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Abstract

Mix networks are a key technology to achieve network
anonymity and private messaging, voting and database
lookups. However, simple mix network designs are vulner-
able to malicious mixes, which may drop or delay packets
to facilitate traffic analysis attacks. Mix networks with prov-
able robustness address this drawback through complex and
expensive proofs of correct shuffling but come at a great cost
and make limiting or unrealistic systems assumptions. We
present Miranda, an efficient mix-net design, which miti-
gates active attacks by malicious mixes. Miranda uses both
the detection of corrupt mixes, as well as detection of faults
related to a pair of mixes, without detection of the faulty
one among the two. Each active attack – including dropping
packets – leads to reduced connectivity for corrupt mixes and
reduces their ability to attack, and, eventually, to detection of
corrupt mixes. We show, through experiments, the effective-
ness of Miranda, by demonstrating how malicious mixes are
detected and that attacks are neutralized early.

1 Introduction

The increasing number of bombshell stories [27, 19, 10] re-
grading mass electronic surveillance and illicit harvesting of
personal data against both ordinary citizens and high-ranking
officials, resulted in a surge of anonymous and private com-
munication tools. The increasing awareness of the fact that
our daily online activities lack privacy, persuades many In-
ternet users to turn to encryption and anonymity systems
which protect the confidentiality and privacy of their com-
munication. For example, services like WhatsApp and Sig-
nal, which offer protection of messages through end-to-end
encryption, gained popularity over the past years. However,
such encryption hides only the content but not the meta-
data of the message, which carries a great deal of privacy-
sensitive information. Such information can be exploited to
infer who is communicating with whom, how often and at
what times. In contrast, the circuit-based onion routing Tor

network is an example of anonymity systems that protect the
meta-data. Tor is currently the most popular system offering
anonymity, attracting almost 2 million users daily. However,
as research has shown [47, 40, 42, 41], Tor offers limited
security guarantees against traffic analysis.

The need for strong anonymity systems resulted in re-
newed interest in onion mixnets [12]. In an onion mixnet,
sender encrypts a message multiple times, using the public
keys of the destination and of multiple mixes. Onion mixnets
are an established method for providing provable protec-
tion against meta-data leakage in the presence of a powerful
eavesdropper, with low computational overhead. Early mix-
nets suffered from poor scalability, prohibitive latency and/or
low reliability, making them unsuitable for many practical
applications. However, recently, researchers have made sig-
nificant progress in designing mixnets for high and low la-
tency communication with improved scalability and perfor-
mance overhead [44, 48, 13]. This progress is also visible in
the industrial sector, with the founding of companies whose
goal is to commercialise such systems [1, 2].

Onion mixnets offer strong anonymity against passive ad-
versaries: a single honest mix in a cascade is enough to en-
sure anonymity. However, known mixnet designs are not ro-
bust against active long-term traffic analysis attacks, involv-
ing dropping or delaying packets by malicious mixes. Such
attacks have severe repercussions for privacy and efficiency
of mix networks. For example, a disclosure attack in which a
rogue mix strategically drops packets from a specific sender
allows the attacker to infer with whom the sender is commu-
nicating, by observing which recipient received fewer pack-
ets than expected [4]. Similarly, Denial-of-Service (DoS)
attacks can be used to enhance de-anonymization [9], and
(n−1) attacks allow to track packets over honest mixes [45].

It is challenging to identify and penalize malicious mixes
while retaining strong anonymity and high efficiency. Trivial
strategies for detecting malicious mixes are fragile and may
become vectors for attacks. Rogue mixes can either hide
their involvement or worse, make it seem like honest mixes
are unreliable, which leads to their exclusion from the net-
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work. Several approaches to the problem of active attacks
and reliability were studied, however, they have significant
shortcomings, which we discuss in Section 8.

In this work, we revisit the problem of making decryption
mix networks robust to malicious mixes performing active
attacks. We propose Miranda1, an efficient reputation-based
design, that detects and isolates active malicious mixes. We
present security arguments that demonstrate the effective-
ness of Miranda against active attacks. The architectural
building blocks behind Miranda have been studied by pre-
vious research, but we combine them with a novel approach
which takes advantage of detecting failure of inter-mix links,
used to isolate and disconnect corrupt mixes, in addition to
direct detection of corrupt mixes. This allows Miranda to
mitigate corrupt mixes, without requiring expensive compu-
tations.

Miranda disconnects corrupt mixes by carefully gathering
evidence of their misbehavior, resulting in the removal of
links which are misused by the adversary. The design in-
cludes a set of secure and decentralized mix directory au-
thorities that select and distribute mix cascades once every
epoch, based on the gathered evidence of the faulty links
between mixes. Repeated misbehaviors result in the com-
plete exclusion of the misbehaving mixes from the system
(see Figure 1).

We believe that Miranda is an important step toward a de-
ployable, practical strong-anonymity system. However, Mi-
randa design makes several significant simplifying assump-
tions. These include (1) a fixed set of mixes (no churn), (2)
a majority of benign mixes (no Sybil), (3) reliable commu-
nication and efficient processing (even during DoS), and (4)
synchronized clocks. Future work should investigate, and
hopefully overcome, these challenges; see Section 9.

Contributions. Our paper makes the following contribu-
tions:
• We present Miranda, an efficient, low-cost and scalable

novel design that detects and mitigates active attacks. To
protect against such attacks, we leverage reputation and
local reports of faults. The Miranda design can be inte-
grated with other mix networks and anonymous commu-
nication designs.

• We propose an encoding for secure loop messages, that
may be used to securely test the network for dropping at-
tacks – extending traditional mix packet formats for veri-
fiability.

• We show how Miranda can take advantage of techniques
like community detection in a novel way, which further
improves its effectiveness.

• We analyze the security properties of Miranda against a
wide range of attacks.

1“Miranda warning” is the warning used by the US police, in order to
notify people about their rights before questioning them. Since Miranda
prevents adversaries from silently (but actively) attacking the mix network,
we refer to it as no right to remain silent.

Overview. The rest of this paper is organized as follows. In
Section 2, we discuss the motivation behind our work, and
define the threat model and security goals. In Section 3, we
present important concepts of Miranda. In Sections 4 and 5,
we detail the core protocols of Miranda, which detect and
penalize active attacks. In Section 6, we present improved,
community-based detection of malicious mixes. In Section 7,
we evaluate the security properties of Miranda against active
attacks. In Section 8, we contrast our design to related work.
Finally, we discuss future work in Section 9 and conclude in
Section 10.

2 The Big Picture

In this section, we outline the general model of the Miranda
design, define the threat model, and motivate our work by
quantifying how active attacks threaten anonymity in mix
networks. Then, we summarize the security goals of Mi-
randa.

2.1 General System Model

We consider an anonymous communication system consist-
ing of a set of users communicating over the decryption mix
network [12] operating in synchronous batches, denoted as
rounds. Depending on the path constraints, the topology may
be arranged in separate cascades or a Stratified network [21].
We denote byM the set of all mixes building the anonymous
network. For simplicity, in this work we assume that the set
of mixesM is fixed (no churn). See discussion in Section 9
of this and other practical challenges.

Messages are end-to-end layer encrypted into a crypto-
graphic packet format by the sender, and the recipient per-
forms the last stage of decryption. Mixes receive packets
within a particular round, denoted by r. Each mix decodes
a successive layer of encoding and shuffles all packets ran-
domly. At the end of the round, each mix forwards all pack-
ets to their next hops. Changing the binary pattern of packets
by removing a single layer of encryption prevents bit-wise
correlation between incoming and outgoing packets. More-
over, mixing protects against an external observer, by obfus-
cating the link between incoming and outgoing packets.

Message packet format. In this paper, we use the Sphinx
cryptographic packet format [15]. However, other packet
formats can be used, as long as they fulfill certain proper-
ties. The messages encoded should be of constant length
and indistinguishable from each other at any stage in the
network. Moreover, the encryption should guarantee du-
plicates detection, and eliminate tampered messages (tag-
ging attacks). The packet format should also allow senders
to encode arbitrary routing information for mixes or re-
cipients. We denote the result of encoding a message as
Pack(path, routingInfo, rnd, recipient,message), where rnd
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(a) Connectivity graph in the beginning. All
mixes are willing to communicate with each other.

(b) Miranda detects active attacks and removes the links
between the honest and dishonest nodes (Section 4.3).

(c) Miranda applies community detection (Section 6)
to further detect dishonest nodes and disconnect them
from the honest nodes.

Figure 1: High-level overview of the process of isolating malicious mixes in Miranda.

denotes a random string of bits used by the packet format.

2.2 Threat Model
We consider an adversary whose goal is to de-anonymize
packets traveling through the mix network. Our adversary
acts as a global observer, who can eavesdrop on all traffic ex-
changed among the entities in the network, and also, knows
the rate of messages that Alice sends/receives 2. Moreover,
all malicious entities in the system collude with the adver-
sary, giving access to their internal states and keys. The ad-
versary may control many participating entities, but we as-
sume a majority of honest mixes and directory servers (used
for management, see Section 3). We allow arbitrary number
of malicious clients but assume that there are (also) many
honest clients - enough to ensure that any first-mix in a cas-
cade, will receive a ‘sufficient’ number of messages in most
rounds - say, 2ω , where ω is sufficient to ensure reasonable
anonymity, for one or few rounds.

In addition, Miranda assumes reliable communication be-
tween any pair of honest participants, and ignores the time
required for computations - hence, also any potential for
Miranda-related DoS. In particular, we assume that the
adversary cannot arbitrarily drop packets between honest
parties nor delay them for longer than a maximal period.
This restricted network adversary is weaker than the stan-
dard Dolev-Yao model, and in line with more contempo-
rary works such as XFT [35] that assumes honest nodes can
eventually communicate synchronously. It allows more effi-
cient Byzantine fault tolerance schemes, such as the one we
present. In practice, communication failures will occur; see
discussion in Section 9 of this and other practical challenges.

We denote by n the total number of mixes in the network
(|M| = n), nm of which are malicious and nh are honest
(n = nm +nh). We refer to cascades where all mixes are ma-
licious as fully malicious. Similarly, as fully honest we refer
to cascades where all nodes are honest, and semi-honest to

2We emphasize that this is a non-trivial adversarial advantage. In reality,
the adversary might not know Alice’s rate, and therefore might be more
limited regarding de-anonymization attacks.

the ones where only some of the mixes are honest. A link
between an honest mix and a malicious mix is referred to as
a semi-honest link.

2.3 What is the Impact of Active Attacks on
Anonymity?

Active attacks, like dropping messages, can result in a catas-
trophic advantage gained by the adversary in linking the
communicating parties. To quantify the advantage, we de-
fined a security game, followed by a qualitative and compos-
able measure of security against dropping attacks. To our
knowledge, this is the first analysis of such attacks and we
provide full details in [34]. Our results support the find-
ings of previous works on statistical disclosure attacks [4]
and DoS-based attacks [9], arguing that the traffic analy-
sis advantage gained from dropping messages is significant.
We found that the information leakage for realistic volumes
of traffic (10–100 messages per round) is quite significant:
the adversary can improve de-anonymization by about 20%.
For larger traffic rates (more than 1000 messages per round)
the leakage drops but expecting each client to receive over
1000 messages per round on average seems unrealistic, un-
less large volumes of synthetic cover traffic is used. The
lesson drawn from our analysis and previous studies is clear:
it is crucial to design a mechanism to detect malicious nodes
and remove them from the system after no more than a few
active attacks. The Miranda design achieves this goal.

2.4 Security Goals of Miranda

The main goal of a mix network is to hide the correspon-
dence between senders and recipients of the messages in the
network. More precisely, although the communication is
over cascades that might contain malicious mixes, the Mi-
randa design aims to provide protection which is indistin-
guishable from the protection provided by an ‘ideal mix’, i.e.,
a single mix node which is known to be honest.
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The key goals of Miranda relate to alleviating and discour-
aging active attacks on mix networks, as they have a signifi-
cant impact on the anonymity through traffic analysis. This is
achieved through the detection and exclusion of misbehaving
mixes. The Miranda design offers the following protections
against active attacks:
Detection of malicious nodes. Every active attack by a cor-
rupt mix is detected with non-negligible probability, by at
least one entity.
Separation of malicious nodes. Every active attack by a
rogue mix results, with a non-negligible probability, in the
removal of at least one link connected to the rogue mix - or
even removal of the rogue mix itself.
Reducing attacks impact over multiple epochs. Repeated
application of Miranda lowers the overall prevalence and im-
pact of active attacks by corrupt mixes across epochs, limit-
ing the ability of the adversary to drop or delay packets.

3 Rounds, Epochs and Directories

In Miranda, as in other synchronous mixnet designs, time is
broken into rounds, and in each round, a mix ‘handles’ all
messages received in the previous round. However, a more
unique element of Miranda is that rounds are collected into
epochs. Epochs are used to manage Miranda; the beginning
of each epoch includes announcement of the set of cascades
to be used in this epoch, after a selection process that in-
volves avoidance of mixes detected as corrupt - and of links
between two mixes, where one or both of the mixes reported
a problem.

The process of selecting the set of cascades for each
epoch, is called the inter-epoch process, and is performed
by a set of d servers refered to as directory authorities, fol-
lowing [14], which maintain a list of available mixes and
links between them. We assume that a number dm of au-
thorities can be malicious and collude with the adversary or
deviate from the protocol, in order to break the security prop-
erties. By dh we denote the number of honest authorities
(d = dm +dh), which follow the protocol truthfully.

During each epoch, there are multiple rounds where users
communicate over the mix network. Both users and mixes
report any misbehavior they encounter to the directory au-
thorities. The directory authorities process these reports,
and, before the beginning of a new epoch, they select a set
of cascades available in that epoch. The newly generated
cascades will reflect all reported misbehaviors. Namely, cas-
cades exclude links that were reported, or mixes involved
in too many reports, or detected via Miranda’s community-
based attacker detection mechanisms, described in Section 6.

We denote the number of reports which marks a mix as
dishonest and causes its exclusion from the network as thresh
and emphasize that thresh is cumulative over rounds and
even epochs. In this paper, we simply use thresh = nm + 1,
which suffices to ensure that malicious mixes cannot cause

Miranda to exclude honest mixes. However, we find it use-
ful to maintain thresh as a separate value, to allow the use of
larger value for thresh to account for a number of failures of
honest mixes or links between honest mixes, when the Mi-
randa design is adopted by a practical system.

Significant, although not prohibitive, processing and com-
munication is involved in the inter-epoch process; this mo-
tivates the use of longer epochs. On the other hand, during
an entire epoch, we use a fixed set of cascades, which may
reduce due to failures; and clients may not be fully aware of
links and mixes detected as faulty. This motivates the use
of shorter epochs. These considerations would be balanced
by the designers of an anonymous communication system,
as they incorporate the Miranda design.

4 Intra-Epoch Process

In this section, we present the mechanisms that operate dur-
ing an epoch to deter active attacks, including dropping at-
tacks. We start by describing how active attacks are detected
and how this deters malicious behavior. Next, we discuss
nodes who refuse to cooperate.

Note that in this section, as in the entire Miranda design,
we assume reliable communication between any pair of hon-
est participants. As we explain in Subsection 2.2, a practical
system deploying Miranda should use a lower-layer protocol
to deal with (even severe) packet losses, and we developed
such efficient protocol - see [5].

4.1 Message Sending
At the beginning of each epoch, clients acquire the list of all
currently available cascades from the directory authorities.
When Alice wants to send a message, her client filters out
all cascades containing mixes through which she does not
wish to relay messages. We denote the set of cascades se-
lected by Alice as CA. Next, Alice picks a random cascade
from CA, which she uses throughout the whole epoch, and
encapsulates the message into the packet format. For each
mix in the cascade, we include in the routing information
the exact round number during which the mix should receive
the packet and during which it should forward it. Next, the
client sends the encoded packet to the first mix on the cas-
cade. In return, the mix sends back a receipt, acknowledging
the received packet.

4.2 Processing of Received Packets
After receiving a packet, the mix decodes a successive layer
of encoding and verifies the validity of the expected round r
and well-formedness of the packet. At the end of the round,
the mix forwards all valid packets to their next hops. Mi-
randa requires mixes to acknowledge received packets by
sending back receipts. A receipt is a digitally signed [31]
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i+1

i+2

i+3

Client M1 M2 M3

pK

pK
R1

pK
R2

pK
R3

(a) Successful loop packet pk sent during round
i and received during round i+3. Each mix Mi
sends back receipt Ri.

i

i+1

i+2

i+3

i+4

i+5

Client M1 M2 M3 Directory

pK

pK
R1

R2

×××

pK?
pK?

pK?

A1 : R2

⊥ or A2 :not received

A3 :not received

Report: see A1,A2/A3

(b) Example of naive dropping of loop message pk by M2,
which drops pk yet sends back a receipt. Since pk did not
come back the client queries all mixes during round i+5 for
the proof of forwarding. M2 either claims that it did not
receive pk (A2), thus providing the client a proof that
conflicts with the receipt R2, or M2 does not cooperate (⊥).
In both cases the directory authority verifies received Ai’s
and excludes malicious M2.

i

i+1

i+2

i+3

i+4

i+5

Client M1 M2 M3 Directory

pK

pK
R1

Report: M1 disconnecting M2

σ : proof of report

pK?
pK?

pK?

A1 : σ

A2 :not received

A3 :not received

(c) Loop packet fails to complete the loop due to
non-responding mix. M1 did not receive receipt from M2 on
round i+2 and issues a disconnection in round i+3. The
client performs the query phase on round i+5 and receives the
proof of disconnection. The result: M2 failed to send a receipt
to M1, and thus lost the link to it.

Figure 2: A diagram illustrating loop packets and isolation process. We denote receipt from mix Mi as Ri, and the response as
Ai. Note that both in (b) and (c) the entire query and report phases occur during round i+5, but it could also be spanned across
several rounds, as long as it has a bounded time-frame. For example, if desired, answering the query for pk could be done in
round i+6 instead of limiting it to the same round.

statement confirming that a packet p was received by mix
Mi. Receipts must be sent and received by the preceding mix
within the same round in which packet p was sent.

Generating receipts. For simplicity, we denote a receipt for
a single packet p as receipt← Sign(p || receivedFlag = 1),
where Sign(·) is a secure digital signature algorithm, and
Verify(·) is its matching verification function3. However,
generating receipts for each packet individually incurs a high
computational overhead due to costly public key signature
and verification operations.

To reduce this overhead, mixes gather all the packets they
received during round r in Merkle trees [37] and sign the
root of the tree once. Clients’ packets are grouped in a single
Merkle tree TC and packets from mix Mi are grouped in a
Merkle tree TMi . Mixes then generate two types of receipts:
(1) receipts for clients and (2) aggregated receipts for mixes.
Each client receives a receipt for each message she sends.
Client receipts are of the form: receipt= (σC,Γp, r), where:
σC is the signed root of TC, Γp is the appropriate informa-
tion needed to verify that packet p appears in TC, and r is
the round number. Similarly, each mix, except the last one,
receives a receipt in response to all the packets it forwarded

3Although Sign and Verify use the relevant cryptographic keys, we
abuse notations and for simplicity write them without the keys.

in the last round. However, unlike client receipts, mixes ex-
pect back a single aggregated receipt for all the packets they
sent to a specific mix. An aggregated receipt is in the form
of: receipt = (σi, r), where: σi denotes the signed root of
TMi and r is the round number. Since mixes know which
packets they forwarded to a particular mix, they can recreate
the Merkle tree and verify the correctness of the signed tree
root using a single receipt. Once a mix sent an aggregated
receipt, it expects back a signed confirmation on that aggre-
gated receipt, attesting that it was delivered correctly. Mixes
record the receipts and confirmations to prove later that they
behaved honestly in the mixing operation.

Lack of a receipt. If a mix does not receive an aggregated
receipt or does not receive a signed confirmation on an ag-
gregated receipt it sent within the expected time slot4, the
mix disconnects from the misbehaving mix. The honest mix
detaches from the faulty mix by informing the directory au-
thorities about the disconnection through a signed link dis-
connection receipt. Note, that the directories cannot identify
which of the disconnecting mixes is the faulty one merely
based on this message, because the mix who sent the com-
plaint might be the faulty one trying to discredit the hon-

4Recall that we operate in a synchronous setting, where we can bound
the delay of an acknowledgement.
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est one. Therefore, the directory authorities only disconnect
the link between the two mixes. The idea of disconnecting
links was earlier investigated in various Byzantine agreement
works [23], however, to our knowledge this approach was not
yet applied to the problem of mix network reliability.
Anonymity loves company. Note, however, that this design
may fail even against an attacker who does not control any
mix, if a cascade receives less than the minimal anonymity
set size ω . We could ignore this as a very unlikely event,
however, Miranda ensures anonymity also in this case - when
the first mix is honest. Namely, if the first mix receives less
than ω messages in a round, it would not forward any of
them and respond with a special ‘under-ω receipt’ explaining
this failure. To prevent potential abuse of this mechanism
by a corrupt first mix, which receives over ω messages yet
responds with under-ω receipt, these receipts are shared with
the directories, allowing them to detect such attacks.

4.3 Loop Messages: Detect Stealthy Attacks
In a stealthy active attack, a mix drops a message - yet sends
a receipt as if it forwarded the message. To deter such at-
tacks, clients periodically, yet randomly, send loop messages
to themselves. In order to construct a loop message, the
sender S, chooses a unique random bit-string KS. Loop mes-
sages are encoded in the same manner as regular messages
and sent through the same cascade C selected for the epoch,
making them indistinguishable from other messages at any
stage of their routing. The loop message is encapsulated into
the packet format as follows:

pK← Pack(path= C, routingInfo= routing, rnd= H(KS)

recipient= S,message= “loop”)

The tuple (S,KS,C, routing) acts as the opening value, which
allows recomputing pK as well as all its intermediate states
piK that mix Mi should receive and emit. Therefore, reveal-
ing the opening value convinces everyone that a particular
packet was indeed a loop message and that its integrity was
preserved throughout its processing by all mixes. Moreover,
the construction of the opening value ensures that only the
creator of the loop packet can provide a valid opening value,
and no third party can forge one. Similarly, nobody can re-
produce an opening value that is valid for a non-loop packet
created by an honest sender.

If a loop message fails to complete the loop back, this
means that one of the cascade’s mixes misbehaved. The
sender S queries all the mixes in the cascade for evidence
whether they have received, processed and forwarded the
loop packet. This allows S to isolate the cascade’s problem-
atic link or misbehaving mix which caused the packet to be
dropped. S then reports the isolated link or mix to the di-
rectory authorities and receives a signed confirmation on her
report. This confirmation states that the link will no longer
be used to construct future cascades. We detail the querying

and isolation process in Section 4.3.2.

4.3.1 When to send loop messages?

The sending of loop messages is determined according to α ,
which is the required expected probability of detection - a
parameter to be decided by the system designers. Namely,
for every message, there is a fraction α chance of it being a
loop message. To achieve that, if Alice sends β messages in
round r, then d α·β

1−α
e additional loop messages are sent along-

side the genuine messages.
This may seem to only ensure α in the context of the mes-

sages that Alice sends but not against an attack on messages
sent to Alice. However, notice that if a corrupt mix Mi drops
messages sent to Alice by an honest sender Bob, then Mi
faces the same risk of detection - by Bob.

If Alice can sample and estimate an upper bound γ on
the number of messages that she will receive in a particu-
lar round, then she can apply additional defense. Let x be the
number of rounds that it takes for a loop message to come
back, and let r denote the current round. Let’s assume that
Alice knows bound γ on the maximal number of messages
from honest senders, that she will receive in round r+ x.
Then, to detect a mix dropping messages sent to her with
probability α , it suffices for Alice to send d α·γ

1−α
e loop mes-

sages in round r. More precisely, given that Alice sends β

messages in round r, in order for the loop messages to pro-
tect both messages sent in that round and messages received
in round r+x she should send dα·max(β ,γ)

1−α
e loop messages in

round r.

Within-round timing. If the Miranda senders would send
each message immediately after receiving the message from
the application, this may allow a corrupt first mix to dis-
tinguish between a loop message and a ‘regular’ message.
Namely, this would occur if the attacker knows the exact time
at which the application calls the ‘send’ function of Miranda
to send the message. To foil this threat, in Miranda, mes-
sages are always sent only during the round following their
receipt from the application, and after being shuffled with all
the other messages to be sent during this round.

4.3.2 Isolating corrupt mixes with loop messages

Since clients are both the generators and recipients of the
attack-detecting loop messages, they know exactly during
which round r the loop should arrive back. Therefore, if a
loop message fails to complete the loop back to the sender
as expected, the client initiates an isolation process, during
which it detects and isolates the specific problematic node
or link in the cascade. The isolation process starts with the
client querying each of the mixes on the cascade to estab-
lish whether they received and correctly forwarded the loop
packet. During the querying phase, the client first reveals
to the respective mixes the packet’s opening value, in order
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to prove that it was indeed a loop packet. Next, the client
queries the mixes for the receipts they received after they de-
livered that packet. When clients detect a problematic link or
the misbehaving mix, they report it to the directory author-
ities, along with the necessary proofs that support its claim.
This is in fact a broadcasting task in the context of the well-
known reliable broadcast problem and can be solved accord-
ingly [36]. Each directory authority that receives the report
verifies its validity, and if it is correct, stores the informa-
tion to be used in future cascade generation processes. Then,
the client chooses another cascade from the set of available
cascades and sends future packets and loop messages using
the new route. For an illustration of loop packets and the
isolation process, see Figure 2.

When a client asks an honest mix to prove that it received
and correctly forwarded a packet, the mix presents the rele-
vant receipt. However, if a mix did not receive this packet,
it attests to that by returning an appropriate signed response
to the client. If a loop message did not complete the loop
because a malicious mix dropped it and did not send a re-
ceipt back, the honest preceding mix would have already dis-
connected from the misbehaving mix. Thus, the honest mix
can present the appropriate disconnection receipt it received
from the directory authorities as an explanation for why the
message was not forwarded (see Figure 2c).

The malicious mix can attempt the following actions, in
order to perform an active attack.

Naive dropping. A mix which simply drops a loop packet
after sending a receipt to the previous mix can be detected as
malicious beyond doubt. When the client that originated the
dropped loop packet queries the preceding mix, it presents
the receipt received from the malicious mix, proving that the
packet was delivered correctly to the malicious node. How-
ever, the malicious mix is unable to produce a similar receipt,
showing that the packet was received by the subsequent mix,
or a receipt from the directories proving that it reported dis-
connection from the subsequent mix. The malicious mix
may simply not respond at all to the query. However, the
client will still report to the directories, along with the proofs
from the previous and following mixes, allowing the direc-
tories to resolve the incident (contacting the suspected mix
themselves to avoid any possible ‘framing’) (see Figure 2b).

Blaming the neighbors. Malicious mixes performing active
dropping attacks would prefer to avoid complete exclusion.
One option is to drop the packet, and not send a receipt to
the previous mix. However, this causes the preceding mix to
disconnect from the malicious one at the end.

Alternatively, the corrupt mix may drop the packet after
it generates an appropriate receipt. To avoid the risk of its
detection as a corrupt mix, which would happen if it was
a loop message, the corrupt mix may disconnect from the
subsequent mix - again losing a link. Therefore, a corrupt
mix that drops a packet either loses a link, or risks being

exposed (by loop message) and removed from the network.

Delaying packets. A malicious mix can also delay a packet
instead of dropping it, so that the honest subsequent mix will
drop that packet. However, the honest subsequent mix still
sends a receipt back for that packet, which the malicious mix
should acknowledge. If the malicious mix acknowledges the
receipt, the malicious mix is exposed when the client per-
forms the isolation process. The client can obtain a signed
receipt proving that the malicious mix received the packet
on time, and also the acknowledged receipt from the honest
mix that dropped the delayed packet. The latter contains the
round number when the packet was dropped, which proves
the malicious mix delayed the packet and therefore should be
excluded. Otherwise, if the malicious mix refuses to sign the
receipt, the honest mix disconnects from the malicious one.
Therefore, the delaying attack also causes the mix to either
lose a link or to be expelled from the system.

The combination of packet receipts, link disconnection
notices, the isolation process and loop messages, forces ma-
licious mixes to immediately lose links when they perform
active attacks. Failure to respond to the preceding mix or to
record a disconnection notice about the subsequent mix in
a timely manner creates potentially incriminating evidence,
that would lead to a complete exclusion of the mix from
the system. This prevents malicious mixes from silently at-
tacking the system and blaming honest mixes when they are
queried in the isolation mechanism. The mere threat of loop
messages forces malicious mixes to drop a link with an hon-
est mix for each message they wish to suppress, or risk ex-
posure.

4.4 Handling missing receipts

Malicious mixes might attempt to circumvent the protocol
by refusing to cooperate in the isolation procedure. Poten-
tially, this could prevent clients from obtaining the necessary
proofs about problematic links, thus preventing them from
convincing directory authorities about problematic links. If
malicious mixes refuse to cooperate, clients contact a direc-
tory authority and ask it to perform the isolation process on
their behalf. Clients can prove to the directory authorities
that the loop packet was indeed sent to the cascade using the
receipt from the first mix. If all mixes cooperate with the
directory authority, it is able to isolate and disconnect the
problematic link. Otherwise, if malicious mixes do not co-
operate with the directory authority, it excludes those mixes
from the system.

We note that a malicious client may trick the directory au-
thorities into performing the isolation process on its behalf
repeatedly, against honest mixes. In that case, directory au-
thorities conclude that the mix is honest, since the mix can
provide either a receipt for the message forwarded or a dis-
connection notice. However, this is wasteful for both direc-
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tory authorities and mixes. Since clients do not have to be
anonymous vis-a-vis directory authorities, they may record
false reports and eventually exclude abusive clients. Further-
more, the clients have to send proofs from the following mix
of not having received the packet, which cannot be done if
there was no mix failure.

Malicious entry mix. If a first mix does not send a receipt,
the client could have simply chosen another cascade; how-
ever, this allows malicious mixes to divert traffic from cas-
cades which are not fully malicious, without being penal-
ized, increasing the probability that clients would select other
fully malicious cascades instead. To avoid that, in Miranda,
clients force the first mix to provide a receipt, by relaying the
packet via a trusted witness. A witness is just another mix
that relays the packet to the misbehaving first mix. Now, the
misbehaving node can no longer refuse to produce a receipt,
because the packet arrives from a mix, which allows the iso-
lation process to take place. Note that since a witness sends
messages on behalf of clients, the witness relays messages
without the ω constraint (as if it was a client).

If the witness itself is malicious, it may also refuse to pro-
duce a receipt (otherwise, it loses a link). In that case, the
client can simply choose another witness; in fact, if desired,
clients can even send via multiple witnesses concurrently to
reduce this risk - the entry mix can easily detect the ‘dupli-
cate’ and handle only one message. This prevents malicious
mixes from excluding semi-honest cascades without losing
a link. Moreover, although the refused clients cannot prove
to others that they were rejected, they can learn about ma-
licious mixes and can avoid all future cascades that contain
them, including fully malicious cascades, which makes such
attacks imprudent.

5 Inter-Epoch Process

In this section, we discuss the inter-epoch operations, tak-
ing place toward the end of an epoch; upon its termination,
we move to a new epoch. The inter-epoch process selects a
new random set of cascades to be used in the coming epoch,
avoiding the links reported by the mixes, as well as any mixes
detected as corrupt.

Until the inter-epoch terminates and the mixes move to the
new epoch, the mixes continue with the intra-epoch process
as before; the only difference is that newly detected failures,
would be ‘buffered’ and handled only in the following run of
the inter-epoch process, to avoid changing the inputs to the
inter-epoch process after it has begun.

The inter-epoch process consists of the following steps.

5.1 Filtering Faulty Mixes
Directory authorities share amongst themselves the evi-
dences they received and use them to agree on the set of

faulty links and mixes. The evidences consist of the reports
of faulty links from mixes, clients or authorities perform-
ing the isolation process. The directory authorities exchange
all new evidences of faulty links and mixes, i.e., not yet
considered in the previous inter-epoch computation process.
Every directory can validate each evidence it received and
broadcast it to all other directories. Since we assume major-
ity of honest directories and synchronous operation, we can
use known broadcast/consensus protocols, and after a small
number of rounds, all honest directory authorities have ex-
actly the same set of faulty links.

Note, that only links connected to (one or two) faulty
mixes are ever disconnected. Hence, any mix which has
more than thresh links disconnected must be faulty (due to
the assumption that thresh > nm), and hence the directories
exclude that mix completely and immediately. Since the di-
rectory authorities share exactly the same set of faulty links,
it follows that they also agree on exactly the same set of
faulty mixes. We call this exclusion process a simple ma-
licious mix filtering step. In Section 6, we discuss more ad-
vanced filtering techniques, based on community detection.
Simple malicious mix filtering technique. To perform the
simple malicious mix filtering, each directory authority can
build a graph that represents the connectivity between mixes.
Namely, consider an undirected graph G = (V,E) where the
vertices map to the mixes in the system (V =M), and an
edge (Mi,M j) ∈ E means that the link between mixes Mi
and M j was not dropped by either mix. Let G = (V,E) be
the complement graph of G and let DegG(Mi) denote the de-
gree of the vertex Mi in graph G. In the beginning, before
any reports of faults have arrived at the directory authorities,
G is a complete graph and G is an empty graph. As time
goes by, G becomes sparser as a result of the links being
dropped, and proportionally, G becomes more dense. The
filtering mechanism removes all mixes that lost thresh links
or more, i.e., {Mi | ∀Mi ∈ G : DegG(Mi) ≥ thresh}, where
thresh = nm +1. The filtering mechanism checks the degree
DegG(Mi) in graph G, since the degree in G represents how
many links Mi lost. We emphasize that when such malicious
mix is detected and removed, the number of malicious mixes
in the system is decreased by one (nm = nm−1) and propor-
tionally so does thresh (thresh = thresh− 1). As a result,
whenever the mechanism removes a malicious mix it repeats
the mechanism once again, to see whether new malicious
mixes can be detected according to the new thresh value. An
illustration of this process is depicted in Figure 3.

5.2 Cascades Selection Protocol
After all directory authorities have the same view of the
mixes and their links, they select and publish a (single) set of
cascades, to be used by all clients during the coming epoch.
To allow clients to easily confirm that they use the correct set
of cascades, the directory authorities collectively sign the set
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Figure 3: An illustration of the simple malicious mix filtering (without community detection).

that they determined for each epoch, using a threshold signa-
ture scheme [46, 25]. Hence, each client can simply retrieve
the set from any directory authority and validate that it is the
correct set (using a single signature-validation operation).

The cascades selection protocol allows all directory au-
thorities to agree on a random set of cascades for the up-
coming epoch. The input to this protocol, for each directory
authority, includes the set of mixesM, the desired number
of cascades to be generated nc, the length of cascades ` and
the set of faulty links FL ⊂M×M. For simplicity,M, nc
and ` are fixed throughout the execution.

The goal of all directory authorities is to select the same
set of cascades C ⊆M`, where C is uniformly chosen from
all sets of cascades of length `, limited to those which satisfy
the selected legitimate cascade predicates, which define a
set of constraints for building a cascade. In [34], we describe
several possible legitimate cascade predicates, and discuss
their differences.

Given a specific legitimate cascade predicate, the proto-
col selects the same set of cascades for all directory author-
ities, chosen uniformly at random among all cascades sat-
isfying this predicate. This is somewhat challenging, since
sampling is normally a random process, which is unlikely
to result in exactly the same results in all directory author-
ities. One way of ensuring correct sampling and the same
output, is for the set of directories to compute the sampling
process jointly, using a multi-party secure function evalua-
tion process, e.g., [26]. However, this is a computationally-
expensive process, and therefore, we present a much more
efficient alternative. Specifically, all directories run exactly
the same sampling algorithm and for each sampled cascade
validate it using exactly the same legitimate cascade predi-
cate. To ensure that the results obtained by all honest direc-
tory authorities are identical, it remains to ensure that they
use the same random bits as the seed of the algorithm. To
achieve this, while preventing the faulty directory authorities
from biasing the choice of the seed bits, we can use a coin-
tossing protocol, e.g., [7], among the directory authorities5.

5Note, that we only need to generate a small number of bits (security
parameter), from which we can generate as many bits as necessary using a
pseudo-random generator.

6 Community-based Attacker Detection

So far, the discussion focused on the core behaviour of Mi-
randa and presented what Miranda can do and how it is
done. Interestingly, Miranda’s mechanisms open a doorway
for advanced techniques, which can significantly improve the
detection of malicious mixes. In this section, we discuss
several techniques that can leverage Miranda’s faulty links
identification into a powerful tool against malicious adver-
saries. Among others, we use community detection tech-
niques. Community detection has been used in previous
works to achieve Sybil detection based on social or intro-
duction graphs [16, 17]. However, we assume that the prob-
lem of Sybil attacks is solved through other means, such as
admission control or resource constraints. Encouragingly,
many other techniques can be employed; yet, we hope that
the following algorithms will be also useful in other applica-
tions where applicable, e.g., where community detection is
needed.

We begin with the following observation.

Observation 1. For every two mixes Mi,M j that have an
edge in (Mi,M j) ∈ E , at least one of them is a malicious mix.

Observation 1 stems directly from our assumption that
honest mixes never fail. Therefore, a dropped link must
be between either an honest mix and a malicious mix or
between two malicious mixes. Following this observation,
one possible strategy is aggressive pair removal, i.e., remove
both mixes, if one or both of them report failure of the link
connecting them. This strategy seems to provide some bene-
fits - the adversary seems to ‘lose more’, however it comes at
an excess cost of possible exclusion of honest nodes. There-
fore, we focus on less aggressive techniques that exclude ma-
licious mixes without excluding also honest ones.

Threshold Detection Algorithm. Since the aggressive re-
moval of both mixes connected by the failed link from G is
not efficient, we adopt the idea of virtual removal of the con-
flicting pair. By virtually we mean that virtually removed
mixes are not classified as malicious and they are only re-
moved from G for the duration of the algorithm’s execution,
and not from G nor M. We present the Threshold Detec-
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(a) Graph G, the simple malicious
mix filtering technique cannot
detect M2 because
DegG(M2) = 2 < 3 = thresh.

M1

M2
M3

M4

M5

Detected

(b) An execution of the
T hresholdDetection on the same G graph
virtually removes M1 and M5 which
decreases thresh, resulting in
DegG(M2) = 2≥ 2 = thresh and detection
of M2 as a malicious mix.

Figure 4: An illustration of how virtually removing mixes
from G can expose malicious mixes. Algorithm 2 refers to
the graph in 4b as G1, since it is the same graph G as in 4a
but without M1 and without M1’s neighbors.

tion technique in Algorithm 1. The algorithm takes as input
graph G = (V,E), where an edge (Mi,M j) ∈ E represents the
disconnected link between Mi and M j. The algorithm starts
by invoking the SIMPLEMALICIOUSFILTERING procedure
(described in Section 5.1) on the graph G (line 12). Next,
the algorithm invokes the VIRTUALPAIRREMOVAL proce-
dure on G to virtually remove a pair of mixes from G (line
14). Following observation 1, at least one malicious mix was
virtually removed, thus the virtual threshold thresh′ value
is decreased by 1 (line 15). We use the thresh′ variable to
keep track of the virtually removed malicious mixes and the
global thresh value is decreased only when a malicious mix
was actually detected (line 4), and the rest only change the
virtual threshold thresh′. After that, the algorithm invokes
the procedure SIMPLEMALICIOUSFILTERING again on the
updated G graph, i.e., without the pair of mixes that were vir-
tually removed by the VIRTUALPAIRREMOVAL procedure.
The algorithm repeats lines 14-16 as long as there are edges
in G. For an illustration why the T hresholdDetection algo-
rithm is better than the original simple malicious mix filtering
see Figure 4.

We next improve upon the detection of malicious mixes
by the T hresholdDetection algorithm, while still never re-
moving honest mixes. Our improvement is based on Ob-
servation 2 below; but before presenting it, we need some
preliminaries.

We first define a simple notion which can be applied to any
undirected graph. Specifically, let G0 = (V 0,E0) be an arbi-
trary undirected graph. A sequence {G j}µ

j=0 of subgraphs of
G0 is a removal sequence of length µ ≥ 1 of G0, if for every
j : µ ≥ j ≥ 1, G j = G j−1− v j. Namely, G j is the same as
G j−1, except for removal of some node v j ∈G j−1, and of all
edges connected to v j. A removal sequence is legitimate if
every removed node v j has at least one edge.

Let us define the graph Gi to be the resulting graph after
removing from G the node Mi together with all its neighbors,
denoted as N(Mi).

Algorithm 1 T hresholdDetection(G = (V,E))

1: procedure SIMPLEMALICIOUSFILTERING(G, thresh′)
2: for every Mi ∈ G s.t. DegG(Mi)≥ thresh′ do
3: Mi is malicious (remove from G,G,M).
4: thresh← thresh−1
5: thresh′← thresh′−1
6:
7: procedure VIRTUALPAIRREMOVAL(G)
8: Pick an edge (Mi,M j) ∈ E .
9: Remove mixes Mi,M j from G.

10:
11: thresh′← thresh.
12: Invoke SIMPLEMALICIOUSFILTERING(G).
13: while E 6=∅ do
14: Invoke VIRTUALPAIRREMOVAL(G).
15: thresh′← thresh′−1.
16: Invoke SIMPLEMALICIOUSFILTERING(G).

Observation 2. If Gi has a legitimate removal sequence of
length µi, then there are at least µi malicious nodes in Gi.

We use Observation 2 to identify malicious mixes, using
the following claim.

Claim 1. Every node Mi that satisfies DegG(Mi) > nm− µi
is a malicious node.

Proof. Assume to the contrary, that there exists a mix Mi
such that DegG(Mi) > nm − µi but Mi is an honest mix.
Since there are nm malicious mixes in M, and µi of them
are not neighbors of Mi, then the maximum number of ma-
licious mixes that can be also neighbors of Mi is nm − µi,
since Mi is honest. But if DegG(Mi)> nm−µi, then at least
one of the neighbors of Mi is also honest, which contradicts
the assumption that honest links never fail. Therefore, if
DegG(Mi)> nm−µi then Mi must be a malicious mix.

For example, see Figure 4b which depicts the graph G1.
By observing G1, we know that at least one of the mixes
M2,M3 are malicious (since they share an edge), therefore,
µi ≥ 1 since we successfully identified a malicious mix
which is not in {M1 ∪N(M1)}. Alternatively, the same ar-
gument can be made regarding M2 and M4 instead of the
pair M2 and M3. Since after removing M2,M4 from G1 there
are no edges left in G1, then µ1 = 1.

Algorithm 2 presents the Community Detection algorithm,
which leverages Claim 1 to detect malicious mixes. An il-
lustration of the operation of this algorithm is demonstrated
in Figure 5.

Notice that the algorithm only examines nodes with a de-
gree larger than 1 (line 3). The reason is that if DegG(Mi)= 0
then Mi did not perform an active attack yet, thus it cannot
be detected, and if DegG(Mi) = 1 then Mi cannot be classi-
fied based on its neighbors. Therefore, an execution of the
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µ2 = 3 (e.g., if M1 and M9 are
removed first), thus
DegG(M2) = 2 > 1 = nm−µ2,
and therefore M2 is detected as
malicious. In the second scenario,
µ2 = 2 (e.g., if M1 and M6 are
removed first), thus
DegG(M2) = 2≤ 2 = nm−µ2,
and therefore M2 is not detected
as malicious (yet). A similar
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(c) When we observe G6, two
malicious mixes can be identified,
thus µ6 = 2. As a result, since
DegG(M6) = 2≤ 2 = nm−µ6,
M6 is not classified as malicious
(nor should it be). Note that even
if M3 was removed in (b), then
DegG(M6) = 1 and therefore the
algorithm cannot classify it based
on its neighbors. The same
explanations apply to the rest of
the honest mixes.

M1

M2

M3

M4M5

M6

M7

M8

M9

Focusing on M1
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(d) When we observe G1, only
one malicious mix can be
identified, thus µ1 = 1. As a
result, since DegG(M1) = 4 is
larger than nm−µ1 = 3, M1 is
detected as malicious.

M2

M3
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Detected
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(e) If M2 and M3 were not detected as
malicious as explained in (b), then after
the removal of M1 in (c) they will be
detected, because the removal of M1
causes nm = 4→ nm = 3. Since the
algorithm runs in a loop, when the
algorithm will re-check G2, it will
discover that µ2 = 2 and thus
DegG(M2) = 2 > 1 = nm−µ1, which
results in removal of M2. The same
goes for M3. After the removal of
M1,M2 and M3, the algorithm cannot
classify M4 as malicious based on its
neighbors, since M4 only dropped one
link. However, the algorithm has the
option to aggressively remove both
M4,M5.

Figure 5: A demonstration how Miranda’s community detection can significantly improve the detection of malicious mixes
using an example graph G and thresh = nm +1.

Algorithm 2 CommunityDetection(G = (V,E))
1: n′m← nm
2: while E 6=∅ do
3: for each Mi ∈ V s.t. DegG(Mi)> 1 do
4: Construct Gi = (Vi,Ei) from G.
5: µi← 0
6: while Ei 6=∅ do
7: Invoke VIRTUALPAIRREMOVAL(Gi).
8: µi← µi +1
9: if DegG(Mi)> n′m−µi then

10: Mi is malicious (remove from G,G,M).
11: nm← nm−1, n′m← n′m−1
12: if E 6=∅ then
13: Invoke VIRTUALPAIRREMOVAL(G).
14: n′m← n′m−1

CommunityDetection might not be able to detect all mali-
cious mixes that exposed themselves, e.g., mixes with a de-
gree that equals to 1. If desired, there is always the oppor-
tunity to execute the aggressive pair removal technique af-
ter the CommunityDetection algorithm to potentially remove
more malicious mixes (with price of possible removal of an
honest mix). Also, randomly picking a pair of mixes that
share an edge in G might not always be the optimal strat-
egy. In small graphs, the algorithm can exhaust all possible

removal variations, but this is a time-consuming option in
large graphs. A more sophisticated picking strategy might
yield better results; however, when we experimented with
some possible strategies, we did not notice a significant im-
provement over the random picking strategy.

The techniques discussed in this section provide Miranda
a significant advantage, since malicious mixes can be de-
tected even if they do not pass thresh. Merely the threat
of such techniques is significant in deterring active attacks.
In Section 7.4 we analyze the security of the mechanisms
discussed here and evaluate them empirically. In [34] we
present alternative scheme for community detection based
on random walks.

7 Analysis of Active Attacks

In this section, we analyze the impact of active attacks in
the presence of Miranda. We first analyze Miranda against
traditional and non-traditional active attacks, including at-
tacks designed to abuse the protocol to increase the chances
of clients choosing fully malicious cascades. We continue by
examining the security of loop messages and conclude this
section by evaluating how community detection strengthens
Miranda.
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7.1 Resisting Active Attacks

As discussed in Section 4, a malicious mix that drops a
packet sent from a preceding mix or destined to a subse-
quent mix, loses at least one link; in some cases, the ma-
licious mix gets completely excluded. Hence, the adversary
quickly loses its attacking capabilities, before any significant
impact is introduced. However, the adversary might try other
approaches in order to link the communicating users or gain
advantage in the network, as we now discuss.

A malicious first mix can refuse clients’ packets; however,
such attack is imprudent, since clients can migrate to other
cascades. Furthermore, clients can force the malicious mix
to relay their packets, using a witness. Similarly, it is inef-
fective for the last mix of a cascade to drop all packets it re-
ceives, since clients learn through isolation that the dropped
loop packets successfully arrived at the last mix. Although
clients cannot prove the mix maliciousness, they avoid fu-
ture cascades containing the malicious mix, including fully
malicious cascades.

Instead of directly dropping packets, adversaries can cause
a packet to be dropped by delaying the packet. However,
such attack is also detected.

Claim 2. A malicious mix that delays a packet, is either ex-
pelled from the system or loses a link.

Argument. When an honest mix receives a delayed packet,
it drops it. However, the honest mix still sends a receipt
back for that packet. If the malicious mix acknowledges the
receipt, the malicious mix is exposed when the client per-
forms the isolation process: the client can obtain a signed
receipt proving that the malicious mix received the packet
on time, and also the acknowledged receipt from the honest
mix that dropped the delayed packet. The latter contains the
round number when the packet was dropped, which proves
the malicious mix delayed the packet and therefore should
be excluded. Otherwise, if the malicious mix refuses to sign
the receipt, the honest mix disconnects from the malicious
mix.

Injecting malformed packets. Notice how the honest mix
that dropped the delayed message still sends back a receipt
for it. The reason is that the dropping mix cannot be sure that
the previous mix did delay the message. Instead, this can be
the result of an adversary that crafts a packet with the same
round number in two successive layers.

Claim 3. An adversary cannot craft a loop message that
causes a link loss between two honest mixes.

Argument. Any loop message has to be well-formed in or-
der for directory authorities to accept it. An adversary can
craft a message with invalid round numbers in the packet’s
routing information, which would cause the honest mix to
drop the packet. However, although the honest mix drops

the packet, it still sends back a receipt for that packet. Other-
wise, the preceding mix, which has no way of knowing that
the next layer is intentionally malformed, would disconnect
from the subsequent mix. While the adversary can obtain a
proof showing that a loop message was dropped, it cannot
prove that the loop message was well-formed.

Aggressive active attacks. In order to de-anonymize the
network users, the adversary can choose a more aggressive
approach and drop a significant number of packets. For ex-
ample, in the (n−1) attack [45] applied to the full network,
the adversary tracks a target packet from Alice by blocking
other packets from arriving to an honest mix, and instead
injecting their own packets. Another example is the intersec-
tion attack [8], where the adversary tries disconnecting target
clients. If the adversary cannot directly disconnect a client
with a targeted attack, it can disconnect a client by drop-
ping an entire batch of packets where one of them belongs
to the client (the adversary simply does not know which).
However, it is important to note, that if an adversary can
engineer a scenario where a single target packet is injected
and mixed with only messages that the adversary controls,
any mix-based system is vulnerable. Nevertheless, we argue
that Miranda inflicts serious penalty on the adversary who
attempts to perform an aggressive dropping of packets.

Claim 4. Miranda deters aggressive active attacks.

Argument. Aggressive active attacks require the ability to
drop many packets. In Miranda, a malicious mix that drops
any packet from another mix without sending back a receipt,
loses a link (see Section 4 and Figure 2c). Alternatively,
if the malicious mix drops packets but does send receipts
for these dropped packets, clients can prove that the mali-
cious mix received their (loop) packets and did not forward
them, which results in the exclusion of the malicious mix
(see Figure 2b). A malicious entry mix may drop packets
from clients, since losing a link to a client is not a serious
‘penalty’; but in Miranda, clients then use a witness mix (see
Section 4.4) – forcing the mix to either relay their packets, or
- lose a link to a mix or risk discovery, as discussed above.

Miranda enforces a minimum number of ω packets for
mixing by the entry mix. This is designed to protect the
rare cases where a client sends via an entry mix which is
used only by few (or no) other clients, which could allow
an eavesdropper attack; we now explain why this cannot be
abused to facilitate an active attack (by the first mix).

Recall, that in this case, as in our entire analysis of
corrupt-mix attacks, we assume that at least 2ω honest
clients send packets to the (possibly corrupt) entry mix; and,
as mentioned above, the mix cannot simply ‘drop’ these
(since clients will use witness and then the corrupt mix will
lose - at least - a link).

Instead, the corrupt mix could send to these clients, or
most of them, the special ‘under-ω receipt’, claiming (incor-
rectly) that it didn’t receive ω messages during this round.
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Figure 6: The maximum probability of picking a fully
malicious cascade as a function of the cascade length and
the power of the adversary.

However, senders report these (rare) under-ω receipts to the
directories, who would quickly detect that this mix is cor-
rupt.

7.2 Fully Malicious Cascades Attacks

If the packets are relayed via a fully malicious cascade, an
adversary can trivially track them. Consequently, adversaries
would like to divert as much traffic as possible to the fully
malicious cascades. Attackers can try to maximize their
chances by: (1) increasing the probability that fully mali-
cious cascades are included in the set C produced by the di-
rectory authorities during the inter-epoch process, and/or (2)
increasing the probability that clients pick a fully malicious
cascade from C during an epoch.

Because cascades are chosen uniformly over all valid cas-
cades, the only way the adversary can influence the cascades
generation process is by excluding semi-honest cascades.
However, they can only exclude cascades by dropping links
they are a part of, therefore, the adversary cannot exclude any
honest links or honest mixes6, meaning they cannot exclude
any fully honest cascades. However, adversaries are able
to disconnect semi-honest cascades by disconnecting semi-
honest links and thereby increase the probability of picking
a fully malicious cascade. Interestingly, we found that such
an attack only slightly increases the chance of selecting a
fully malicious cascade – while significantly increasing the
chance of selecting a fully honest cascade (see Claim 5). Fur-
ther, this strategy makes it easier to detect and eliminate sets
of connected adversarial domains (see section 6).

Claim 5. Let CAdv denote a set of fully malicious cascades.
The maximum probability to pick a fully malicious cascade
during cascades generation process, after the semi-honest

6Even if all adversarial mixes disconnect from an honest mix, it is still
not enough for exclusion, since thresh > nm.
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Figure 7: The probability of picking particular classes of
cascades after each link loss. The parameters of the
simulated mix network are l = 3, n = 100 and nm = 30.

cascades were excluded by the adversary is

Pr(c ∈CAdv)≤

(
nm

nh− l +1

)l

.

Argument. See [34].
Figure 6 and Figure 7 present the probability of picking

a fully malicious cascade depending on the number of mixes
colluding with the adversary and the percentage of lost links.

Once nc cascades are generated, the adversary could try
to bias the probability of clients choosing a fully malicious
cascade. To do so, the adversary can sabotage semi-honest
cascades [9] through dropping messages, and in an extreme
case, exclude them all. We illustrate in Figure 8 the attack
cost, expressed as the number of links the adversary must
affect in order to achieve a certain probability of success in
shifting clients to a fully malicious cascade. Note, that the
larger the number of cascades nc, the more expensive the
attack, and the lower the probability of success.

7.3 Security of Loop Messages
Since loop messages are generated and processed in the same
way as genuine messages, the binary pattern does not leak
any information. However, adversaries can still seek ways
to predict when loop messages are sent; for example, by ob-
serving the timing pattern and the rate of sent messages.
Detecting loop messages. Adversaries can try to guess
whether a particular message is a loop message or not. A
successful guess allows the adversary to drop non-loop mes-
sages without being detected, while still sending receipts for
them to the previous mix. We formulate the following claim:

Claim 6. Assume that an adversary that does not control the
last mix in the cascade, drops a packet. The probability of
this message being a loop message sent by a non-malicious
client is at least α .

Argument. It suffices to consider packets sent by non-
malicious clients. When a non-last mix receives such pack-
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Figure 8: The costs (red, right axis) and success probability
(blue, left axis) of performing DoS [9] attacks based on the
fraction of cascades active in every epoch. Cost is measured
in links the adversary must sacrifice; as Figure 9 shows,
even the minimal ‘cost’ essentially implies detection of all
active corrupt mixes. Furthermore, using just 1% of the
possible cascades suffices to reduce success probability to
about 10% or less.

ets, it does not know the destination. Furthermore, as de-
scribed in section 4.3, loop packets are sent by non-malicious
clients according to the rate defined by α of genuine traf-
fic and are bitwise indistinguishable from genuine packets.
Hence, even if the mix would know the identity of the sender,
e.g., by being the first mix, the packet can still be a loop mes-
sage with probability at least α .

Note that a malicious non-last mix that drops a loop mes-
sage, yet sends a receipt for it and remains connected to the
next mix, would be proven malicious and excluded from the
network. On the other hand, if such mix does not send a
receipt, then it loses a link.

Malicious last mix. Claim 6 does not address the last mix.
There are two reasons for that: first, in contrast to mixes,
clients do not send receipts back to mixes. Therefore, a last
mix cannot prove it actually delivered the packets. Secondly,
the last mix may, in fact, identify non-loop messages in some
situations. For example, if a client did not send packets in
round r, then all the packets it is about to receive in round
r+ x (where x is the number of rounds it takes to complete
a loop) are genuine traffic sent by other clients. Therefore,
these messages can be dropped without detection.

However, dropping of messages by the last mix can also
be done against the ideal mix (see Section 2.4), e.g., by a
man-in-the-middle attacker. In fact, similar correlation at-
tacks can be performed even without dropping packets, if
clients have specific sending patterns. Therefore, mitigating
this attack is beyond Miranda goals, and should be handled
by the applications adopting Miranda 7.

7For example, [24, 44] use fixed sending rate (thus, foiling the attack).
A concerned client can simply make sure to send additional loop packets in
every round where no genuine traffic is relayed.
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Figure 9: The effect of using community detection against
malicious mixes.

7.4 Evaluation of Community Detection
The discussion in Section 6 presented several community de-
tection techniques to leverage Miranda’s reported links in-
formation into a detection tool that removes malicious mixes
from the system. We now argue that the contribution of these
mechanisms is both important and secure.

7.4.1 Empirical Results

We implemented the Threshold Detection and Community
Detection algorithms described in Section 6, and evaluated
them as follows. We generated a complete graph of n = 100
mixes where nm = 33 of them are malicious. We modeled
a random adversary by randomly dropping a fraction of the
semi-honest links, making sure that any mix does not drop
more than or equal to thresh = nm +1 links.

Figure 9 demonstrates the effectiveness of the algorithms.
The Threshold Detection algorithm starts to become effec-
tive when roughly 10% of the semi-honest links are reported
and improves as the number of reports increases. In com-
parison, the Community Detection algorithm presents signif-
icantly better results, starting when 4% of the semi-honest
links are dropped and after 8% the algorithm is able to ex-
pose all possible malicious mixes. Considering that the Com-
munity Detection algorithm can only operate on malicious
mixes that dropped more than one link, these results show
that the algorithm effectively mitigates the non-strategic ad-
versary. In [34], we discuss and compare another possi-
ble community detection algorithm, which potentially yields
even better results.

7.4.2 Security Analysis

In essence, both the Threshold Detection algorithm and the
Community Detection algorithm do the same thing: they
both remove malicious mixes from the system. Therefore,
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the only way for a strategic adversary to abuse these al-
gorithms is to strategically drop links in a way that causes
these algorithms to wrongfully remove honest mixes from
the system, due to misclassification of honest mixes as ma-
licious. We now argue that the T hresholdDetection and
CommunityDetection algorithms are secured against such at-
tack.

Claim 7. An honest mix Mi ∈ G never satisfies DegG(Mi)≥
thresh.

Proof. Assume to the contrary that there exists an honest
mix Mi ∈ G that satisfies Deg(Mi) ≥ thresh. However, if
this is the case, then DegG(Mi) ≥ thresh, which implies
DegG(Mi) ≤ n− thresh ≤ nh− 1, which means that at least
one honest mix disconnected from Mi, contradicting the as-
sumption that honest links never fail.

Claim 8. The T hresholdDetection algorithm never removes
honest mixes.

Proof. According to the implementation of Threshold De-
tection, the algorithm only removes mix Mi ∈ G that satisfies
Deg(Mi)≥ thresh. However, following Claim 7, this cannot
happen for honest mixes.

Claim 9. The CommunityDetection algorithm never re-
moves honest mixes.

Proof. According to the implementation of Community De-
tection, the algorithm only removes mix Mi ∈ G that satisfies
Deg(Mi) > nm− µi, which according to Claim 1 never hap-
pens for honest mixes.

8 Related Work

In this section, we place our system in the context of existing
approaches and compare Miranda with related works. First,
we focus on works that present a similar design to Miranda.
Next, we discuss how Miranda improves upon previous mix
network designs. Finally, we briefly outline other techniques
used to support reliable mixing.

Receipts. The idea of using digitally signed receipts to im-
prove the reliability of the mix network was already used in
many designs. In Chaum’s original mix network design [12]
each participant obtains a signed receipt for packets they
submit to the entry mix. Each mix signs the output batch
as a whole, therefore the absence of a single packet can be
detected. The detection that a particular mix failed to cor-
rectly process a packet relies on the fact that the neighbour-
ing mixes can compare their signed inputs and outputs. Ad-
ditionally, [12] uses the untraceable return addresses to pro-
vide end-to-end receipts for the sender.

Receipts were also used in reputation-based proposals.
In [20], receipts are used to verify a mix failure and rank

their reputation in order to identify the reliable mixes and
use them for building cascades. The proposed design uses a
set of trusted global witnesses to prove the misbehavior of a
mix. If a mix fails to provide a receipt for any packet, the pre-
vious mix enlists the witnesses, which try to send the packet
and obtain a receipt. Witnesses are the key part of the de-
sign and have to be engaged in every verification of a failure
claim, which leads to a trust and performance bottleneck. In
comparison, Miranda does not depend on the witnesses, and
a single one is just used to enhance the design. Moreover,
in [20] a failure is attributed to a single mix in a cascade,
which allows the adversary to easily obtain high reputation
and misuse it to de-anonymize clients. Miranda rather than
focusing on a single mix, looks at the link between the mixes.

In the extended reputation system proposed in [22] the
reputation score is quantified by decrementing the reputa-
tion of all nodes in the failed cascade and incrementing of
all nodes in the successful one. In order to detect misbehav-
iors of malicious nodes, the nodes send test messages and
verify later via a snapshot from the last mix, whether it was
successfully delivered. Since the test messages are indistin-
guishable, dishonest mixes risk being caught if they drop any
message. However, the penalty for dropping is very strong
– if a single mix drops any message, the whole cascade is
failed. Therefore, because a single mix’s behavior affects the
reputation of all mixes in the cascade, the malicious nodes
can intentionally fail a cascade to incriminate honest mixes.
This design also proposed the delivery receipts, which the re-
cipient returns to the last mix in the cascade in order to prove
that the message exited the network correctly. If the last mix
is not able to present the receipt, then the sender contacts a
random node from the cascade, which then asks the last mix
to pass the message and attempts to deliver the message.

Trap messages and detecting active attacks. The idea of
using trap messages to test the reliability of the network
was discussed in many works. The original DC-network
paper [11] suggested using trap messages, which include a
safety contestable bit, to detect message disruption. In con-
trast, the flash mixing [28] technique, which was later proved
to be broken [38], introduces two dummy messages that are
included in the input, and are later de-anonymized after all
mixes have committed to their outputs. This allows the par-
ticipants to verify whether the mix operation was performed
correctly and detect tampering. However, both of those types
of trap messages are limited to these particular designs.

The RGB-mix [18] mechanism uses heartbeat loop mes-
sages to detect the (n-1) attacks [45]. Each mix sends heart-
beat messages back to itself, and if the (n-1) attack is de-
tected the mix injects cover traffic to confuse the adversary.
However, the key assumption of the proposed mechanism is
limited only for anonymity among mix peers.

Mixmaster [39] and Mixminion [14] employed an infras-
tructure of pingers [43], special clients sending probe traffic

USENIX Association 28th USENIX Security Symposium    1855



through the different paths in the mix network and recording
publicly the observed reliability of delivery. The users of the
network can use the obtained reliability statistics to choose
which nodes to use.

Recent proposals for anonymous communication have
also employed built-in reliability mechanisms. For example,
the new Loopix [44] mix-network system uses loop cover
traffic to detect (n-1) attacks, both for clients and mixes.
However, this idea is limited to detecting only aggressive
(n-1) attacks, but mix nodes systematically dropping single
packets can operate undetected. Moreover, the authors do not
also specify any after-steps or how to penalize misbehaving
mixes.

The Atom [33] messaging system is an alternative design
to a traditional mix networks and uses trap messages to de-
tect misbehaving servers. The sender submits trap ciphertext
with the ciphertext of a message, and later uses it to check
whether the relaying server modified the message. However,
the trap message does not detect which mix failed. More-
over, Atom does not describe any technique to exclude mali-
cious servers, and a failed trap only protects against releasing
the secret keys.
Other approaches. The literature on secure electronic elec-
tions has been preoccupied with reliable mixing to ensure
the integrity of election results by using zero-knowledge
proofs [3, 6, 29] of correct shuffling to verify that the mix-
ing operation was performed correctly. However, those
rely on computationally heavy primitives and require re-
encryption mix networks, which significantly increase their
performance cost and limits their applicability. On the other
hand, the more ‘efficient’ proofs restrict the size of messages
to a single group element that is too small for email or even
instant messaging.

An alternative approach for verifying the correctness of
the mixing operation were mix-nets with randomized par-
tial checking (RPC) [30]. This cut-and-choose technique de-
tects packet drops in both Chaumian and re-encryption mix-
nets, however, it requires interactivity and considerable net-
work bandwidth. Moreover, the mix nodes have to routinely
disclose information about their input/output relations in or-
der to provide evidence of correct operation, what was later
proven to be flawed [32].

9 Limitations and Future Work

Challenges for making Miranda practical. The Miranda
design includes several significant simplifying assumptions,
mainly: (1) fixed set of mixes, (2) majority of benign mixes,
(3) reliable communication and processing, and (4) synchro-
nized clocks. Such assumptions are very limiting in terms
of practical deployment; practical systems, e.g., Tor, cannot
‘assume away’ such issues. Future work should try to avoid
these assumptions, while maintaining tight security analysis

and properties as done in Miranda, or identify any inherent
trade-offs.

Avoiding the clock synchronization assumption seems
easy - simply adopt a secure clock synchronization proto-
col. However, avoiding the other three assumptions ((1) to
(3)) seems much more challenging.

First, consider assumptions (1) and (2), i.e., assuming a
fixed set of mixes with majority of benign mixes. These as-
sumptions are central to Miranda design; since the goal of
Miranda is to provide a way to penalize active attackers. If
the adversary can simply retire penalized malicious nodes
and replace them with new nodes that have an untarnished
reputation, then there is no real gain in even trying to pe-
nalize or expose the adversary, and it becomes hard to argue
why we can even assume most mixes are benign. However, a
practical mixnet must allow a dynamic set of mixes, for both
scalability and churn - mixes joining and leaving over time.

Next, consider the third assumption: reliable communica-
tion and processing. In practice, communication and pro-
cessing failures will definitely happen - in particular, as a re-
sult of intentional DoS attacks. We believe that future work
may deal with this significant challenge by both minimizing
failures, by designing robust underlying mechanisms such as
highly-resilient transport layer; and refined assumptions and
analysis, e.g., considering incentives and game-theory anal-
ysis, to ensure that the system is robust to ‘reasonable’ levels
of failures.

These issues are significant challenges for future research,
essential towards the implementation of Miranda in practical
systems. For example, such research must develop a reason-
able model to allow nodes to join (or re-join), without allow-
ing the adversary to gain majority by adding many mixes, as
in Sybil attacks, and to retain the impact of removing corrupt
mixes.
Extension to Continuous Mixnet. Miranda is designed for
a synchronous mixnet. Recent research in mix networks
showed that continuous-time mixes, especially pool mixes,
may allow anonymity for low latency communication [44].
Future work may investigate how to integrate Miranda with
continuous mixnets such as Loopix [44]. Such integration
would raise challenges, such as, how would a mix know
when it should receive the response from the next mix, esp.
without leaking information to an attacker.

10 Conclusion

In this work, we revisited the problem of protecting mix net-
works against active attacks. The analysis performed showed
that active attacks can significantly increase the adversary’s
chances to correctly de-anonymize users. Miranda achieves
much better efficiency than previous designs, but at the same
time quickly detects and mitigates active adversaries. Mi-
randa employs previously studied techniques such as packet
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receipts and loop traffic alongside novel techniques to en-
sure that each dropped packet penalizes the adversary. We
take a new approach of focusing on problematic links be-
tween mixes, instead of mixes themselves. We also investi-
gate how community detection enhances our mechanism ef-
fectively. The overall contribution of our work is an efficient
and scalable detection and mitigation of active attacks. For
additional details, including implementation details and effi-
ciency, see [34].

Acknowledgments

We are grateful to our shepherd, Roger Dingledine, and to
the anonymous reviewers, for their helpful and constructive
feedback. This work was partially supported by the IRIS
Grant Ref: EP/R006865/1 and by an endowment from the
Comcast corporation. The opinions expressed in the paper
are those of the researchers themselves and not of the uni-
versities or sources of support.

References

[1] Nym technologies, 2019. https://nymtech.net/.
[2] Panoramix project, 2019. https://panoramix.me/.
[3] Masayuki Abe. Mix-networks on permutation net-

works. In International Conference on the Theory and
Application of Cryptology and Information Security,
1999.

[4] Dakshi Agrawal and Dogan Kesdogan. Measuring
anonymity: The disclosure attack. IEEE Security &
Privacy, 2003.

[5] Anonymous. QuicR: extending Quic for resiliency to
extreme packet losses, 2019. Available from the au-
thors.

[6] Stephanie Bayer and Jens Groth. Efficient zero-
knowledge argument for correctness of a shuffle. In Ad-
vances in Cryptology - EUROCRYPT 2012 - 31st An-
nual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, 2012.

[7] Mihir Bellare, Juan A. Garay, and Tal Rabin. Dis-
tributed pseudo-random bit generators : A new way to
speed-up shared coin tossing. In Proceedings of the
15th Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC), 1996.

[8] Oliver Berthold, Andreas Pfitzmann, and Ronny
Standtke. The disadvantages of free mix routes and
how to overcome them. In Designing Privacy Enhanc-
ing Technologies. Springer, 2001.

[9] Nikita Borisov, George Danezis, Prateek Mittal, and
Parisa Tabriz. Denial of service or denial of security?
In Proceedings of the 14th ACM conference on Com-
puter and communications security, 2007.

[10] Carole Cadwalladr and Emma Graham-Harrison. Re-
vealed: 50 million facebook profiles harvested for cam-
bridge analytica in major data breach. The Guardian,
2018.

[11] David Chaum. The dining cryptographers prob-
lem: Unconditional sender and recipient untraceability.
Journal of cryptology, Springer, 1988.

[12] David L Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications
of the ACM, 1981.

[13] Henry Corrigan-Gibbs, Dan Boneh, and David Maz-
ières. Riposte: An anonymous messaging system han-
dling millions of users. 2015.

[14] George Danezis, Roger Dingledine, and Nick Mathew-
son. Mixminion: Design of a type iii anonymous re-
mailer protocol. In IEEE Symposium on Security and
Privacy, 2003.

[15] George Danezis and Ian Goldberg. Sphinx: A compact
and provably secure mix format. In 30th IEEE Sympo-
sium on Security and Privacy (S&P), 2009.

[16] George Danezis, Chris Lesniewski-Laas, M. Frans
Kaashoek, and Ross J. Anderson. Sybil-resistant DHT
routing. In 10th European Symposium on Research in
Computer Security ESORICS, 2005.

[17] George Danezis and Prateek Mittal. Sybilinfer: Detect-
ing sybil nodes using social networks. In Proceedings
of the Network and Distributed System Security Sym-
posium, NDSS, 2009.

[18] George Danezis and Len Sassaman. Heartbeat traffic to
counter (n-1) attacks: red-green-black mixes. In Pro-
ceedings of the 2003 ACM workshop on Privacy in the
electronic society, 2003.

[19] Harry Davies. Ted Cruz using firm that harvested data
on millions of unwitting Facebook users. 2015.

[20] Roger Dingledine, Michael J Freedman, David Hop-
wood, and David Molnar. A reputation system to in-
crease mix-net reliability. In International Workshop
on Information Hiding, 2001.

[21] Roger Dingledine, Vitaly Shmatikov, and Paul Syver-
son. Synchronous batching: From cascades to free
routes. In International Workshop on Privacy Enhanc-
ing Technologies, 2004.

[22] Roger Dingledine and Paul Syverson. Reliable MIX
cascade networks through reputation. In International
Conference on Financial Cryptography, 2002.

[23] Danny Dolev and H. Raymond Strong. Authenticated
algorithms for byzantine agreement. SIAM Journal on
Computing, 1983.

[24] Nethanel Gelernter, Amir Herzberg, and Hemi Lei-
bowitz. Two cents for strong anonymity: the anony-
mous post-office protocol. 2018.

[25] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk,
and Tal Rabin. Robust threshold DSS signatures. In
Advances in Cryptology—EUROCRYPT, 1996.

USENIX Association 28th USENIX Security Symposium    1857

https://nymtech.net/
https://panoramix.me/


[26] Oded Goldreich, Silvio Micali, and Avi Wigderson.
How to play any mental game or A completeness theo-
rem for protocols with honest majority. In Proceedings
of the 19th Annual ACM Symposium on Theory of Com-
puting, 1987.

[27] Glenn Greenwald and Ewen MacAskill. NSA Prism
program taps in to user data of Apple, Google and oth-
ers. 2013.

[28] Markus Jakobsson. Flash mixing. In Proceedings of
the 18th ACM symposium on Principles of distributed
computing, 1999.

[29] Markus Jakobsson and Ari Juels. Millimix: Mixing in
small batches. Technical report, DIMACS Technical
report, 1999.

[30] Markus Jakobsson, Ari Juels, and Ronald L Rivest.
Making mix nets robust for electronic voting by ran-
domized partial checking. In USENIX Security Sympo-
sium, 2002.

[31] Don Johnson, Alfred Menezes, and Scott Vanstone.
The elliptic curve digital signature algorithm (ecdsa).
International journal of information security, 2001.

[32] Shahram Khazaei and Douglas Wikström. Random-
ized partial checking revisited. In RSA Conference.
Springer, 2013.

[33] Albert Kwon, Henry Corrigan-Gibbs, Srinivas De-
vadas, and Bryan Ford. Atom: Horizontally scaling
strong anonymity. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, 2017.

[34] Hemi Leibowitz, Ania Piotrowska, George Danezis,
and Amir Herzberg. No right to remain silent: Isolat-
ing malicious mixes - full version. https://eprint.
iacr.org/2017/1000.

[35] Shengyun Liu, Christian Cachin, Vivien Quéma, and
Marko Vukolic. Xft: practical fault tolerance beyond
crashes. 2015.

[36] Nancy A Lynch. Distributed algorithms. Elsevier,
1996.

[37] Ralph Merkle. A digital signature based on a conven-
tional encryption function. In Advances in Cryptol-
ogy—CRYPTO, 1987.

[38] Masashi Mitomo and Kaoru Kurosawa. Attack for flash
mix. In International Conference on the Theory and
Application of Cryptology and Information Security,
2000.

[39] Ulf Möller, Lance Cottrell, Peter Palfrader, and Len
Sassaman. Mixmaster protocol – version 2. IETF
Draft, 2004.

[40] Steven J Murdoch. Hot or not: Revealing hidden ser-
vices by their clock skew. In Proceedings of the 13th
ACM conference on Computer and communications se-
curity, 2006.

[41] Steven J Murdoch and George Danezis. Low-cost traf-
fic analysis of Tor. In IEEE Symposium on Security and
Privacy, 2005.

[42] Lasse Overlier and Paul Syverson. Locating hidden
servers. In IEEE Symposium on Security and Privacy,
2006.

[43] Peter Palfrader. Echolot: a pinger for anonymous re-
mailers, 2002.

[44] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Se-
bastian Meiser, and George Danezis. The Loopix
anonymity system. In 26th USENIX Security Sympo-
sium, 2017.

[45] Andrei Serjantov, Roger Dingledine, and Paul Syver-
son. From a trickle to a flood: Active attacks on several
mix types. In International Workshop on Information
Hiding, 2002.

[46] Victor Shoup. Practical threshold signatures. In Inter-
national Conference on the Theory and Application of
Cryptographic Techniques, 2000.

[47] Paul Syverson, Gene Tsudik, Michael Reed, and Carl
Landwehr. Towards an analysis of onion routing se-
curity. In Designing Privacy Enhancing Technologies.
Springer, 2001.

[48] Jelle van den Hooff, David Lazar, Matei Zaharia, and
Nickolai Zeldovich. Vuvuzela: scalable private mes-
saging resistant to traffic analysis. In Proceedings of
the 25th Symposium on Operating Systems Principles,
SOSP. ACM, 2015.

1858    28th USENIX Security Symposium USENIX Association

https://eprint.iacr.org/2017/1000
https://eprint.iacr.org/2017/1000

	Introduction
	The Big Picture
	General System Model
	Threat Model
	What is the Impact of Active Attacks on Anonymity?
	Security Goals of Miranda

	Rounds, Epochs and Directories
	Intra-Epoch Process
	Message Sending
	Processing of Received Packets
	Loop Messages: Detect Stealthy Attacks
	When to send loop messages?
	Isolating corrupt mixes with loop messages

	Handling missing receipts

	Inter-Epoch Process
	Filtering Faulty Mixes
	Cascades Selection Protocol

	Community-based Attacker Detection
	Analysis of Active Attacks
	Resisting Active Attacks
	Fully Malicious Cascades Attacks
	Security of Loop Messages
	Evaluation of Community Detection
	Empirical Results
	Security Analysis


	Related Work
	Limitations and Future Work
	Conclusion

