support ARM Virtualization Host Extensions [20, 21]. For
client-server experiments, the clients ran on an x86 machine
with 24 Intel Xeon CPU 2.20 GHz cores and 96 GB RAM. The
clients and the server communicated via a 10 GbE unsaturated
network connection.

To provide comparable measurements across the ap-
proaches, we kept the software environments across all
platforms as uniform as possible. We compared KVM with
our HypSec modifications versus standard KVM, both in
Linux 4.18 with QEMU 2.3.50. In both cases, KVM was
configured with its standard VHOST virtio network, and with
cache=none for its virtual block storage devices [30, 47, 77].
All hosts and VMs used Ubuntu 16.04 with the same Linux
4.18 kernel, except for HypSec changes. All VMs used par-
avirtualized I/O, typical of cloud infrastructure deployments
such as Amazon EC2.

We ran benchmarks both natively on the hardware and in
VMs. Each physical or VM instance was configured as a 4-way
SMP with 12 GB of RAM to provide a common basis for com-
parison. This involved two configurations: (1) native Linux
capped at 4 cores and 12 GB RAM, and (2) a VM using KVM
with 8 cores and 16 GB RAM with the VM capped at 4 virtual
CPUs (VCPUs) and 12 GB RAM. We measure multi-core con-
figurations to reflect real-world server deployments. For VMs,

1366 28th USENIX Security Symposium USENIX Association

Name Description
Hypercall Transition from the VM to the hypervisor and

return to the VM without doing any work in the
hypervisor. Measures bidirectional base transition
cost of hypervisor operations.

I/O Kernel Trap from the VM to the emulated interrupt controller
in the hypervisor OS kernel, and then return to
the VM. Measures a frequent operation for many
device drivers and baseline for accessing I/O devices
supported by the hypervisor OS kernel.

I/O User Trap from the VM to the emulated UART in QEMU
and then return to the VM. Measures base cost of
operations that access I/O devices emulated in the
hypervisor OS user space.

Virtual IPI Issue a virtual IPI from a VCPU to another VCPU
running on a different PCPU, both PCPUs executing
VM code. Measures time between sending the
virtual IPI until the receiving VCPU handles it, a
frequent operation in multi-core OSes.

Table 2: Microbenchmarks

we pinned each VCPU to a specific physical CPU (PCPU) and
ensured that no other work was scheduled on that PCPU. All
of the host’s device interrupts and processes were assigned to
run on other PCPUs. For client-server benchmarks, the clients
ran natively on Linux and used the full hardware available.

6.1 Microbenchmark Results

We first ran microbenchmarks to quantify the cost of
low-level hypervisor operations. We used the KVM unit
test framework [48] listed in Table 2 to measure the cost of
transitioning between the VM and the hypervisor, initiating
a VM-to-hypervisor OS kernel I/O request, emulating user
space I/O with QEMU, and sending virtual IPIs. We slightly
modified the test framework to measure the cost of virtual IPIs
and to obtain cycle counts on ARM to ensure detailed results
by configuring the VM with direct access to the cycle counter.

Microbenchmark KVM HypSec
Hypercall 2,896 3,202
I/O Kernel 3,831 4,563
I/O User 9,288 10,704
Virtual IPI 8,816 10,047

Table 3: Microbenchmark Measurements (cycles)

Table 3 shows the microbenchmarks measured in cycles
for both standard KVM and HypSec. HypSec introduces
roughly 5% to 19% overhead over KVM. HypSec does not
increase the number of traps in the operations we measured.
The corevisor interposes on exisiting traps to add additional
logic to protect VM data, so the cost is relatively small. The
I/O Kernel, I/O User, and Virtual IPI measurements show
relatively higher overhead than Hypercall on HypSec because
of the cost involved to secure data transfers between the VM
and hostvisor for I/O and interrupt virtualization.

Name Description
Kernbench Compilation of the Linux 4.9 kernel using

allnoconfig for ARM with GCC 5.4.0.
Hackbench hackbench [66] using Unix domain sockets and 100

process groups running in 500 loops.
Netperf netperf v2.6.0 [41] running netserver on the

server and the client with its default parameters in
three modes: TCP_STREAM (throughput), TCP_-
MAERTS (throughput), and TCP_RR (latency).

Apache Apache v2.4.18 Web server running
ApacheBench [80] v2.3 on the remote client,
which measures number of handled requests per
second when serving the 41 KB index.html file of
the GCC 4.4 manual using 100 concurrent requests.

Memcached memcached v1.4.25 using the memtier benchmark
v1.2.3 with its default parameters.

MySQL MySQL v14.14 (distrib 5.7.24) running SysBench
v.0.4.12 using the default configuration with 200
parallel transactions.

Table 4: Application Benchmarks

6.2 Application Workload Results

Next we ran real application workloads to evaluate HypSec
compared to standard KVM. Table 4 lists the workloads which
are a mix of widely-used CPU and I/O intensive benchmarks.
To evaluate VM performance with end-to-end I/O protection,
we used five configurations: (1) Native unmodified Linux host
kernel without Full Disk Encryption, (2) Unmodified KVM
and guest kernel without FDE (KVM), (3) Unmodified KVM
and guest kernel with FDE (KVM-FDE), (4) HypSec and par-
avirtualized guest kernel without FDE (HypSec), (5) HypSec
and paravirtualized guest kernel with FDE (HypSec-FDE).
For FDE, we use dm-crypt to create a LUKS-encrypted root
partition of the VM filesystem. We measure with and without
FDE to separately quantify its extra costs. We leveraged the
TLS/SSL support in Apache and MySQL and evaluated VM
performance on HypSec with end-to-end network encryption.

Figure 4 shows the relative overhead of executing in a VM
in our four VM configurations compared to natively. We
normalize the results so that a value of 1.00 means the same
performance as native hardware. Lower numbers mean less
overhead. The performance on real application workloads
shows modest overhead overall for HypSec compared to
standard KVM. The overhead for HypSec in many cases is
less than 10%, even with FDE enabled.

The worst overhead for HypSec occurs for some of the net-
work workloads. Our current implementation of the front-end
network virtio driver applies grant/revoke hypercalls on a per
transaction basis to make data available to the back-end driver
in the hostvisor. Therefore, HypSec’s performance is sub-
optimal in workloads where the virtio driver can batch multiple
transactions without trapping to the hypervisor, most notably
in TCP_MAERTS. TCP_MAERTS measures the bandwidth
of a VM sending packets to a client. The virtio driver batches
multiple sends to avoid traps to hypervisor, while in the imple-
mentation measured in the paper, the driver traps additionally

USENIX Association 28th USENIX Security Symposium 1367

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
KVM KVM-FDE HypSec HypSec-FDE

Figure 4: Application Benchmark Performance

on sending network data, resulting in higher overhead. Note
that other network workloads such as TCP_STREAM have neg-
ligible overhead as the granularity at which the additional traps
happen is large enough that the performance impact is negligi-
ble. To avoid extra traps to the hypervisor, our implementation
can be optimized by batching the effect of the grant/revoke
calls at the same level of granularity as used by the virtio driver
to batch multiple transactions. This is an area of future work.

6.3 TCB Implementation Complexity
We ran cloc [24] against our implementation’s corevisor to
measure the TCB, as shown in Table 5. The total is roughly
8.5K LOC of which just under 4.5K LOC is from the Ed25519
and AES crypto libraries. The rest of the HypSec TCB is less
than 4.1K LOC, consisting of mostly CPU/memory protection
and existing KVM lowvisor code. Overall, we modified or
added a total of 8,695 LOC in the mainline Linux kernel v4.18
across both the corevisor and hostvisor. More than 1.3K LOC
were in existing Linux files, and around 7.3K LOC were in
new files for HypSec, including around 4.5K LOC in the
crypto libraries and slightly less than 2.8K LOC for corevisor
functions. Finally, less than 70 LOC were added to QEMU
to support secure boot and VM migration. These results
demonstrate that HypSec can retrofit existing hypervisors with
modest implementation effort.

For comparison purposes, we also used cloc to measure
KVM’s TCB in Linux v4.18 and Xen v4.9 for ARM64 support
when running Linux v4.18 on Dom0, shown in Table 6. For
KVM, we counted its LOC for the specific Linux v4.18 code-
base running on the ARM64 server used in our experiments.
KVM’s massive TCB with access to VM data consists of
more than 1.8M LOC and includes QEMU, the KVM module,
core Linux functions such as CPU scheduling, ARM64
architectural support, and the device drivers used on the server.

To provide a fair comparison, we assumed the same threat
model for each system and that VMs encrypt their I/O. Even un-
der this assumption, KVM, including its I/O kernel code, must
be entirely trusted to protect VM data since a compromised
KVM can steal encryption keys from VM CPU and memory

Components LOC
Ed25519 library 4,074
AES library 403
CPU protection 1,883
Memory protection 1,727
Secure boot 232
Helper 247
HypSec TCB 8,566

Table 5: HypSec TCB

Hypervisor LOC
HypSec 8,566
KVM 1,857,575
Xen 71,604
Xen + Dom0 2,054,756

Table 6: TCB size comparison
with KVM and Xen

state. By retrofitting KVM with HypSec to protect VM CPU
and memory against the rest of the KVM codebase, we show
that the TCB of KVM can be reduced by more than 200 times.

Using the same assumption, Xen’s TCB should include both
its hypervisor code and Dom0, a special privileged VM used
to reuse existing Linux drivers to support I/O for user VMs.
Although Dom0 is not part of the hypervisor, Xen provides it
with a management interface that can request the hypervisor to
dump entire VM state, thereby giving a compromised Dom0
full access to encryption keys. Xen’s resulting TCB including
Dom0, which has a full copy of Linux, is therefore larger
than KVM and hundreds of times larger than HypSec. If we
conservatively assume features in Xen’s management stack
that expose VM state such as VM dump and migration are
disabled, so that we can exclude Dom0 from Xen’s TCB and
only count Xen ARM hypervisor code in EL2, Xen’s TCB is
then 71K LOC as listed in Table 6. This is roughly an order of
magnitude larger than HypSec because Xen still has to do its
own bootstrapping, CPU and memory resource management,
and completely support memory and interrupt virtualization.

We estimated HypSec’s TCB for an equivalent x86
implementation, assuming HypSec is also applied to KVM
Linux v4.18 for x86 hardware with VMX support. We ran
cloc against the C files that encapsulate the KVM functions
for CPU and memory virtualization to conservatively measure
HypSec’s TCB size. The total is less than 27K LOC. Although
the TCB size for HypSec on x86 would be larger than HypSec
on ARM, we believe the resulting TCB on x86 would still
result in a substantial reduction as KVM’s TCB on x86 is
also larger than on ARM, at roughly 10M LOC including x86
device drivers; this is an area of future work.

6.4 Evaluation of Practical Attacks

We evaluated HypSec’s effectiveness against a compromised
hostvisor by analyzing CVEs and identifying the cases where
HypSec protects VM data despite any compromise, assuming
an equivalent implementation of HypSec for x86 platforms.
We analyzed CVEs related to Linux/KVM, which are listed in
Tables 7 and 8. The CVEs consider two cases: a malicious VM
who exploits KVM functions supported by the hostvisor, and
an unprivileged host user who exploits bugs in Linux/KVM.
Among the selected CVEs, 16 of them are x86-specific, one
is specific to ARM, while the rest are independent of archi-
tecture. An attacker’s goal is to exploit these CVEs to obtain

1368 28th USENIX Security Symposium USENIX Association

Bug Description KVM HypSec
CVE-2015-4036 Memory Corruption: Array index error in hostvisor. No Yes
CVE-2013-0311 Privilege Escalation: Improper handling of descriptors in vhost driver. No Yes
CVE-2017-17741 Info Leakage: Stack out-of-bounds read in hostvisor. No Yes
CVE-2010-0297 Code Execution: Buffer overflow in I/O virtualization code. No Yes
CVE-2014-0049 Code Execution: Buffer overflow in I/O virtualization code. No Yes
CVE-2013-1798 Info Leakage: Improper handling of invalid combination of operations for virtual IOAPIC. No Yes
CVE-2016-4440 Code Execution: Mishandling of virtual APIC state. No Yes
CVE-2016-9777 Privilege Escalation: Out-of-bounds array access using VCPU index in interrupt virtualization code. No Yes
CVE-2015-3456 Code Execution: Memory corruption in virtual floppy driver allows VM user to execute arbitrary code in hostvisor. No Yes
CVE-2011-2212 Privilege Escalation: Buffer overflow in the virtio subsystem allows guest to gain privileges to the host. No Yes
CVE-2011-1750 Privilege Escalation: Buffer overflow in the virtio subsystem allows guest to gain privileges to the host. No Yes
CVE-2015-3214 Code Execution: Out-of-bound memory access in QEMU leads to memory corruption. No Yes
CVE-2012-0029 Code Execution: Buffer overflow allows VM users to execute arbitrary code in QEMU No Yes
CVE-2017-1000407 Denial-of-Service: VMs crash hostvisor by flooding the I/O port with write requests. No No
CVE-2017-1000252 Denial-of-Service: Out-of-bounds value causes assertion failure and hypervisor crash. No No
CVE-2014-7842 Denial-of-Service: Bug in KVM allows guest users to crash its own OS. No No
CVE-2018-1087 Privilege Escalation: Improper handling of exception allows guest users to escalate their privileges to its own OS. No No

Table 7: Selected Set of Analyzed CVEs - from VM

Bug Description KVM HypSec
CVE-2009-3234 Privilege Escalation: Kernel stack buffer overflow resulting in ret2usr [43]. No Yes
CVE-2010-2959 Code Execution: Integer overflow resulting in function pointer overwrite. No Yes
CVE-2010-4258 Privilege Escalation: Improper handling of get_fs value resulting in kernel memory overwrite. No Yes
CVE-2009-3640 Privilege Escalation: Improper handling of APIC state in hostvisor. No Yes
CVE-2009-4004 Privilege Escalation: Buffer overflow in hostvisor. No Yes
CVE-2013-1943 Privilege Escalation, Info Leakage: Mishandling of memory slot allocation allows host users to access hostvisor memory. No Yes
CVE-2016-10150 Privilege Escalation: Use-after-free in hostvisor. No Yes
CVE-2013-4587 Privilege Escalation: Array index error in hostvisor. No Yes
CVE-2018-18021 Privilege Escalation: Mishandling of VM register state allows host users to redirect hostvisor execution. No Yes
CVE-2016-9756 Info Leakage: Improper initialization in code segment resulting in information leakage in hostvisor stack. No Yes
CVE-2013-6368 Privilege Escalation: Mishandling of APIC state in hostvisor. No Yes
CVE-2015-4692 Memory Corruption: Mishandling of APIC state in hostvisor. No Yes
CVE-2013-4592 Denial-of-Service: Host users cause memory leak in hostvisor. No No

Table 8: Selected Set of Analyzed CVEs - from host user

hostvisor privileges and compromise VM data. The CVEs
related to our threat model could result in information leakage,
privilege escalation, code execution, and memory corruption
in Linux/KVM. While KVM does not protect VM data against
any of these compromises, HypSec protects against all of them.
HypSec does not guarantee availability and cannot protect
against CVEs that allow VMs or host users to cause denial of
service in the hostvisor. Vulnerabilities that allow unprivileged
guest users to attack their own VMs like CVE-2014-7842 and
CVE-2018-1087 are unrelated to HypSec’s threat model; pro-
tection against CVEs of these types is an area of future work.

We also executed attacks representative of information
leakage to show that HypSec protects VM data even if an
attacker has full control of the hostvisor. First, we simulated
an attacker trying to read or modify VMs’ memory pages. We
added a hook to KVM which modifies a page that a targeted
gVA maps to. As expected, the compromised KVM (without
HypSec) successfully modified the VM page. Using HypSec,
the same attack causes a trap to the corevisor which rejects
the invalid memory access.

Second, we simulated a host that tries to tamper with a VM’s
nested page table by redirecting a gPA’s NPT mapping to host-

owned pages. This is in contrast to the prior attack of modifying
VM pages, but shares the same goal of accessing VM data in
memory. We added a hook to the nested page fault handler in
KVM; the hook allocates a new zero page in the host OS’s ad-
dress space, which in a real attack could contain arbitrary code
data. The hook associates a range of a VM’s gPAs with this
zero page. As expected, this attack succeeds in KVM but fails
in HypSec. First, the attacker has no access to the sNPT walked
by the MMU. Second, the corevisor synchronizes the vNPT
to sNPT mapping on the gPA’s initial fault during VM boot, so
malicious vNPT modifications do not propagate to sNPT.

7 Related Work

The idea of retrofitting a commodity hypervisor with a smaller
core was inspired by KVM/ARM’s split-mode virtualiza-
tion [22, 23], which introduced a thin software layer to enable
Linux KVM to make use of ARM hardware virtualization
extensions without significant changes to Linux, but did
nothing to reduce the hypervisor TCB. HypSec builds on this
work to leverage ARM hardware virtualization support to run
the corevisor with special hardware privileges to protect VM

USENIX Association 28th USENIX Security Symposium 1369

data against a compromised hostvisor. More recently, Nested
Kernel [25] used the idea of retrofitting a small TCB into a
commodity OS kernel, FreeBSD, to intercept MMU updates to
enforce kernel code integrity. Both HypSec and Nested Kernel
retrofit commodity system software with a small TCB that
mediates accesses to critical hardware resources and strength-
ens system security guarantees with modest implementation
and performance costs. Nested Kernel focuses on a different
threat model and does not protect against vulnerabilities
in existing kernel code in part because both its TCB and
untrusted components run at the highest hardware privilege
level. In contrast, HypSec deprivileges the hostvisor and uses
its TCB to provide data confidentiality and integrity even in
the presence of hypervisor vulnerabilities in the hostvisor.

Bare-metal hypervisors often claim a smaller TCB as
an advantage over hosted hypervisors, but in practice, the
aggregate TCB of the widely-used Xen [11] bare-metal
hypervisor includes Dom0 [18, 92] and therefore can be no
smaller than hosted hypervisors like KVM. Some work thus
focuses on reducing Xen’s attack surface by redesigning
Dom0 [15, 18, 59]. Unlike HypSec, these approaches cannot
protect a VM against a compromised Xen or Dom0. We
believe Xen can be restructured using HypSec by moving
resource management, interrupt virtualization, and other
hardware-specific dependencies, along with Dom0, into a
hostvisor to further reduce Xen’s TCB to protect VM data.

Microhypervisors [32, 74] take a microkernel approach
to build clean-slate hypervisors from scratch to reduce the
hypervisor TCB. For example, NOVA [74] moves various
aspects of virtualization such as CPU and I/O virtualization
to user space services. The virtualization services are trusted
but instantiated per VM so that compromising them only
affects the given VM. Others simplify the hypervisor to reduce
its TCB by removing [72] or disabling [60] virtual device
I/O support in hypervisors, or partitioning VM resources
statically [42, 73]. Although a key motivation for both
microhypervisors and HypSec is to reduce the size of the TCB,
HypSec does not require a clean-slate redesign, and supports
existing full-featured commodity hypervisors without remov-
ing important hypervisor features such as I/O support and
dynamic resource allocation while preserving confidentiality
and integrity of VM data even if the hostvisor is compromised.

HyperLock [86], DeHype [88], and Nexen [70] focus on
deconstructing existing monolithic hypervisors by segregating
hypervisor functions to per VM instances. While this can
isolate an exploit of hypervisor functions to a given VM
instance, if a vulnerability is exploitable in one VM instance,
it is likely to be exploitable in another as well. Nexen builds on
Nested Kernel to retrofit Xen in this manner, though it does not
protect against vulnerabilities in its shared hypervisor services.
In contrast to HypSec, these systems focus on availability and
do not fully protect the confidentiality and integrity of VM
data against a compromised hypervisor or host OS.

CloudVisor [92] uses a small, specialized host hypervisor to

support nested virtualization and protect user VMs against an
untrusted Xen guest hypervisor, though Xen modifications are
required. CloudVisor encrypts VM I/O and memory but does
not fully protect CPU state, contrary to its claims of “providing
both secrecy and integrity to a VM’s states, including CPU
states.” For example, the VM program counter is exposed
to Xen to support I/O. As with any nested virtualization
approach, performance overhead on application workloads is
a problem. Furthermore, CloudVisor does not support widely
used paravirtual I/O. CloudVisor has a smaller TCB by not
supporting public key cryptography, making key management
problematic. In contrast, HypSec protects both CPU and
memory state via access control, not encryption, making
it possible to support full-featured hypervisor functionality
such as paravirtual I/O. HypSec also does not require nested
virtualization, avoiding its performance overhead.

To protect user data in virtualization systems, others enable
and require VM support for specialized hardware such as Intel
SGX [36] or ARM TrustZone. Haven [12] and S-NFV [71]
use Intel SGX to protect application data but unlike HypSec,
cannot protect the whole VM including the guest OS and ap-
plications against an untrusted hypervisor. Although HypSec
relies on a TEE to support key management, it fundamentally
differs from other approaches which extensively use TEEs for
much more than storing keys. Others [34, 96] run a security
monitor in ARM TrustZone and rely on ARM IP features
such as TrustZone Address Space Controller to protect VMs.
vTZ [34] virtualizes TrustZone and protects the guest TEE
against an untrusted hypervisor, but does not protect the
normal world VM. HA-VMSI [96] protects the normal
world VM against a compromised hypervisor but supports
limited virtualization features. In contrast, HypSec protects
the entire normal world VM against an untrusted hypervisor
without requiring VMs to use specialized hardware. HypSec
leverages ARM VE to trap VM exceptions to EL2 while
retaining hypervisor functionality. Others [40, 78, 90] propose
hardware-based approaches to protect VM data in CPU and
memory against an untrusted hypervisor. However, without
actual hardware implementations, these works implement
the proposed changes by modifying either Xen [40] or
QEMU [90], or on a simulator [78]. Some of them [40, 78]
do not support commodity hypervisors. In contrast, HypSec
leverages existing hardware features to protect virtual machine
data and supports KVM on ARM server hardware.

Recent architectural extensions [3, 37] proposed hardware
support on x86 for encrypted virtual machines. Fidelius [89]
leverages AMD’s SEV (Secure Encrypted Virtualization) [3]
to protect VMs. Unlike these encryption-based approaches,
HypSec primarily uses access control mechanisms.

Some projects focus on hardening the hypervisor to prevent
exploitation. They improve hypervisor security by either
enforcing control flow integrity [84] or measuring runtime
hypervisor integrity [9, 26]. These approaches can be applied
to HypSec to further strengthen VM security. XMHF [81]

1370 28th USENIX Security Symposium USENIX Association

verifies the memory integrity of its hypervisor codebase
but supports single VM with limited virtualization features.
Verification of HypSec’s TCB is an area of future work.

Various projects extend a trusted hypervisor to protect soft-
ware within VMs, including protecting applications running
on an untrusted guest OS in the VM [16, 17, 33, 55, 91], ensur-
ing kernel integrity and protecting against rootkits and code
injection attacks or to isolate I/O channels [64, 69, 83, 85, 95],
and dividing applications and system components in VMs
then relying on the hypervisor to safeguard interactions
among secure and insecure components [27, 54, 76, 79].
Overshadow [16] and Inktag [33] have some similarities with
HypSec in that they use a more trusted hypervisor component
to protect against untrusted kernel software. Overshadow and
Inktag also assume applications use end-to-end encrypted
network I/O, though they protect file I/O by replacing it with
memory-mapped I/O to encrypted memory. HypSec has three
key differences with these approaches. First, instead of mem-
ory encryption, HypSec primarily uses access control, which is
more lightweight and avoids the need to emulate functions that
are problematic when memory is encrypted. Second, instead
of instrumenting or emulating complex system calls, HypSec
relies on hardware virtualization mechanisms to interpose
on hardware events of interest. Finally, instead of protecting
against guest OS exploits, HypSec protects against hypervisor
and host OS exploits, which none of the other approaches do.

8 Conclusions

We have created HypSec, a new approach to hypervisor design
that reduces the TCB necessary to protect virtual machines.
HypSec decomposes a monolithic hypervisor into a small,
trusted corevisor and untrusted hostvisor, the latter containing
the vast majority of hypervisor functionality including an
entire host operating system kernel. The corevisor leverages
hardware virtualization support to execute at a higher privilege
level and provide access control mechanisms to restrict
hostvisor access to VM data. It can be simple because it
only needs to perform basic CPU and memory virtualization.
When VMs use secure I/O channels, HypSec can protect
the confidentiality and integrity of all VM data. We have
demonstrated that HypSec can support existing commodity
hypervisors by retrofitting KVM/ARM. The resulting TCB
is orders of magnitude less than the original KVM/ARM.
HypSec provides strong security guarantees to VMs with only
modest performance overhead for real application workloads.

Acknowledgments

Steve Bellovin, Christoffer Dall, and Nathan Dautenhahn
provided helpful comments on earlier drafts of this paper. This
work was supported in part by NSF grants CNS-1717801 and
CNS-1563555.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young. Mach: A new kernel foundation
for UNIX development. In Proceedings of the Summer
USENIX Conference (USENIX Summer 1986), pages 93–112,
Atlanta, GA, June 1986.

[2] K. Adams and O. Agesen. A Comparison of Software and
Hardware Techniques for x86 Virtualization. In Proceedings
of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS
2006), pages 2–13, San Jose, CA, Oct. 2006.

[3] Advanced Micro Devices. Secure Encrypted Virtualization
API Version 0.16. https://support.amd.com/TechDocs/
55766_SEV-KM%20API_Spec.pdf, Feb. 2018.

[4] Amazon Web Services, Inc. Introducing Amazon EC2 A1
Instances Powered By New Arm-based AWS Graviton Proces-
sors. https://aws.amazon.com/about-aws/whats-new/
2018/11/introducing-amazon-ec2-a1-instances/,
Nov. 2018.

[5] Amazon Web Services, Inc. AWS Key Management Service
(KMS). https://aws.amazon.com/kms/, May 2019.

[6] ArchWiki. dm-crypt. https://wiki.archlinux.org/
index.php/dm-crypt, Apr. 2018.

[7] ARM Ltd. ARM Security Technology - Build-
ing a Secure System using TrustZone Technology.
http://infocenter.arm.com/help/topic/com.arm.
doc.prd29-genc-009492c/PRD29-GENC-009492C_
trustzone_security_whitepaper.pdf, Apr. 2009.

[8] ARM Ltd. ARM System Memory Management Unit
Architecture Specification - SMMU architecture ver-
sion 2.0. http://infocenter.arm.com/help/topic/
com.arm.doc.ihi0062d.c/IHI0062D_c_system_mmu_
architecture_specification.pdf, June 2016.

[9] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and
N. C. Skalsky. HyperSentry: Enabling Stealthy In-context
Measurement of Hypervisor Integrity. In Proceedings of the
17th ACM Conference on Computer and Communications
Security (CCS 2010), pages 38–49, Chicago, IL, Oct. 2010.

[10] M. Backes, G. Doychev, and B. Kopf. Preventing Side-Channel
Leaks in Web Traffic: A Formal Approach. In 20th Annual
Network and Distributed System Security Symposium (NDSS
2013), San Diego, CA, Feb. 2013.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP 2003), pages 164–177,
Bolton Landing, NY, Oct. 2003.

[12] A. Baumann, M. Peinado, and G. Hunt. Shielding Applications
from an Untrusted Cloud with Haven. In Proceedings of the
11th USENIX Conference on Operating Systems Design and
Implementation (OSDI 2014), pages 267–283, Broomfield,
CO, Oct. 2014.

[13] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Exten-
sibility Safety and Performance in the SPIN Operating System.
In Proceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP 1995), pages 267–283, Copper

USENIX Association 28th USENIX Security Symposium 1371

https://support.amd.com/TechDocs/55766_SEV-KM%20API_Spec.pdf
https://support.amd.com/TechDocs/55766_SEV-KM%20API_Spec.pdf
https://aws.amazon.com/about-aws/whats-new/2018/11/introducing-amazon-ec2-a1-instances/
https://aws.amazon.com/about-aws/whats-new/2018/11/introducing-amazon-ec2-a1-instances/
https://aws.amazon.com/kms/
https://wiki.archlinux.org/index.php/dm-crypt
https://wiki.archlinux.org/index.php/dm-crypt
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062d.c/IHI0062D_c_system_mmu_architecture_specification.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062d.c/IHI0062D_c_system_mmu_architecture_specification.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062d.c/IHI0062D_c_system_mmu_architecture_specification.pdf

Mountain, CO, Dec. 1995.
[14] Business Wire. Research and Markets: Global Encryption

Software Market (Usage, Vertical and Geography) - Size,
Global Trends, Company Profiles, Segmentation and Forecast,
2013 - 2020. https://www.businesswire.com/news/
home/20150211006369/en/Research-Markets-Global-
Encryption-Software-Market-Usage, Feb. 2015.

[15] S. Butt, H. A. Lagar-Cavilla, A. Srivastava, and V. Ganapathy.
Self-service Cloud Computing. In Proceedings of the 2012
ACM Conference on Computer and Communications Security
(CCS 2012), pages 253–264, Raleigh, NC, Oct. 2012.

[16] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam,
C. A. Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports.
Overshadow: A Virtualization-based Approach to Retrofitting
Protection in Commodity Operating Systems. In Proceedings
of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS
2008), pages 2–13, Seattle, WA, Mar. 2008.

[17] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic. Se-
cureME: A Hardware-software Approach to Full System
Security. In Proceedings of the 25th International Conference
on Supercomputing (ICS 2011), pages 108–119, Tucson, AZ,
May 2011.

[18] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan,
P. Loscocco, and A. Warfield. Breaking Up is Hard to Do:
Security and Functionality in a Commodity Hypervisor. In
Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP 2011), pages 189–202, Cascais,
Portugal, Oct. 2011.

[19] J. Corbet. KAISER: hiding the kernel from user space.
https://lwn.net/Articles/738975/, Nov. 2017.

[20] C. Dall, S.-W. Li, J. Lim, J. Nieh, and G. Koloventzos. ARM
Virtualization: Performance and Architectural Implications. In
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA 2016), pages 304–316, Seoul, South Korea,
June 2016.

[21] C. Dall, S.-W. Li, and J. Nieh. Optimizing the Design and
Implementation of the Linux ARM Hypervisor. In Proceedings
of the 2017 USENIX Annual Technical Conference (USENIX
ATC 2017), pages 221–234, Santa Clara, CA, July 2017.

[22] C. Dall and J. Nieh. KVM/ARM: Experiences Building the
Linux ARM Hypervisor. Technical Report CUCS-010-13,
Department of Computer Science, Columbia University, June
2013.

[23] C. Dall and J. Nieh. KVM/ARM: The Design and Implemen-
tation of the Linux ARM Hypervisor. In Proceedings of the
19th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
2014), pages 333–347, Salt Lake City, UT, Mar. 2014.

[24] A. Danial. cloc: Count Lines of Code. https:
//github.com/AlDanial/cloc, May 2019.

[25] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell, and
V. Adve. Nested Kernel: An Operating System Architecture
for Intra-Kernel Privilege Separation. In Proceedings of the
20th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
2015), pages 191–206, Istanbul, Turkey, Mar. 2015.

[26] L. Deng, P. Liu, J. Xu, P. Chen, and Q. Zeng. Dancing with

Wolves: Towards Practical Event-driven VMM Monitoring. In
Proceedings of the 13th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE 2017),
pages 83–96, Xi’an, China, Apr. 2017.

[27] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.
Terra: A Virtual Machine-based Platform for Trusted Com-
puting. In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles (SOSP 2003), pages 193–206,
Bolton Landing, NY, Oct. 2003.

[28] Google. Google Cloud Security and Compli-
ance Whitepaper - How Google protects your data.
https://static.googleusercontent.com/media/
gsuite.google.com/en//files/google-apps-
security-and-compliance-whitepaper.pdf, Sept. 2017.

[29] Google. HTTPS encryption on the web – Google Transparency
Report. https://transparencyreport.google.com/
https/overview, Apr. 2018.

[30] S. Hajnoczi. An Updated Overview of the QEMU Storage
Stack. https://events.linuxfoundation.org/slides/
2011/linuxcon-japan/lcj2011_hajnoczi.pdf, June
2011.

[31] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum, and
E. W. Felten. Lest We Remember: Cold Boot Attacks on
Encryption Keys. In Proceedings of the 17th USENIX Security
Symposium (USENIX Security 2008), pages 45–60, San Jose,
CA, July 2008.

[32] G. Heiser and B. Leslie. The OKL4 Microvisor: Convergence
Point of Microkernels and Hypervisors. In Proceedings of
the 1st ACM Asia-pacific Workshop on Workshop on Systems
(APSys 2010), pages 19–24, New Delhi, India, Aug. 2010.

[33] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel.
InkTag: Secure Applications on an Untrusted Operating
System. In Proceedings of the 18th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2013), pages 265–278, Houston,
TX, Mar. 2013.

[34] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and Haibing. vTZ:
Virtualizing ARM Trustzone. In Proceedings of the 26th
USENIX Security Symposium (USENIX Security 2017), pages
541–556, Vancouver, BC, Canada, Aug. 2017.

[35] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer’s Manual, 325462-044US, Aug. 2012.

[36] Intel Corporation. Intel Software Guard Extensions Program-
ming Reference. https://software.intel.com/sites/
default/files/managed/48/88/329298-002.pdf, Oct.
2014.

[37] Intel Corporation. Intel Architecture Memory Encryption
Technologies Specification. https://software.intel.
com/sites/default/files/managed/a5/16/Multi-Key-
Total-Memory-Encryption-Spec.pdf, Dec. 2017.

[38] International Organization for Standardization and Interna-
tional Electrotechnical Commission. ISO/IEC 11889-1:2015
- Information technology – Trusted platform module library.
https://www.iso.org/standard/66510.html, Sept.
2016.

[39] G. Irazoqui, T. Eisenbarth, and B. Sunar. S$A: A Shared Cache
Attack That Works Across Cores and Defies VM Sandboxing

1372 28th USENIX Security Symposium USENIX Association

https://www.businesswire.com/news/home/20150211006369/en/Research-Markets-Global-Encryption-Software-Market-Usage
https://www.businesswire.com/news/home/20150211006369/en/Research-Markets-Global-Encryption-Software-Market-Usage
https://www.businesswire.com/news/home/20150211006369/en/Research-Markets-Global-Encryption-Software-Market-Usage
https://lwn.net/Articles/738975/
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://static.googleusercontent.com/media/gsuite.google.com/en//files/google-apps-security-and-compliance-whitepaper.pdf
https://static.googleusercontent.com/media/gsuite.google.com/en//files/google-apps-security-and-compliance-whitepaper.pdf
https://static.googleusercontent.com/media/gsuite.google.com/en//files/google-apps-security-and-compliance-whitepaper.pdf
https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
https://events.linuxfoundation.org/slides/2011/linuxcon-japan/lcj2011_hajnoczi.pdf
https://events.linuxfoundation.org/slides/2011/linuxcon-japan/lcj2011_hajnoczi.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf
https://www.iso.org/standard/66510.html

– and Its Application to AES. In Proceedings of the 2015 IEEE
Symposium on Security and Privacy (SP 2015), pages 591–604,
San Jose, CA, May 2015.

[40] S. Jin, J. Ahn, S. Cha, and J. Huh. Architectural Support
for Secure Virtualization Under a Vulnerable Hypervisor. In
Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-44), pages 272–283,
Porto Alegre, Brazil, Dec. 2011.

[41] R. Jones. Netperf. https://github.com/
HewlettPackard/netperf, June 2018.

[42] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. NoHype:
Virtualized Cloud Infrastructure Without the Virtualization.
In Proceedings of the 37th Annual International Symposium
on Computer Architecture (ISCA 2010), pages 350–361,
Saint-Malo, France, June 2010.

[43] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis. kGuard:
Lightweight Kernel Protection against Return-to-User Attacks.
In Proceedings of the 21st USENIX Security Symposium
(USENIX Security 2012), pages 459–474, Bellevue, WA, Aug.
2012.

[44] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM:
the Linux Virtual Machine Monitor. In In Proceedings of
the 2007 Ottawa Linux Symposium (OLS 2007), Ottawa, ON,
Canada, June 2007.

[45] kokke. kokke/tiny-aes-c: Small portable aes128/192/256 in
c. https://github.com/kokke/tiny-AES-c, 2018.

[46] KVM Contributors. Kernel Samepage Merging.
https://www.linux-kvm.org/page/KSM, July 2015.

[47] KVM Contributors. Tuning KVM. http://www.linux-
kvm.org/page/Tuning_KVM, May 2015.

[48] KVM Contributors. KVM Unit Tests. http://www.linux-
kvm.org/page/KVM-unit-tests, May 2019.

[49] S. Landau. Making Sense from Snowden: What’s Significant
in the NSA Surveillance Revelations. IEEE Security and
Privacy, 11(4):54–63, July 2013.

[50] Let’s Encrypt. Let’s encrypt stats - let’s encrypt.
https://letsencrypt.org/stats/, Apr. 2018.

[51] J. Liedtke. On Micro-kernel Construction. In Proceedings
of the 15th ACM Symposium on Operating Systems Principles
(SOSP 1995), pages 237–250, Copper Mountain, CO, Dec.
1995.

[52] J. Lim, C. Dall, S.-W. Li, J. Nieh, and M. Zyngier. NEVE:
Nested Virtualization Extensions for ARM. In Proceedings
of the 26th ACM Symposium on Operating Systems Principles
(SOSP 2017), pages 201–217, Shanghai, China, Oct. 2017.

[53] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-Level
Cache Side-Channel Attacks Are Practical. In Proceedings of
the 2015 IEEE Symposium on Security and Privacy (SP 2015),
pages 605–622, San Jose, CA, May 2015.

[54] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia. Thwarting
Memory Disclosure with Efficient Hypervisor-enforced
Intra-domain Isolation. In Proceedings of the 22nd ACM
Conference on Computer and Communications Security (CCS
2015), pages 1607–1619, Denver, CO, Oct. 2015.

[55] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig. TrustVisor: Efficient TCB Reduction and Attestation.
In Proceedings of the 2010 IEEE Symposium on Security and

Privacy (SP 2010), pages 143–158, Oakland, CA, May 2010.
[56] Microsoft. Hyper-V Technology Overview. https:

//docs.microsoft.com/en-us/windows-server/
virtualization/hyper-v/hyper-v-technology-
overview, Nov. 2016.

[57] Microsoft. BitLocker. https://docs.microsoft.com/en-
us/windows/security/information-protection/
bitlocker/bitlocker-overview, Jan. 2018.

[58] Microsoft Azure. Key Vault - Microsoft Azure. https:
//azure.microsoft.com/en-in/services/key-vault/,
May 2019.

[59] D. G. Murray, G. Milos, and S. Hand. Improving Xen
Security Through Disaggregation. In Proceedings of the 4th
ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE 2008), pages 151–160, Seattle,
WA, Mar. 2008.

[60] A. Nguyen, H. Raj, S. Rayanchu, S. Saroiu, and A. Wolman.
Delusional Boot: Securing Hypervisors Without Massive
Re-engineering. In Proceedings of the 7th ACM European
Conference on Computer Systems (EuroSys 2012), pages
141–154, Bern, Switzerland, Apr. 2012.

[61] OP-TEE. Open Portable Trusted Execution Environment.
https://www.op-tee.org/, 2017.

[62] orlp. Ed25519. https://github.com/orlp/ed25519,
2017.

[63] Reuters. Cloud companies consider Intel rivals after the
discovery of microchip security flaws. https://www.cnbc.
com/2018/01/10/cloud-companies-consider-intel-
rivals-after-security-flaws-found.html, Jan. 2018.

[64] R. Riley, X. Jiang, and D. Xu. Guest-Transparent Prevention
of Kernel Rootkits with VMM-Based Memory Shadowing. In
Proceedings of the 11th International Symposium on Recent
Advances in Intrusion Detection (RAID 2008), pages 1–20,
Cambridge, MA, Sept. 2008.

[65] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
You, Get off of My Cloud: Exploring Information Leakage
in Third-party Compute Clouds. In Proceedings of the 16th
ACM Conference on Computer and Communications Security
(CCS 2009), pages 199–212, Chicago, IL, Nov. 2009.

[66] R. Russell. Hackbench. http://people.redhat.com/
mingo/cfs-scheduler/tools/hackbench.c, Jan. 2008.

[67] R. Russell. virtio: Towards a De-Facto Standard for Virtual I/O
Devices. SIGOPS Operating Systems Review, 42(5):95–103,
July 2008.

[68] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end
Arguments in System Design. ACM Transactions on Computer
Systems (TOCS), 2(4):277–288, Nov. 1984.

[69] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A
Tiny Hypervisor to Provide Lifetime Kernel Code Integrity
for Commodity OSes. In Proceedings of 21st ACM SIGOPS
Symposium on Operating Systems Principles (SOSP 2007),
pages 335–350, Stevenson, WA, Oct. 2007.

[70] L. Shi, Y. Wu, Y. Xia, N. Dautenhahn, H. Chen, B. Zang, and
J. Li. Deconstructing Xen. In 24th Annual Network and
Distributed System Security Symposium (NDSS 2017), San
Diego, CA, Feb. 2017.

[71] M.-W. Shih, M. Kumar, T. Kim, and A. Gavrilovska. S-NFV:

USENIX Association 28th USENIX Security Symposium 1373

https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
https://github.com/kokke/tiny-AES-c
https://www.linux-kvm.org/page/KSM
http://www.linux-kvm.org/page/Tuning_KVM
http://www.linux-kvm.org/page/Tuning_KVM
http://www.linux-kvm.org/page/KVM-unit-tests
http://www.linux-kvm.org/page/KVM-unit-tests
https://letsencrypt.org/stats/
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://azure.microsoft.com/en-in/services/key-vault/
https://azure.microsoft.com/en-in/services/key-vault/
https://www.op-tee.org/
https://github.com/orlp/ed25519
https://www.cnbc.com/2018/01/10/cloud-companies-consider-intel-rivals-after-security-flaws-found.html
https://www.cnbc.com/2018/01/10/cloud-companies-consider-intel-rivals-after-security-flaws-found.html
https://www.cnbc.com/2018/01/10/cloud-companies-consider-intel-rivals-after-security-flaws-found.html
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c

Securing NFV States by Using SGX. In Proceedings of the
2016 ACM International Workshop on Security in Software De-
fined Networks & Network Function Virtualization (SDN-NFV
Security 2016), pages 45–48, New Orleans, LA, Mar. 2016.

[72] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa,
T. Horie, M. Hirano, K. Kourai, Y. Oyama, E. Kawai, K. Kono,
S. Chiba, Y. Shinjo, and K. Kato. BitVisor: A Thin Hypervisor
for Enforcing I/O Device Security. In Proceedings of the
2009 ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE 2009), pages 121–130,
Washington, DC, Mar. 2009.

[73] Siemens. jailhouse - Linux-based partitioning hypervisor.
https://github.com/siemens/jailhouse, May 2019.

[74] U. Steinberg and B. Kauer. NOVA: A Microhypervisor-based
Secure Virtualization Architecture. In Proceedings of the 5th
European Conference on Computer Systems (EuroSys 2010),
pages 209–222, Paris, France, Apr. 2010.

[75] P. Stewin and I. Bystrov. Understanding DMA Malware. In
Proceedings of the 9th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA
2012), pages 21–41, Heraklion, Crete, Greece, July 2013.

[76] R. Strackx and F. Piessens. Fides: Selectively Hardening
Software Application Components Against Kernel-level or
Process-level Malware. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security (CCS
2012), pages 2–13, Raleigh, NC, Oct. 2012.

[77] SUSE. Performance Implications of Cache Modes.
https://www.suse.com/documentation/sles11/book_
kvm/data/sect1_3_chapter_book_kvm.html, Sept. 2016.

[78] J. Szefer and R. B. Lee. Architectural Support for Hypervisor-
secure Virtualization. In Proceedings of the 17th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2012), pages
437–450, London, England, UK, Mar. 2012.

[79] R. Ta-Min, L. Litty, and D. Lie. Splitting Interfaces: Making
Trust Between Applications and Operating Systems Config-
urable. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI 2006), pages
279–292, Seattle, WA, Nov. 2006.

[80] The Apache Software Foundation. ab - Apache HTTP server
benchmarking tool. http://httpd.apache.org/docs/2.
4/programs/ab.html, Apr. 2015.

[81] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and
A. Datta. Design, Implementation and Verification of an eXten-
sible and Modular Hypervisor Framework. In Proceedings of
the 2013 IEEE Symposium on Security and Privacy (SP 2013),
pages 430–444, San Francisco, CA, May 2013.

[82] C. A. Waldspurger. Memory Resource Management in
VMware ESX Server. In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation (OSDI 2002),
pages 181–194, Boston, MA, Dec. 2002.

[83] X. Wang, Y. Chen, Z. Wang, Y. Qi, and Y. Zhou. Secpod: A
Framework for Virtualization-based Security Systems. In
Proceedings of the 2015 USENIX Annual Technical Conference
(USENIX ATC 2015), pages 347–360, Santa Clara, CA, July
2015.

[84] Z. Wang and X. Jiang. HyperSafe: A Lightweight Approach
to Provide Lifetime Hypervisor Control-Flow Integrity. In

Proceedings of the 2010 IEEE Symposium on Security and
Privacy (SP 2010), pages 380–395, Oakland, CA, May 2010.

[85] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering Kernel
Rootkits with Lightweight Hook Protection. In Proceedings of
the 16th ACM Conference on Computer and Communications
Security (CCS 2009), pages 545–554, Chicago, IL, Nov. 2009.

[86] Z. Wang, C. Wu, M. Grace, and X. Jiang. Isolating Commodity
Hosted Hypervisors with HyperLock. In Proceedings of the
7th ACM European Conference on Computer Systems (EuroSys
2012), pages 127–140, Bern, Switzerland, Apr. 2012.

[87] C. Williams. Microsoft: Can’t wait for ARM to power
MOST of our cloud data centers! Take that, Intel! Ha!
Ha! https://www.theregister.co.uk/2017/03/09/
microsoft_arm_server_followup/, Mar. 2017.

[88] C. Wu, Z. Wang, and X. Jiang. Taming Hosted Hypervisors
with (Mostly) Deprivileged Execution. In 20th Annual
Network and Distributed System Security Symposium (NDSS
2013), San Diego, CA, Feb. 2013.

[89] Y. Wu, Y. Liu, R. Liu, H. Chen, B. Zang, and H. Guan. Compre-
hensive VM Protection Against Untrusted Hypervisor Through
Retrofitted AMD Memory Encryption. In 2018 IEEE Interna-
tional Symposium on High Performance Computer Architecture
(HPCA 2018), pages 441–453, Vienna, Austria, Feb. 2018.

[90] Y. Xia, Y. Liu, and H. Chen. Architecture Support for
Guest-transparent VM Protection from Untrusted Hypervisor
and Physical Attacks. In Proceedings of the 2013 IEEE 19th
International Symposium on High Performance Computer
Architecture (HPCA 2013), pages 246–257, Shenzhen, China,
Feb. 2013.

[91] J. Yang and K. G. Shin. Using Hypervisor to Provide Data
Secrecy for User Applications on a Per-page Basis. In
Proceedings of the 4th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE 2008),
pages 71–80, Seattle, WA, Mar. 2008.

[92] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor:
Retrofitting Protection of Virtual Machines in Multi-tenant
Cloud with Nested Virtualization. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP
2011), pages 203–216, Cascais, Portugal, Oct. 2011.

[93] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-VM
Side Channels and Their Use to Extract Private Keys. In
Proceedings of the 2012 ACM Conference on Computer
and Communications Security (CCS 2012), pages 305–316,
Raleigh, NC, Oct. 2012.

[94] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-
Tenant Side-Channel Attacks in Paas Clouds. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS 2014), pages 990–1003, Nov. 2014.

[95] Z. Zhou, M. Yu, and V. D. Gligor. Dancing with Giants:
Wimpy Kernels for On-Demand Isolated I/O. In Proceedings
of the 2014 IEEE Symposium on Security and Privacy (SP
2014), pages 308–323, San Jose, CA, May 2014.

[96] M. Zhu, B. Tu, W. Wei, and D. Meng. HA-VMSI: A
Lightweight Virtual Machine Isolation Approach with
Commodity Hardware for ARM. In Proceedings of the 13th
ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE 2017), pages 242–256, Xi’an,
China, Apr. 2017.

1374 28th USENIX Security Symposium USENIX Association

https://github.com/siemens/jailhouse
https://www.suse.com/documentation/sles11/book_kvm/data/sect1_3_chapter_book_kvm.html
https://www.suse.com/documentation/sles11/book_kvm/data/sect1_3_chapter_book_kvm.html
http://httpd.apache.org/docs/2.4/programs/ab.html
http://httpd.apache.org/docs/2.4/programs/ab.html
https://www.theregister.co.uk/2017/03/09/microsoft_arm_server_followup/
https://www.theregister.co.uk/2017/03/09/microsoft_arm_server_followup/

	Introduction
	Assumptions and Threat Model
	Design
	Boot and Initialization
	CPU
	Memory
	Interrupts
	Input/Output

	Implementation
	Security Analysis
	Experimental Results
	Microbenchmark Results
	Application Workload Results
	TCB Implementation Complexity
	Evaluation of Practical Attacks

	Related Work
	Conclusions

