usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

uXOM: Efficient eXecute-Only Merﬁory on
ARM Cortex-M

Donghyun Kwon, Jangseop Shin, and Giyeol Kim, Seoul National University;
Byoungyoung Lee, Seoul National University, Purdue University; Yeongpil Cho,
Soongsil University; Yunheung Paek, Seoul National University

https://www.usenix.org/conference/usenixsecurity19/presentation/kwon

This paper is included in the Proceedings of the

28th USENIX Security Symposium.
August 14-16, 2019 « Santa Clara, CA, USA
978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium
is sponsored by USENIX.

|||H|[|f

'.:IIIIIIIILJIIIH

https://www.usenix.org/conference/usenixsecurity19/presentation/kwon

uXOM: Efficient eXecute-Only Memory on ARM Cortex-M

Donghyun Kwon'? Jangseop Shin'? Giyeol Kim'?
Byoungyoung Lee!? Yeongpil Cho* Yunheung Paek!-?

'ECE, Seoul National University, 2ISRC, Seoul National University
3Computer Science, Purdue University, *School of Software, Soongsil University

{dhkwon, Jjsshin, gykim}@sor.snu.ac.kr,
{byoungyoung, ypaek}@snu.ac.kr, ypcholssu.ac.kr

Abstract

Code disclosure attacks are one of the major threats to a
computer system, considering that code often contains se-
curity sensitive information, such as intellectual properties
(e.g., secret algorithm), sensitive data (e.g., cryptographic
keys) and the gadgets for launching code reuse attacks. To
stymie this class of attacks, security researchers have devised
a strong memory protection mechanism, called eXecute-Only-
Memory (XOM), that defines special memory regions where
instruction execution is permitted but data reads and writes
are prohibited. Reflecting the value of XOM, many recent
high-end processors have added support for XOM in their
hardware. Unfortunately, however, low-end embedded pro-
cessors have yet to provide hardware support for XOM.

In this paper, we propose a novel technique, named uXOM,
that realizes XOM in a way that is secure and highly opti-
mized to work on Cortex-M, which is a prominent processor
series used in low-end embedded devices. uXOM achieves
its security and efficiency by using special architectural fea-
tures in Cortex-M: unprivileged memory instructions and an
MPU. We present several challenges in making XOM non-
bypassable under strong attackers and introduce our code
analysis and instrumentation to solve these challenges. Our
evaluation reveals that uXOM successfully realizes XOM in
Cortex-M processor with much better efficiency in terms of
execution time, code size and energy consumption compared
to a software-only XOM implementation for Cortex-M.

1 Introduction

When it comes to the security of a computing system, the
protection of the code running on the system should be of top
priority because the code defines security critical behaviors of
the system. For instance, if attackers are able to modify exist-
ing code or inject new code, they may place the victim system

Donghyun Kwon has been affiliated with Electronics and Telecommuni-
cations Research Institute (ETRI) since March 2019.
Corresponding authors are Yeongpil Cho and Yunheung Paek.

under their control. Fortunately, code injection attacks nowa-
days can be mitigated by simply enforcing the well-known
security policy, W X. Since virtually all processors today are
equipped with at least five basic memory permissions: read-
write-execute (RWX), read-write (RW), read-execute (RX),
read-only (RO) and no-access (NA), WX can be efficiently
enforced in hardware for a memory region solely by disabling
RWX.

However, even if attackers are not able to modify the sys-
tem’s code, the system can still be threatened by disclosure
attacks that attempt to read part of or possibly the entire code.
Because code often contains intellectual properties (IPs) in-
cluding core algorithms and sensitive data like cryptographic
keys, disclosure attacks severely damage the security of vic-
tim systems by exposing critical information to unauthorized
users. Even worse, disclosure attacks can be abused by at-
tackers to launch code reuse attacks (CRAs), which allow the
attacker to perform adversarial behaviors without modifying
its code contents. It has been shown that attackers who can
see the instructions in the code may launch a CRA wherein
they craft a malicious code sequence by chaining the existing
code snippets scattered around the program binary [34].

In order to prevent disclosure attacks, eXecute-Only-
Memory (XOM) has been a core security mechanism of vari-
ous countermeasure techniques [6-8,13,16,17,31,37]. XOM
is a strong memory protection mechanism that defines a spe-
cial memory region where only instruction executions are
allowed, and any attempts for instruction reads or writes are
prohibited. Thus, as long as sensitive information such as IPs
and the code contents are stored inside the region protected
by XOM, developers are in principle able to prevent direct
exposure of the code content as well as the code layout. This
simple but tangible security benefit of XOM has led several
researchers to propose hardware-assisted XOM on various
architectures. For example, some have proposed an architec-
ture that implements XOM by encrypting executable memory
and decrypting instructions only when they are loaded [24].
However, since their approach mostly imposes significant
changes and overhead on the underlying hardware, it cannot

USENIX Association

28th USENIX Security Symposium 231

be adopted readily by the processor vendors for their existing
products. Instead, many vendors opt for a less drastic ap-
proach that simply augments the basic memory permissions
with the new execute-only (XO) permission [8, 10].

As of today, many high-end processors provide XOM capa-
bilities by supporting augmented memory permissions. Con-
sequently, by taking benefits from the hardware support for
XOM, low-cost security solutions have been built to mitigate
real attacks [8, 10, 13,16]. However, these security benefits are
confined to computing systems for general applications since
the XO permission is only available in relatively high-end pro-
cessors targeting general-purpose machines such as servers,
desktops and smartphones. More specifically, applications
running on tiny embedded devices cannot enjoy such bene-
fits because only the basic memory permissions (not XOM)
are supported in their target processors, which are primarily
intended for use in low-cost, low-power computations. As
one example of such processors that hardware-level XOM is
not built into, we have the ARM Cortex-M series, which are
prominent processors adopted by numerous low-cost comput-
ing devices today [38].

Fortunately, researchers have demonstrated that software
fault isolation (SFI) techniques can be used to thwart these
prevalent attacks without hardware-level XOM [7,31]. They
are purely software techniques, and thus are able to cope with
any types of processors regardless of the underlying architec-
tures. However, the drawback we observed is that SFI-based
XOM techniques perform less optimally on certain types of
processors, including Cortex-M in particular. More impor-
tantly, such techniques can even be circumvented, leading to
critical security issues (refer to § 6.4). Motivated by this obser-
vation, this paper proposes a novel technique, called uXOM,
to realize XOM in a way that is secure and highly optimized to
work on Cortex-M processors. Since performance is a pivotal
concern of tiny embedded devices such as Cortex-M, effi-
ciency must be the most important objective of any technique
targeting these low-end processors. To achieve this objective,
uXOM leverages a special type of instructions, called unprivi-
leged loads/stores, provided by the instruction set architecture
for ARM Cortex-M. In an ARM-based system, memory can
be divided into two classes of regions according to privilege
levels: non-privileged and privileged memory regions. Unpriv-
ileged loads/stores can only access non-privileged memory
regions, irrespective to the processor’s current privilege level
(either in a privileged or non-privileged). On the contrary,
ordinary loads/stores are permitted to access privileged re-
gions as long as they are executed under the privileged level.
This striking difference between unprivileged and ordinary
load/store instructions is the key enabler of our technique.

By capitalizing on this difference, we also need to exploit
a unique style of running embedded software on the proces-
sors to achieve this ultimate goal of ¥XOM. In computing
systems, software entities are typically assigned certain priv-
ileges during execution. For instance, user applications run

as unprivileged, and the OS kernel as privileged. In practice,
however, applications and the kernel in tiny embedded devices
are designed to operate with the same privilege level [12,21].
This is because these embedded systems are typically given
real-time constraints, and the privilege mode switching in-
volved in user-kernel privilege isolation is considered very
expensive [21]. For the goal of uXOM stated above, we uti-
lize these unique architectural characteristics of Cortex-M
processors. More specifically, uXOM converts all memory
instructions into unprivileged ones and sets the code region as
privileged. As a result, converted instructions cannot access
code regions, thereby effectively enforcing the XO permission
onto the code regions. Since the processor is running with
privileged level, code execution is still allowed without any
permission error.

However, in order to actually realize uXOM, we need to
tackle the problem that some memory instructions cannot be
changed into unprivileged memory instructions. For exam-
ple, memory instructions accessing critical system resources,
such as an interrupt controller, a system timer and a Memory
Protection Unit (MPU), should not be converted. Accesses to
these resources always require privilege, so the program will
crash if instructions accessing these resources are converted
to unprivileged ones. In addition, load/store exclusive instruc-
tions, which are the special memory instructions for exclusive
memory access, do not have unprivileged counterparts. For
these instructions, there is no way to implement the intended
functionality with unprivileged memory instructions. There-
fore, we should analyze the code thoroughly to find these
instructions and leave them as the original instructions.

Unfortunately, these unconverted memory instructions can
be exploited by attackers to subvert uXOM. For example, if
the attackers manage to execute these instructions by alter-
ing the control flow, they may bypass uXOM by (1) turning
off the MPU protection or (2) reading the code directly. To
prevent such attacks, the unconverted memory instructions
need to be instrumented with verification routines to ensure
that each memory access using these instructions does not
break uXOM ’s protection. However, the attackers can still
bypass the verification routines and directly execute the prob-
lematic memory instructions. To handle this challenge, we
have devised the atomic verification technique that virtually
enables memory instructions to be executed atomically with
the verification routine, thereby preventing potential attackers
from executing the memory instructions without passing the
verification.

Another important problem uXOM needs to handle is that
the attackers can alter control flow to execute unintended
instructions, which may result from unaligned execution of
32-bit Thumb instructions or execution of the data embedded
inside the code region [4]. Among the unintended instructions,
attackers may find useful instructions for bypassing uXOM,
such as ordinary memory instructions. To mitigate this attack
vector, uXOM analyzes the code to find all potentially harm-

232 28th USENIX Security Symposium

USENIX Association

0x0 0x20000000 0x40000000 0x60000000 OxFFFFFFFF

Flash ROM SRAM Peripheral Private Peripheral Bus
: Code, Rea-only : Read-write (PPB)

data data (globals, : MPU, Timer, Interrupt
stacks, heap) controller, etc.

0xE0000000 0xE0100000

Figure 1: System address map for ARMv7-M [18]

ful unintended instructions and replaces them with alternative
instruction sequences that have an equivalent function but do
not contain any exploitable unintended instructions.

Built upon LLVM compiler and Radare2 binary analysis
framework [32], uXOM automatically transforms every soft-
ware component (i.e., real-time operating systems (RTOSs),
the C standard library, and the user application) into a uXOM-
enabled binary. Currently, uXOM supports processors based
on ARMv7-M architecture, including Cortex-M3/4/7 proces-
sors. To evaluate uXOM, we experimented on an Arduino
Due board, which ships with a Cortex-M3 processor. Our
experiment confirms that uXOM works efficiently, empow-
ered with the optimized use of the underlying hardware fea-
tures. In particular, uXOM incurs only 15.7%, 7.3% and 7.5%
overhead for code size, execution time and energy, while SFI-
based XOM incurs overhead of 50.8%, 22.7%, and 22.3%,
respectively. To demonstrate the compatibility of uXOM with
other XOM-based security solutions, we discuss two use cases
of uXOM: secret key protection and CRA defense. We imple-
mented and evaluated the second use case, the CRA defense.
Even when the CRA defense is applied on top of uXOM, it
shows only moderate performance overhead, which is 19.3%,
8.6% and 9.7% for code size, execution time and energy, re-
spectively.

The remainder of this paper is organized as follows. § 2
provides the background information. § 3 explains the threat
model and assumptions. § 4 and § 5 describe the approach
and design of uXOM, respectively. § 6 provides experimental
results for uXOM and its use cases. § 7 presents several
discussions regarding uXOM, and § 8 explains related works.
§ 9 concludes the paper.

2 Background

Cortex-M(3/4/7) processors targeted in this paper implement
the ARMv7-M architecture, the microcontroller (‘M”) profile
of the ARMv7 architecture, which features low-latency and
highly deterministic operation for embedded systems. In this
section, we give background information on the key architec-
tural features of ARMv7-M that are required to understand
the design and implementation of uXOM.

2.1 ARMV7-M Address Map and the Private
Peripheral Bus (PPB)

ARMVv7-M does not support memory virtualization and the
regions for code, data, and other resources are fixed at specific
address ranges. Figure 1 shows the system address map for
ARMV7-M architecture. The first 0.5 GB (0x0-0x20000000)

is the region where the flash ROM is typically mapped.
Code and read-only data are placed here. The memory range
0x20000000-0x40000000 is the SRAM region where read-
write data (globals, stack, and heap) are placed. Devices
only use a small subset of each region; our test platform
(SAM3XS8E) has 512KB of flash and 96KB of SRAM. The
memory range 0x40000000-0x60000000 is where device pe-
ripherals, such as GPIO and UART, are mapped. The 1 MB
memory region ranging from 0xE0000000 to 0OxXEOOFFFFF
is the PPB region. Various system registers for controlling
system configuration and monitoring system status, such as
the system timer, the interrupt controller and the MPU, are
mapped in this region. The PPB differs from the other mem-
ory regions of the system in that only privileged memory
instructions are allowed to read from or write to the region.
Generally, access permissions for memory regions can be con-
figured through the MPU which we describe in detail below.
However, the access permission for the PPB is fixed and even
the MPU cannot override the default configuration.

2.2 Memory Protection Unit (MPU)

The MPU provides a memory access control functionality
for Cortex-M processors. The biggest difference between the
MPU and the Memory Management Unit (MMU) equipped
in high-end processors is that the MPU does not provide mem-
ory virtualization and thus the access control rules are applied
on the physical address space. Depending on the setting of the
MPU’s memory-mapped registers between 0OxXEOOOED90 and
0xEOOOEDEC, a limited number (typically 8 or 16) of possi-
bly overlapping regions can be set up, each of which is defined
by the base address and the region size. Each region defines
separate access permissions for privileged and non-privileged
access through the combination of eXecute-Never (XN)-bit
and Access Permission (AP)-bits. The available permission
settings are RWX, RW, RX, RO, and NA, but in any case,
unprivileged access is granted the same or more restrictive
permission than privileged accesses. For example, when RO
permission is given to a privileged access, unprivileged access
can only have NA or RO permissions. If two or more regions
have overlapping ranges, the access permission for the higher-
numbered region takes effect. For access to memory ranges
not covered by any region, it can be configured to always
generate a fault or to follow the default access permission,
which depends on the specific processor implementation. It
is important to note that the read permission should be in-
cluded in order for the memory region to be executable. This
is the reason that XOM cannot be implemented simply by
configuring the MPU in Cortex-M processors.

2.3 Unprivileged Loads/Stores

The ARMv7-M architecture only supports a thumb instruc-
tion set, which is a variable-length instruction set including a
mix of traditional 16-bit thumb instructions and 32-bit instruc-
tions introduced in Thumb-2 technology. The unprivileged

USENIX Association

28th USENIX Security Symposium 233

loads/stores are special types of memory access instructions
provided in the instruction set architecture [18]. The main
distinction of these instructions is that they always perform
memory accesses as if they are executed as unprivileged re-
gardless of the current privilege mode. Thus, memory ac-
cesses using these instructions are regulated by the MPU’s
permission setting for unprivileged accesses. Unprivileged
loads/stores are only available in 32-bit encoding and only
have immediate-offset addressing mode. They do not sup-
port exclusive memory access. They are distinguished by the
common suffix ‘T’ (e.g., LDRT and STRT).

2.4 Exception Entry and Return

An exception is a special event indicating that the system
has encountered a specific condition that requires attention.
It typically results in a forced transfer of control to a special
software routine called an exception handler. On ARMvV7-M,
the location of the exception handlers corresponding to each
exception are specified in the vector table pointed to by the
Vector Table Offset Register (VTOR). Note that unlike the other
ARMVT profiles, the ARMv7-M has introduced a hardware
mechanism that automatically stores and restores core context
data (in particular, Program Status Register (xPSR), return
address', 1r, r12, r3, r2, r1 and r0) on the stack upon ex-
ception entry and return. The ARMv7-M profile also exhibits
an interesting feature where an exception return occurs when
a unique value of EXC_RETURN (e.g., OXFFFFFFF1) is loaded
into the pc via memory load instructions, such as POP, LDM
and LDR, or indirect branch instructions, such as BX. Another
thing to note about the exception handling in ARMv7-M is
that different stack pointer (sp) can be used before and after
the exception. ARMv7-M provides two types of sp, called
main sp and process sp. The exception handler can only use
main sp but the non-handler code can choose which of the
two sps to use. The type of stack pointer being currently used
is internally managed through CONTROL register, so that stack
pointers are always represented as sp in the binary regardless
of its actual type.

3 Threat Model and Assumptions

Several conditions must be met to realize uXOM. First, the
target processor must support the MPU and the unprivileged
load/store instructions. We also assume that the target devices
run standard bare-metal software in which all included soft-
ware components, such as applications, libraries, and an OS,
share a single address space. Notably, we assume that the
entire software executes at a privileged level as mentioned
in§ 1.

Next, we define the capabilities of an attacker. We assume
that attackers are only capable of launching software attacks
at runtime. We do not consider offline attacks on firmware
images, such as disassembling, manipulating, or replacing

Lthe value of the program counter (pc) at the moment of the exception

the firmware, because we believe that these attacks can be
thwarted by orthogonal techniques such as code encryption
or signing. We also leave hardware attacks, such as bus prob-
ing [9] and memory tampering [22] out of consideration. How-
ever, we believe that our attackers are still strong enough to
jeopardize the security of the target devices. The bare-metal
software installed in the device is considered benign but in-
ternally holds software vulnerabilities, so that the attackers
may exploit the vulnerabilities and ultimately have arbitrary
memory read and write capability. With such a strong memory
access capability, attackers can access any memory region in-
cluding code, stack, heap and even the PPB region for system
controls. They can also subvert control flow by manipulat-
ing function pointers or return addresses. We do not trust
any software components, including the exception handlers.
Event-driven nature of tiny embedded systems signifies that
exception handlers can take a large portion of embedded soft-
ware components [14], so we cannot just assume the security
of these handlers. Thus, we assume that attackers can trigger
a vulnerability inside the exception handler and manipulate
any data including the cpu context saved on exception entry.

4 Approach and Challenges

uXOM aims to provide XO permission, which enables effec-
tive protection against disclosure attacks for code contents,
for commodity bare-metal embedded systems based on the
Cortex-M processor. uXOM tries to minimize the perfor-
mance penalty by utilizing hardware features, such as un-
privileged memory instructions and the MPU provided by
Cortex-M processors. Ideally, uXOM converts a/l memory in-
structions into unprivileged ones. It then configures the MPU
upon system boot to set code regions to RX for privileged
access and NA for unprivileged access. It also sets the other
memory regions (i.e., data regions) to non-executable for both
privileged and unprivileged accesses. After the configuration,
uXOM executes code as privileged. All the converted mem-
ory instructions (i.e., unprivileged memory instructions) are
allowed to access the data regions in the same way as before.
However, these instructions are prohibited from accessing the
code region and the PPB region in which the MPU and VTOR
are located that are essential for the security of uXOM (see the
blue arrows in Figure 2). This is because these regions are set
to the NA memory permission for unprivileged accesses. As
all of the memory instructions have been converted to unpriv-
ileged ones, code disclosure attacks are effectively thwarted.
In addition, uXOM by default enforces WX policy that
prevents code execution from writable regions. Therefore,
any attempt to inject ordinary memory instructions for code
disclosure is blocked as well.

Challenges. The basic principle of uXOM is simple and
intuitive as described above. To realize uXOM in practice,
however, we have to overcome some challenges to build a
system that works for real programs and cannot be bypassed
by any means. We summarize the challenges of realizing

234 28th USENIX Security Symposium

USENIX Association

o0 Code (P:RX, U:NA)

/* converted memory
instructions */
i . b

/% unconverted memory
instructions ¥/

: LDR r0, [rl]

STR r2, [r3]

JUMD = = =
ACCESS e

[}
1k

uXOM-enabled 3 :
Binary

1
¥

XOM ci ca

-— ==y

In
w

BX r4

. VM c2 | /% indirect call ¥/

Clang/LLV i~ f.BLX rd :
StathAnal)’SI.S& | /% exception return */ 69
Instrumentation | exception handler:

| // r4 = OXFFFFFFF1
|
~

Binary Verifier

Source Code I

Data (P:RW, U:RW)

PPB (P:RW, U:RW)

OXFFFFFFFF

Figure 2: uXOM approach

uXOM as follows.

e C1. Unconvertible memory instructions: To implement
uXOM, we initially tried to convert all memory instruc-
tions into unprivileged ones. However, this naive attempt
will be unsuccessful because unprivileged memory instruc-
tions do not support the exclusive memory access that is
mainly utilized to implement lock mechanisms, and they
cannot access the PPB region to which accesses must be
privileged regardless of the MPU configuration. Therefore,
we need to thoroughly analyze the entire code, find all these
unconvertible instructions, and leave those instructions as
the original types. However, these unconverted loads/stores
in the program binary resulted in the other challenges, C2,
C3 and C4.

e (C2. Malicious indirect branches: In § 3, we assumed
that attackers are capable of altering the control flow at run-
time by manipulating function pointers or return addresses.
Therefore, attackers can deliberately jump to the uncon-
verted loads/stores and exploit them. Unlike unprivileged
loads, the unconverted ones can access the code region.
Thus, the attackers are now able to read the code without a
permission fault. Furthermore, the attackers can also use
the unconverted stores to manipulate memory-mapped sys-
tem registers in the PPB. For example, they can configure
the MPU to enable unprivileged access to the code region,
completely neutralizing the protection offered by uXOM.

e (3. Malicious exception returns: This challenge is simi-
lar to C2 in that attackers can hijack control flow and even-
tually exploit the unconverted loads/stores to thwart uXOM.
As explained in § 2.4, Cortex-M employs a hardware-based
context save and restore mechanism for fast exception en-
try and return. The problem is that as the context is stored
in the stack, attackers can exploit a vulnerability while in
the exception handling mode to corrupt any context on the

stack. In particular, the context includes a return address
that represents the program point at the moment the excep-
tion is taken. If the attackers corrupt the return address and
then trigger an exception return by assigning EXC_RETURN
value to the pc, they will be able to execute any instruction
in the program including the unconverted loads/stores.

e (C4. Malicious data manipulation: As stated in § 3, the
attackers can perform arbitrary memory read/write, and as
a result, they have full control over all kind of program data,
such as globals, heap objects, and local variables on the
stack. With such control, they can exploit the unconverted
loads/stores even while following a legitimate control flow.
For example, they can call a MPU configuration function
with a crafted argument to neutralize uXOM by compro-
mising the necessary memory access permissions.

e C5. Unintended instructions: An attacker capable of ma-
nipulating control flow may be able to compromise uXOM
by executing unintended instructions that are not found at
compile-time. Concretely, Cortex-M processors targeted in
this work support Thumb-2 instruction set architecture [18]
that intermixes 16-bit and 32-bit width instructions with
16-bit alignment. Therefore, the attackers can execute unin-
tended instructions by jumping into the middle of a 32-bit
instruction. The attackers can also execute unintended in-
structions through immediate values embedded in code,
whose bit-patterns can coincidentally be interpreted as a
valid instruction.

5 uXOM

In this section, we describe the comprehensive details of
uXOM. We first explain the basic design of uXOM for re-
alizing the XO permission (§ 5.1). We then discuss our tech-
niques for overcoming the challenges C1-C5 (§ 5.2). Next,
we present the optimizations applied to reduce performance
penalty imposed by uXOM (§ 5.3). Lastly, we perform a secu-
rity analysis to demonstrate that uXOM contains no security
hazard (§ 5.4).

5.1 Basic Design

Before digging into the design details, we briefly describe
how uXOM works on the system. As illustrated in Figure 2,
uXOM is implemented as a compiler pass in the LLVM frame-
work and a binary verifier. During compilation, uXOM per-
forms static analyses and code instrumentation to generate
a uXOM-enabled binary (i.e., firmware). Now, when the bi-
nary is flashed on to the board and the system boots, uXOM
automatically enforces the XO permission on the running
code.

5.1.1 Instruction Conversion

As RWX or RX is a mandatory permission for code exe-
cution on ARMv7-M, executable code regions are always
readable and, as a result, are subject to disclosure attacks.
Unfortunately, we cannot omit the read permission to imple-

USENIX Association

28th USENIX Security Symposium 235

Case | Original Instruction Converted Instructions

1| LDR tt, [rn, #imm5] LDRT rt, [rn, #imm8]

2 LDR rt, [rn, #imm12] (ADD rx, rn, #imm12)

LDRT rt, [rx, (#imm8)]

3 LDR rt, [rn, #-immS§] SUB rx, rn #imm§8

LDRT rt, [rx]

4 LDR tt, [rn, #+/-imm8]!
(pre-indexed)

ADD/SUB rx, rn, #imm12
LDRT rt, [rx]

5 LDR rt, [rn], #+/-imm8
(post-indexed)

LDRT rt, [rn]
ADD/SUB rx, rn, #imm12

6 LDR rt, [rn, rm] ADD rx, rn, rm

LDRT rt, [rx]

7 LDRD rt, rt2, [rn, #+/-imm8] (ADD/SUB rx, rn, #imm8)
LDRT rt, [rx, (#imm8)]

LDRT rt2, [rx, (#imm8)+4]

Table 1: Basic instruction conversion (only shown for load
word instruction)

ment XOM because the read permission is required for the
processor to fetch instructions from memory. Therefore, our
strategy for XOM is to deprive all memory instructions of the
access capability for code regions. Briefly put, we convert the
memory instructions into unprivileged ones and set the code
regions to be accessible only with a privileged manner.

Converting the type of the memory instruction may seem to
be a trivial task, but not all memory instructions can be read-
ily converted as unprivileged. The unprivileged loads/stores
only support one addressing mode with a base register and
an immediate offset which must be positive and fit within 8
bits. On the other hand, the original memory instructions vary
in addressing modes, such as register-offset addressing and
pre/post-indexed addressing, which updates the base register.
Also, there are unprivileged counterparts to the load/store
byte and load/store halfword instructions, but there are no
corresponding unprivileged instructions for load/store dual
(LDRD/STRD) and load/store multiple (LDM/STM), which respec-
tively load/store two or multiple registers. To correctly con-
vert all the memory instructions while preserving the program
semantics, we sometimes need extra instructions.

Table | summarizes the conversions we apply to different
types of load instructions. Cases 3-6 always need an extra
ADD or SUB instruction for calculating the memory address.
We omit an extra instruction for other cases if we can fit
the immediate in the unprivileged instruction. Note that we
may need an extra register for storing the calculated address
if rn is used again in other instructions. We implement our
conversion before the register allocation phase so that we
do not have to worry about the physical registers and let the
compiler choose the best register for the temporary results.
LDM/STM instructions are not shown in the table because they
only appear during an optimization pass after register allo-
cation. Therefore, when the optimization pass tries to create
LDM/STM instructions, we disable the optimization to prevent
the generation of those instructions.

Region 0 Region 6

Code P:RX Region 7

U:NA I P:RO I
—U:RO

Read-only data

Read-write data P-RW
URW

Stack (main, process)

Peripheral
PREiE N
U : unprivileged access

\) \)
T 1

Address map

P : privileged access

MPU configuration

Figure 3: uXOM-specific memory permission. Unlabeled re-
gions (white-colored regions) in the address map indicate the
unused regions where the memory access generates data abort.
The PPB region has a default memory permission (P:RW,
U:NA) regardless of the MPU configuration.

5.1.2 Permission Control

In order for the XO permission based on the unprivileged
load/store instructions to take effect, uXOM has to configure
the MPU to enforce certain memory access permissions. Fig-
ure 3 shows the default MPU configuration for uXOM. Recall
that when multiple regions overlap, the permission setting for
the higher-numbered region is applied. We create Region 0
covering the entire address space with RW permission for
both privileged and unprivileged modes. This is needed to
allow unprivileged instructions to access the SRAM and the
peripheral region. Otherwise, unprivileged access to those
regions is not permitted due to the processor’s default per-
mission setting. We assign several higher-numbered regions
to uXOM protection. (Here, we assumed that the number of
MPU regions is 8.) Region 6 covers the entire flash region
and assigns RX for privileged accesses and NA for unprivi-
leged accesses. Since flash also contains read-only data, we
configure Region 7 to let the unprivileged load instruction
access the read-only data. To determine the base and size of
this region, we need to know the size of the read-only data.
To do this, we first compile, find out the read-only data size
and generate an include file that is fed back into the MPU
configuration code. The linker script is also modified to take
this information and place the read-only data appropriately.
The configurations are done in the early stage of the reset
handler, which is called upon processor reset. In this way,
the uXOM-specific permission is activated at the early stage
of the system boot before attackers can seize control of the
system.

5.2 Solving the Challenges

So far we have explained the basic design of uXOM for
activating the XO permission. In the following, we describe
how uXOM addresses the challenges presented in § 4.

236 28th USENIX Security Symposium

USENIX Association

Instruction Type Verification Details

if Targetaddress points to MPU,
Targetvaie must not violate uXOM-specific memory permissions.
else if Targetaddress points to VTOR,
Targetvaiue must have one of the valid VTOR values.
else,
Targetaddress must point to the PPB region excluding MPU region
and VTOR region

Ordinary stores
(STR)

Exclusive stores
(STREX)
Ordinary loads
(LDR)
Exclusive loads
(LDREX)

Targetaqaress must not point to the PPB region.

Targetaaaress Must not point to the code region.

Table 2: Verification details by the type of unconverted mem-
ory instructions. Target,qgress denotes the memory address
accessed by load/store instructions and Target,,;,. denotes
the value to be written by the store instructions.

5.2.1 Finding Unconvertible Memory Instructions

Unprivileged memory instructions do not provide exclusive
memory accesses and they cannot access the PPB region. As
stated in C1, therefore, we need to identify the memory in-
structions that must not be converted to unprivileged ones and
leave them as they are. We simply exclude exclusive mem-
ory loads/stores (e.g., LDREX and STREX) from the conversion
candidate. We perform compiler analysis to find loads/stores
accessing the PPB. Our analysis of the code base reveals
that accesses to the PPB involve calculating the base address
from a hard coded address pointing to the PPB region. This is
consistent with the claims made in previous work [12]. We
conduct a similar backward slicing technique to track how
the base address of each memory instruction is calculated.
If its address is a constant with the value corresponding to
the PPB region, or if it is calculated by adding some offset
to that constant value, we identify it as an access to the PPB
region and leave it as an original form. For our test platform,
intra-procedural analysis suffices to identify all PPB accesses.
If a PPB address is passed through a function argument and
used in a memory access, we can manually identify those
particular cases and add annotations to prevent the compiler
from converting the memory instructions as done in previous
work [12]. Fortunately, most PPB accesses tend to be per-
formed by the hardware abstraction layer (HAL) provided by
the device manufacturer, so no significant amount of annota-
tions are required to complement the static analysis.

5.2.2 Atomic Verification Technique

Our solution to deal with C1 is necessary but may endanger
the system. The problem is that, as stated in C2, C3 and C4,
the strong attackers assumed in § 3 can easily exploit the
unconverted instructions to neutralize uXOM. To address this
problem, we devise a atomic verification technique inspired
by the concept of the reference monitor [15, 35]. The key
of our technique is to verify memory accesses by the uncon-
verted loads/stores. More specifically, it inserts a routine that

performs verification as described in Table 2 before every un-
converted load/store so that we can confirm whether or not the
instruction tries to access code regions or manipulate system
configuration necessary for uXOM, such as uXOM-specific
memory permission (solve C4). At this point, however, the in-
serted verification may be bypassed by the attackers who can
divert control flow. To prevent this, therefore, the technique
enforces the atomic execution of the instruction sequence
composed of the verification routine and the following un-
trusted load/store instruction, ensuring that the attackers can-
not execute the unconverted loads/stores without a proper
verification (solve C2 and C3). Our basic strategy for atomic
verification is to (1) allocate a dedicated register as a base
register of every unconverted load/store, and then (2) enforce
the following two invariant properties regarding the dedicated
register.

e Invariant 1: The dedicated register must be set to a tar-
get address of each unconverted load/store immediately
before the associated verification routine. The set value
will be maintained only during the execution of the atomic
instruction sequence due to Invariant 2.

e Invariant 2: The dedicated register must hold a non-
harmful address (i.e., not a code or the PPB address) when
the atomic instruction sequence is not executed.

Now, the accessible memory of the unconverted
loads/stores is limited by the value of the dedicated register,
which is used as their base register. Invariant 1 allows the
unconverted loads/stores to be executed for their original
purpose (e.g., access to the PPB) only through the atomic
instruction sequence with a verification. Also, Invariant 2
prevents any attempt to execute the unconverted loads/stores
to access code or the PPB without going through the atomic
instruction sequence. As a result, the atomic verification is
achieved and the challenges, C2, C3 and C4, are addressed
successfully. Unfortunately, this implementation strategy
decreases the number of available registers by exclusively
allocating one register for the PPB access, which may
incur additional register spills and occasionally cause a
performance drop in some code with a high register pressure.

Therefore, we employ an alternative strategy that is similar
to the basic strategy but differs in that it uses the sp as a base
register of every ordinary load/store rather than using the ded-
icated register. Now, we can achieve the atomic verification if
we are able to enforce on the sp the same invariant properties
as the dedicated register. Enforcing Invariant 1 is straight-
forward, but enforcing Invariant 2 is challenging because
it can cause side effects on the program as the sp is used
throughout the program, unlike the dedicated register, which
is exclusively used only in the atomic instruction sequence.
Fortunately, recall that the sp is a special purpose register that
should always point to the stack, so Invariant 2 can be safely
enforced without worrying about side effects.

USENIX Association

28th USENIX Security Symposium 237

1. | update_register: 1. | update_register:
2: 2: cpsid i // disable interrupt
3: 3: mov rl0, sp // backup the value of sp
4: 4:
5: 5: mov sp, r0 // set sp to a target address (IP1)
6: 6: [verification routine] // verify the subsequent unconverted inst
7: str rl, [x0] 7: str rl, [sp] // perform an unconverted inst
8: 8:
9: 9: mov sp, rl0 // restore the value of sp
10: 10: [check sp] // check the value of sp (IP2)
11: 1 cpsie i // enable interrupt
12: 12
13: | exception handler: 13: | exception handler:
14: 14 [check main sp and process sp] // check the value of sp (IP2)
() Before (b) After

Figure 4: An unconverted store before and after applying the atomic verification technique. In the update_register functions r0
and r1 are used to pass arguments that will be used as unconverted store’s base register and source register, respectively.

Enforcing Invariant 2 on sp. We achieve this by adopting
the idea suggested by the previous work on SFI [7,33,39]—
we check the value of the sp whenever the attackers could
have modified it to point to the outside of the valid region (i.e.,
the stack region). There are three kinds of program points
where we need to insert the sp check routines: (1) when the
sp is modified by a non-constant (i.e., register), (2) when the
sp is increased or decreased by a constant, and (3) at the entry
of an exception handler.

We can usually find the first case when the alloca function
is called, the variable size array is used, or a stack environment
stored by the set jmp function is restored by the longjmp
function, which involves an assignment from a general register
to the sp. As these cases are rare, we insert the sp check
routines at all the corresponding points. ~

The second case is very frequently found in the prolog and
epilog of a function when the sp is adjusted according to the
frame size of the function. The attackers could, although not
easily, find a suitable gadget consisting of such an instruction
and repeatedly execute the gadget until the sp is set to a cer-
tain value. As pointed out in the previous SFI work [39], if
there is a memory instruction based on the sp following the
sp modification, the sp can be regulated by placing redzones
(i.e., non-accessible memory regions) around the valid stack
region. If the redzones are larger than the changes in the value
of the sp, the following sp-based memory instruction ensures
that any attempt to use the gadget to jump over the redzones
will be detected. Fortunately, the address map illustrated in
Figure 3 shows that there already exist large unused regions
that can do the role of redzones. This is because in most cases,
the stack, code and PPB reside in a separate memory space,
such as SRAM, flash memory and system bus, respectively.
Therefore, we create redzones only when the stack is created
adjacent to the code and PPB without unused regions in be-
tween. Note that redzones can detect the corruption of the sp
only if there is an actual memory access using sp. It implies
that if, after the sp is corrupted, an indirect branch is executed

2Currently, uXOM can handle only C code, so we manually insert the sp
check routine for the 1ongjmp function written in assembly language.

prior to a sp-based memory instruction, attackers may be able
to evade the execution of the memory instruction by manip-
ulating control flow. Therefore, to ensure the success of this
method, we implement an analysis that explores all path from
each constant sp modification. The analysis checks if there
are any sp-based memory instructions before a potentially
exploitable indirect branch is encountered. According to our
experiments, there are some sp-based memory instructions
preceding indirect branches most of the time. However, we
sometimes fail to find any sp-based memory instructions or
encounter a function call that disables further analysis, and in
this case, we insert sp check routines because we can no more
guarantee the sp corruption can be detected by the redzones.

Lastly, the attackers can try to avoid all the checks for sp
mentioned above by triggering an interrupt right after they
corrupt the sp. To neutralize this attempt, we have to validate
the sp by inserting another sp check routine at the entry of
the exception handlers. Note that as explained in § 2.4, there
are two sps in Cortex-M, and different sp may be activated
before and after the exception, so the sp check routine at the
entry of the exception handler checks the validity of both
sps as shown in Figure 4. The attackers may try to avoid the
sp check routine by modifying VTOR to alter the exception
handlers. To avert this attempt, we identify at compile-time
the valid values of VTOR, and regulate VTOR at run-time so that
it does not deviate from the identified values, as described in
Table 2.

Fulfillment of the Atomic Verification Technique. Now,
as both Invariant 1 and Invariant 2 can be enforced on the
sp, we can implement the atomic verification technique using
the sp without allocating a dedicated register. Figure 4 shows
an example code on how the atomic verification technique is
applied to harden an unconverted store. The original value of
the sp is backed up while it is used in the unconverted store
instruction (Line 3 and 9). The sp is assigned a target address
(Line 5) and the verification routine verifies the subsequent
unconverted store by checking the validity of its target address
and target value (Line 6). If the verification is passed, the un-
converted store performs memory access (Line 7). Note that

238 28th USENIX Security Symposium

USENIX Association

32-bit 16-bit 32-bit

32-bit 32-bit

H H
Instr. #1 Instr. #2 Instr. #1

; i |
Instr. #2 Instr. #1

DREREROESSG .

Unintended Instr.

Unintended Instr.

Unintended Instr.

M

@ ©)

Figure 5: The generation of an unintended instruction by an unaligned execution of a 32-bit instruction.

because Invariant 2 is enforced by instrumenting sp-update
instructions and exception handlers (Line 10 and 14), the sp
always is forced to point to the stack region except when it is
used for the unconverted loads/stores. Therefore, to execute
the unconverted store for its original purpose (i.e., accessing
the PPB), storing the target address (i.e., the address of the
PPB) to the sp must be preceded (Line 5), which in turn en-
sures that the verification routine will be performed (Line
6). At the same time, as the sp is used for the unconverted
loads/stores and may point to out of the stack region, we tem-
porarily disable interrupts (Line 2 and 11), thereby preventing
the register from being erroneously checked at the exception
handler.

5.2.3 Handling Unintended Instructions

As stated in CS5, our strong attackers capable of manipulating
the control flow of the program can execute unintended in-
structions to bypass the security of uXOM. The unintended
instructions are mainly caused by the unique property of
Thumb-2 instruction set architecture that intermingle 16-bit
and 32-bit instructions. Specifically, as shown in Figure 5,
when the attackers deliberately jump into the middle of a
32-bit instruction, unintended 16-bit or 32-bit instructions
can be decoded and executed. Unintended instructions can
also appear in the immediate values in code memory that
match the bit patterns of some valid instructions, as illustrated
in Figure 6.(b). As such, a number of unintended instructions
are lurking in code. Fortunately, however, only a minority
of them that can be interpreted as ordinary memory instruc-
tions or sp-modifying instructions can actually be exploited
to compromise uXOM.

Against this problem, we have implemented the code in-
strumentation technique based on the idea in the previous
work [4] that replaces each exploitable unintended instruction
into safe instruction sequences that serve the same function
as the original instruction. There was one complication in
solving the problem that not all exploitable unintended in-
structions can be identified at compile time. Many of the
exploitable unintended instructions result from immediate
values (i.e., symbol addresses) in instructions which are not
resolved until all the object files are linked by the linker. Sim-
ply transforming all those instructions that use unresolved
symbol addresses will result in unacceptable overhead in both
performance and code size. Thus, it is preferable to implement
the transformation inside the linker or use the static binary
transformation tool. However, adding extra instructions at
this stage is almost impossible because it will require us to

0x1000: | MOVW r0, #0x2d18 0x1000: [MOVW r0, #0x2918
// HEX encoding : 0x£6425018 0x1004: | ADDW r0, rO, #0x400

// 0x5018 : STR r0, [r3, 0]

(a) Unintended instruction originating from a 32-bit MOVW instruction

0x1000: LDR r8, [spl, 4 0x1000: | LDR x9, [sp], 4
// HEX encoding : 0x£85d8b04 0x1004: | MOV r8, r9

// 0x8b04 : LDRH r4, [r0, 0x18]

(b) Unintended instruction originating from a 32-bit LDR instruction

OxFFC: | LDR r2, [PC, #0x20] OxFFC: | MOVT r2, #0x£000
0x1000: | ... »omooo: MOVW r2, #0x6008

0x1020: | .word 0x£0006008
//0x6008 : STR r0, [rl]

(c) Unintended instruction originating from an immediate value in the code region

OxFFC: | TBB [PC, r5] OxFFC: | TBB [PC, r5]
0x1000: | .word 0x50274b39 0x1000: | .word 0x02284c3a

//0x6027 : STR r7, [r4] 0x1004: | B 0x10A2

0x10A0: O0x10A2:

(d) Unintended instruction originating from a jump table

Figure 6: Examples of unintended instructions and code trans-
formations to remove them.

adjust all the pc-relative offsets that are used in many ARM
instructions. Adding this capability to current ARM GNU
linker implementation will require significant engineering ef-
fort.> As a work around, we implemented a binary verifier
that scans the binary executable for exploitable unintended
instructions and records the position of each instruction in-
side the function. With that information, the program is then
recompiled and the exploitable unintended instructions are
replaced into alternative instruction sequences. Sometimes,
new exploitable unintended instructions are revealed after this
process, as code and object layouts are changed and offsets
and addresses embedded in the code are changed accordingly.
Thus, the interaction between the compiler and the verifier is
repeated until there are no exploitable unintended instructions
in the binary.

Figure 6 demonstrates a few examples showing how the
transformation is applied to remove exploitable unintended
instructions. Figure 6.(a) shows the case where an exploitable
unintended instruction (STR) is generated from the immediate
value of 32-bit instruction (MOVW). To remove the exploitable
instruction, we divide the original immediate value into two

3This capability is available in the linker for some architectures like RISC-
V which implements aggressive linker relaxation. For those architectures, the
pc-relative offset resolution is deferred until the linking time to enable linker
optimizations that reduce instructions and thus may change the pc-relative
offsets in the code.

USENIX Association

28th USENIX Security Symposium 239

numbers A and B. Then we replace the original 32-bit in-
struction to use A and add an extra instruction (e.g., ADDW)
to add B to the register written by the original instruction.
Note that for 32-bit instructions whose immediate value is
only determined at link time, we only add the extra instruction
at compile time and make sure that the linker puts value A
and B instead of the original immediate value. Figure 6.(b)
shows another example that the destination register of the
32-bit instruction (LDR) generates the exploitable unintended
instruction (LDRH). We solve this case by putting the value
loaded from memory into the other register and then use an
extra MOV instruction to copy the value into the original des-
tination register. We have also implemented an optimization
in the register allocation pass to prefer invulnerable registers
over the others for the destination of these 32-bit instructions
so that exploitable unintended instructions can be avoided as
much as possible. This saves the use of extra instructions and
reduces the performance and code size overhead. Figure 6.(c)
shows an unintended instruction that exists in a constant em-
bedded in a code region to be loaded by a pc-relative load.
To sanitize it, we remove the constant value and replace the
associated pc-relative load with two move instructions. If the
resulting MOVT or MOVW instruction creates new exploitable
unintended instructions, it is further transformed similarly to
the example in Figure 6.(a). Finally, Figure 6.(d) shows the
case where the offsets in a jump table embedded in the code
create an exploitable unintended instruction. In the example,
the value 0xAO (0x50 * 2) is added to pc and the control is
transferred to 0x10A0. To remove the unintended instruction
in this case, we add a trampoline code right after the jump
table for the targets with the problematic offsets.

5.3 Optimizations

According to our experiments (see § 6.1), unprivileged mem-
ory instructions consume the same CPU cycles as ordinary
memory instructions. However, unprivileged instructions are
32-bits in size while many ordinary memory instructions have
a 16-bit form. Also, extra instructions that are added as de-
scribed in § 5.1.1 can increase both the code size and the per-
formance overhead. Since code size is another critical factor
in an embedded application due to its scarce memory, it can
be beneficial to leave the memory instructions in their original
form if we can ensure that this does not harm the security guar-
antees of uXOM. In fact, a large number of the instructions
do not need to be converted either because they are safe by
nature or because they can be made safe through some addi-
tional effort. For example, ARM supports pc-relative memory
instructions which access a memory location that is a fixed
distance away from the current pc—i.e., the address of the cur-
rent instruction. As these instructions can only access certain
data embedded in the code region, attackers cannot exploit
them to access other memory locations. Therefore, we do not
need to convert these instructions, so we leave them as long as
it is not exploitable as unintended instructions (§ 5.2.3). We

also do not convert stack-based ordinary memory instructions.
Numerous instructions use the sp as the base address. Almost
all of them are 16-bits in size since Cortex-M provides special
16-bit encoding for stack-based memory instructions. Con-
verting all of these as the unprivileged will significantly add to
the code size of the final binary. Most of the LDM/STM instruc-
tions, including all the PUSH/POP instructions, are also based
on sp. Converting them would require multiple unprivileged
instructions which would further increase the code size and
even the performance overhead. Luckily, recall that uXOM al-
ready enforces the invariant properties noted in § 5.2.2 on the
sp. Therefore, attackers cannot exploit the ordinary memory
instructions based on sp, and we can safely leave sp based
memory instructions in their original forms.

5.4 Security Analysis

uXOM builds on the premise that there remains no abus-
able instructions in a firmware binary. uXOM satisfies this
through its compiler-based static analysis (§ 5.1.1 and § 5.2.3)
that (1) identifies all abusable instructions, such as ordinary
memory instructions and unintended instructions, and (2) con-
verts them into safe alternative instructions. This conservative
analysis does not make false negative conversions, so uXOM
is fail-safe in terms of security. In the following, we show that
attackers we assumed in the threat model (§ 3) will not be
able to compromise uXOM.

5.4.1 At Boot-up

As noted in § 3, we trust the integrity and confidentiality of
the firmware image. The firmware image will be distributed
and installed with the uXOM-related code instrumentation
applied. As soon as the system is powered up, the reset excep-
tion handler starts to run and the code snippet that uXOM in-
serted at the start of the handler is executed to enforce uXOM-
specific memory access permissions. Note that the firmware
has started its execution from a known good state and the
attackers have not yet injected any malicious payloads. There-
fore, we can guarantee that uXOM will safely enable XOM
without being disturbed by the attackers.

5.4.2 At Runtime

Once uXOM enables XOM, the attackers are completely pre-
vented from accessing the code. They cannot use unprivileged
loads/stores to bypass uXOM, so they have to resort to the
unconverted loads/stores. Through the instruction conversions
and optimizations of #uXOM, only three types of unconverted
loads/stores remain in the binary: stack-based loads/stores,
exclusive loads/stores and ordinary loads/stores for the PPB
access.

Stack-based loads/stores. ©uXOM s optimization excludes
sp based loads/stores from the conversion candidates. The
attackers may be able to execute these loads/stores, but they
cannot access the PPB region or code regions. This is be-
cause the sp is forced to point to the stack regions due to the
invariant property (Invariant 2 in § 5.2.2) enforced on the

240 28th USENIX Security Symposium

USENIX Association

Sp.

Exclusive loads/stores and ordinary loads/stores for the
PPB access. These unconverted loads/stores are protected
by the atomic verification technique. Verification routines
are inserted just before each unconverted load/store and the
atomic execution of the inserted routine and the corresponding
unconverted load/store is guaranteed. Of course, the attacker
may jump into the middle of the atomic instruction sequence
to directly execute the unconverted load/store without a proper
verification. However, as the unconverted loads/stores use the
sp as their base register, the attackers still cannot access the
code and the PPB regions.

6 Evaluation

uXOM transformations are implemented in LLVM 5.0, and
uXOM ’s binary verifier is implemented using the Radare2
binary analysis framework [32]. We used the RIOT-OS [5]
version 2018.10 as the embedded operating system. As the
whole binary, including the OS, runs in a single physical
address space at the same privilege level, uXOM compiler
transformations are applied to the OS code as well as the
application code to enable complete protection. We also ap-
plied our transformations to the C library (newlib) included
in arm-none-eabi toolchain, which had to be patched in a few
places to compile and run correctly with LLVM.

To better show the merits of our approach, we also imple-
mented and evaluated SFI-based XOM to compare against
uXOM. Originally, SFI is developed to sandbox an untrusted
module in the same address space. It restricts the store and
indirect branch instructions (i.e., by masking or checking the
store/branch address) in the untrusted module so that the un-
trusted module cannot corrupt or jump into the trusted module.
It also bundles the checks with the store/branch instructions
and prevents jumps into the bundle so that the restrictions ap-
plied to the store or branch address cannot be skipped. Capital-
izing on the SFI’s access control scheme, some studies [7,31]
have implemented the SFI-based XOM that instruments every
load instructions with masking instructions to prevent them
from reading the code region. However, as these studies fo-
cus on high-end devices like smartphones and desktop PCs,
we adapted the SFI-based XOM to work on Cortex-M based
devices. As our target device do not use virtual memory, code
and data must reside in a specific memory region. This pre-
vents us from using simple masking to restrict load addresses
and forces us to use a compare instruction to validate the ad-
dress. Furthermore, the instruction set of Cortex-M requires
us to insert additional IT (If-Then) instruction to make load
instruction execute conditionally on the comparison result.
Next, we place the compare and load inside a 16-byte aligned
bundle and make sure that they do not cross the bundle bound-
ary. We insert NOPs in the resulting gaps. Lower bits of indirect
branch targets are masked (cleared) to prevent control flows
into the bundle. We also make sure that all possible targets of
an indirect branch (i.e., functions and call-sites) are aligned.

115

Execution Time (s)
&

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
Alignment (bytes)
Figure 7: Execution time of bitcount according to the dif-
ferent alignments of the code region.

POP instructions used for function returns are converted to
masking and return sequence as described in the previous
work on SFI [33]. Following the optimization done in the
paper [39], the memory load instructions based on the sp are
not checked and the sp is regulated in the same way as in
uXOM.

To evaluate X OM and the SFI-based XOM, we used the
publicly available BEEBs benchmark suite (version 2.1) [29].
We selected 33 benchmarks that are claimed to have relatively
long execution time [12]*. We ran each benchmark on an
Arduino Due [1] board which ships with an Atmel SAM3X8E
microcontroller based on the Cortex-M3 processor. During
the experiment, we found that the program runs give very
inconsistent timing results depending on how the code is
aligned, even though there are no caches in the processor.
After some investigation, we found that the reason is due to
the flash memory. The Arduino Due core runs at 84MHz in
the default setting, which makes it necessary to wait for 4
cycles (called flash wait state) to get stable results from the
flash memory. SAM3X3E chips are equipped with a flash
read buffer to accelerate sequential reads [3], which gave us
variable results depending on where the branches are located.
As a preliminary experiment, we measured the execution time
while changing the displacement of the entire code region for
bitcount benchmark. As shown in Figure 7, the changes in
execution time show a pattern that is repeated every 16-byte,
which corresponds to the size of the flash read buffer. Because
of this result, to get a consistent result, we decreased the core
frequency to 18.5MHz in all our experiments.

6.1 Runtime Overhead

Figure 8 shows the runtime overhead of uXOM and SFI-
based XOM. The geomean overhead of all benchmarks is
7.3% for uXOM and 22.7% for SFI-based XOM. The worst
case overhead for uXOM is 22.3% for huf fbench benchmark
and that for SFI-based XOM is 75.1% for edn benchmark.
Note that the performance overhead of SFI reported in the
previous work [33] for a high-end ARM device (Cortex-A9)
is 5%. In the paper, they mention that overhead induced by
additional instructions for SFI can be hidden by cache misses
and out-of-order execution. Based on this, we presume that the
large overhead of SFI-based XOM for Cortex-M3 observed
in our experiment is due to the low-power and cache-less

4Some of the benchmarks have been dropped in the newest version due
to the license problem.

USENIX Association

28th USENIX Security Symposium 241

80%

60%

20%

SFI-XOM UXoM BuXOM-UI HUXOM-CRA

0% ol
g & ° N & e CI Q& & & @ & & N © & & o 2 @ > & S\ o & N
& & F & ‘\@\ NEEa P (;@& & & & 9 & IR & & o & & 5 gf’b & S &
. S " i S <G K
o© N & % \&z N \\‘0» Ko & §F & ‘\&\ &7 @?} & & v e & a (o“’o
& N2 & & A @'b*

Time

Code

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
@imm offset
@ double/multiple mem ops & LDR/STR checks

I no extra instr @ reg offset

B pre/post idx

sp checks
Figure 9: Performance overhead breakdown for the different
components of uXOM-UI transformation.

processor implementation. This strongly shows the need for
an efficient low-end device oriented XOM implementation
like uXOM.

To inspect the sources of overhead, we built and ran multi-
ple partially instrumented versions of binaries with different
kinds of transformations applied. First, to examine the per-
formance impact of removing exploitable unintended instruc-
tions, we measured the runtime overhead for uXOM-Ul—a
variation of uXOM that does not handle unintended instruc-
tions. As a result, we measured that the geomean overhead
for uXOM-UI is 5.2%, which shows that removing unin-
tended instructions incurs 2.1% of overhead in uXOM. We
then gathered the statistics on the number of conversions
and check codes inserted in uXOM-UI (Table 3). We also
measured the overhead ratio in terms of code size and exe-
cution time according to the type of conversions and checks
(Figure 9). In Table 3 and Figure 9, no extra instr. de-
notes the case where a memory instruction is converted to
an unprivileged one without an additional instruction. imm.
offset denotes the case where an additional instruction is
required because the immediate offset is too large or is nega-
tive. pre/post idx. represents the pre/post-indexed address-
ing mode and reg. offset represents the register-register
addressing mode. double/multiple mem. ops. represents
LDRD/STRD/LDM/STM instructions. For the sp check part,
non-const sp mod. is the case where the sp is modified
by the non-constant (and the check is required). const sp
mod. (checked) is the case where the sp is modified by the
constant and requires checking since no load/store based on
the sp is found afterwards. const sp mod. (no check) is
the case where the sp is modified by the constant but does
not need to be checked. Finally, LDR/STR checks denotes
the instructions inserted for the atomic verification technique.

The statistics shown in Table 3 are gathered while compil-
ing the C standard library, RIOT-OS, and each of the bench-

Cases Count (ratio %)

Instruction conversion

no extra instr. 25932 (77.0)
imm. offset 2547 (7.6)
pre/post idx. 1671 (4.9)
reg. offset 2891 (8.6)
double/multiple mem. ops. 641 (1.9)
sp check
non-const sp mod. 18 (0.7)
const sp mod. (checked) 769 (28.8)
const sp mod. (no check) 1881 (70.5)

Table 3: Statistics for instruction conversion and sp check
instrumentation.

marks. Note that although the numbers do not represent those
executed at runtime, we can expect some correlation between
them. Among the converted memory instructions, the majority
of the cases is the one where a memory instruction is directly
converted to a single unprivileged memory instruction without
any extra instruction (no extra instr. accounts for 77%
of all conversions). This tells us that most of the load/store
instructions are using an immediate-offset addressing mode
and the offset is usually small so that it fits in the immediate
field of the unprivileged instructions. As we can see, instruc-
tions converted in this way do not contribute to the runtime
overhead albeit being the majority. Even though the unprivi-
leged instructions are 32-bits long, they do not increase the
overhead unless additional instructions are inserted. This is
a big advantage for ¥XOM, and it is the main reason why
uXOM can be much more efficient than SFI-based XOM.
As illustrated in Figure 9, the type of instruction conver-
sions that contributes the most of the overhead is the one for
the register-register addressing mode (reg. offset). Even
though they represent only 8.6% of all conversions, they
cause 54% of the total overhead for uXOM-UL The reason
would be that they are frequently used in time-consuming
loops, for example, to index array variables. imm. offset
and pre/post idx. take up the other half of the over-
head. Memory instructions that load/store multiple registers
(double/multiple mem. ops.) cause a negligible runtime
overhead; they are rare in number and also, although they are
converted into multiple unprivileged instructions, the original
instruction also takes up extra cycles to load/store multiple
registers. The sp checks that are inserted for stack modifica-
tion have an only negligible impact on performance as our

242 28th USENIX Security Symposium

USENIX Association

80%

60%

40%

SFI-XOM UXOM EIUXOM-UI HyXOM-CRA

Figure 10: Code size overhead on BEEBs benchmark suite.

80%

60%

40%

20%

SFI-XOM UXOM BUXOM-UI B UXOM-CRA

0% ﬂl
v X 5 N & 3 NJ < N & & < & (2
I T A A

& & S & & & LF NSNS

o &S & IS S S AN I
& ¢ & & & &) & s &

< X x & R N e 2
& ° 00" A O;G’ @\\ ng,"(‘ b\‘)\’\‘ -d:f' . §5~‘ (\gb“ ‘,& g@(\ Oob* K,,;v‘ @0{‘ §
& NN G & & 9
& B & &

Figure 11: Energy overhead on BEEBs benchmark suite.

analysis finds that the sp checks are only needed for less than
30% of sp-based memory instructions.

6.2 Code Size Overhead

To see the impact of instruction insertion by uXOM, we
measured the size of the code in the final binary, excluding
the data size. Figure 10 shows the result for both uXOM
and SFI-based XOM. For uXOM, code size is increased by
15.7%, and for SFI-based XOM, it is increased by 50.8%. It
shows that uXOM can implement XOM with much less code
size overhead compared to SFI-based XOM. In addition, we
measured that the geomean overhead of uXOM-Ul is 11.6%,
which indicates the amount of increased code for removing
unintended instructions is 4.1%. Figure 9 shows the source
of the overhead that is caused by instruction conversions and
checks. First, no extra inst. accounts for 54.5% of the
code size overhead for uX OM-UI, differently from the impact
that it had on the runtime performance. This is because the
original 16-bit load/store instructions are converted to 32-bit
unprivileged instruction, and they are large in number, too.
Other types of instructions that need additional instructions
also increases the code size to some degree. The instructions
added for the atomic verification technique (1dr/str check)
accounts for 17.4% of the code size overhead for uXOM-
UL Although there are not many instructions accessing the
PPB region, around ten instructions are inserted for each of
those points, which adds some overhead to the code size
especially since the benchmark code size are only around
30KB. We expect the overhead from the atomic verification
to be a smaller percentage in the real program with a larger
code base.

6.3 Energy Overhead

Since many embedded devices running on Cortex-M pro-
cessors often operate based on constrained battery, energy
efficiency is one of the important performance factors for

these devices. To measure the impact of uXOM on energy
consumption, we recorded the power while running the in-
dividual benchmarks using the ODROID Smart Power [28].
For the convenience of measurement, the benchmarks were
repeatedly executed to run for at least 30 seconds. Figure 11
shows the results. For uXOM, the geometric mean of all
benchmarks is 7.5%, which is slightly larger than 5.8% of
uXOM-UI but much lower than 22.3% of SFI-based XOM.
The results share a similar trend with the execution time since
the energy is also affected by the execution time.

6.4 Security and Usability

Other than its excellence for performance, we also need to
mention the security and flexibility benefits of uXOM over
SFI-based XOM. uXOM provides a better security guarantee
against privileged attackers than SFI-based XOM. SFI-based
XOM, including the existing studies, focus only on the code
disclosure through memory read instructions, because they
assume that WX policy is assured by a Trusted Computing
Base (TCB) such as the OS kernel. However, as described in
§ 3, uXOM cannot assume any TCB in the bare-metal envi-
ronment in which all software components are running with
privileges in a single address space. The privileged attacker
could neutralize W& X by manipulating the MPU configu-
ration register using memory vulnerabilities in the code. To
prevent such an attack, SFI-based XOM for Cortex-M would
also have to regulate memory write instructions to protect
memory-mapped registers for the MPU. However, this would
undoubtedly lead to more severe performance overheads, and
even worse, SFI-style masking of write instructions would
still leave the system vulnerable against attacks through the
exception handler (C3 of § 4). In addition, the current im-
plementation of SFI-based XOM is vulnerable to unintended
instructions. To defend this, it should eliminate all exploitable
unintended instructions either by using the instruction re-
placement technique similar to uXOM or selectively aligning

USENIX Association

28th USENIX Security Symposium 243

32-bit instructions so that jump into the middle of those in-
structions can be prevented by the masking of indirect jump
addresses. Either way, additional performance overhead will
be unavoidable.

uXOM is also more flexible in placing the code and data.
For uXOM, the XOM region can be placed anywhere in
the address space. For example, uXOM can be applied for
the code placed in SRAM for performance or firmware up-
dates [20]. Also, uXOM can set multiple XOM regions as
long as the number of MPU regions supports it. However,
SFI-based XOM must place the code at one end and the data
on the other to simplify code instrumentation. Moreover, SFI-
based XOM needs a guardzone between the code and the
data region [39] which further restricts the code and data
placement and also causes the memory to be wasted for the
guardzone.

6.5 Use Cases

uXOM can be used to hide sensitive information in the code
region, such as secret keys and code layout. We describe two
use cases to illustrate how uXOM can be applied to a security
solution.

Secret key protection. In tiny devices, secret keys are fre-
quently used for various purposes, such as device authenti-
cation and communication channel protection. #XOM can
protect these keys against arbitrary memory read vulnera-
bilities by embedding them inside the code. For example,
consider the following code that defines the constant global
key.

const unsigned char key[32] =
{Oxcb, 0x21, Oxad, 0x38, ...};

The code that reads the first 4-byte of this value is compiled
to the assembly code composed of MOVW and MOVT as follows:

MOVW r0, #0x21cb
MOVT r0, #0x38ad

Now, if we use uXOM to apply the XO permission to this
code, attackers cannot access the key value by arbitrary mem-
ory reads. As an example, we applied uXOM to rijndael
benchmark, which uses a symmetric key for encryption. By
declaring the key as a global constant, we could confirm that
the key is embedded in the code protected by uXOM. Such a
protection offered by uXOM can further be combined with in-
register computation techniques [26] for a secure computation
robust against memory vulnerabilities.

CRA defense. To date, many researchers have proposed code
diversification-based CRA defense techniques [7, 12, 13,30].
They randomize code layout to prevent attackers from using
the existing gadgets for CRA. As the code disclosure attack
emerged as a serious threat to randomization-based defenses,
XOM has been proposed as an effective solution to fortify
these defenses.

As another use case of uXOM, we implemented a CRA

defense solution based on Readactor [13], which is a represen-
tative code diversification based CRA defense with resistance
to code disclosure attacks. Readactor aims to defend against
two classes of code disclosure attacks: direct disclosure where
the attackers disclose code layout by directly reading the code
and indirect disclosure where attackers indirectly infer the
code layout through the value of the code pointers. Readactor
first places all code in XOM to prevent the direct disclo-
sure attacks. It then replaces all code pointers with pointers
to trampolines so that all indirect control transfers must go
through the trampoline. In this way, code pointers containing
the original code location are never stored in a register or
memory, thereby preventing the indirect disclosure attacks.
To demonstrate this use case, we implemented function re-
ordering and the trampoline mechanism. Every function call
is replaced with a direct branch to the trampoline followed by
the call to the original function. When the original function
returns, another direct branch takes the control flow back to
the original callsite. Also, every function pointer is replaced
with a pointer to the corresponding function trampoline. We
implemented this use case on top of uXOM-UI because the
code diversification based CRA defense mitigates control
flow hijacking, and consequently hinders an attacker from
exploiting unintended instructions. The experimental results
of our CRA defense are presented together with the results for
uXOM, uXOM-UI and SFI-based XOM. It imposes average
runtime overhead of 8.6%, the code size overhead of 19.3%,
and the energy overhead of 9.7%. The runtime overhead is
only slightly larger than that for original Readactor imple-
mentation (6.4%) which shows the applicability of uXOM
technique in low-end embedded devices.

7 Discussion

Cortex-M Processors based on ARMv8-M Architecture.
ARMvVS-M [19] is a recently introduced instruction set archi-
tecture for the microcontroller profile. Basically, ARMv8-M
provides backward compatibility with ARMv7-M, so uXOM
is also applicable to ARMv8-M based Cortex-M(23/33/35)
processors. Here, we list several possible changes in uXOM
implementation due to the newly added hardware feature in
ARMVv8-M. First of all, ARMv8-M includes the stack pointer
limit register (SPLR) that defines a lower limit for the stack
pointer and prevents the stack pointer from pointing below the
limit. When enabling SPLR, therefore, uXOM only needs to
ensure that the stack pointer does not point to the PPB region.
Secondly, load-acquire and store-release memory instructions
are newly added in ARMv8-M. Since these instructions do
not have unprivileged counterparts, they should be protected
by the atomic verification technique.

False Positive Conversion. When it comes to the instruc-
tion conversion of uXOM, false positive cases could happen
where unconvertible instructions are converted to unprivileged
ones. The false positive conversion does not harm the security

244 28th USENIX Security Symposium

USENIX Association

aspect of uXOM but may cause an unexpected system fault.
For instance, if PPB-accessing memory instructions are con-
verted to unprivileged ones, it would not expose the PPB to
attackers but raise a memory access fault when executed. To
avoid an unexpected system halt due to the fault, uXOM can
install a custom fault handler, which in turn may invoke the
fail-safe handler already implemented in the existing system
(e.g., emergency landing in drones).

Dynamic Data Protection. Although the current uXOM im-
plementation aims to defeat the code disclosure attacks, it may
be extended to provide protection for the dynamic data as well.
To be concrete, uXOM can be expanded to implement a data
isolation scheme [23, 35, 36] that minimizes the possibility
of exposures of critical data by only allowing access through
authorized instructions. More specifically, we may allow only
authorized instructions (i.e., ordinary loads/stores that are not
converted into unprivileged types) to access critical data (e.g.,
return addresses/session keys) by placing the data on a cer-
tain memory region marked as “privileged”. To implement
such an extension, some modifications to uXOM are required.
First of all, authorized instructions should be predetermined
through the help of programmers or compilers and prevented
from being converted to unprivileged ones. Since attackers
can exploit these data-accessing instructions to compromise
uXOM, usage of these instructions should be regulated in a
way similar to PPB-accessing instructions through the atomic
verification technique with a new verification routine that
confines memory access target to the memory region of the
critical data.

8 Related Work

Hardware-assisted Execute Only Memory. Due to the
compelling security guarantee provided by XOM, today’s
high-end processor architectures (e.g., x64 and AArch64) pro-
vide the XO permission setting in the MMU [8, 10]. Apart
from that, various works have attempted to implement XOM
in the system with the help of the hardware. David et al. [24]
implemented XOM by encrypting the code in memory and
decrypting it only when it is executed. However, since it re-
quires significant processor redesign, it is not suitable for wide
adoption. In subsequent works, XOM has been implemented
by capitalizing on the built-in hardware features. Shadow
Walker [37] and HideM [17] presented an implementation
of XOM using the split translation lookaside buffer (TLB)
architecture, which separates the TLB for instruction fetches
and data accesses. They configure the two TLBs so that the
same virtual address is translated into different physical ad-
dresses for data access and instruction fetch, preventing the
data accesses to the code region. XOM-switch [25] imple-
mented XOM using Intel Memory Protection Keys (MPK),
which can be used to set memory pages execute-only. Shadow
Walker, HideM and XOM-switch are not applicable to Cortex-
M based devices because they rely on specific hardware fea-

tures (i.e., split-TLB or Intel MPK) that do not exist in the
Cortex-M processor.

Software-based Execute Only Memory. On the other hand,
there have been attempts to emulate XOM in software for pro-
cessors that do not have the above hardware supports. XnR [6]
sets all code pages as non-accessible except for the currently
executed code pages called sliding window and detects il-
legal memory reads and writes for non-accessible pages by
augmenting the MMU page fault handler. For Cortex-M/R
processors, since MPU also provides non-accessible permis-
sion setting for memory regions, XOM can be implemented
in a similar way. However, this approach cannot detect mem-
ory reads for code pages in the sliding window, and also,
the performance overhead becomes larger as the sliding win-
dow size is reduced. LR? [7] and kR"X [31] realize XOM by
SFl-inspired techniques [39,40]. They prevent code reads by
masking load instructions, instead of stores as done in the
SFI technique. As shown in our evaluation, however, such
SFI-based XOM implementation can be bypassed and is inef-
ficient in low-end devices.

Security Solutions using XOM. Many researchers have
proposed various security solutions based on XOM. Early
works [27] proposed XOM for the purpose of protecting
intellectual properties and preventing tampering or leakage
of sensitive information stored in the code. Since the ad-
vent of code disclosure attacks (i.e., JIT-ROP), a number of
works [7, 13, 16, 31] have utilized XOM to prevent the at-
tackers from reading code to learn code layout and launch
CRAs. In § 6.5, we have shown that these solutions can be

implemented with uXOM.

Security for Tiny Embedded Devices. Recently, much re-
search has been done on enhancing the security of tiny em-
bedded devices. Mbed uvisor [2], MINION [21], uSFI [4]
and ACES [11] proposed memory isolation techniques for
software modules based on MPU. At compile time, they de-
fine memory views (stack, heap, and peripherals) for each
of the software modules, and at runtime, MPU enforces one
of the memory views according to the active software mod-
ule. Epoxy [12] and AVRAND [30] developed diversification
based security solutions for tiny embedded devices. As with
these solutions, uXOM also seeks to enhance the security
of tiny embedded devices. uXOM is the first to implement
efficient execute-only memory in Cortex-M processors.

9 Conclusion

XOM is a prominent protection mechanism that can be used
in various security purposes such as intellectual property pro-
tection and CRA defense. However, for a low-end embed-
ded processor such as Cortex-M, there has been no efficient
way to implement XOM. In this paper, we present uXOM, a
novel technique to realize XOM in a way that is secure and
highly optimized to work on Cortex-M processors. uXOM
achieves this by leveraging hardware features (i.e., unpriv-

USENIX Association

28th USENIX Security Symposium 245

ileged load/store instructions and MPU) in Cortex-M pro-
cessors. Our evaluation shows that not only #uXOM is more
efficient than SFI-based XOM in terms of execution time,
code size and energy consumption, and that uXOM is com-
patible with existing XOM-based security solutions.

Acknowledgments

We thank the anonymous reviewers and our shepherd,
Vasileios P. Kemerlis, for their valuable comments that
helped to improve our paper. This work was partly sup-
ported by the National Research Foundation of Korea(NRF)
grant funded by the Korea government(MSIT) (NRF-
2017R1A2A1A17069478, NRF-2018R1D1A1B07049870,
No. 2019R1C1C1006095), Institute of Information Com-
munications Technology Planning Evaluation (IITP) grant
funded by Korea government (Ministry of Science and ICT)
(No. 2016-0-00078, No.2018-0-00230, No. 2017-0-00168),
and the Brain Korea 21 Plus Project in 2019. The ICT at Seoul
National University provides research facilities for this study.

References

[1] Arduino. arduino-due. https://store.arduino.cc/
usa/arduino-due.

[2] ARM. The mebed os uvisor. https://www.mbed.com/
en/technologies/security/uvisor/.

[3] Atmel. Atmel-11057c-atarm-sam3x-sam3a-datasheet,
2015.

[4] Zelalem Birhanu Aweke and Todd Austin. usfi: Ultra-
lightweight software fault isolation for iot-class devices.
In 2018 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), pages 1015-1020. IEEE,
2018.

[5] Emmanuel Baccelli, Oliver Hahm, Mesut Gunes,
Matthias Wahlisch, and Thomas C Schmidt. Riot os: To-
wards an os for the internet of things. In Computer Com-
munications Workshops (INFOCOM WKSHPS), 2013
IEEE Conference on, pages 79-80. IEEE, 2013.

[6] Michael Backes, Thorsten Holz, Benjamin Kollenda,
Philipp Koppe, Stefan Niirnberger, and Jannik Pewny.
You can run but you can’t read: Preventing disclosure
exploits in executable code. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1342—-1353. ACM, 2014.

[7] Kjell Braden, Lucas Davi, Christopher Liebchen,
Ahmad-Reza Sadeghi, Stephen Crane, Michael Franz,
and Per Larsen. Leakage-resilient layout randomization
for mobile devices. In NDSS, 2016.

[8] Scott Brookes, Robert Denz, Martin Osterloh, and
Stephen Taylor. Exoshim: Preventing memory disclo-
sure using execute-only kernel code. In Proceedings

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

of the 11th International Conference on Cyber Warfare
and Security, pages 56-66, 2016.

Xi Chen, Robert P Dick, and Alok Choudhary. Oper-
ating system controlled processor-memory bus encryp-

tion. In Design, Automation and Test in Europe, 2008.
DATE’08, pages 1154-1159. IEEE, 2008.

Yaohui Chen, Dongli Zhang, Ruowen Wang, Rui Qiao,
Ahmed M Azab, Long Lu, Hayawardh Vijayakumar, and
Wenbo Shen. Norax: Enabling execute-only memory
for cots binaries on aarch64. In Security and Privacy
(SP), 2017 IEEE Symposium on, pages 304-319. IEEE,
2017.

Abraham A Clements, Naif Saleh Almakhdhub, Saurabh
Bagchi, and Mathias Payer. Aces: Automatic compart-
ments for embedded systems. In 27th USENIX Security
Symposium (USENIX Security 18), pages 65-82, 2018.

Abraham A Clements, Naif Saleh Almakhdhub,
Khaled S Saab, Prashast Srivastava, Jinkyu Koo,
Saurabh Bagchi, and Mathias Payer. Protecting bare-
metal embedded systems with privilege overlays. In
Security and Privacy (SP), 2017 IEEE Symposium on,
pages 289-303. IEEE, 2017.

Stephen Crane, Christopher Liebchen, Andrei Homescu,
Lucas Davi, Per Larsen, Ahmad-Reza Sadeghi, Stefan
Brunthaler, and Michael Franz. Readactor: Practical
code randomization resilient to memory disclosure. In
Security and Privacy (SP), 2015 IEEE Symposium on,
pages 763-780. IEEE, 2015.

Drew Davidson, Benjamin Moench, Thomas Ristenpart,
and Somesh Jha. Fie on firmware: Finding vulnerabili-
ties in embedded systems using symbolic execution. In
USENIX Security Symposium, pages 463—478, 2013.

Ulfar Erlingsson. The inlined reference monitor ap-
proach to security policy enforcement. Technical report,
Cornell University, 2003.

Jason Gionta, William Enck, and Per Larsen. Preventing
kernel code-reuse attacks through disclosure resistant
code diversification. In Communications and Network
Security (CNS), 2016 IEEE Conference on, pages 189—
197. IEEE, 2016.

Jason Gionta, William Enck, and Peng Ning. Hidem:
Protecting the contents of userspace memory in the face
of disclosure vulnerabilities. In Proceedings of the 5th
ACM Conference on Data and Application Security and
Privacy, pages 325-336. ACM, 2015.

ARM Holdings. Armv7-m architecture reference man-
ual, 2010.

246 28th USENIX Security Symposium

USENIX Association

https://store.arduino.cc/usa/arduino-due
https://store.arduino.cc/usa/arduino-due
https://www.mbed.com/en/technologies/security/uvisor/
https://www.mbed.com/en/technologies/security/uvisor/

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

ARM Holdings. Armv8-m architecture reference man-
ual, 2017.

IAR. Execute in after copy-
ing from flash or rom. https://www.
iar.com/support/tech-notes/general/

ram

execute-in-ram-after-copying-from-flashrom-v5.

20-and-later/.

Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhong-
shu Gu, Byoungyoung Lee, Xiangyu Zhang, and
Dongyan Xu. Securing real-time microcontroller sys-
tems through customized memory view switching. In
Network and Distributed Systems Security Symp.(NDSS),
2018.

Oliver Kommerling and Markus G Kuhn. Design prin-
ciples for tamper-resistant smartcard processors. Smart-
card, 99:9-20, 1999.

Volodymyr Kuznetsov, Ldszl6 Szekeres, Mathias Payer,
George Candea, R Sekar, and Dawn Song. Code-pointer
integrity. In /1th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pages
147-163, 2014.

David Lie, Chandramohan Thekkath, Mark Mitchell,
Patrick Lincoln, Dan Boneh, John Mitchell, and Mark
Horowitz. Architectural support for copy and tamper
resistant software. ACM SIGPLAN Notices, 35(11):168—
177, 2000.

Ravi Sahita Mingwei Zhang and Daiping Liu.
executable-only-memory-switch (xom-switch). Black
Hat Asia, 2018.

Tilo Miiller, Felix C Freiling, and Andreas Dewald. Tre-
sor runs encryption securely outside ram. In USENIX
Security Symposium, volume 17, 2011.

Gleb Naumovich and Nasir Memon. Preventing
piracy, reverse engineering, and tampering. Computer,
36(7):64-71, 2003.

ODROID. smart-power. https://wiki.odroid.com/
old_product/accessory/odroidsmartpower.

James Pallister, Simon Hollis, and Jeremy Bennett.
Beebs: Open benchmarks for energy measurements on
embedded platforms. arXiv preprint arXiv:1308.5174,
2013.

Sergio Pastrana, Juan Tapiador, Guillermo Suarez-
Tangil, and Pedro Peris-Lépez. Avrand: a software-
based defense against code reuse attacks for avr embed-
ded devices. In International Conference on Detection

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

of Intrusions and Malware, and Vulnerability Assess-
ment, pages 58—77. Springer, 2016.

Marios Pomonis, Theofilos Petsios, Angelos D
Keromytis, Michalis Polychronakis, and Vasileios P
Kemerlis. kr"x: Comprehensive kernel protection
against just-in-time code reuse. In Proceedings of the
Twelfth European Conference on Computer Systems,

pages 420-436. ACM, 2017.

Radare2. unix-like reverse engineering framework and
commandline tools. https://www.radare.org/r/.

David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko,
Egor Pasko, Karl Schimpf, Bennet Yee, and Brad Chen.
Adapting software fault isolation to contemporary cpu
architectures. In USENIX Security Symposium, pages
1-12, 2010.

Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra
Dmitrienko, Christopher Liebchen, and Ahmad-Reza
Sadeghi. Just-in-time code reuse: On the effectiveness
of fine-grained address space layout randomization. In
Security and Privacy (SP), 2013 IEEE Symposium on,
pages 574-588. IEEE, 2013.

Chengyu Song, Byoungyoung Lee, Kangjie Lu, William
Harris, Taesoo Kim, and Wenke Lee. Enforcing kernel
security invariants with data flow integrity. In NDSS,
2016.

Chengyu Song, Hyungon Moon, Monjur Alam, Insu
Yun, Byoungyoung Lee, Taesoo Kim, Wenke Lee, and
Yunheung Paek. Hdfi: Hardware-assisted data-flow iso-
lation. In 2016 IEEE Symposium on Security and Pri-
vacy (SP), pages 1-17. IEEE, 2016.

Sherri Sparks and Jamie Butler. Shadow walker: Rais-
ing the bar for rootkit detection. Black Hat Japan,
11(63):504-533, 2005.

Menasveta Tim, Soubra Diya, and Yiu Joseph. Intro-
ducing arm cortex-m23 and cortex-m33 processors with
trustzone for armv8-m, 2016.

Robert Wahbe, Steven Lucco, Thomas E Anderson,
and Susan L Graham. Efficient software-based fault
isolation. ACM SIGOPS Operating Systems Review,
27(5):203-216, 1994.

Bennet Yee, David Sehr, Gregory Dardyk, J Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In 2009
30th IEEE Symposium on Security and Privacy, pages
79-93. 1IEEE, 2009.

USENIX Association

28th USENIX Security Symposium 247

https://www.iar.com/support/tech-notes/general/execute-in-ram-after-copying-from-flashrom-v5.20-and-later/
https://www.iar.com/support/tech-notes/general/execute-in-ram-after-copying-from-flashrom-v5.20-and-later/
https://www.iar.com/support/tech-notes/general/execute-in-ram-after-copying-from-flashrom-v5.20-and-later/
https://www.iar.com/support/tech-notes/general/execute-in-ram-after-copying-from-flashrom-v5.20-and-later/
https://wiki.odroid.com/old_product/accessory/odroidsmartpower
https://wiki.odroid.com/old_product/accessory/odroidsmartpower
https://www.radare.org/r/

	Introduction
	Background
	ARMv7-M Address Map and the Private Peripheral Bus (PPB)
	Memory Protection Unit (MPU)
	Unprivileged Loads/Stores
	Exception Entry and Return

	Threat Model and Assumptions
	Approach and Challenges
	uXOM
	Basic Design
	Instruction Conversion
	Permission Control

	Solving the Challenges
	Finding Unconvertible Memory Instructions
	Atomic Verification Technique
	Handling Unintended Instructions

	Optimizations
	Security Analysis
	At Boot-up
	At Runtime

	Evaluation
	Runtime Overhead
	Code Size Overhead
	Energy Overhead
	Security and Usability
	Use Cases

	Discussion
	Related Work
	Conclusion

