
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

JEDI: Many-to-Many End-to-End Encryption and
Key Delegation for IoT

Sam Kumar, Yuncong Hu, Michael P Andersen, Raluca Ada Popa, and David E. Culler,
University of California, Berkeley

https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-sam

JEDI: Many-to-Many End-to-End Encryption and Key Delegation for IoT

Sam Kumar, Yuncong Hu, Michael P Andersen, Raluca Ada Popa, and David E. Culler
University of California, Berkeley

Abstract
As the Internet of Things (IoT) emerges over the next decade,
developing secure communication for IoT devices is of
paramount importance. Achieving end-to-end encryption for
large-scale IoT systems, like smart buildings or smart cities,
is challenging because multiple principals typically interact
indirectly via intermediaries, meaning that the recipient of a
message is not known in advance. This paper proposes JEDI
(Joining Encryption and Delegation for IoT), a many-to-many
end-to-end encryption protocol for IoT. JEDI encrypts and
signs messages end-to-end, while conforming to the decou-
pled communication model typical of IoT systems. JEDI’s
keys support expiry and fine-grained access to data, common
in IoT. Furthermore, JEDI allows principals to delegate their
keys, restricted in expiry or scope, to other principals, thereby
granting access to data and managing access control in a scal-
able, distributed way. Through careful protocol design and
implementation, JEDI can run across the spectrum of IoT
devices, including ultra low-power deeply embedded sensors
severely constrained in CPU, memory, and energy consump-
tion. We apply JEDI to an existing IoT messaging system and
demonstrate that its overhead is modest.

1 Introduction
As the Internet of Things (IoT) has emerged over the past
decade, smart devices have become increasingly common.
This trend is only expected to continue, with tens of billions
of new IoT devices deployed over the next few years [30].
The IoT vision requires these devices to communicate to dis-
cover and use the resources and data provided by one another.
Yet, these devices collect privacy-sensitive information about
users. A natural step to secure privacy-sensitive data is to use
end-to-end encryption to protect it during transit.

Existing protocols for end-to-end encryption, such as
SSL/TLS and TextSecure [44], focus on one-to-one commu-
nication between two principals: for example, Alice sends
a message to Bob over an insecure channel. Such protocols,
however, appear not to be a good fit for large-scale indus-
trial IoT systems. Such IoT systems demand many-to-many
communication among decoupled senders and receivers, and
require decentralized delegation of access to enforce which
devices can communicate with which others.

We investigate existing IoT systems, which currently do not
encrypt data end-to-end, to understand the requirements on an
end-to-end encryption protocol like JEDI. We use smart cities
as an example application area, and data-collecting sensors in
a large organization as a concrete use case. We identify three
central requirements, which we treat in turn below:

Laptop, Server,
Workstation

Intel Core i7
100,000 DMIPS

10 GiB RAM

Smartphone,
Raspberry Pi

ARM Cortex-A53
10,000 DMIPS

1 GiB RAM

Smart Home
Appliance

ARM Cortex-A8
1,000 DMIPS
100 MiB RAM

Wearable Device,
Embedded Appliance

ARM Cortex-M3/M4
100 DMIPS

100 KiB - 1 MiB RAM

Ultra Low-Power Deeply
Embedded Sensor

ARM Cortex-M0/M0+
50 DMIPS

32 KiB RAM
More
Powerful

Less
PowerfulJEDI is capable of running on all of these IoT devices

Figure 1: IoT comprises a diverse set of devices, which span
more than four orders of magnitude of computing power (es-
timated in Dhrystone MIPS).1

. Decoupled senders and receivers. IoT-scale systems could
consist of thousands of principals, making it infeasible for
consumers of data (e.g., applications) to maintain a separate
session with each producer of data (e.g., sensors). Instead,
senders are typically decoupled from receivers. Such decou-
pling is common in publish-subscribe systems for IoT, such as
MQTT, AMQP, XMPP, and Solace [76]. In particular, many-
to-many communication based on publish-subscribe is the
de-facto standard in smart buildings, used in systems like
BOSS [36], VOLTTRON [82], Brume [66] and bw2 [5], and
adopted commercially in AllJoyn and IoTivity. Senders pub-
lish messages by addressing them to resources and sending
them to a router. Recipients subscribe to a resource by asking
the router to send them messages addressed to that resource.

Many systems for smart buildings/cities, like sMAP [35],
SensorAct [7], bw2 [5], VOLTTRON [82], and BAS [56],
organize resources as a hierarchy. A resource hierarchy
matches the organization of IoT devices: for instance, smart
cities contain buildings, which contain floors, which con-
tain rooms, which contain sensors, which produce streams
of readings. We represent each resource—a leaf in the
hierarchy—as a Uniform Resource Indicator (URI), which
is like a file path. For example, a sensor that measures
temperature and humidity might send its readings to the
two URIs buildingA/floor2/roomLHall/sensor0/temp
and buildingA/floor2/roomLHall/sensor0/hum. A user
can subscribe to a URI prefix, such as buildingA/floor2/
roomLHall/*, which represents a subtree of the hierarchy.
He would then receive all sensor readings in room “LHall.”
. Decentralized delegation. Access control in IoT needs to
be fine-grained. For example, if Bob has an app that needs

1Image credits: https://tweakers.net/pricewatch/1275475/asus-
f540la-dm1201t.html, https://www.lg.com/uk/mobile-phones/lg-
H791, https://www.bestbuy.com/site/nest-learning-thermostat-
3rd-generation-stainless-steel/4346501.p?skuId=4346501,
https://www.macys.com/shop/product/fitbit-charge-2-heart-
rate-fitness-wristband?ID=2999458

USENIX Association 28th USENIX Security Symposium 1519

https://tweakers.net/pricewatch/1275475/asus-f540la-dm1201t.html
https://tweakers.net/pricewatch/1275475/asus-f540la-dm1201t.html
https://www.lg.com/uk/mobile-phones/lg-H791
https://www.lg.com/uk/mobile-phones/lg-H791
https://www.bestbuy.com/site/nest-learning-thermostat-3rd-generation-stainless-steel/4346501.p?skuId=4346501
https://www.bestbuy.com/site/nest-learning-thermostat-3rd-generation-stainless-steel/4346501.p?skuId=4346501
https://www.macys.com/shop/product/fitbit-charge-2-heart-rate-fitness-wristband?ID=2999458
https://www.macys.com/shop/product/fitbit-charge-2-heart-rate-fitness-wristband?ID=2999458

access to temperature readings from a single sensor, that app
should receive the decryption key for only that one URI, even
if Bob has keys for the entire room. In an IoT-scale system, it
is not scalable for a central authority to individually give fine-
grained decryption keys to each person’s devices. Moreover,
as we discuss in §2, such an approach would pose increased
security and privacy risks. Instead, Bob, who himself has ac-
cess to readings for the entire room, should be able to delegate
temperature-readings access to the app. Generally, a principal
with access to a set of resources can give another principal
access to a subset of those resources.

Vanadium [77] and bw2 [5] introduced decentralized del-
egation (SPKI/SDSI [31] and Macaroons [13]) in the smart
buildings space. Since then, decentralized delegation has be-
come the state-of-the-art for access control in smart buildings,
especially those geared toward large-scale commercial build-
ings or organizations [42,52]. In these systems, a principal can
access a resource if there exists a chain of delegations, from
the owner of the resource to that principal, granting access. At
each link in the chain, the extent of access may be qualified
by caveats, which add restrictions to which resources can be
accessed and when. While these systems provide delegation
of permissions, they do not provide protocols for encrypting
and decrypting messages end-to-end.
. Resource constraints. IoT devices vary greatly in their
capabilities, as shown in Fig. 1. This includes devices con-
strained in CPU, memory, and energy, such as wearable de-
vices and low-cost environmental sensors.

In smart buildings/cities, one application of interest is in-
door environmental sensing. Sensors that measure tempera-
ture, humidity, or occupancy may be deployed in a building;
such sensors are battery-powered and transmit readings using
a low-power wireless network. To see ubiquitous deployment,
they must cost only tens of dollars per unit and have several
years of battery life. To achieve this price/power point, sensor
platforms are heavily resource-constrained, with mere kilo-
bytes of memory (farthest right in Fig. 1) [3,4,26,41,49,59,69].
The power consumption of encryption is a serious challenge,
even more so than its latency on a slower CPU; the CPU and
radio must be used sparingly to avoid consuming energy too
quickly [55, 89]. For example, on the sensor platform used
in our evaluation, an average CPU utilization of merely 5%
would result in less than a year of battery life, even if the
power cost of using the transducers and network were zero.

1.1 Overview of JEDI
This paper presents JEDI, a many-to-many end-to-end en-
cryption protocol compatible with the above three require-
ments of IoT systems. JEDI encrypts messages end-to-end
for confidentiality, signs them for integrity while preserving
anonymity, and supports delegation with caveats, all while
allowing senders and receivers to be decoupled via a resource
hierarchy. JEDI differs from existing encryption protocols like
SSL/TLS, requiring us to overcome a number of challenges:

Building
Manager

Campus
Manager

Lab
Director

Alice

(Root)

buildingB

floor1

lecture_hall

buildingA

floor1

lobby

floor2

roomLHall alice_office

Never
Expires

Expires
Jun 2020

Expires
Jun 2020

Expires
Aug 2019

Figure 2: JEDI keys can be qualified and delegated, supporting
decentralized, cryptographically-enforced access control via
key delegation. Each person has a decryption key for the
indicated resource subtree that is valid until the indicated
expiry time. Black arrows denote delegation.

1. Formulating a new system model for end-to-end encryp-
tion to support decoupled senders and receivers and de-
centralized delegation typical of IoT systems (§1.1.1)

2. Realizing this expressive model while working within the
resource constraints of IoT devices (§1.1.2)

3. Allowing receivers to verify the integrity of messages,
while preserving the anonymity of senders (§1.1.3)

4. Extending JEDI’s model to support revocation (§1.1.4)
Below, we explain how we address each of these challenges.
1.1.1 JEDI’s System Model (§2)
Participants in JEDI are called principals. Any principal can
create a resource hierarchy to represent some resources that
it owns. Because that principal owns all of the resources in
the hierarchy, it is called the authority of that hierarchy.

Due to the setting of decoupled senders and receivers,
the sender can no longer encrypt messages with the receiver’s
public key, as in traditional end-to-end encryption. Instead,
JEDI models principals as interacting with resources, rather
than with other principals. Herein lies the key difference be-
tween JEDI’s model and other end-to-end encryption proto-
cols: the publisher of a message encrypts it according to the
URI to which it is published, not the recipients subscribed to
that URI. Only principals permitted to subscribe to a URI are
given keys that can decrypt messages published to that URI.

IoT systems that support decentralized delegation (Vana-
dium, bw2), as well as related non-IoT authorization systems
(e.g., SPKI/SDSI [31] and Macaroons [13]) provide principals
with tokens (e.g., certificate chains) that they can present to
prove they have access to a certain resource. Providing to-
kens, however, is not enough for end-to-end encryption; unlike
these systems, JEDI allows decryption keys to be distributed
via chains of delegations. Furthermore, the URI prefix and
expiry time associated with each JEDI key can be restricted
at each delegation. For example, as shown in Fig. 2, suppose
Alice, who works in a research lab, needs access to sensor
readings in her office. In the past, the campus facilities man-
ager, who is the authority for the hierarchy, granted a key for
buildingA/* to the building manager, who granted a key

1520 28th USENIX Security Symposium USENIX Association

for buildingA/floor2/* to the lab director. Now, Alice can
obtain the key for buildingA/floor2/alice_office/* di-
rectly from her local authority (the lab director).
1.1.2 Encryption with URIs and Expiry (§3)
JEDI supports decoupled communication. The resource to
which a message is published acts as a rendezvous point be-
tween the senders and receivers, used by the underlying sys-
tem to route messages. Central to JEDI is the challenge of
finding an analogous cryptographic rendezvous point that
senders can use to encrypt messages without knowledge of
receivers. A number of IoT systems [70, 74] use only simple
cryptography like AES, SHA2, and ECDSA, but these primi-
tives are not expressive enough to encode JEDI’s rendezvous
point, which must support hierarchically-structured resources,
non-interactive expiry, and decentralized delegation.

Existing systems [83–85] with similar expressivity to JEDI
use Attribute-Based Encryption (ABE) [12, 48]. Unfortu-
nately, ABE is not suitable for JEDI because it is too ex-
pensive, especially in the context of resource constraints
of IoT devices. Some IoT systems rule it out due to its la-
tency alone [74]. In the context of low-power devices, encryp-
tion with ABE would also consume too much power. JEDI
circumvents the problem of using ABE or basic cryptogra-
phy with two insights: (1) Even though ABE is too heavy
for low-power devices, this does not mean that we must re-
sort to only symmetric-key techniques. We show that certain
IBE schemes [1] can be made practical for such devices. (2)
Time is another resource hierarchy: a timestamp can be ex-
pressed as year/month/day/hour, and in this hierarchical
representation, any time range can be represented efficiently
as a logarithmic number of subtrees. With this insight, we
can simultaneously support URIs and expiry via a nonstan-
dard use of a certain type of IBE scheme: WKD-IBE [1].
Like ABE, WKD-IBE is based on bilinear groups (pairings),
but it is an order-of-magnitude less expensive than ABE as
used in JEDI. To make JEDI practical on low-power devices,
we design it to invoke WKD-IBE rarely, while relying on
AES most of the time, much like session keys. Thus, JEDI
achieves expressivity commensurate to IoT systems that do
not encrypt data—significantly more expressive than AES-
only solutions—while allowing several years of battery life
for low-power low-cost IoT devices.
1.1.3 Integrity and Anonymity (§4)
In addition to being encrypted, messages should be signed
so that the recipient of a message can be sure it was not sent
by an attacker. This can be achieved via a certificate chain,
as in SPKI/SDSI or bw2. Certificates can be distributed in a
decentralized manner, just like encryption keys in Fig. 2.

Certificate chains, however, are insufficient if anonymity
is required. For example, consider an office space with an
occupancy sensor in each office, each publishing to the same
URI buildingA/occupancy. In aggregate, the occupancy
sensors could be useful to inform, e.g., heating/cooling in the
building, but individually, the readings for each room could be

considered privacy-sensitive. The occupancy sensors in differ-
ent rooms could use different certificate chains, if they were
authorized/installed by different people. This could be used to
deanonymize occupancy readings. To address this challenge,
we adapt the WKD-IBE scheme that we use for end-to-end
encryption to achieve an anonymous signature scheme that
can encode the URI and expiry and support decentralized
delegation. Using this technique, anonymous signatures are
practical even on low-power embedded IoT devices.

1.1.4 Revocation (§5)
As stated above, JEDI keys support expiry. Therefore, it is
possible to achieve a lightweight revocation scheme by dele-
gating each key with short expiry and periodically renewing
it to extend the expiry. To revoke a key, one simply does not
renew it. We expect this expiry-based revocation to be suf-
ficient for most use cases, especially for low-power devices,
which typically just “sense and send.”

Enforcing revocation cryptographically, without relying
on expiration, is challenging. As we discuss in §5, any
cryptographically-enforced scheme that provides immediate
revocation (i.e., keys can be revoked without waiting for them
to expire) is subject to the fundamental limitation that the
sender of a message must know which recipients are revoked
when it encrypts the message. JEDI provides a form of imme-
diate revocation, subject to this constraint. We use techniques
from tree-based broadcast encryption [37, 67] to encrypt in
such a way that all decryption keys for that URI, except for
ones on a revocation list, can be used to decrypt. Achiev-
ing this is nontrivial because we have to combine broadcast
encryption with JEDI’s semantics of hierarchical resources,
expiry, and delegation. First, we modify broadcast encryption
to support delegation, in such a way that if a key is revoked,
all delegations made with that key are also implicitly revoked.
Then, we integrate broadcast revocation, in a non-black-box
way, with JEDI’s encryption and delegation, as a third re-
source hierarchy alongside URIs and expiry.

1.2 Summary of Evaluation
For our evaluation, we use JEDI to encrypt messages transmit-
ted over bw2 [5, 27], a deployed open-source messaging sys-
tem for smart buildings, and demonstrate that JEDI’s overhead
is small in the critical path. We also evaluate JEDI for a com-
mercially available sensor platform called “Hamilton” [49],
and show that a Hamilton-based sensor sending one sensor
reading every 30 seconds would see several years of battery
lifetime when sending sensor readings encrypted with JEDI.
As Hamilton is among the least powerful platforms that will
participate in IoT (farthest to the right in Fig. 1), this validates
that JEDI is practical across the IoT spectrum.

2 JEDI’s Model and Threat Model
A principal can post a message to a resource in a hierarchy
by encrypting it according to the resource’s URI, hierarchy’s
public parameters, and current time, and passing it to the un-

USENIX Association 28th USENIX Security Symposium 1521

Existing IoT System

Data

JEDI

Data(e.g., bldg/flo
or/room/sens
or/reading)

(e.g., Publish/Subscribe
on URI-based Resources)

Encrypt

URI

URI Data

JEDI

Data

Decrypt

URI

Message Message

SubscriberPublisher

(e.g., indoor
sensor)

(e.g., user's
app)

Figure 3: Applying JEDI to a smart buildings IoT system.
Components introduced by JEDI are shaded. The subscriber’s
key is obtained via JEDI’s decentralized delegation (Fig. 2).

derlying system that delivers it to the relevant subscribers.
Given the secret key for a resource subtree and time range,
a principal can generate a secret key for a subset of those
resources and subrange of that time range, and give it to an-
other principal, as in Fig. 2. The receiving principal can use
the delegated key to decrypt messages that are posted to a
resource in that subset at a time during that subrange.

JEDI does not require the structure of the resource hier-
archy to be fixed in advance. In Fig. 2, the campus facilities
manager, when granting access to buildingA/* to the build-
ing manager, need not be concerned with the structure of
the subtree rooted at buildingA. This allows the building
manager to organize buildingA/* independently.

2.1 Trust Assumptions
A principal is trusted for the resources it owns or was given
access to (for the time ranges for which it was given access).
In other words, an adversary who compromises a principal
can read all resources that principal can read and forge new
messages as if it were that principal. In particular, an adversary
who compromises the authority for a resource hierarchy gains
control over that resource hierarchy.

JEDI allows each principal to act as an authority for its own
resource hierarchy in its own trust domain, without a single
authority spanning all hierarchies. In particular, principals
are not organized hierarchically; a principal may be delegated
multiple keys, each belonging to a different resource hierar-
chy. In the example in Fig. 2, Alice might also receive JEDI
keys from her landlord granting access to resources in her
apartment building, in a separate hierarchy where her landlord
is the authority. If Alice owns resources she would like to
delegate to others, she can set up her own hierarchy to repre-
sent those resources. Existing IoT systems with decentralized
delegation, like bw2 and Vanadium, use a similar model.

2.2 Applying JEDI to an Existing System
As shown in Fig. 3, JEDI can be applied as a wrapper around
existing many-to-many communication systems, including
publish-subscribe systems for smart cities. The transfer of
messages from producers to consumers is handled by the
existing system. A common design used by such systems is
to have a central broker (or router) forward messages; how-

ever, an adversary who compromises the broker can read all
messages. In this context, JEDI’s end-to-end encryption pro-
tects data from such an adversary. Publishers encrypt their
messages with JEDI before passing them to the underlying
communication system (without knowledge of who the sub-
scribers are), and subscribers decrypt them with JEDI after
receiving them from the underlying communication system
(without knowledge of who the publishers are).

2.3 Comparison to a Naïve Key Server Model
To better understand the benefits of JEDI’s model, consider
the natural strawman of a trusted key server. This key server
generates a key for every URI and time. A publisher encrypts
each message for that URI with the same key. A subscriber
requests this key from the trusted key server, which must
first check if the subscriber is authorized to receive it. The
subscriber can decrypt messages for a URI using this key, and
contact the key server for a new key when the key expires.
JEDI’s model is better than this key server model as follows:
• Improved security. Unlike the trusted key server, which

must always be online, the authority in JEDI can delegate
qualified keys to some principals and then go offline, leaving
these principals to qualify and delegate keys further. While
the authority is offline, it is more difficult for an attacker
to compromise it and easier for the authority to protect
its secrets because it need only access them rarely. This
reasoning is the basis of root Certificate Authorities (CAs),
which access their master keys infrequently. In contrast, the
trusted key server model requires a central trusted party (key
server) to be online to grant/revoke access to any resource.

• Improved privacy. No single participant sees all delegations
in JEDI. An adversary in JEDI who steals an authority’s se-
cret key can decrypt all messages for that hierarchy, but still
does not learn who has access to which resource, and can-
not access separate hierarchies to which the first authority
has no access. In contrast, an adversary who compromises
the key server learns who has access to which resource and
can decrypt messages for all hierarchies.

• Improved scalability. In the campus IoT example above, if
a building admin receives access to all sensors and all their
different readings for a building, the admin must obtain a
potentially very large number of keys, instead of one key for
the entire building. Moreover, the campus-wide key server
needs to grant decryption keys to each application owned
by each employee or student at the university. Finally, the
campus-wide key server must understand which delegations
are allowed at lower levels in the hierarchy, requiring the
entire hierarchy to be centrally administered.

2.4 IoT Gateways
Low-power wireless embedded sensors, due to power con-
straints, often do not use network protocols like Wi-Fi, and
instead use specialized low-power protocols such as Blue-
tooth or IEEE 802.15.4. It is common for these devices to rely
on an application-layer gateway to send data to computers

1522 28th USENIX Security Symposium USENIX Association

outside of the low-power network [91]. This gateway could
be in the form of a phone app (e.g., Fitbit), or in the form
of a specialized border router [25, 92]. In some traditional
setups, the gateway is responsible for performing encryp-
tion/authentication [70]. JEDI accepts that gateways may be
necessary for Internet connectivity, but does not rely on them
for security—JEDI’s cryptography is lightweight enough to
run directly on the low-power sensor nodes. This approach
prevents the gateway from becoming a single point of attack;
an attacker who compromises the gateway cannot see or forge
data for any device using that gateway.

2.5 Generalizability of JEDI’s Model
Since JEDI decouples senders from receivers, it has no re-
quirements on what happens at any intermediaries (e.g., does
not require messages to be forwarded from publishers to sub-
scribers in any particular way). Thus, JEDI works even when
messages are exchanged in a broadcast medium, e.g., multi-
cast. This also means that JEDI is more broadly applicable to
systems with hierarchically organized resources. For example,
URIs could correspond to filepaths in a file system, or URLs
in a RESTful web service.

2.6 Security Goals
JEDI’s goal is to ensure that principals can only read messages
from or send messages to resources they have been granted
access to receive from or send to. In the context of publish-
subscribe, JEDI also hides the content of messages from an
adversary who controls the router.

JEDI does not attempt to hide metadata relating to the
actual transfer of messages (e.g., the URIs on which messages
are published, which principals are publishing or subscribing
to which resources, and timing). Hiding this metadata is a
complementary task to achieving delegation and end-to-end
encryption in JEDI, and techniques from the secure messaging
literature [29, 32, 81] will likely be applicable.

3 End-to-End Encryption in JEDI
A central question answered in this section is: How should
publishers encrypt messages before passing them to the un-
derlying system for delivery (§3.4)? As explained in §1.1.2,
although ABE, the obvious choice, is too heavy for low-power
devices, we identify WKD-IBE, a more lightweight identity-
based encryption scheme, as sufficient to achieve JEDI’s prop-
erties. The primary challenge is to encode a sufficiently ex-
pressive rendezvous point in the WKD-IBE ID (called a pat-
tern) that publishers use to encrypt messages (§3.4).

3.1 Building Block: WKD-IBE
We first explain WKD-IBE [1], the encryption scheme that
JEDI uses as a building block. Throughout this paper, we
denote the security parameter as κ.

In WKD-IBE, messages are encrypted with patterns, and
keys also correspond to patterns. A pattern is a list of values:
P = (Z∗p ∪{⊥})`. The notation P(i) denotes the ith compo-

nent of P, 1-indexed. A pattern P1 matches a pattern P2 if, for
all i ∈ [1, `], either P1(i) =⊥ or P1(i) = P2(i). In other words,
if P1 specifies a value for an index i, P2 must match it at i.
Note that the “matches” operation is not commutative; “P1
matches P2” does not imply “P2 matches P1”.

We refer to a component of a pattern containing an element
of Z∗p as fixed, and to a component that contains ⊥ as free. To
aid our presentation, we define the following sets:

Definition 1. For a pattern S, we define:

fixed(S) = {(i,S(i)) | S(i) 6=⊥}
free(S) = {i | S(i) =⊥}

A key for pattern P1 can decrypt a message encrypted with
pattern P2 if P1 = P2. Furthermore, a key for pattern P1 can
be used to derive a key for pattern P2, as long as P1 matches
P2. In summary, the following is the syntax for WKD-IBE.
• Setup(1κ,1`)→ Params,MasterKey;

• KeyDer(Params,KeyPatternA ,PatternB) → KeyPatternB ,
derives a key for PatternB, where either KeyPatternA is the
MasterKey, or PatternA matches PatternB;

• Encrypt(Params,Pattern,m)→ CiphertextPattern,m;

• Decrypt(KeyPattern,CiphertextPattern,m)→ m.
We use the WKD-IBE construction in §3.2 of [1], based on

BBG HIBE [17]. Like the BBG construction, it has constant-
size ciphertexts, but requires the maximum pattern length `
to be known at Setup time. In this WKD-IBE construction,
patterns containing ⊥ can only be used in KeyDer, not in
Encrypt; we extend it to support encryption with patterns
containing ⊥. We include the WKD-IBE construction with
our optimizations in the appendix of our extended paper [57].

3.2 Concurrent Hierarchies in JEDI
WKD-IBE was originally designed to allow delegation in
a single hierarchy. For example, the original suggested
use case of WKD-IBE was to generate secret keys for
a user’s email addresses in all valid subdomains, such as
sysadmin@*.univ.edu [1].

JEDI, however, uses WKD-IBE in a nonstandard way to
simultaneously support multiple hierarchies, one for URIs
and one for expiry (and later in §5, one for revocation), each
in the vein of HIBE. We think of the ` components of a
WKD-IBE pattern as “slots” that are initially empty, and are
progressively filled in with calls to KeyDer. To combine a
hierarchy of maximum depth `1 (e.g., the URI hierarchy) and
a hierarchy of maximum depth `2 (e.g., the expiry hierarchy),
one can Setup WKD-IBE with the number of slots equal to
`= `1 + `2. The first `1 slots are filled in left-to-right for the
first hierarchy and the remaining `2 slots are filled in left-to-
right for the second hierarchy (Fig. 4).

3.3 Overview of Encryption in JEDI
Each principal maintains a key store containing WKD-IBE
decryption keys. To create a resource hierarchy, any principal

USENIX Association 28th USENIX Security Symposium 1523

can call the WKD-IBE Setup function to create a resource
hierarchy. It releases the public parameters and stores the
master secret key in its key store, making it the authority of
that hierarchy. To delegate access to a URI prefix for a time
range, a principal (possibly the authority) searches its key
store for a set of keys for a superset of those permissions. It
then qualifies those keys using KeyDer to restrict them to
the specific URI prefix and time range (§3.5), and sends the
resulting keys to the recipient of the delegation.2 The recipient
accepts the delegation by adding the keys to its key store.

Before sending a message to a URI, a principal encrypts
the message using WKD-IBE. The pattern used to encrypt it
is derived from the URI and the current time (§3.4), which are
included along with the ciphertext. When a principal receives
a message, it searches its key store, using the URI and time
included with the ciphertext, for a key to decrypt it.

In summary, JEDI provides the following API:
Encrypt(Message,URI,Time)→ Ciphertext
Decrypt(Ciphertext,URI,Time,KeyStore)→Message
Delegate(KeyStore,URIPrefix,TimeRange)→ KeySet
AcceptDelegation(KeyStore,KeySet)→ KeyStore′

Note that the WKD-IBE public parameters are an implicit
argument to each of these functions. Finally, although the
above API lists the arguments to Delegate as URIPrefix and
TimeRange, JEDI actually supports succinct delegation over
more complex sets of URIs and timestamps (see §3.7).

3.4 Expressing URI/Time as a Pattern
A message is encrypted using a pattern derived from (1) the
URI to which the message is addressed, and (2) the current
time. Let H : {0,1}∗→ Z∗p be a collision-resistant hash func-
tion. Let `= `1 + `2 be the pattern length in the hierarchy’s
WKD-IBE system. We use the first `1 slots to encode the URI,
and the last `2 slots to encode the time.

Given a URI of length d, such as a/b/c (d = 3 in this
example), we split it up into individual components, and ap-
pend a special terminator symbol $: ("a", "b", "c", $).
Using H, we map each component to Z∗p, and then put these
values into the first d +1 slots. If S is our pattern, we would
have S(1) = H("a"), S(2) = H("b"), S(3) = H("c"), and
S(4) =H($) for this example. Now, we encode the time range
into the remaining `2 slots. Any timestamp, with the granu-
larity of an hour, can be represented hierarchically as (year,
month, day, hour). We encode this into the pattern like
the URI: we hash each component, and assign them to con-
secutive slots. The final `2 slots encode the time, so the depth
of the time hierarchy is `2. The terminator symbol $ is not
needed to encode the time, because timestamps always have
exactly `2 components. For example, suppose that a princi-
pal sends a message to a/b on June 8, 2017 at 6 AM. The

2JEDI does not govern how the key set is transferred to the recipient, as
there are existing solutions for this. One can use an existing protocol for
one-to-one communication (e.g., TLS) to securely transfer the key set. Or,
one can encrypt the key set with the recipient’s (normal, non-WKD-IBE)
public key, and place it in a common storage area.

H("𝚊") H("𝚋") H($) ⊥ H("𝟷𝟽") H("𝙹𝚞𝚗") H("𝟶𝟾") H("𝟶𝟼")
1 2 3 4 5 6 7 8i

S(i)

= 4 slots for URI Hierarchyℓ1 = 4 slots for Time Hierarchyℓ2

Figure 4: Pattern S used to encrypt message sent to a/b on
June 08, 2017 at 6 AM. The figure uses 8 slots for space
reasons; JEDI is meant to be used with more slots (e.g., 20).

message is encrypted with the pattern in Fig. 4.

3.5 Producing a Key Set for Delegation
Now, we explain how to produce a key set corresponding to
a URI prefix and time range. To express a URI prefix as a
pattern, we do the same thing as we did for URIs, without the
terminator symbol $. For example, a/b/* is encoded in a pat-
tern S as S(1) = H("a"), S(2) = H("b"), and all other slots
free. Given the private key for S, one can use WKD-IBE’s
KeyDer to fill in slots 3 . . . `1. This allows one to generate the
private key for a/b, a/b/c, etc.—any URI for which a/b is a
prefix. To grant access to only a specific resource (a full URI,
not a prefix), the $ is included as before.

In encoding a time range into a pattern, single timestamps
(e.g., granting access for an hour) are done as before. The
hierarchical structure for time makes it possible to succinctly
grant permission for an entire day, month, or year. For exam-
ple, one may grant access for all of 2017 by filling in slot
`2 with H("2017") and leaving the final `2−1 slots, which
correspond to month, day, and year, free. Therefore, to grant
permission over a time range, the number of keys granted is
logarithmic in the length of the time range. For example, to
delegate access to a URI from October 29, 2014 at 10 PM
until December 2, 2014 at 1 AM, the following keys need
to be generated: 2014/Oct/29/23, 2014/Oct/29/24, 2014/
Oct/30/*, 2014/Oct/31/*, 2014/Nov/*, 2014/Dec/01/*,
and 2014/Dec/02/01. The tree can be chosen differently to
support longer time ranges (e.g., additional level representing
decades), change the granularity of expiry (e.g., minutes in-
stead of hours), trade off encryption time for key size (e.g.,
deeper/shallower tree), or use a more regular structure (e.g.,
binary encoding with logarithmic split). For example, our im-
plementation uses a depth-6 tree (instead of depth-4), to be
able to delegate time ranges with fewer keys.

In summary, to produce a key set for delegation, first de-
termine which subtrees in the time hierarchy represent the
time range. For each one, produce a separate pattern, and
encode the time into the last `2 slots. Encode the URI prefix
in the first `1 slots of each pattern. Finally, generate the keys
corresponding to those patterns, using keys in the key store.

3.6 Optimizations for Low-Power Devices
On low-power embedded devices, performing a single WKD-
IBE encryption consumes a significant amount of energy.
Therefore, we design JEDI with optimizations to WKD-IBE.

1524 28th USENIX Security Symposium USENIX Association

3.6.1 Hybrid Encryption and Key Reuse
JEDI uses WKD-IBE in a hybrid encryption scheme. To
encrypt a message m in JEDI, one samples a symmetric key
k, and encrypts k with JEDI to produce ciphertext c1. The
pattern used for WKD-IBE encryption is chosen as in §3.4 to
encode the rendezvous point. Then, one encrypts m using k to
produce ciphertext c2. The JEDI ciphertext is (c1,c2).

For subsequent messages, one reuses k and c1; the new
message is encrypted with k to produce a new c2. One can
keep reusing k and c1 until the WKD-IBE pattern for encryp-
tion changes, which happens at the end of each hour (or other
interval used for expiry). At this time, JEDI performs key rota-
tion by choosing a new k, encrypting it with WKD-IBE using
the new pattern, and then proceeding as before. Therefore,
most messages only incur cheap symmetric-key encryption.

This also reduces the load on subscribers. The JEDI cipher-
texts sent by a publisher during a single hour will all share
the same c1. Therefore, the subscriber can decrypt c1 once
for the first message to obtain k, and cache the mapping from
c1 to k to avoid expensive WKD-IBE decryptions for future
messages sent during that hour.

Thus, expensive WKD-IBE operations are only performed
upon key rotation, which happens rarely—once an hour (or
other granularity chosen for expiry) for each resource.
3.6.2 Precomputation with Adjustment
Even with hybrid encryption and key reuse to perform WKD-
IBE encryption rarely, WKD-IBE contributes significantly to
the overall power consumption on low-power devices. There-
fore, this section explores how to perform individual WKD-
IBE encryptions more efficiently.

Most of the work to encrypt under a pattern S is in com-
puting the quantity QS = g3 ·∏(i,ai)∈fixed(S) hai

i , where g3 and
the hi are part of the WKD-IBE public parameters. One may
consider computing QS once, and then reusing its value when
computing future encryptions under the same pattern S. Un-
fortunately, this alone does not improve efficiency because
the pattern S used in one WKD-IBE encryption is different
from the pattern T used for the next encryption.

JEDI, however, observes that S and T are similar; they
match in the `1 slots corresponding to the URI, and the re-
maining `2 slots will correspond to adjacent leaves in the time
tree. JEDI takes advantage of this by efficiently adjusting the
precomputed value QS to compute QT as follows:

QT =QS · ∏
(i,bi)∈fixed(T)

i∈free(S)

hbi
i · ∏

(i,ai)∈fixed(S)
i∈free(T)

h−ai
i · ∏

(i,ai)∈fixed(S)
(i,bi)∈fixed(T)

ai 6=bi

hbi−ai
i

This requires one G1 exponentiation per differing slot be-
tween S and T (i.e., the Hamming distance). Because S and
T usually differ in only the final slot of the time hierarchy,
this will usually require one G1 exponentiation total, sub-
stantially faster than computing QT from scratch. Additional
exponentiations are needed at the end of each day, month, and
year, but they can be eliminated by maintaining additional

precomputed values corresponding to the start of the current
day, current month, and current year.

The protocol remains secure because a ciphertext is dis-
tributed identically whether it was computed from a precom-
puted value QS or via regular encryption.

3.7 Extensions
Via simple extensions, JEDI can support (1) wildcards in the
middle of a URI or time, and (2) forward secrecy. We describe
these extensions in the appendix of our extended paper.

3.8 Security Guarantee
We formalize the security of JEDI’s encryption below.

Theorem 1. Suppose JEDI is instantiated with a Selective-ID
CPA-secure [1, 16], history-independent (defined in our ex-
tended paper [57]) WKD-IBE scheme. Then, no probabilistic
polynomial-time adversary A can win the following security
game against a challenger C with non-negligible advantage:
Initialization. A selects a (URI, time) pair to attack.
Setup. C gives A the public parameters of the JEDI instance.
Phase 1. A can make three types of queries to C:
1. A asks C to create a principal; C returns a name in {0,1}∗,
which A can use to refer to that principal in future queries. A
special name exists for the authority.
2. A asks C for the key set of any principal; C gives A the
keys that the principal has. At the time this query is made, the
requested key may not contain a key whose URI and time are
both prefixes of the challenge (URI, time) pair.
3. A asks C to make any principal delegate a key set of A’s
choice to another principal (specified by names in {0,1}∗).
Challenge. When A chooses to end Phase 1, it sends C two
messages, m0 and m1, of the same length. Then C chooses a
random bit b ∈ {0,1}, encrypts mb under the challenge (URI,
time) pair, and gives A the ciphertext.
Phase 2. A can make additional queries as in Phase 1.
Guess. A outputs b′ ∈ {0,1}, and wins the game if b = b′.
The advantage of an adversary A is

∣∣Pr[A wins]− 1
2

∣∣.
We prove this theorem in our extended paper [57]. Al-

though we only achieve selective security in the standard
model (like much prior work [1, 17]), one can achieve adap-
tive security if the hash function H in §3.5 is modeled as
a random oracle [1]. It is sufficient for JEDI to use a CPA-
secure (rather than CCA-secure) encryption scheme because
JEDI messages are signed, as detailed below in §4.

4 Integrity in JEDI
To prevent an attacker from flooding the system with mes-
sages, spoofing fake data, or actuating devices without per-
mission, JEDI must ensure that a principal can only send
a message on a URI if it has permission. For example, an
application subscribed to buildingA/floor2/roomLHall/
sensor0/temp should be able to verify that the readings it is
receiving are produced by sensor0, not an attacker. In addi-
tion to subscribers, an intermediate party (e.g., the router in a

USENIX Association 28th USENIX Security Symposium 1525

publish-subscribe system) may use this mechanism to filter
out malicious traffic, without being trusted to read messages.

4.1 Starting Solution: Signature Chains
A standard solution in the existing literature, used by
SPKI/SDSI [31], Vanadium [77], and bw2 [5], is to include
a certificate chain with each message. Just as permission to
subscribe to a resource is granted via a chain of delegations
in §3, permission to publish to a resource is also granted via a
chain of delegations. Whereas §3 includes WKD-IBE keys in
each delegation, these integrity solutions delegate signed cer-
tificates. To send a message, a principal encrypts it (§3), signs
the ciphertext, and includes a certificate chain that proves that
the signing keypair is authorized for that URI and time.

4.2 Anonymous Signatures
The above solution reveals the sender’s identity (via its pub-
lic key) and the particular chain of delegations that gives the
sender access. For some applications this is acceptable, and its
auditability may even be seen as a benefit. For other applica-
tions, the sender must be able to send a message anonymously.
See §1.1.3 for an example. How can we reconcile access
control (ensuring the sender has permission) and anonymity
(hiding who the sender is)?
4.2.1 Starting Point: WKD-IBE Signatures
Our solution is to use a signature scheme based on WKD-IBE.
Abdalla et al. [1] observe that WKD-IBE can be extended
to a signature scheme in the same vein as has been done for
IBE [18] and HIBE [46]. To sign a message m ∈ Z∗p with a
key for pattern S, one uses KeyDer to fill in a slot with m, and
presents the decryption key as a signature.

This is our starting point for designing anonymous signa-
tures in JEDI. A message can be signed by first hashing it to
Z∗p and signing the hash as above. Just as consumers receive
decryption keys via a chain of delegations (§3), publishers of
data receive these signing keys via chains of delegations.
4.2.2 Anonymous Signatures in JEDI
The construction in §4.2.1 has two shortcomings. First, sig-
natures are large, linear in the number of fixed slots of the
pattern. Second, it is unclear if they are truly anonymous.
Signature size. As explained in §3, we use a construction of
WKD-IBE based on BBG HIBE [17]. BBG HIBE supports
a property called limited delegation in which a secret key
can be reduced in size, in exchange for limiting the depth
in the hierarchy at which subkeys can be generated from it.
We observe that the WKD-IBE construction also supports
this feature. Because we need not support KeyDer for the
decryption key acting as a signature, we use limited delegation
to compress the signature to just two group elements.
Anonymity. The technique in §4.2.1 transforms an encryp-
tion scheme into a signature scheme, but the resulting signa-
ture scheme is not necessarily anonymous. For the particular
construction of WKD-IBE that we use, however, we prove
that the resulting signature scheme is indeed anonymous. Our

insight is that, for this construction of WKD-IBE, keys are
history-independent in the following sense: KeyDer, for a
fixed Params and PatternB, returns a private key KeyPatternB
with the exact same distribution regardless of KeyPatternA
(see §3.1 for notation). Because signatures, as described in
§4.2.1, are private keys generated with KeyDer, they are also
history-independent; a signature for a pattern has the same
distribution regardless of the key used to generate it. This is
precisely the anonymity property we desire.

4.3 Optimizations for Low-Power Devices
As in §3.6.1, we must avoid computing a WKD-IBE signature
for every message. A simple way to do this is to sample a
digital signature keypair each hour, sign the verifying key with
WKD-IBE at the beginning of the hour, and sign messages
during the hour with the corresponding signing key.

Unfortunately, this may still be too expensive for low-
power embedded devices because it requires a digital signa-
ture, which requires asymmetric-key cryptography, for every
message. We can circumvent this by instead (1) choosing a
symmetric key k every hour, (2) signing k at the start of each
hour (using WKD-IBE for anonymity), and (3) using k in an
authenticated broadcast protocol to authenticate messages
sent during the hour. An authenticated broadcast protocol,
like µTESLA [70], generates a MAC for each message using
a key whose hash is the previous key; thus, the single signed
key k allows the recipient to verify later messages, whose
MACs are generated with hash preimages of k. In general,
this design requires stricter time synchronization than the one
based on digital signatures, as the key used to generate the
MAC depends on the time at which it is sent. However, for
the sense-and-send use case typical of smart buildings, sen-
sors anyway publish messages on a fixed schedule (e.g., one
sample every x seconds), allowing the key to depend only on
the message index. Thus, timely message delivery is the only
requirement. Our scheme differs from µTESLA because the
first key (end of the hash chain) is signed using WKD-IBE.

Additionally, we use a technique similar to precomputation
with adjustment (§3.6.2) for anonymous signatures. Concep-
tually, KeyDer, which is used to produce signatures, can be
understood as a two-step procedure: (1) produce a key of the
correct form and structure (called NonDelegableKeyDer),
and (2) re-randomize the key so that it can be safely delegated
(called ResampleKey). Re-randomization can be accelerated
using the same precomputed value QS that JEDI uses for en-
cryption (§3.6.2), which can be efficiently adjusted from one
pattern to the next. The result of NonDelegableKeyDer can
also be adjusted to obtain the corresponding result for a simi-
lar pattern more efficiently. We fully explain our adjustment
technique for signatures in our extended paper [57].

Finally, WKD-IBE signatures as originally proposed
(§4.2.1) are verified by encrypting a random message un-
der the pattern corresponding to the signature, and then at-
tempting to decrypt it using the key acting as a signature. We

1526 28th USENIX Security Symposium USENIX Association

provide a more efficient signature verification algorithm for
this construction of WKD-IBE in our extended paper [57].

4.4 Security Guarantee
The integrity guarantees of the method in this section can be
formalized using a game very similar to the one in Theorem
1, so we do not present it here for brevity. We do, however,
formalize the anonymous aspect of WKD-IBE signatures:
Theorem 2. For any well-formed keys k1, k2 corresponding
to the same (URI, time) pair in the same resource hierarchy,
and any message m∈Z∗p, the distribution of signatures over m
produced using k1 is information-theoretically indistinguish-
able from (i.e., equal to) the distribution of signatures over m
produced using k2.

This implies that even a powerful adversary who observes
the private keys held by all principals cannot distinguish sig-
natures produced by different principals, for a fixed message
and pattern. No computational assumptions are required. We
prove Theorem 2 in the appendix of our extended paper [57].

5 Revocation in JEDI
This section explains how JEDI keys may be revoked.

5.1 Simple Solution: Revocation via Expiry
A simple solution for revocation is to rely on expiration. In
this solution, all keys are time-limited, and delegations are
periodically refreshed, according to a higher layer protocol,
by granting a new key with a later expiry time. In this setup,
the principal who granted a key can easily revoke it by not
refreshing that delegation when the key expires. We expect
this solution to be sufficient for many applications of JEDI.

5.2 Immediate Revocation
Some disadvantages of the solution in §5.1 are that (1) princi-
pals must periodically come online to refresh delegations, and
(2) revocation only takes effect when the delegated key ex-
pires. We would like a solution without these disadvantages.

However, any revocation scheme that does not wait for
keys to expire is subject to set of inherent limitations. The
recipient of the revoked delegation still has the revoked de-
cryption key, so it can still decrypt messages encrypted in the
same way. This means that we must either (1) rely on inter-
mediate parties to modify ciphertexts so that revoked keys
cannot decrypt them, or (2) require senders to be aware of the
revocation, and encrypt messages in a different way so that
revoked keys cannot decrypt them. Neither solution is ideal:
(1) makes assumptions about how messages are delivered,
which we have avoided thus far (§2), and requires trust in an
intermediary to modify ciphertexts, and (2) weakens the de-
coupling of senders and receivers (§1.1). We adopt the second
compromise: while senders will not need to know who are
the receivers, they will need to know who has been revoked.

5.3 Immediate Revocation in JEDI
We extend tree-based broadcast encryption [37,67] to support
decentralized delegation of decryption keys, and incorporate

it into JEDI. We use tree-based broadcast encryption because
it only requires senders to know about revoked users when
encrypting messages, as opposed to all users in the system
(as is required by other broadcast encryption schemes).

5.3.1 Tree-based Broadcast Encryption
Existing work [37, 67] proposes two methods of tree-based
broadcast encryption: Complete Subtree (CS) and Subset
Difference (SD). We focus on the CS method here.

The CS method is based on a binary tree (Fig. 5) where each
node corresponds to a separate keypair. Each user corresponds
to a leaf of the tree and has the secret keys for all nodes on
the root-to-leaf path. To encrypt a message that is decryptable
by a subset of users, one finds a collection of subtrees that
include all leaves except those corresponding to revoked users
and encrypts the message multiple times using the public keys
corresponding to the root of each subtree. By associating each
node with an ID and encrypting with IBE, one can avoid
generating a separate keypair for each node.

5.3.2 Modifying Broadcast Encryption for Delegation
Users in broadcast encryption do not map one-to-one to users
in JEDI. To avoid confusion, we refer to “users” in broadcast
encryption as “leaves” (abbreviated lf).

We modify the CS method to support delegation, as fol-
lows. Each key corresponds to a range of consecutive leaves.
When a user qualifies a key to delegate to another principal,
she produces a new key corresponding to a subrange of the
leaves of the original key. When a key is revoked, publishers
are informed of the range of leaves corresponding to the re-
voked key. Then, they encrypt new messages using the CS
method, choosing subtrees that cover all leaves except those
corresponding to revoked leaves. If a key is revoked, that key
and all keys derived from it can no longer decrypt messages,
which is a property that we want. Thus, if Alice has k leaves,
she must store secret keys for O(k+ logn) nodes, where n is
the total number of leaves (so the depth of the tree is logn).

In JEDI, we reduce this to O(logn) secret keys by using
HIBE. We give each node vi an identifier id(vi) ∈ {0,1}∗ that
describes the path from the root of the tree to that node. In
particular, if v j is an ancestor of vi, then id(v j) is a prefix of
id(vi). Note that if we use HIBE with these IDs directly, a
user with the secret key for the root can generate keys for
all nodes in the tree. To fix this, we use a property called
limited delegation, introduced by prior work [17], to generate
a HIBE key that is unqualifiable (i.e., cannot be extended).
For example, if Alice has leaves lf3 to lf4 in Fig. 5, she stores
an unqualifiable key for node v1 and a qualifiable key for node
v3. In general, each user must store O(logk) qualifiable keys
and O(logn) unqualifiable keys, thus O(logk+ logn) total.

5.3.3 Using Delegable Broadcast Encryption in JEDI
Secret keys in our modified broadcast encryption scheme
consist of HIBE keys, so incorporating it into JEDI is simple.
As discussed in §3.2, JEDI uses WKD-IBE in a way that
provides multiple concurrent hierarchies, each in the vein of

USENIX Association 28th USENIX Security Symposium 1527

v1 : sk1

v2 : sk2

v4 : sk4

lf1

v5 : sk5

lf2

v3 : sk3

v6 : sk6

lf3

v7 : sk7

lf4

Figure 5: Key management of the CS method. Red nodes
indicate nodes associated with revoked leaves. The green
node is the root of the subtree covering unrevoked leaves.

HIBE. Therefore, we can instantiate a third hierarchy of depth
`3 = logn and use it for revocation.

Let r be the number of revoked keys. The CS method has
O(r log n

r)-size ciphertexts, so JEDI ciphertexts grow to this
size when revocation is used. When encrypting a message,
senders use the same encryption protocol from §3 for the first
`1+`2 slots, and repeat the process, filling in the remaining `3
slots with the ID of each node used for broadcast encryption.
The size of secret keys is O(logk+ logn) after our modifica-
tions to the CS method, so JEDI keys grow by this factor, to a
total of O((logk+ logn) · logT) WKD-IBE keys, where T is
the length of the time range for expiry.

The construction in this section works to revoke decryption
keys, but cannot be used with anonymous signatures (§4.2).
Extensions of tree-based broadcast encryption to signatures
exist [60, 61], and we expect them to be useful to develop a
construction for anonymous signatures.

How can JEDI inform publishers which leaves are revoked?
One simple option is to have a global revocation list, which
principals can append to. However, storing this information in
a single list becomes a central point of attack, which we have
avoided in our system thus far (§2). To avoid this, one can
store the revocation list in a global-scale blockchain, such as
Bitcoin or Ethereum, which would require an adversary to be
exceptionally powerful to mount a successful attack. When
revoking a set of leaves, a principal uses those keys to sign a
predetermined object (as in §4.2), proving it owns an ancestor
of that key in the hierarchy. To keep the revocation list private,
one can use JEDI’s encryption to ensure that only principals
with permission to publish to a particular resource can see
which keys are revoked for that resource (since publishers too
have signing keys, as described in §4).

5.4 Security Guarantee
The security guarantee for immediate revocation can be stated
as a modification to the game in Theorem 1. In the Initial-
ization Phase, when A gives C the challenge (URI, time), A
additionally submits a list of revoked leaves. Furthermore, A
may compromise principals in possession of private keys that
can decrypt the challenge (URI, time) pair during Phases 1
and 2, as long as all leaves corresponding to those keys are in
the revocation list submitted in the Initialization Phase. We
provide a proof in the appendix of the extended paper [57].

5.5 Optimizing JEDI’s Immediate Revocation
A single JEDI ciphertext, with revocation enabled, consists
of O(r log n

r) WKD-IBE ciphertexts. To compute them effi-
ciently, we observe that there is a large overlap in the patterns
used in individual WKD-IBE encryptions, allowing us to use
the “precomputation with adjustment” strategy from §3.6.2.

Even with the above optimization, immediate revocation
substantially increases the cost of JEDI’s cryptography. To
reduce this cost, we make three observations. First, to extend
JEDI’s hybrid encryption to work with revocation, it is suffi-
cient to additionally rotate keys whenever the revocation list
changes, in addition to the end of each hour (as in §3.6.1). This
means that, in the common case where the revocation list does
not change in between two messages, efficient symmetric-key
encryption can be used. Second, the revocation list used to
encrypt a message need only contain revoked leaves for the
particular URI to which the message is sent. This not only
makes the broadcast encryption more efficient (smaller r), but
also causes the effective revocation list for a stream of data to
change even more rarely, allowing JEDI to benefit more from
hybrid encryption. Third, we can do the same thing as above
using the expiry time rather than the URI, allowing us to cull
the revocation list by removing keys from it once they expire.

The efficiency of hybrid encryption depends on the revo-
cation list changing rarely. We believe this is a reasonable
assumption; most revocation will be handled by expiry, so
immediate revocation is only needed if a principal must lose
access unexpectedly. In the smart buildings use case (§1),
for example, a key would need to be revoked if a principal
unexpectedly transfers to another job.

The SD method for tree-based broadcast encryption can
also be extended to support delegation and incorporated into
JEDI (described in the appendix of our extended paper [57]),
The SD method has smaller ciphertexts but larger keys.

6 Implementation
We implemented JEDI as a library in the Go programming
language. We expect JEDI’s key delegation to be computed
on relatively powerful devices, like laptops, smartphones, or
Raspberry Pis; less powerful devices (e.g., right half of Fig. 1)
will primarily send and receive messages, rather than gener-
ate keys for delegation. Therefore, our focus for low-power
platforms was on the “sense-and-send” use case [26, 38, 41]
typical of indoor environmental sensing, where a device pe-
riodically publishes sensor readings to a URI. Whereas our
Go library provides higher-level abstractions, we expect low-
power devices to use JEDI’s crypto library directly.

6.1 C/C++ Library for JEDI’s Cryptography
As part of JEDI, we implemented a cryptography library opti-
mized in assembly for three different architectures typical of
IoT platforms (Fig. 1). It implements WKD-IBE and JEDI’s
optimizations and modifications (in §3.6, §4.3, and our full
paper). The construction of WKD-IBE is based on a bilinear

1528 28th USENIX Security Symposium USENIX Association

group in which the Bilinear Diffie-Hellman Exponent assump-
tion holds. We use the recent BLS12-381 elliptic curve [24].

State-of-the-art cryptography libraries implement BLS12-
381, but none of them, to our knowledge, optimize for mi-
croarchitectures typical of low-power embedded platforms.
To improve energy consumption, we implemented BLS12-
381 in C/C++, profiled our implementation, and re-wrote
performance-critical routines in assembly. We focus on ARM
Cortex-M, an IoT-focused family of 32-bit microprocessors
typical of contemporary low-power embedded sensor plat-
forms [28, 49, 53]. Cortex-M processors have been used in
billions of devices, including commercial IoT offerings such
as Fitbit and Nest Protect. Our assembly targets Cortex-M0+,
which is among the least powerful of processors in the Cortex-
M series, and of those used in IoT devices (farthest to the
right in Fig. 1). By demonstrating the practicality of JEDI
on Cortex-M0+, we establish that JEDI is viable across the
spectrum of IoT devices (Fig. 1).

The main challenge in targeting Cortex-M0+ is that the 32-
bit multiply instruction provides only the lower 32 bits of the
product. Even on more powerful microarchitectures without
this limitation (e.g., Intel Core i7), most CPU time (≥ 80%)
is spent on multiply-intensive operations (e.g., BigInt multi-
plication and Montgomery reduction), so the lack of such an
instruction was a performance bottleneck. As a workaround,
our assembly code emulates multiply-accumulate with carry
in 23 instructions. Cortex-M3 and Cortex-M4, which are more
commonly used than Cortex-M0+, have instructions for 32-bit
multiply-accumulate which produce the entire 64-bit result;
we expect JEDI to be more efficient on those processors.

We also wrote assembly to optimize BLS12-381 for x86-
64 and ARM64, representative of server/laptop and smart-
phone/Raspberry Pi, respectively (first two tiers in Fig. 1).
Thus, our Go library, which runs on these non-low-power plat-
forms, also benefits from low-level assembly optimizations.

6.2 Application of JEDI to bw2
We used our JEDI library to implement end-to-end encryption
in bw2, a syndication and authorization system for IoT. bw2’s
syndication model is based on publish-subscribe, explained
in §1. Here we discuss bw2’s authorization model. Access to
resources is granted via certificate chains from the authority of
a resource hierarchy to a principal. Individual certificates are
called Declarations of Trust (DOTs). bw2 maintains a publicly
accessible registry of DOTs, implemented using blockchain
smart contracts, so that principals can find the DOTs they need
to form DOT chains. A trusted router enforces permissions
granted by DOTs. Principals must present DOT chains when
publishing/subscribing to resources, and the router verifies
them. Note that a compromised router can read messages.

We use JEDI to enforce bw2’s authorization semantics
with end-to-end encryption. DOTs granting permission to
subscribe now contain WKD-IBE keys to decrypt messages.
By default, DOTs granting permission to publish to a URI

Table 1: Latency of JEDI’s implementation of BLS12-381
Operation Laptop Rasp. Pi Sensor
G1 Mul. (Chosen Scalar) 109 µs 1.33 ms 509 ms
G2 Mul. (Chosen Scalar) 343 µs 3.86 ms 1.44 s
GT Mul. (Rand. Scalar) 504 µs 5.47 ms 1.90 s
GT Mul. (Chosen Scalar) 507 µs 5.48 ms 2.81 s
Pairing 1.29 ms 14.0 ms 3.83 s

remain unchanged, and are used as in §4.1. WKD-IBE keys
may also be included in DOTs granting publish permission,
for anonymous signatures (§4.2). Using our library for JEDI,
we implemented a wrapper around the bw2 client library. It
transparently encrypts and decrypts messages using WKD-
IBE, and includes WKD-IBE parameters and keys in DOTs
and principals, as needed for JEDI. bw2 signs each message
with a digital signature (first alternative in §4.3).

The bw2-specific wrapper is less than 900 lines of Go code.
Our implementation required no changes to bw2’s client li-
brary, router, blockchain, or core—it is a separate module.
Importantly, it provides the same API as the standard bw2
client library. Thus, it can be used as a drop-in replacement for
the standard bw2 client library, to easily add end-to-end en-
cryption to existing bw2 applications with minimal changes.

7 Evaluation
We evaluate JEDI via microbenchmarks, determine its power
consumption on a low-power sensor, measure the overhead
of applying it to bw2, and compare it to other systems.

7.1 Microbenchmarks
Benchmarks labeled “Laptop” were produced on a Lenovo
T470p laptop with an Intel Core i7-7820HQ CPU @ 2.90
GHz. Benchmarks labeled “Raspberry Pi” were produced on
a Raspberry Pi 3 Model B+ with an ARM Cortex-A53 @
1.4 GHz. Benchmarks labeled “Sensor” were produced on a
commercially available ultra low-power environmental sensor
platform called “Hamilton” with an ARM Cortex-M0+ @ 48
MHz. We describe Hamilton in more detail in §7.3.
7.1.1 Performance of BLS12-381 in JEDI
Table 1 compares the performance of JEDI’s BLS12-381
implementation on the three platforms, with our assembly
optimizations. As expected from Fig. 1, the Raspberry Pi
performance is an order of magnitude slower than Laptop
performance, and performance on the Hamilton sensor is an
additional two-to-three orders of magnitude slower.
7.1.2 Performance of WKD-IBE in JEDI
Fig. 6 depicts the performance of JEDI’s cryptography primi-
tives. Fig. 6 does not include the sensor platform; §7.3 thor-
oughly treats performance of JEDI on low-power sensors.

In Figure 6a, we used a pattern of length 20 for all opera-
tions, which would correspond to, e.g., a URI of length 14 and
an Expiry hierarchy of depth 6. To measure decryption and
signing time, we measure the time to decrypt the ciphertext or
sign the message, plus the time to generate a decryption key
for that pattern or ID. For example, if one receives a message

USENIX Association 28th USENIX Security Symposium 1529

Laptop Rasp. Pi
Enc. 3.08 ms 37.3 ms
Dec. 3.61 ms 43.9 ms
KeyD. 4.77 ms 58.5 ms
Sign 4.80 ms 61.2 ms
Verify 4.78 ms 56.3 ms

(a) Latency of Encrypt,
Decrypt, KeyDer, Sign, and
Verify with 20 attributes

0 50 100
No. Revoked Users (out of 2048)

0
1000
2000
3000
4000
5000
6000

En
cr

yp
t w

ith
 R

ev
oc

. (
m

s) Laptop
Rasp. Pi

(b) Encryption with Revocation

Figure 6: Performance of JEDI’s cryptography

on a/b/c/d/e/f, but has the key for a/*, he must generate
the key for a/b/c/d/e/f to decrypt it.

Figure 6a demonstrates that the JEDI encrypts and signs
messages and generates qualified keys for delegation at prac-
tical speeds. On a laptop, all WKD-IBE operations take less
than 10 ms with up to 20 attributes. On a Raspberry Pi, they
are 10x slower (as expected), but still run at interactive speeds.
7.1.3 Performance of Immediate Revocation in JEDI
Figure 6b shows the cost of JEDI’s immediate revocation
protocol (§5). A private key containing k leaves consists of
O(logk+ logn) WKD-IBE secret keys where n is the total
number of leaves. Therefore, the performance of immediate
revocation depends primarily on the number of leaves.

To encrypt a message, one WKD-IBE encryption is per-
formed for each subtree needed to cover all unrevoked leaves.
In general, encryption is O(r log n

r), where r is the number of
revoked leaves. Each key contains a set of consecutive leaves,
so encryption is also O(R log n

R), where R is the number of
revoked JEDI keys. Decryption time remains almost the same,
since only one WKD-IBE decryption is needed.

To benchmark revocation, we use a complete binary tree
of depth 16 (n = 65536). The time to generate a new key for
delegation is essentially independent of the number of leaves
conveyed in that key, because logk� logn. We empirically
confirmed this; the time to generate a key for delegation was
constant at 2.4 ms on a laptop and 31 ms on a Raspberry Pi as
the number of leaves in the key was varied from 5 to 1,000.

To benchmark encryption with revocation, we assume that
there exist 2,048 users in the system each with 32 leaves. We
measure encryption time with a pattern with 20 fixed slots
(for URI and time) as we vary the number of revoked users.
Figure 6b shows that encryption becomes expensive when the
revocation list is large (500 milliseconds on laptop and ≈ 5
seconds on Raspberry Pi). However, such an encryption only
needs to be performed by a publisher when the URI, time, or
revocation list changes; subsequent messages can reuse the
underlying symmetric key (§5.5). Furthermore, the revocation
list includes only revoked keys that match the (URI, time) pair
being used, so it is not expected to grow very large.

7.2 Performance of JEDI in bw2
In bw2, the two critical-path operations are publishing a mes-
sage to a URI, and receiving a message as part of a subscrip-

Unmodified bw2
JEDI (usual)
JEDI anon. sig. (usual)
JEDI (1st msg)
JEDI anon. sig. (1st msg)
Trusted Key Server

1 KiB 32 KiB 1 MiB
Size of Message

0

50

100

150

200

Ti
m

e
to

 E
nc

. &
 P

ub
lis

h
(m

s)

(a) Encrypt/publish message

1 KiB 32 KiB 1 MiB
Size of Message

0

5

10

15

20

Ti
m

e
to

 R
ec

ei
ve

 &
 D

ec
. (

m
s)

(b) Receive/decrypt message

Figure 7: Critical-path operations in bw2, with/without JEDI

tion. We measure the overhead of JEDI for these operations
because they are core to bw2’s functionality and would be
used by any messaging application built on bw2. Our method-
ology is to perform each operation repeatedly in a loop, to
measure the sustained performance (operations/second), and
report the average time per operation (inverse). To minimize
the effect of the network, the router was on the same link as
the client, and the link capacity was 1 Gbit/s. In our experi-
ments, we used a URI of length 6 and an Expiry tree of depth
6. We also include measurements from a strawman system
with pre-shared AES keys—this represents the critical-path
overhead of an approach based on the Trusted Key Server
discussed in §2. Our results are in Fig. 7.

We implement the optimizations in §3.6.1, so only sym-
metric key encryption/decryption must be performed in the
common case (labeled “usual” in the diagram). However, the
symmetric keys will not be cached for the first message sent
every hour, when the WKD-IBE pattern changes. A WKD-
IBE operation must be performed in this case (labeled “1st
message” in the diagram). For large messages, the cost of
symmetric key encryption dominates. JEDI has a particularly
small overhead for 1 MiB messages in Fig. 7b, perhaps be-
cause 1 MiB messages take several milliseconds to transmit
over the network, allowing the client to decrypt a message
while the router is sending the next message.

We also consider creating DOTs and initiating subscrip-
tions, which are not in the critical path of bw2. These results
are in Fig. 8 (note the log scale in Fig. 8a). Creating DOTs is
slower with JEDI, because WKD-IBE keys are generated and
included in the DOT. Initiating a subscription in bw2 requires
forming a DOT chain; in JEDI, one must also derive a private
key from the DOT chain. Fig. 8a shows the time to form a
short one-hop DOT chain, and in the case of JEDI, includes
the time to derive the private key. For JEDI’s encryption (§3),
these additional costs are incurred only by DOTs that grant
permission to subscribe. With anonymous signatures, DOTs
granting permission to publish incur this overhead as well, as
WKD-IBE keys must be included. Fig. 8b puts this in con-
text by measuring the end-to-end latency from initiating a
subscription to receiving the first message (measured using
bw2’s “query” functionality).

For a DOT to be usable, it must be inserted into bw2’s

1530 28th USENIX Security Symposium USENIX Association

Create DOT Build DOT
Chain

10−2

100

102

104

Ru
nn

in
g

Ti
m

e
(m

s) Unmodified bw2
JEDI

(a) Create DOT, Build Chain

1 KiB 32 KiB 1 MiB
Size of Message

0

20

40

60

80

100

Ti
m

e
to

 1
st

 M
es

sa
ge

 (m
s) Unmodified bw2

JEDI
JEDI anon. sig.
Trusted Key Server

(b) Time to Query/Subscribe

Figure 8: Occasional bw2 operations, with and without JEDI

registry. This requires a blockchain transaction (not included
in Fig. 8). An important consideration in this regard is size.
In the unmodified bw2 system, a DOT that grants permission
on a/b/c/d/e/f is 198 bytes. With JEDI, each DOT also
contains multiple WKD-IBE keys, according to the time range.
In the “worst case,” where the start time of a DOT is Jan 01 at
01:00, and the end time is Dec 31 at 22:59, a total of 45 keys
are needed. Each key is approximately 1 KiB, so the size of
this DOT is approximately 45 KiB.

Because bw2’s registry of DOTs is implemented using
blockchain smart contracts, the bandwidth for inserting DOTs
is limited. Using JEDI would increase the size of DOTs as
above, resulting in an approximately 100-400x decrease in
aggregate bandwidth for creating DOTs. However, this can
be mitigated by changing bw2 to not store DOTs directly in
the blockchain. DOTs can be stored in untrusted storage, with
only their hashes stored in the blockchain-based registry. Such
a solution could be based on Swarm [79] or Filecoin [43].

7.3 Feasibility on Ultra Low-Power Devices
We use a commercially available sensor platform called
“Hamilton” [4, 49] built around the Atmel SAMR21 system-
on-chip (SoC). The SAMR21 costs approximately $2.25 per
unit [40] and integrates a low-power microcontroller and ra-
dio. The sensor platform we used in this study costs $18 to
manufacture [55]. For battery lifetime calculations, we as-
sume that the platform is powered using a CR123A Lithium
battery that provides 1400 mAh at 3.0 V (252 J of energy).
Such a battery costs $1. The SAMR21 is heavily constrained:
it has only a 48 MHz CPU frequency based on the ARM
Cortex-M0+ microarchitecture, and a total of only 32 KiB of
data memory (RAM). Our goal is to validate that JEDI is prac-
tical for an ultra low-power sensor platform like Hamilton, in
the context of a “sense-and-send” application in a smart build-
ing. Since most of the platform’s cost ($18) comes from the
on-board transducers and assembly, rather than the SAMR21
SoC, using an even more resource-constrained SoC would
not significantly decrease the platform’s cost. An analogous
argument applies to energy consumption, as the transducers
account for more than half of Hamilton’s idle current [55].

Hamilton/SAMR21 is on the lower end of platforms typi-
cally used for sense-and-send applications in buildings. Some
older studies [41,59] use even more constrained hardware like

Table 2: CPU and power costs on the Hamilton platform
Operation Time Average Current
Sleep (Idle) N/A 0.0063 mA
WKD-IBE Encrypt 6.50 s 10.2 mA
WKD-IBE Encrypt and Sign 9.89 s 10.2 mA

Table 3: Average current and expected battery life (for 1400
mAh battery) for sense-and-send, with varying sample interval

AES Only JEDI (enc) JEDI (enc & sign)
10 s 32 µA / 5.1 y 50 µA / 3.2 y 60 µA / 2.6 y
20 s 20 µA / 8.1 y 38 µA / 4.2 y 48 µA / 3.3 y
30 s 15 µA / 10 y 34 µA / 4.7 y 44 µA / 3.6 y

the TelosB; this is because those studies were constrained by
hardware available at the time. Modern 32-bit SoCs, like the
SAMR21, offer substantially better performance at a similar
price/power point to those older platforms [55].
7.3.1 CPU Usage
Table 2 shows the time for encryption and anonymous sign-
ing in JEDI on Hamilton. The results use the optimizations
discussed in §3.6 and §4.3, and include the time to “adjust”
precomputed state. They indicate that symmetric keys can be
encrypted and anonymously signed in less than 10 seconds.
This is feasible given that encryption and anonymous sign-
ing occur rarely, once an hour, and need not be produced at
interactive speeds in the normal “sense-and-send” use case.
7.3.2 Power Consumption
To calculate the impact on battery lifetime, we consider a
“sense-and-send” application, in which the Hamilton device
obtains readings from its sensors at regular intervals, and
immediately sends the readings encrypted over the wireless
network. We measured the average current consumed for
varying sample intervals, when each message is encrypted
with AES-CCM, without using JEDI (“AES Only” in Table
3). We estimate JEDI’s average current based on the current,
duration, and frequency (once per hour, for these estimates) of
JEDI operations, and add it to the average current of the “AES
Only” setup. Our estimates assume that the µTESLA-based
technique in §4.3 is used to avoid attaching a digital signature
to each message. We divide the battery’s energy capacity by
the result to compute lifetime. As shown in Table 3, JEDI
decreases battery life by about 40-60%. Battery life is several
years even with JEDI, acceptable for IoT sensor platforms.

JEDI’s overhead depends primarily on the granularity of
expiry times (one hour, for these estimates), not the sample
interval. To improve power consumption, one could use a
time tree with larger leaves, allowing principals to perform
WKD-IBE encryptions and anonymous signatures less often.
This would, of course, make expiry times coarser.
7.3.3 Memory Budget
Performing WKD-IBE operations requires only 6.5 KiB of
data memory, which fits comfortably within the 32 KiB of data
memory (RAM) available on the SAMR21. The code space
required for our implementation of WKD-IBE and BLS12-

USENIX Association 28th USENIX Security Symposium 1531

381 is about 74 KiB, which fits comfortably in the 256 KiB
of code memory (ROM) provided by the SAMR21.

A related question is whether storing a hash chain in mem-
ory (as required for authenticated broadcast, §4.3) is practical.
If we use a granularity of 1 minute for authenticated broad-
cast, the length of the hash chain is 60. At the start of an
hour, one computes the entire chain, storing 10 hashes equally
spaced along the chain, each separated by 5 hashes. As one
progresses along the hash chain, one re-computes each set of
5 hashes one additional time. This requires storage for only
15 hashes (< 4 KiB memory) and computation of only 105
hashes per hour, which is practical. One could possibly opti-
mize performance further using hierarchical hash chains [50].
7.3.4 Impact of JEDI’s Optimizations
JEDI’s cryptographic optimizations (§3.6.2, §4.2.2, §4.3),
which use WKD-IBE in a non-black-box manner, provide a
2-3x performance improvement. Our assembly optimizations
(§6) provide an additional 4-5x improvement. Without both of
these techniques, JEDI would not be practical on low-power
sensors. Hybrid encryption and key reuse (§3.6.1), which let
JEDI use WKD-IBE rarely, are also crucial.

7.4 Comparison to Other Systems
Table 4 compares JEDI to other systems and cryptographic
approaches, particularly those geared toward IoT, in regard
to security, expressivity and performance. We treat these ex-
isting systems as they would be used in a messaging system
for smart buildings (§1). Table 4 contains quantitative com-
parisons to the cryptography used by these systems; for those
schemes based on bilinear groups, we re-implemented them
using our JEDI crypto library (§6.1) for a fair comparison.
Security. The owner of a resource is considered trusted for
that resource, in the sense that an adversary who compromises
a principal can read all of that principal’s resources. In Table
4, we focus on whether a single component is trusted for
all resources in the system. Note that, although Trusted Key
Server (§2) and PICADOR [23] encrypt data in flight, granting
or revoking access to a principal requires participation of an
online trusted party to generate new keys.
Expressivity. PRE-based approaches, which associate pub-
lic keys with users and support delegation via proxy
re-encryption, are fundamentally coarse-grained—a re-
encryption key allows all of a user’s data to be re-encrypted.
PICADOR [23] allows more fine-grained semantics, but does
not enforce them cryptographically. ABE-based approaches
typically do not support delegation beyond a single hop,
whereas JEDI achieves multi-hop delegation. In ABE-based
schemes, however, attributes/policies attached to keys can de-
scribe more complex sets of resources than JEDI. That said,
a hierarchical resource representation is sufficient for JEDI’s
intended use case, namely smart cities; existing syndication
systems for smart cities, which do not encrypt data and are un-
constrained by the expressiveness of crypto schemes, choose
a hierarchical rather than attribute-based representation (§1).

Performance. The Trusted Key Server (§2) is the most naïve
approach, requiring an online trusted party to enforce all pol-
icy. Even so, JEDI’s performance in the common case is the
same as the Trusted Key Server (Fig. 7), because of JEDI’s hy-
brid encryption—JEDI invokes WKD-IBE rarely. Even when
JEDI invokes WKD-IBE, its performance is not significantly
worse than PRE-based approaches. An alternative design for
JEDI uses the GPSW KP-ABE construction instead of WKD-
IBE, but it is significantly more expensive. Based Table 3, the
power cost of a WKD-IBE operation even when only invoked
once per hour contributes significantly to the overall energy
consumption on the low-power IoT device; using KP-ABE
instead of WKD-IBE would increase this power consumption
by an order of magnitude, reducing battery life significantly.
In summary, existing systems fall into one of three cate-
gories. (1) The Trusted Key Server allows access to resources
to be managed by arbitrary policies, but relies on a central
trusted party who must be online whenever a user is granted
access or is revoked. (2) PRE-based approaches, which per-
mit sharing via re-encryption, cannot cryptographically en-
force fine-grained policies or support multi-hop delegation.
(3) ABE-based approaches, if carefully designed, can achieve
the same expressivity as JEDI, but are substantially less perfor-
mant and are not suitable for low-power embedded devices.

8 Related Work
We organize related work into the following categories.
Traditional Public-Key Encryption. SiRiUS [47] and Plu-
tus [54] are encrypted filesystems based on traditional public-
key cryptography, but they do not support delegable and qual-
ifiable keys like JEDI. Akl et al. [2] and further work [33, 34]
propose using key assignment schemes for access control in
a hierarchy. A line of work [8, 9, 51, 80] builds on this idea to
support both hierarchical structure and temporal access. Key
assignment approaches, however, require the full hierarchy to
be known at setup time, which is not flexible in the IoT setting.
JEDI does not require this, allowing different subtrees of the
hierarchy to be managed separately (§1.1, “Delegation”).
Identity-Based Encryption. Tariq et al. [78] use Identity-
Based Encryption (IBE) [18] to achieve end-to-end encryp-
tion in publish-subscribe systems, without the router’s par-
ticipation in the protocol. However, their approach does not
support hierarchical resources. Further, encryption and private
keys are on a credential-basis, so each message is encrypted
multiple times according to the credentials of the recipients.

Wu et al. [87] use a prefix encryption scheme based on
IBE for mutual authentication in IoT. Their prefix encryption
scheme is different from JEDI, in that users with keys for
identity a/b/c can decrypt messages encrypted with prefix
identity a, a/b and a/b/c, but not identities like a/b/c/d.
Hierarchical Identity-Based Encryption. Since the orig-
inal proposal of Hierarchical Identity-Based Encryption
(HIBE) [46], there have been multiple HIBE construc-
tions [16, 17, 45, 46] and variants of HIBE [1, 88]. Although

1532 28th USENIX Security Symposium USENIX Association

Table 4: Comparison of JEDI with other crypto-based IoT/cloud systems
Crypto Scheme /
System

Avoids Cen-
tral Trust?

Expressivity Performance

Trusted Key Server
(§2)

– No + Supports arbitrary policies (beyond
hierarchies)

– No delegation

+ ≈ 10 µs to encrypt 1 KiB message (same as
JEDI in common case, faster for first message
after key rotation)

– Trusted party generates one key per resource
PRE (Lattice-
Based), as used in
PICADOR [23]

– No + Supports arbitrary policies (beyond
hierarchies)

– No delegation

+ ≈ 5 ms encrypt, ≈ 3 ms decrypt (similar to
JEDI: 3-4 ms)

– Trusted party must generate one key per
sender-receiver pair

PRE (Pairing-
Based), as used in
Pilatus [75]

+ Yes – Delegation is single-hop
– Delegation is coarse (all-or-nothing)
+ Can compute aggregates on en-

crypted data

+ 0.6 ms encrypt, 1.3 ms re-encrypt, 0.5 ms
decrypt (faster than JEDI: 3-4 ms)

+ Practical on constrained IoT device with
crypto accelerator

CP-ABE [12] + Yes + Good fit for RBAC policies
– Cannot support JEDI’s hierarchy ab-

straction with delegation

+ Only symmetric crypto in common case
– 14 ms encrypt for first time after key rotation

(4-5x slower than JEDI: 3 ms)
KP-ABE, as used in
Sieve [83]

+ Yes + Succinct delegation based on at-
tributes

– Delegation is single-hop

+ Only symmetric crypto in common case
– 25 ms encrypt for first time after key rotation

(8-9x slower than JEDI: 3 ms)
Delegable Large
Univ. KP-ABE [48]
(used in Alternative
JEDI Design)

+ Yes + Generalizes beyond hierarchies and
supports multi-hop delegation (sub-
sumes JEDI)

+ Only symmetric crypto in common case
– 60 ms encrypt for first time after key rotation

(20x slower than JEDI: 3 ms)
– Impractical for low-power sense-and-send

This paper: WKD-
IBE [1] with Op-
timizations, as used
in JEDI

+ Yes + Delegation is multi-hop
+ Succinct delegation of subtrees of re-

sources (or more complex sets, §3.7)
+ Non-interactive expiry

+ After key rotation (e.g., once per hour), 3 ms
encrypt, 4 ms decrypt (Fig. 6a)

+ Only symmetric crypto in common case
+ Practical for ultra low-power “sense-and-

send” without crypto accelerator

seemingly a good match for resource hierarchies, HIBE can-
not be used as a black box to efficiently instantiate JEDI.
We considered alternative designs of JEDI based on exist-
ing variants of HIBE, but as we elaborate in the appendix of
our extended paper [57], each resulting design is either less
expressive or significantly more expensive than JEDI.
Attribute-Based Encryption. A line of work [83, 90] uses
Attribute-Based Encryption (ABE) [12,48] to delegate permis-
sion. Our work additionally supports hierarchically-organized
resources and decentralized delegation of keys, which [90]
and [83] do not address. As discussed in §7.4, WKD-IBE
is substantially more efficient than KP-ABE and provides
enough functionality for JEDI.

Other approaches prefer Ciphertext-Policy ABE (CP-
ABE) [12]. Existing work [84, 85] combines HIBE with CP-
ABE to produce Hierarchical ABE (HABE), a solution for
sharing data on untrusted cloud servers. The “hierarchical”
nature of HABE, however, corresponds to the hierarchical
organization of domain managers in an enterprise, not a hier-
archical organization of resources as in our work.
Proxy Re-Encryption. NuCypher KMS [39] allows a user
to store data in the cloud encrypted under her public key,

and share it with another user using Proxy Re-Encryption
(PRE) [14]. While NuCypher assumes limited collusion
among cloud servers and recipients (e.g., m of n secret shar-
ing) to achieve properties such as expiry, JEDI enforces expiry
via cryptography, and therefore remains secure against any
amount of collusion. Furthermore, NuCypher’s solution for
resource hierarchies requires a keypair for each node in the hi-
erarchy, meaning that the creation of resources is centralized.
Finally, keys in NuCypher are not qualifiable.

PICADOR [23], a publish-subscribe system with end-to-
end encryption, uses a lattice-based PRE scheme. However,
PICADOR requires a central Policy Authority to specify ac-
cess control, by creating a re-encryption key for every per-
mitted pair of publisher and subscriber. In contrast, JEDI’s
access control is decentralized.

Revocation Schemes. Broadcast encryption (BE) [19–22,37,
58, 67] is a mechanism to achieve revocation, by encrypting
messages such that they are only decryptable by a specific set
of users. However, these existing schemes do not support key
qualification and delegation, and therefore, cannot be used
in JEDI directly. Another line of work builds revocation di-
rectly into the underlying cryptography primitive, achieving

USENIX Association 28th USENIX Security Symposium 1533

Revocable IBE [15, 62, 72, 86], Revocable HIBE [63, 71, 73]
and Revocable KP-ABE [10]. These papers use a notion of
revocation in which URIs are revoked. In contrast, JEDI sup-
ports revocation at the level of keys. If multiple principals
have access to a URI, and one of their keys is revoked, then
the other principal can still use its key to access the resource.
Some systems [11, 39] rely on the participation of servers or
routers to achieve revocation.
Secure Reliable Multicast Protocol. Secure Reliable Multi-
cast [64,65] also uses a many-to-many communication model,
and ensures correct data transfer in the presence of malicious
routers. JEDI, as a protocol to encrypt messages, is comple-
mentary to those systems.
Authorization Services. JEDI is complementary to autho-
rization services for IoT, such as bw2 [5], Vanadium [77],
WAVE [6], and AoT [68], which focus on expressing autho-
rization policies and enabling principals to prove they are au-
thorized, rather than on encrypting data. Droplet [74] provides
encryption for IoT, but does not support delegation beyond
one hop and does not provide hierarchical resources.

An authorization service that provides secure in-band per-
mission exchange, like WAVE [6], can be used for key distri-
bution in JEDI. JEDI can craft keys with various permissions,
while WAVE can distribute them without a centralized party
by including them in its attestations.

9 Conclusion
In this paper, we presented JEDI, a protocol for end-to-end
encryption for IoT. JEDI provides many-to-many encrypted
communication on complex resource hierarchies, supports
decentralized key delegation, and decouples senders from
receivers. It provides expiry for access to resources, reconciles
anonymity and authorization via anonymous signatures, and
allows revocation via tree-based broadcast encryption. Its
encryption and integrity solutions are capable of running on
embedded devices with strict energy and resource constraints,
making it suitable for the Internet of Things.

Availability
The JEDI cryptography library is available at https://
github.com/ucbrise/jedi-pairing and our implementa-
tion of the JEDI protocol for bw2 is available at https:
//github.com/ucbrise/jedi-protocol.

Acknowledgments
We thank our anonymous reviewers and our shepherd William
Enck for their invaluable feedback. We would also like to
thank students from the RISE Security Group and BETS Re-
search Group for giving us feedback on early drafts of this pa-
per. This research was supported by Intel/NSF CPS-Security
#1505773 and #20153754, DoE #DE-EE000768, California
Energy Commission #EPC-15-057, NSF CISE Expeditions
#CCF-1730628, NSF GRFP #DGE-1752814, and gifts from
the Sloan Foundation, Hellman Fellows Fund, Alibaba, Ama-
zon, Ant Financial, Arm, Capital One, Ericsson, Facebook,

Google, Intel, Microsoft, Scotiabank, Splunk and VMware.

References
[1] M. Abdalla, E. Kiltz, and G. Neven. Generalized key

delegation for hierarchical identity-based encryption.
Cryptology ePrint Archive, Report 2007/221.

[2] S. G. Akl and P. D. Taylor. Cryptographic solution to a
problem of access control in a hierarchy. TOCS, 1983.

[3] M. P Andersen, G. Fierro, and D. E. Culler. System
design for a synergistic, low power mote/BLE embedded
platform. In IPSN, 2016.

[4] M. P. Andersen, H.-S. Kim, and D. E. Culler. Hamilton -
a cost-effective, low power networked sensor for indoor
environment monitoring. In BuildSys, 2017.

[5] M. P. Andersen, J. Kolb, K. Chen, D. E. Culler, and
R. Katz. Democratizing authority in the built environ-
ment. In BuildSys, 2017.

[6] M. P Andersen, S. Kumar, M. AbdelBaky, G. Fierro,
J. Kolb, H.-S. Kim, D. E. Culler, and R. A. Popa. WAVE:
A decentralized authorization framework with transitive
delegation. In USENIX Security, 2019.

[7] P. Arjunan, N. Batra, H. Choi, A. Singh, P. Singh, and
M. B. Srivastava. SensorAct: A privacy and security
aware federated middleware for building management.
In BuildSys, 2012.

[8] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken.
Dynamic and efficient key management for access hier-
archies. In TISSEC, 2009.

[9] M. J. Atallah, M. Blanton, and K. B. Frikken. Incorpo-
rating temporal capabilities in existing key management
schemes. In ESORICS, 2007.

[10] N. Attrapadung and H. Imai. Conjunctive broadcast and
attribute-based encryption. In ICPBC, 2009.

[11] S. Belguith, S. Cui, M. R. Asghar, and G. Russello. Se-
cure publish and subscribe systems with efficient revo-
cation. In SAC, 2018.

[12] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-
policy attribute-based encryption. In S&P, 2007.

[13] A. Birgisson, J. G. Politz, Ú. Erlingsson, A. Taly,
M. Vrable, and M. Lentczner. Macaroons: Cookies
with contextual caveats for decentralized authorization
in the cloud. In NDSS, 2014.

[14] M. Blaze, G. Bleumer, and M. Strauss. Divertible pro-
tocols and atomic proxy cryptography. EUROCRYPT,
1998.

[15] A. Boldyreva, V. Goyal, and V. Kumar. Identity-based
encryption with efficient revocation. In CCS, 2008.

[16] D. Boneh and X. Boyen. Efficient selective-ID secure
identity-based encryption without random oracles. In
EUROCRYPT, 2004.

[17] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical iden-
tity based encryption with constant size ciphertext. In

1534 28th USENIX Security Symposium USENIX Association

https://github.com/ucbrise/jedi-pairing
https://github.com/ucbrise/jedi-pairing
https://github.com/ucbrise/jedi-protocol
https://github.com/ucbrise/jedi-protocol

EUROCRYPT and Cryptology ePrint Archive, 2005.
[18] D. Boneh and M. Franklin. Identity-based encryption

from the Weil pairing. In CRYPTO, 2001.
[19] D. Boneh, C. Gentry, and B. Waters. Collusion resistant

broadcast encryption with short ciphertexts and private
keys. In CRYPTO, 2005.

[20] D. Boneh and B. Waters. A fully collusion resistant
broadcast, trace, and revoke system. In CCS, 2006.

[21] D. Boneh, B. Waters, and M. Zhandry. Low over-
head broadcast encryption from multilinear maps. In
CRYPTO, 2014.

[22] D. Boneh and M. Zhandry. Multiparty key exchange, ef-
ficient traitor tracing, and more from indistinguishability
obfuscation. Algorithmica, 2017.

[23] C. Borcea, A. B. D. Gupta, Y. Polyakov, K. Rohloff,
and G. Ryan. PICADOR: End-to-end encrypted
publish-subscribe information distribution with proxy
re-encryption. FGCS, 2017.

[24] S. Bowe. BLS12-381: New zk-SNARK elliptic
curve construction, 2018. https://z.cash/blog/new-
snark-curve/.

[25] A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik,
J. P. Vasseur, and R. Alexander. RPL: IPv6 routing
protocol for low-power and lossy networks. RFC, RFC
Editor, 2012.

[26] D. Brunelli, I. Minakov, R. Passerone, and M. Rossi.
POVOMON: An ad-hoc wireless sensor network for
indoor environmental monitoring. In EESMS, 2014.

[27] bw2. https://github.com/immesys/bw2.
[28] B. Campbell. Introducing Hail, 2017. https://

www.tockos.org/blog/2017/introducing-hail/.
[29] R. Cheng, W. Scott, B. Parno, I. Zhang, A. Krishna-

murthy, and T. Anderson. Talek: A private publish-
subscribe protocol. Technical report, University of
Washington CSE, 2016.

[30] Cisco. The Internet of things reference model. Technical
report, Cisco, 2014.

[31] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Mor-
cos, and R. L. Rivest. Certificate chain discovery in
SPKI/SDSI. Journal of Computer Security, 2001.

[32] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte:
An anonymous messaging system handling millions of
users. In S&P, 2015.

[33] J. Crampton, N. Farley, G. Gutin, M. Jones, and B. Poet-
tering. Cryptographic enforcement of information flow
policies without public information. In ACNS, 2015.

[34] J. Crampton, K. Martin, and P. Wild. On key assignment
for hierarchical access control. In CSFW, 2006.

[35] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and
D. E. Culler. sMAP: A simple measurement and actua-
tion profile for physical information. In SenSys, 2010.

[36] S. Dawson-Haggerty, A. Krioukov, J. Taneja,
S. Karandikar, G. Fierro, N. Kitaev, and D. E.
Culler. BOSS: Building operating system services. In
NSDI, 2013.

[37] Y. Dodis and N. Fazio. Public key broadcast encryption
for stateless receivers. In DRM, 2002.

[38] P. Dutta, D. E. Culler, and S. Shenker. Procrastination
might lead to a longer and more useful life. In HotNets,
2007.

[39] M. Egorov and M. Wilkison. NuCypher KMS: decen-
tralized key management system. CoRR, 2017.

[40] DigiKey Electronics. Atsamr21e18a-mu microchip tech-
nology. Feb. 8, 2019.

[41] M. C. Feldmeier. Personalized Building Comfort Con-
trol. PhD thesis, MIT, 2009.

[42] G. Fierro and D. E. Culler. XBOS: An extensible build-
ing operating system. Technical report, EECS Depart-
ment, University of California, Berkeley, 2015.

[43] Filecoin. https://filecoin.io. Jan. 19, 2018.
[44] T. Frosch, C. Mainka, C. Bader, F. Bergsma, J. Schwenk,

and T. Holz. How secure is TextSecure? In EuroS&P,
2016.

[45] C. Gentry and S. Halevi. Hierarchical identity based
encryption with polynomially many levels. In TCC,
2009.

[46] C. Gentry and A. Silverberg. Hierarchical ID-based
cryptography. In ASIACRYPT, 2002.

[47] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh.
SiRiUS: Securing remote untrusted storage. In NDSS,
2003.

[48] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-
based encryption for fine-grained access control of en-
crypted data. In CCS, 2006.

[49] Hamilton IoT. https://hamiltoniot.com/.
[50] Y.-C. Hu, M. Jakobsson, and A. Perrig. Efficient con-

structions for one-way hash chains. In ACNS, 2005.
[51] H.-F. Huang and C.-C. Chang. A new cryptographic key

assignment scheme with time-constraint access control
in a hierarchy. Computer Standards & Interfaces, 2004.

[52] J. Hviid and M. B. Kjaergaard. Activity-tracking service
for building operating systems. In PerCom, 2018.

[53] imix: Low-power IoT research platform, 2017. https:
//github.com/helena-project/imix.

[54] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu. Plutus: Scalable secure file sharing on untrusted
storage. In FAST, 2003.

[55] H.-S. Kim, M. P. Andersen, K. Chen, S. Kumar, W. J.
Zhao, K. Ma, and D. E. Culler. System architecture
directions for post-SoC/32-bit networked sensors. In
SenSys, 2018.

[56] A. Krioukov, G. Fierro, N. Kitaev, and D. E. Culler.

USENIX Association 28th USENIX Security Symposium 1535

https://z.cash/blog/new-snark-curve/
https://z.cash/blog/new-snark-curve/
https://github.com/immesys/bw2
https://www.tockos.org/blog/2017/introducing-hail/
https://www.tockos.org/blog/2017/introducing-hail/
https://filecoin.io
https://hamiltoniot.com/
https://github.com/helena-project/imix
https://github.com/helena-project/imix

Building application stack (BAS). In BuildSys, 2012.
[57] S. Kumar, Y. Hu, M. P Andersen, R. A. Popa, and D. E.

Culler. JEDI: Many-to-many end-to-end encryption and
key delegation for IoT. CoRR, 2019.

[58] A. Lewko, A. Sahai, and B. Waters. Revocation systems
with very small private keys. In S&P, 2010.

[59] C. Li, Z. Li, M. Li, F. Meggers, A. Schlueter, and H. B.
Lim. Energy efficient HVAC system with distributed
sensing and control. In ICDCS, 2014.

[60] B. Libert, T. Peters, and M. Yung. Group signatures
with almost-for-free revocation. In CRYPTO, 2012.

[61] B. Libert, T. Peters, and M. Yung. Scalable group signa-
tures with revocation. In EUROCRYPT, 2012.

[62] B. Libert and D. Vergnaud. Adaptive-ID secure revoca-
ble identity-based encryption. In CT-RSA, 2009.

[63] W. Liu, J. Liu, Q. Wu, B. Qin, D. Naccache, and H. Fer-
radi. Compact CCA2-secure hierarchical identity-based
broadcast encryption for fuzzy-entity data sharing. Cryp-
tology ePrint Archive, Report 2016/634.

[64] D. Malkhi, M. Merritt, and O. Rodeh. Secure reliable
multicast protocols in a WAN. Dist. Computing, 2000.

[65] D. Malkhi and M. Reiter. A high-throughput secure
reliable multicast protocol. Computer Security, 1997.

[66] A. Mehanovic, T. H. Rasmussen, and M. B. Kjærgaard.
Brume - a horizontally scalable and fault tolerant build-
ing operating system. In IoTDI, 2018.

[67] D. Naor, M. Naor, and J. Lotspiech. Revocation and
tracing schemes for stateless receivers. In CRYPTO,
2001.

[68] A. L. M. Neto, A. L. F. Souza, I. Cunha, M. Nogueira,
I. O. Nunes, L. Cotta, N. Gentille, A. A. F. Loureiro,
D. F. Aranha, H. K. Patil, and L. B. Oliveira. AoT: Au-
thentication and access control for the entire IoT device
life-cycle. In SenSys, 2016.

[69] Particle Mesh. https://www.particle.io/mesh. Feb.
2, 2019.

[70] A. Perrig, R. Szewczyk, V. Wen, D. E. Culler, and J. D.
Tygar. SPINS: Security protocols for sensor networks.
In MobiCom, 2001.

[71] J. H. Seo and K. Emura. Efficient delegation of key
generation and revocation functionalities in identity-
based encryption. In CT-RSA, 2013.

[72] J. H Seo and K. Emura. Revocable identity-based en-
cryption revisited: Security model and construction. In
PKC, 2013.

[73] J. H. Seo and K. Emura. Revocable hierarchical identity-
based encryption: History-free update, security against
insiders, and short ciphertexts. In CT-RSA, 2015.

[74] H. Shafagh, L. Burkhalter, S. Duquennoy, A. Hithnawi,
and S. Ratnasamy. Droplet: Decentralized authorization
for IoT data streams. CoRR, 2018.

[75] H. Shafagh, A. Hithnawi, L. Burkhalter, P. Fischli, and
S. Duquennoy. Secure sharing of partially homomorphic
encrypted IoT data. In SenSys, 2017.

[76] Solace cloud. https://solace.com. Jan. 17, 2018.
[77] A. Taly and A. Shankar. Distributed authorization in

Vanadium. In FOSAD VIII, 2016.
[78] M. A. Tariq, B. Koldehofe, and K. Rothermel. Securing

broker-less publish/subscribe systems using identity-
based encryption. TPDS, 2014.

[79] V. Tron, A. Fischer, and N. Johnson. Smash-proof: Au-
ditable storage for Swarm secured by masked audit se-
cret hash. Technical report, Ethersphere, 2016.

[80] W.-G. Tzeng. A time-bound cryptographic key assign-
ment scheme for access control in a hierarchy. TKDE,
2002.

[81] J. van den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich.
Vuvuzela: Scalable private messaging resistant to traffic
analysis. In SOSP, 2015.

[82] VOLTTRON. https://volttron.org/. Jan. 23, 2019.
[83] F. Wang, J. Mickens, N. Zeldovich, and V. Vaikun-

tanathan. Sieve: Cryptographically enforced access
control for user data in untrusted clouds. NSDI, 2016.

[84] G. Wang, Q. Liu, and J. Wu. Hierarchical attribute-
based encryption for fine-grained access control in cloud
storage services. In CCS, 2010.

[85] G. Wang, Q. Liu, J. Wu, and M. Guo. Hierarchical
attribute-based encryption and scalable user revocation
for sharing data in cloud servers. Computers & Security,
2011.

[86] Y. Watanabe, K. Emura, and J. H. Seo. New revoca-
ble IBE in prime-order groups: Adaptively secure, de-
cryption key exposure resistant, and with short public
parameters. In CT-RSA, 2017.

[87] D. J. Wu, A. Taly, A. Shankar, and D. Boneh. Privacy,
discovery, and authentication for the Internet of things.
In ESORICS, 2016.

[88] D. Yao, N. Fazio, Y. Dodis, and A. Lysyanskaya. ID-
based encryption for complex hierarchies with applica-
tions to forward security and broadcast encryption. In
CCS, 2004.

[89] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient
MAC protocol for wireless sensor networks. In INFO-
COM, 2002.

[90] S. Yu, C. Wang, K. Ren, and W. Lou. Achieving secure,
scalable, and fine-grained data access control in cloud
computing. In INFOCOM, 2010.

[91] T. Zachariah, N. Klugman, B. Campbell, J. Adkins,
N. Jackson, and P. Dutta. The Internet of things has
a gateway problem. In HotMobile, 2015.

[92] Zigbee gateway. https://www.zigbee.org/zigbee-
for-developers/zigbee-gateway/. Feb. 13, 2019.

1536 28th USENIX Security Symposium USENIX Association

https://www.particle.io/mesh
https://solace.com
https://volttron.org/
https://www.zigbee.org/zigbee-for-developers/zigbee-gateway/
https://www.zigbee.org/zigbee-for-developers/zigbee-gateway/

	Introduction
	Overview of JEDI
	JEDI's System Model (§2)
	Encryption with URIs and Expiry (§3)
	Integrity and Anonymity (§4)
	Revocation (§5)

	Summary of Evaluation

	JEDI's Model and Threat Model
	Trust Assumptions
	Applying JEDI to an Existing System
	Comparison to a Naïve Key Server Model
	IoT Gateways
	Generalizability of JEDI's Model
	Security Goals

	End-to-End Encryption in JEDI
	Building Block: WKD-IBE
	Concurrent Hierarchies in JEDI
	Overview of Encryption in JEDI
	Expressing URI/Time as a Pattern
	Producing a Key Set for Delegation
	Optimizations for Low-Power Devices
	Hybrid Encryption and Key Reuse
	Precomputation with Adjustment

	Extensions
	Security Guarantee

	Integrity in JEDI
	Starting Solution: Signature Chains
	Anonymous Signatures
	Starting Point: WKD-IBE Signatures
	Anonymous Signatures in JEDI

	Optimizations for Low-Power Devices
	Security Guarantee

	Revocation in JEDI
	Simple Solution: Revocation via Expiry
	Immediate Revocation
	Immediate Revocation in JEDI
	Tree-based Broadcast Encryption
	Modifying Broadcast Encryption for Delegation
	Using Delegable Broadcast Encryption in JEDI

	Security Guarantee
	Optimizing JEDI's Immediate Revocation

	Implementation
	C/C++ Library for JEDI's Cryptography
	Application of JEDI to bw2

	Evaluation
	Microbenchmarks
	Performance of BLS12-381 in JEDI
	Performance of WKD-IBE in JEDI
	Performance of Immediate Revocation in JEDI

	Performance of JEDI in bw2
	Feasibility on Ultra Low-Power Devices
	CPU Usage
	Power Consumption
	Memory Budget
	Impact of JEDI's Optimizations

	Comparison to Other Systems

	Related Work
	Conclusion

