
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

Mobile Private Contact Discovery at Scale
Daniel Kales and Christian Rechberger, Graz University of Technology;

Thomas Schneider, Matthias Senker, and Christian Weinert, TU Darmstadt

https://www.usenix.org/conference/usenixsecurity19/presentation/kales

Mobile Private Contact Discovery at Scale

Daniel Kales
Graz University of Technology

Christian Rechberger
Graz University of Technology

Thomas Schneider
TU Darmstadt

Matthias Senker
TU Darmstadt

Christian Weinert
TU Darmstadt

Abstract
Mobile messengers like WhatsApp perform contact discov-

ery by uploading the user’s entire address book to the service
provider. This allows the service provider to determine which
of the user’s contacts are registered to the messaging service.
However, such a procedure poses significant privacy risks and
legal challenges. As we find, even messengers with privacy in
mind currently do not deploy proper mechanisms to perform
contact discovery privately.

The most promising approaches addressing this problem
revolve around private set intersection (PSI) protocols. Un-
fortunately, even in a weak security model where clients are
assumed to follow the protocol honestly, previous protocols
and implementations turned out to be far from practical when
used at scale. This is due to their high computation and/or
communication complexity as well as lacking optimization
for mobile devices. In our work, we remove most obstacles
for large-scale global deployment by significantly improving
two promising protocols by Kiss et al. (PoPETS’17) while
also allowing for malicious clients.

Concretely, we present novel precomputation techniques
for correlated oblivious transfers (reducing the online commu-
nication by factor 2x), Cuckoo filter compression (with a com-
pression ratio of≈ 70%), as well as 4.3x smaller Cuckoo filter
updates. In a protocol performing oblivious PRF evaluations
via garbled circuits, we replace AES as the evaluated PRF
with a variant of LowMC (Albrecht et al., EUROCRYPT’15)
for which we determine optimal parameters, thereby reducing
the communication by factor 8.2x. Furthermore, we imple-
ment both protocols with security against malicious clients
in C/C++ and utilize the ARM Cryptography Extensions
available in most recent smartphones. Compared to previ-
ous smartphone implementations, this yields a performance
improvement of factor 1,000x for circuit evaluations. The on-
line phase of our fastest protocol takes only 2.92s measured
on a real WiFi connection (6.53s on LTE) to check 1,024
client contacts against a large-scale database with 228 entries.
As a proof-of-concept, we integrate our protocols in the client
application of the open-source messenger Signal.

1 Introduction

After installation, mobile messaging applications first per-
form a so-called contact discovery. This allows new users to
automatically connect with all other users of the messaging
service whose phone numbers are stored in their address book.
There exist various ways to perform contact discovery. For
example, WhatsApp simply uploads the user’s entire address
book on a regular basis to match contacts [1].

However, revealing all personal contacts to a service
provider poses significant privacy risks: from the social graph
of users a variety of personal information can be inferred
and journalists, for example, may need to cover the identity
of some of their informants to protect whistleblowers from
potential consequences. When installing a mobile messaging
application, users also jeopardize the privacy of people who
are not even connected to the particular service by transmit-
ting their contact information without consent. An illustrative
example of a severe breach of privacy can be seen in the case
of WhatsApp, which was acquired by Facebook in 2014 and
shared its database with the parent company: Facebook users
received friend recommendations of strangers who happened
to see the same psychiatrists [33].

Unfortunately, applying simple protection mechanisms like
hashing the phone numbers of contacts locally before the up-
load to the service provider is not helpful since these hashes
are vulnerable to brute-force and dictionary attacks due to the
relatively small range of possible pre-images. Furthermore,
the service provider can still tell whether two users share a
contact even a long time after running the discovery routine by
storing the received hash values. Custom wrappers1 for mes-
saging applications can somewhat circumvent these problems
by allowing users to manually select contacts to expose to the
messaging application. However, this approach only protects
the contacts of users actually using such custom wrappers.
Furthermore, manually selecting the contacts to match is a
usability problem.

1e.g., https://www.backes-srt.com/en/solutions-2/whatsbox

USENIX Association 28th USENIX Security Symposium 1447

https://www.backes-srt.com/en/solutions-2/whatsbox

One possible solution to this dilemma is to apply a particu-
lar form of secure two-party computation. In general, secure
two-party computation allows parties P1 and P2 to jointly
compute a publicly known function f on their respective in-
puts X1 and X2 s.t. the parties learn no information from the
protocol execution but the result. The research area of pri-
vate set intersection (PSI) focuses on optimized protocols for
the case where X1 and X2 are sets of elements, and f is the
intersection function. PSI has been studied in great depth in
the past years, yielding very efficient protocols (e.g., [41, 51])
based on oblivious transfer extensions (OTe, cf. [4, 36, 39]).
However, while these protocols are very efficient in many
scenarios, they turn out to be impractical for use-cases like
private contact discovery on mobile devices, where the input
set of the service provider is much larger (sometimes by a
factor of a few million) than the input set of the user. This is
because the online phase of these protocols (which depends
on the actual inputs) has a computation and communication
complexity that is linear in the size of the larger set.

Therefore, other PSI protocols for the case of unbalanced
set sizes were developed (e.g., [19, 21, 40, 59]). However,
only [40] actually provides an implementation on real mo-
bile smartphone clients. The experiments performed by the
authors of [40] show a rather large discrepancy between proto-
col execution on x86-based PC hardware and Android smart-
phones where performance-critical cryptographic operations
are implemented in Java. In fact, their performance results
do not encourage real-world deployment. For example, their
fastest protocol that can easily be made secure against mali-
cious clients requires more than 52s on a smartphone with
WiFi connection to check a single client contact against a
database with only 220 entries.

The developers of Signal, a mobile messaging service sim-
ilar to WhatsApp but with focus on privacy, considered the
use of PSI protocols for contact discovery. However, they
refrained from actually implementing PSI since the aca-
demic research in PSI and the related private information
retrieval (PIR) protocols “is quite a disappointment” [44].
Instead, they presented a technology preview that protects
the contact discovery task on the server side with Intel Soft-
ware Guard Extensions (SGX), a trusted execution environ-
ment that can be attested by remote users [45]. In theory, this
yields a secure contact discovery service with negligible per-
formance overhead compared to plain computation. However,
Intel SGX is a proprietary engineering-driven solution with
no cryptographic security guarantees and vulnerable to severe
attacks, e.g., the recent Foreshadow attack [16] managed to
reliably extract confidential data from enclaves. Moreover,
some fixes for hardware security designs such as Intel SGX
require hardware changes that can take years to enter the mar-
ket and result in repeated acquisition costs. In contrast, fixes
for flawed implementations of provably secure cryptographic
protocols can be deployed quickly via software updates.

Thus, we revisit state-of-the-art unbalanced PSI protocols
which provide cryptographic security and show that using new
optimizations and native implementations they turn out to be
practical on modern smartphones. Furthermore, we achieve
security against malicious clients: since every user could run a
manipulated version of the messaging application, deviations
from the protocol may lead to revealing information about
the server’s database. On the other hand, we assume that
the server behaves semi-honestly, i.e., it follows the protocol
but tries to learn as much information as possible. This is a
reasonable assumption since there are legal requirements and
financial incentives to behave correctly: once misconduct gets
known publicly, users will abandon the misbehaving service
and switch to a more trustworthy alternative.

1.1 Our Contributions

As a motivation, we investigate how contact discovery is
handled in widely used mobile messaging applications. For
this, we conduct a survey where we analyze privacy policies,
source code, and network traffic. Our results show that in
practice none of these applications protect the users’ privacy
during contact discovery.

We optimize two protocols for unbalanced PSI that can eas-
ily be made secure against malicious clients and are suitable
for private contact discovery: one that uses oblivious evalua-
tions of the Naor-Reingold PRF (NR-PSI, cf. [31,40,47]) and
one that uses Yao’s garbled circuits (GC-PSI, cf. [40, 52, 56])
to run oblivious AES evaluations. For both protocols we ap-
ply new forms of correlated random OT precomputation (re-
ducing the online communication by factor 2x, which is of
independent interest) and introduce a method for Cuckoo fil-
ter compression (with a compression ratio of ≈ 70% and
negligible computational overhead) as well as 4.3x smaller
Cuckoo filter updates to reduce the required network com-
munication. Moreover, we improve the GC-PSI protocol by
instantiating the PRF with LowMC [2], a cipher specifically
designed for efficient evaluation in secure protocols, instead
of the default choice AES. While this was already proposed
in [40], we find optimal parameter sets for LowMC and pro-
vide implementations. Compared to AES, we thereby reduce
the communication by factor 8.2x.

We provide C/C++ implementations for both protocols with
security against malicious clients that make use of the Cryp-
tography Extensions (CE) in the ARMv8 architecture avail-
able in most recent smartphones for hardware-accelerated
execution. Thereby, we improve the runtime of the online
phase of the GC-PSI protocol by more than a factor of 1,000x
compared to the previous work of [40] that only implements
security against semi-honest clients. We overcome further
shortcomings of previous works w.r.t security and scalability
by evaluating the implementations using recommended secu-
rity parameters, reasonable false positive probabilities, and
considering large-scale set sizes on the server side.

1448 28th USENIX Security Symposium USENIX Association

Our fastest protocol takes only 2.92s measured on a real
WiFi connection (6.53s on LTE) and 6.07MiB of communica-
tion in the online phase to check 1,024 client contacts against
a database with 228 entries (more than the number of monthly
active users for popular messengers like Telegram [61]). For
the setup phase it is required to transfer a compressed Cuckoo
filter once whose size is linear in the number of the database
entries (≈ 1GiB for 228 entries); since the filter is identical
for all clients, service providers can handle the resulting traf-
fic efficiently via CDNs. To remain practical for even larger
set sizes (the market leader WhatsApp currently has more
than 1.6 billion users [61]), we suggest multiple extensions,
e.g., combining our protocols with multi-server PIR s.t. the
overall client-server communication complexity becomes log-
arithmic in the size of the server database.

As a proof-of-concept, we integrate both of our protocols
in the Signal Android client, thereby positioning our secure
cryptographic approach as a practical alternative to vulnerable
trusted execution environments like Intel SGX.

1.2 Motivating Survey

To determine how contact discovery is currently being done
in practice, we conducted a survey on a comprehensive se-
lection of mobile messengers that are “secure” in the sense
that they offer end-to-end encryption. Each application was
analyzed by evaluating the mandatory privacy policy, which
is supposed to state exactly which data the application trans-
mits to its server and how the server processes and stores
that data. Unfortunately, these policies are not always pre-
cise enough to determine the employed contact discovery
method. In these cases, we inspected the source code (if pub-
licly available) or the network communication by means of the
man-in-the-middle proxy mitmproxy2. We circumvented cer-
tificate pinning by using the Xposed3 framework together with
the JustTrustMe4 plugin that can disable certificate checking
routines in several commonly used security libraries.

Our results are summarized in Tab. 1. All surveyed messen-
gers upload contact information (at least the contact’s phone
number) either in the clear or in hashed form. While this form
of contact discovery is very efficient (requiring only a few
bytes of communication per element), it threatens the privacy
of users directly or indirectly via brute-force or dictionary
attacks. Furthermore, even if the server cannot determine the
actual contact data, it can still tell whether two users share a
contact by comparing uploaded hash values.

This can be somewhat mitigated by using salted hashing
s.t. the hashes received by the server are different whenever
a client triggers contact discovery. However, only one of the
surveyed messengers employs this approach as it requires to

2https://mitmproxy.org
3https://repo.xposed.info
4https://github.com/Fuzion24/JustTrustMe

Messenger Hashed Salted Analysis Technique

Confide* 3 7 Privacy policy
Dust* 7 7 Network traffic
Eleet* 7 7 Privacy policy
G DATA Secure Chat 3 7 Network traffic
Signal (legacy) 3 7 Source code
SIMSme 3 3 Network traffic
Telegram 7 7 Privacy policy
Threema 3 7 Privacy policy
Viber 7 7 Privacy policy
WhatsApp 7 7 Privacy policy
Wickr Me 3 7 Privacy policy
Wire 3 7 Privacy policy

Table 1: Results of our contact discovery survey on secure mo-
bile messengers. All applications upload contact information
either in the clear or hashed (with salt). Messengers marked
with * denote that contact discovery is optional.

hash the entire server database for each fresh salt received by
a client. Furthermore, brute-force attacks are still feasible.

2 Related Work

In this section, we discuss existing unbalanced PSI protocols
and other works that focus on PSI in the smartphone setting.

Unbalanced PSI. Kiss et al. [40] discuss multiple unbal-
anced PSI protocols with precomputation (cf. §3.5) and se-
curity against semi-honest adversaries. Their NR-PSI and
GC-PSI protocols (based on [31] and [52], respectively) are
the foundation of our work. We augment these protocols
with new OT precomputation techniques, efficient Cuckoo fil-
ters [27, 59], a specialized cipher [2] for the GC-PSI protocol,
and security against malicious clients. The authors of [40] also
evaluate their protocols on smartphones, but based on less ef-
ficient Java implementations. In our work, we present C/C++
implementations that make use of the hardware-accelerated
cryptography available in most recent smartphones.

Resende and de Freitas Aranha [59] use techniques similar
to [40], but replace Bloom filters [12] with the more efficient
and versatile Cuckoo filters [27] to efficiently represent the
encrypted server database (cf. §3.4) in a Diffie-Hellman style
PSI protocol [7] with security against semi-honest adversaries.
In our work, we optimize communication by proposing meth-
ods for Cuckoo filter compression and updates, and perform
evaluations with reasonable parameters: while in [59] the au-
thors settle with an error probability of ≈ 2−13, which results,
on average, in one false positive when 10 clients match 210

contacts each, we propose realistic Cuckoo filter parameters
for error probabilities ≈ 2−29 and ≈ 2−39.

Demmler et al. [21] present a different approach assuming
multiple non-colluding servers. Their idea is to first perform
a variant of private information retrieval (PIR) to reduce the

USENIX Association 28th USENIX Security Symposium 1449

https://mitmproxy.org
https://repo.xposed.info
https://github.com/Fuzion24/JustTrustMe

server’s input set and then perform a traditional PSI protocol
on the reduced sets. While this approach is very performant,
the requirement of non-colluding servers presents challenges
for the data-owners: they not only need to guarantee that these
servers do not collude, but also need to ensure that their client
data is not leaked to other parties. This leads to the difficult
situation where the server party needs to trust a second server
but simultaneously is assumed to not collude with it. However,
even if servers are malicious and/or collude, they cannot learn
more about client inputs than in currently deployed naive
hashing-based contact discovery methods.

Chen et al. [19] give a PSI protocol based on fully homo-
morphic encryption. The authors present multiple optimiza-
tions that make the protocol practically viable. Their work
was improved and extended to the special use case of labeled
PSI [18], where for intersecting items an associated label is
transferred and security is not only guaranteed in case of mali-
cious clients but also malicious servers (with some controlled
leakage). The advantage of the protocols of [18, 19] is that
their communication complexity is sublinear instead of lin-
ear in the size of the server set. However, this comes at the
cost of repeated high computational overhead, whereas the
online phase of our protocols is very efficient and requires no
cryptographic operations on the server side.

Mobile PSI. Huang et al. [34] provided first performance
results for secure computation on smartphones with secu-
rity against semi-honest adversaries. They implemented a
circuit-based PSI protocol on Android. Their implementation
managed to evaluate ≈ 100 AND gates per second, taking
about 10min to intersect two sets of 256 items each.

Asokan et al. [6] implemented an RSA-based PSI protocol
with security against semi-honest adversaries on smartphones
for secure mobile resource sharing.

Carter et al. [17] presented a maliciously secure system
for secure outsourced garbled circuit evaluation on mobile
devices. Subsequently, Mood et al. [46] showed how to further
optimize outsourced evaluation. They also point out how their
framework can be used to implement a secure friend finder.

“PROUD” [49] is a decentralized approach for private con-
tact discovery based on the DNS system. It enables users to
privately discover the current network addresses of friends,
which differs from the scenario of a centralized messaging ser-
vice we consider. Moreover, friendship bootstrapping requires
an out-of-band communication channel between users.

Compared to these works, we optimize protocols for unbal-
anced PSI with a central service provider and provide native
implementations for maximum performance on smartphones.

3 Background

In the following, we introduce cryptographic building blocks
that are required for the remainder of this work.

3.1 Oblivious Transfer (Extensions)

Oblivious transfer (OT) [57] is a cryptographic protocol that in
its most basic form allows a sender P1 to obliviously transfer
one out of two messages (m0,m1) to a receiver P2 based on
a selection bit b chosen by P2 s.t. P1 learns nothing about b
and P2 learns only mb but nothing about m1−b.

It was shown in [35] that performing OTs always requires
some form of public key cryptography. However, with OT
extension (OTe) protocols [9, 36], a small number (e.g., 128)
of “base OTs” can be extended to a large number of OTs using
only efficient symmetric cryptographic operations.

There exist flavors of OTe with reduced communication
complexity [5]: In random OT (R-OT), neither party inputs
any values, but the inputs of sender and receiver are randomly
chosen by the protocol. In correlated OT (C-OT), m0 is chosen
at random, whereas m1 is computed as a function f of m0:
m1 = f (m0), where f is privately known to P1 only.

It is possible to precompute OTs s.t. all computationally
expensive operations are performed via R-OTs in advance [8].
Later, the random values obtained via R-OTs are used to mask
the actual inputs, requiring only cheap XOR operations in the
style of one-time-pad encryption.

3.2 Garbled Circuits

Yao’s garbled circuits (GC) [62] is one of the most promi-
nent techniques for secure two-party computation. (In the
following the two parties are called garbler and evaluator.)
The idea is to represent the function that is evaluated as a
Boolean circuit and to replace each logical two-input gate by
a garbled gate. Each wire of the garbled gate is given two
random wire labels, representing 0 and 1. To garble a gate, the
garbler uses all four combinations of the gate’s two input wire
labels to encrypt the corresponding output wire label, based
on the truth table of the original gate, and sends the resulting
ciphertexts, the so-called garbled table, to the evaluator. The
evaluator can then use the two input wire labels it possesses
to decrypt one of the four ciphertexts and receive the output
wire label, which is then used as input for subsequent gates.

We now describe how the evaluator obtains the wire la-
bels corresponding to the inputs of the two parties: Since the
garbler knows all wire labels, it can send the wire labels corre-
sponding to its input bits to the evaluator. However, to ensure
input privacy for the evaluator, the wire labels corresponding
to the evalutor’s input bits are retrieved via OTs. The garbler
also sends information that allows the evaluator to decode the
final output wire labels to 0 or 1.

Several optimizations for Yao’s original scheme have been
presented s.t. today it is most efficient to combine the fol-
lowing techniques: Point-and-Permute [10], Free-XOR [42],
fixed-key AES garbling [11], and Half-Gates [63].

1450 28th USENIX Security Symposium USENIX Association

3.3 OPRF Evaluation

An oblivious pseudorandom function (OPRF) is a protocol
between two parties: sender P1 holding key k and receiver P2
holding input x. After the invocation of the protocol, P2 learns
the output fk(x) of a keyed pseudorandom function (PRF) f .
Additionally, it is guaranteed that P1 does not learn anything
about x and P2 does not learn anything about k.

OPRF evaluations can be used to build PSI protocols as
proposed in [28, 30, 40, 52]: The server samples a key k uni-
formly at random, evaluates the PRF fk(xi) on each of its
items xi ∈ X , and sends the results to the client. Server and
client now engage in the OPRF protocol, where the server
inputs key k and the client inputs elements y j ∈ Y . After this
step, the client obtains fk(y j) for each item y j ∈Y and can per-
form a plain intersection between the items fk(xi) and fk(y j).
The client then outputs the elements y j corresponding to the
values in the intersection.

In this work, we instantiate the PRF either using the Naor-
Reingold PRF [47] (NR-PSI) or a garbled circuit-based evalu-
ation of a block cipher (GC-PSI). In [37], the authors describe
an alternative algebraic OPRF construction based on a PRF
by Dodis-Yampolskiy [25]. However, due to the use of Paillier
encryption, this construction is likely slower than the Naor-
Reingold PRF and their follow-up work [38], the basis for [59]
(cf. §6.2). Moreover, it requires a common reference string in
the form of an RSA modulus with unknown factorization.

3.4 Cuckoo Filters

Cuckoo filters [27] are an alternative to the more popular
Bloom filters [12]. Like Bloom filters, they are a data structure
for compact set representation that allows for fast member-
ship testing with controllable false positive probability (FPP).
Cuckoo filters employ a hashing technique similar to Cuckoo
hashing [48], which has been used in the past as a building
block in PSI protocols (e.g., [41, 51, 53–56]).

Resende and de Freitas Aranha [59] first used Cuckoo
filters in a PSI protocol. This is due to several advantages over
Bloom filters when representing the server’s database, namely
they (i) support inserting and deleting items subsequently,
whereas standard Bloom filters only support inserting items,
and variants that do support deletion such as counting Bloom
filters have much higher storage costs; (ii) have better lookup
performance; and (iii) use less space in many scenarios while
having the same false positive probability.

Cuckoo filters consist of a table of buckets with fixed bucket
size b. Inside the buckets, so-called tags are stored. Tags are
small bitstrings obtained by hashing items. More precisely,
to represent an item x in a Cuckoo filter, we first calculate
its tag tx = Ht(x), where Ht is a hash function with output
bitlength v. This tag is stored in one out of two possible
buckets. The position of the first possible bucket is calculated
as p1 = H(x), where H is another hash function that maps the

input to a position in the table of buckets. In case this bucket
is already full, the tag is stored in the second possible bucket
at position p2 = p1⊕H(tx). Note that it is always possible to
determine the other candidate bucket p j just from knowing
its tag tx and the current position pi: p j = pi⊕H(tx). If both
buckets are full, one tag in one of the buckets is chosen at
random, removed from that bucket, and moved to its other
possible bucket. This procedure is repeated recursively until
no more relocations are necessary.

To check whether an item is contained in the Cuckoo filter,
one computes its tag and both possible bucket locations and
compares the tags stored there for equality. For deleting the
item, the matching tag is removed from the filter.

Due to hash collisions, two items may produce equal tags.
As a consequence, lookups can lead to false positives. The
false positive probability εmax is mainly dependent on the
tagsize v and also slightly on the bucket size b since larger
buckets result in more possible collisions within each bucket.

3.5 Unbalanced PSI with Precomputation
For private contact discovery, the following properties are de-
sired: (i) the server performs the computationally expensive
tasks; (ii) all computationally expensive and communication
intensive tasks are performed only once; and (iii) the actual
intersection computation is very fast and also allows for ef-
ficient updates. Therefore, [40] suggest to use PSI protocols
with precomputation, where most time consuming tasks are
performed ahead of the actual intersection.

Our PSI protocols for unbalanced set sizes share a common
structure. Following the precomputation approach of [40],
they are divided into the following four phases: (i) The base
phase is completely independent of any input data and con-
sists, e.g., of OT precomputation. Its complexity is linear in
the maximum number of contacts a client expects to match
in future protocol executions before the base phase is re-run.
(ii) The complexity of the setup phase is linear in the size of
the large set held by the server. It involves encrypting all ele-
ments in the server database via PRF evaluations as described
in §3.3 and inserting them into a Cuckoo filter for compact
representation, which is transferred to the client. (iii) During
the online phase client and server jointly perform OPRF eval-
uations on all elements of the client. The client then looks up
all received encryptions in the Cuckoo filter to determine the
intersection. Thus, the complexity of the online phase is only
linear in the size of the small client set. (iv) Changes in the
server database trigger the update phase, where the Cuckoo
filter on the client side is updated by sending a small delta for
each inserted or deleted database entry.

4 Optimizing OPRF-based PSI Protocols

We propose more efficient database representations and PRFs,
give the full descriptions for our optimized NR- and GC-

USENIX Association 28th USENIX Security Symposium 1451

PSI protocols, enable security against malicious clients, and
suggest multiple extensions to further increase practicality.

4.1 More Efficient Database Representations

Realistic Cuckoo Filter Parameters. Resende and de Fre-
itas Aranha [59] propose using Cuckoo filters as an extension
to the DH-based PSI protocol of [7] and they perform ex-
periments to find optimal Cuckoo filter parameters based on
the number of server items and the desired error probability.
While their findings are directly applicable to our use case,
they set very aggressive Cuckoo filter parameters (tagsize
v = 16, bucket size b = 3) and settle for a maximum false
positive probability (FPP) of εmax ≈ 2−13. We find this FPP
not practical since it implies that about one in 10 clients per-
forming PSI for 210 elements receives a false positive.

Instead, we propose to use tagsize v = 32 to reach a FPP of
εmax ≈ 2−29 or tagsize v= 42 to reach a FPP of εmax ≈ 2−39

while still maintaining a bucket size of b = 3. For our experi-
ments, we choose the parameter set v = 32,b = 3, and choose
the size of the Cuckoo filter to have a load factor of ≈ 66%,
leading to a Cuckoo filter size of 6MiB per 220 items.

Novel Cuckoo Filter Compression. The size of Cuckoo
filters can be reduced by applying a simple but effective com-
pression technique that to the best of our knowledge was not
considered before: For each entry of a Cuckoo filter, an ad-
ditional bit is transmitted that indicates whether this entry is
empty or holds a tag. The entry itself is only transmitted if it
is not empty. This way, the filter is represented as a bit map
and a list of tags. For a Cuckoo filter storing n items with
tagsize v, bucket size b, and load factor l, this reduces the size
from n

l · v bits to n
l +n · v bits. In the example above, the size

of the Cuckoo filter is reduced from 6MiB to 4.19MiB, i.e.,
by ≈ 30%. An advanced version of the compression tech-
nique presented above encodes the number of tags (0 to b) in
each bucket with log2(b+1) bits instead of sending b bits per
bucket. This is possible since the actual position of each tag
within a bucket is not important.

This compression technique is especially useful for very
sparse Cuckoo filters, which appear in use cases where the set
of items is expected to grow fast (e.g., during the release phase
of a new messaging application). For example, if only 10% of
a Cuckoo filter storing a maximum of 220 items is occupied,
it can be compressed by a factor of 8.3x.

In concurrent and independent work, Breslow and
Jayasena [15] proposed Morton filters, which combine these
compression techniques with cache-optimized layouts and
further optimizations. Morton filters provide higher insertion,
lookup, and deletion throughput than traditional Cuckoo fil-
ters, while usually having equal or slightly lower storage costs.
We leave the evaluation and usage of Morton filters in our
protocols for future work.

Better Cuckoo Filter Updates. In [59], when performing
an update after new elements are inserted into or deleted from
the server’s set, each encrypted element to be updated is sent
to the client where it is inserted into the existing Cuckoo filter.
However, for Cuckoo filters, all information required to insert
a new item is its tag and the index of one of its candidate
buckets. From this information, it is possible to calculate the
second candidate bucket in case relocations are necessary.
The same information is also sufficient to delete an item. For
example, the bucket index in a Cuckoo filter storing n = 228

items with bucket size b = 3 and load factor ≈ 66% can be
represented with 27 bits. This results in sending 59 bits per
updated element for tagsize v = 32. In comparison, in [59] an
encrypted element is represented by one point on the GLS-254
binary elliptic curve, which results in 256 bits of communica-
tion when using point compression with two trace bits, which
needs 4.3x more communication than our approach.

4.2 More Efficient PRF for GC-PSI

During the online phase of the GC-PSI protocol, both parties
interactively evaluate an OPRF on the client’s items using
garbled circuits. For each of the client’s items, the server pre-
pares a garbled circuit P̃RFk that evaluates the chosen PRF
under the server’s key k. The choice of this PRF has a sig-
nificant impact on both the runtime and the communication
complexity of the overall protocol. Several improvements for
Yao’s GC protocol [62] have appeared in recent years that
changed the desired properties of the functions to be evalu-
ated. Most notably is the Free-XOR [42] optimization, which
allows XOR gates to be evaluated securely “for free”, mean-
ing all necessary operations can be performed locally without
any communication between the parties. This optimization
has lead to research in the area of ciphers with a low number
of AND and instead many free XOR gates.

In previous GC-PSI implementations, the choice of the PRF
was AES-128. Using the optimized S-Box implementation
of [13], an AES-128 circuit (without key schedule) has 5,120
AND gates [32], serving as a baseline for comparison.

In this section, we focus on variants of LowMC [2], a highly
parameterizable block cipher designed for use cases in multi-
party computation (MPC) and fully-homomorphic encryption
(FHE). [40] mentioned the possibility of using LowMC in-
stead of AES for GC-PSI. We look at several instantiations
of LowMC and present optimized parameter sets specifically
for the use case of GC-PSI and mobile contact discovery. In
the following, we give a short description of LowMC and
highlight the different parameter choices.

LowMC [2] is a block cipher where block size n, key size k,
number of S-Boxes per substitution layer m, and allowed
data complexity d can be chosen freely up to some sanity
constraints. The required number of rounds r to reach the
security claims is then derived from these parameters.

1452 28th USENIX Security Symposium USENIX Association

Data Complexity. The data complexity of a cipher is the
number of plaintext-ciphertext pairs allowed to be released
before the security claims no longer hold. In the GC-PSI
protocol, we can exactly control the maximum number of
published plaintext-ciphertext pairs by limiting the number
of client queries, and therefore can reduce the number of
LowMC rounds required for security. We set the allowed data
complexity to be d = 264, allowing for 220 contact discoveries
of 210 items for each of the 228 clients, while still being below
the security margin by a factor of over 100x. For smaller-scale
applications, we also give a parameter set for 232 total data
complexity, which suffices to run 220 queries of 210 items
each. While we could also use this parameter set for larger-
scale applications, the system needs to be re-keyed after the
data complexity has been reached.

Key Schedule. In many MPC applications using OPRF
evaluations, one party knows the entire secret key and can,
therefore, perform any key-scheduling algorithm (e.g., for
AES or LowMC) offline. The circuit is then modified to take
the expanded key as an input. In many cases, this can be a per-
formance improvement since the key-schedule algorithm does
not have to be computed using the MPC protocol. However,
when performing OPRF evaluations using garbled circuits,
the party holding the secret key needs to send wire labels
for each input bit, increasing the communication. While for
AES-128, only 11x more wire labels need to be transferred for
the expanded key, some instantiations of LowMC require sev-
eral hundreds of rounds. Sending labels for the expanded key
essentially removes the advantage of the lower AND count
that comes with such a large number of rounds. However, we
observe that in the GC-PSI protocol the OPRF evaluation is
always performed with the same key. Thus, we can bundle all
of the client’s circuits together into one large circuit and evalu-
ate the key-schedule only once. This means that we only need
to send the wire labels corresponding to the non-expanded
key once, and therefore save ≈ 2KiB for each subsequent
client item when using a 128-bit key. It is also possible to
only evaluate parts of the garbled circuit if the number of
client items is lower than the number of precomputed circuits.

LowMC Instances. For use in our GC-PSI protocol, we
highlight several LowMC instances, exploring different pa-
rameter choices. In Tab. 2, we give the parameters and com-
pare the number of AND gates to AES-128. The number
of rounds is calculated according to the LowMCv3 round
formula5, which was updated by the LowMC team to take
new cryptanalysis of LowMC (cf. [23, 24, 58]) into consider-
ation. We can observe some interesting properties: LowMC
instances (1) and (2) require the same number of rounds to be
secure, but instance (1) has the maximum number of possi-

5https://github.com/LowMC/lowmc/blob/master/determine_r
ounds.py

PRF n k m d r #ANDs

(1) LowMC 128 128 42 264 13 1,638
(2) LowMC 128 128 31 264 13 1,209
(3) LowMC 128 128 1 264 208 624
(4) LowMC 128 128 1 232 192 576
(5) LowMC 128 128 1 2128 287 861

(6) AES-128 128 128 16 2128 10 5,120

Table 2: Comparison of PRF instances for use in the GC-PSI
protocol. The recommended instance is highlighted in bold.

ble S-Boxes, while (2) does not. Since instance (2) provides
the same security as (1) while requiring fewer S-Boxes, and
therefore a lower amount of AND gates, it should always
be preferred. LowMC instance (3) has the smallest possi-
ble S-Box layer with only one S-Box per round and also the
lowest number of AND gates. While its 208 rounds can be
a drawback in some protocols, Yao’s GC protocol [62] has
a constant number of communication rounds and therefore
the large number of LowMC rounds does not decrease per-
formance in high-latency networks. Additionally, using the
optimizations presented by [22], the large number of linear
layer computations can be reduced, bringing the evaluation
time of (3) close to (1) and (2). For these reasons, we recom-
mend the use of instance (3) for GC-PSI, which requires 8.2x
fewer AND gates than standard AES-128 (6). Thus, we per-
form all performance evaluations using instance (3). For use
cases with small data complexity requirements, we recom-
mend LowMC instance (4), which is a small improvement
of 8.3 % in runtime and communication compared to (3). For
completeness and direct comparison to AES-128, we also
give a variant of LowMC with data complexity of 2128 in (5).

4.3 Optimized GC-PSI Protocol
The idea of using Yao’s GC protocol for OPRF evaluations
was first proposed in [52] and used to construct a PSI protocol
in the precomputation setting in [40].

The full protocol description is given in Fig. 1.We propose
an optimization that halves the online communication for the
OTs (which is the only communication in the online phase).
This optimization is of independent interest as it improves
the practicality of Yao’s GC protocol in arbitrary use cases
with precomputation. It is based on the observation that with
the Free-XOR technique [42] for Yao’s GC protocol [62],
the client receives one of the two labels l0 and l1 = l0 ⊕
∆ via OT depending on its input bit, where l0 is chosen at
random and ∆ is a random global constant only known by the
garbler. A natural consideration would be to replace the real
OTs, as used in [40], with correlated OTs (C-OTs) (cf. §3.1).
Unfortunately, since the client input is unknown in the base
phase, this prevents either the precomputation of the garbled
circuits or the OTs. This is because in the online phase when
using OT precomputation [8], the random messages r0 and r1

obtained by the sender in the base phase need to be swapped

USENIX Association 28th USENIX Security Symposium 1453

https://github.com/LowMC/lowmc/blob/master/determine_rounds.py
https://github.com/LowMC/lowmc/blob/master/determine_rounds.py

Server Client
Input: X = {x1, . . . ,xNs} of bitlength α Input: Y = {y1, . . . ,yNc}
Output: ⊥ Output: X ∩Y
Generate random PRF key k and Free-XOR offset ∆ Base Phase S := {}
For i = 1 to Npre

C : Agree on ε,v,b For i = 1 to Npre
C :

For j = 1 to α: For j = 1 to α:

∆

r0
i, j,r

1
i, j = r0

i, j⊕∆

Run αNpre
C random C-OTs

via OT Extension

random ci, j

rci, j
i, j

for i = 1 to Npre
C :

(P̃RF i
k, l

0
i,1, . . . , l

0
i,α) = GC.Build(PRF,k,r0

i,1, . . . ,r
0
i,α,∆)

P̃RF i
k

Initialize Cuckoo filter CF with parameters Ns,ε,v,b Setup Phase

for i = 1 to NS:

CF.Insert(PRFk(xi)) CF

for i = 1 to NC: Online Phase for i = 1 to NC:

for j = 1 to α: for j = 1 to α:

bi, j = ci, j⊕yi[j]

Bi, j = rbi, j
i, j ⊕ l0

i, j li, j = rci, j
i, j ⊕Bi, j

PRFk(yi) = GC.Eval(P̃RF i
k, li,1, . . . , li,α)

If CF.Contains(PRFk(yi)):

put yi into S

Output S
Update Phase

Insert / Delete NU items

U := {}
For i = 1 to NU :

compute tag ti and CF position pi for PRFk(ui)

Put (ti, pi) into U

U,op ∈ {Insert,Delete} for i = 1 to NU :

Insert / Delete ti in CF at position pi or pi⊕H(ti)

Figure 1: Our optimized GC-PSI protocol (based on [40, 52, 59]). Wire labels are computed as l0
i, j = r0

i, j⊕δi, j and l1
i, j = l0

i, j⊕∆,
where the values δi, j are chosen at random while building the garbled circuit. Npre

C ≥ NC denotes the number of precomputed
OTs and garbled circuits; the base phase must be repeated before further online phase executions once Npre

C queries are exceeded.

in case the random choice made by the receiver differs from
its actual input. Thus, it would be necessary to swap input
wire labels in the garbled circuits, which requires recomputing
and resending at least the first layer of those circuits.

Our novel precomputation method circumvents this
dilemma: In the base phase we run C-OTs via OT extension
s.t. the garbler on input ∆ learns the random but correlated
values r0 and r1 = r0⊕∆, whereas the evaluator upon random
choice c learns rc. For garbling we choose the labels for the in-
put wires of the circuit as l0 = r0⊕δ and l1 = l0⊕∆. Here, δ

is a newly introduced random value that in contrast to ∆ is
not global but chosen individually for each label pair. In the
online phase of the protocol, the evaluator sends a correction

bit b = c⊕ y stating whether its random choice c differs from
the actual input y. The garbler responds with B = rb⊕ l0. This
way, the evaluator learns either δ or δ⊕∆. It then sets the label
for its input to l = rc⊕B. As one can easily verify for the four
possible combinations of random choices c and correction
bits b, the evaluator always retrieves the correct label.

The security of the C-OT precomputation is based on the
same arguments as standard OT precomputation [8] and since
we use a fresh uniformly random δ for each wire label, the
resulting wire label is also uniformly random. In other words,
we resolve the problem by fixing the wire labels but if neces-
sary swapping the masks required to retrieve the correct label
from the initial C-OT result.

1454 28th USENIX Security Symposium USENIX Association

Server Client
Input: X = {x1, . . . ,xNs} of bitlength α Input: Y = {y1, . . . ,yNc}
Output: ⊥ Output: X ∩Y

Base Phase S := {}
Generate p,q,g,a = (a0,a1, . . . ,aα) Agree on ε,v,b, p,q

For i = 1 to Npre
C : For i = 1 to Npre

C :

For j = 1 to α: For j = 1 to α:

r0
i, j,r

1
i, j

Run αNpre
C R-OTs

via OT Extension

random ci, j

rci, j
i, j

Initialize Cuckoo filter CF with parameters NS,ε,v,b Setup Phase

For i = 1 to NS:

Ci = a0

α

∏
j=1

axi[j]
j mod q

CF.Insert(gCi mod p) CF

For i = 1 to NC: Online Phase For i = 1 to Nc:

For j = 1 to α: For j = 1 to α:

bi, j = ci, j⊕yi[j]

ri, j = rbi, j
i, j

r1−bi, j
i, j ⊕ (rbi, j

i, j ·a j)

rinv
i = (

n

∏
j=1

ri, j)
−1 mod q Ri, j = rci, j

i, j ⊕yi[j] · (r
1−bi, j
i, j ⊕ (rbi, j

i, j ·a j))

g̃i = ga0·rinv
i mod p C′i =

α

∏
j=1

Ri, j mod q

g̃i

If CF.Contains(g̃C′i
i mod p) then

put yi into S
Output S

Figure 2: Our optimized NR-PSI protocol (based on [31, 40, 59]). When using a plain finite field, the modulus p is prime, q is a
prime divisor of p−1, g ∈ Z∗p is of order q, and a0,a1, . . . ,aα as well as r0

i, j,r
1
i, j are random numbers in Z∗q. The update phase is

omitted since it is similar to the GC-PSI protocol (cf. Fig. 1), except using the NR-PRF to compute tag ti and CF position pi.

4.4 Optimized NR-PSI Protocol
The usage of the Naor-Reingold PRF (NR-PRF) [47] for
PSI was first proposed in [31] and the resulting PSI protocol
transformed into the precomputation setting in [40]. The NR-
PRF for key k and element xi is defined as

fk(xi) = ga0·∏α
j=1 a

xi, j
i mod p, (1)

where, when using a plain finite field, p is a prime, q is
a prime divisor of p− 1, g ∈ Z∗p is a generator of order q,
a0,a1, . . . ,aα are random numbers in Z∗q forming key k, and α

is the bitlength of element xi.
Among all protocols for mobile contact discovery evaluated

in [40], NR-PSI is the only protocol besides GC-PSI that can
easily be made secure against malicious clients by employing
malicious secure OT extensions (cf. §4.5). Furthermore, ac-
cording to the empirical performance comparison in [40], the

NR-PSI protocol causes ≈ 30x less communication overhead
than GC-PSI without our optimizations. This is why we also
consider the NR-PSI protocol in this work and compare it to
our optimized GC-PSI implementation in §6.

The full protocol description is given in Fig. 2. We propose
an optimization that improves the online communication for
OTs by factor 2x. The optimization is based on the observa-
tion that in the definitions of [31] the client chooses between
a random r and r ·a depending on the current bit of its input
element. This implies that C-OTs (cf. §3.1) can be used in-
stead of real OTs, thereby sending only one message in the
size of the symmetric security parameter instead of the two
messages when using the OTe protocols of [3].

Since we use the precomputation form of [40], we propose
a novel combination of OT precomputation [8] and C-OT [3].
As in OT precomputation, the client sends a correction bit b
stating whether its random choice c in the precomputation

USENIX Association 28th USENIX Security Symposium 1455

phase equals its real input. Depending on b, the server then
decides which of the two random messages obtained during
OT precomputation is chosen as r and which is used to mask
the correlated message r ·a that is sent to the client. Likewise,
the client either proceeds with the message obtained during
OT precomputation as r or uses this message to unmask the
received correlated message.

4.5 Malicious Security

As observed already in [40], the only messages sent by the
client in the GC-PSI and NR-PSI protocols are those in the
base OT and OT extension protocols as well as the correction
bits during the online phase when applying OT precomputa-
tion [8]. Therefore, both protocols can easily be made secure
against a malicious client by using a maliciously secure OTe
protocol such as [4] or [39], together with maliciously secure
base OTs such as [50]. As the OT extension contributes only a
small percentage to the total runtime of the PSI protocols and
today’s maliciously secure OTe protocols are only slightly
less efficient than the passively secure OT extension of [3],
the total runtime of the PSI protocols does not increase by a
noticeable amount when replacing the OTe protocols. Please
note that enumeration attacks (i.e., querying the server re-
peatedly with different inputs) are still possible when using
our protocols. However, even an ideal functionality for PSI
(e.g., a trusted third party) and currently deployed non-private
contact discovery methods cannot prevent this. We recom-
mend to employ well-established measures like rate limiting
to mitigate such attacks.

The case of a malicious server is different: it could, for
example, send wrong wire labels, use wrong circuit descrip-
tions, or send a wrong server set. In general, the client does
not reveal the intersection result to the server, so a malicious
server can only influence the correctness of the client’s com-
putation, but cannot learn any information about the client’s
items when using maliciously secure OTs. Unfortunately, in
most mobile messaging applications, the client sends infor-
mation about the intersection (most likely even the entire
intersection) to the server. This allows a malicious server to
learn information about the client’s items that are not part
of the intersection of the two actual input sets. Therefore,
we need to assume a semi-honest server in such scenarios.
Preventing malicious behavior on the server side could be
done by combining our protocols with a trusted execution en-
vironment for hardware-enforced code and remote attestation
capabilities s.t. the server’s protocol deviation possibilities
are restricted to wrong inputs for the Cuckoo filter construc-
tion. However, assuming a semi-honest server is reasonable
since there are legal requirements and financial incentives for
a service provider to behave correctly: once misconduct gets
known publicly, users will abandon the malicious service and
switch to a more trustworthy alternative.

4.6 Further Extensions

The bottleneck for very large server sets is the communication
required to send the Cuckoo filter to the client. For example, a
compressed Cuckoo filter for 228 server items with false posi-
tive probability εmax ≈ 2−29 has a size of ≈ 1GiB, which is
prohibitively large for transmission on mobile network speeds
and data plans. For even larger server databases, the proto-
cols eventually become impractical. For example, for a server
database with 231 entries, it would be necessary to download
a Cuckoo filter of size ≈ 8GiB. Therefore, we describe how
to reduce the overall client-server communication to be loga-
rithmic in the size of the server database. We propose further
extensions to increase practicality in App. A.

Combination with Private Information Retrieval (PIR).
In their PIR-PSI protocol, Demmler et al. [21] propose the use
of multiple non-colluding servers together with a multi-server
PIR protocol. Applied to our PSI protocols, the extension
works as follows: After the server prepared the Cuckoo filter,
it is not transmitted to the client, but to a second non-colluding
server instead. Since the Cuckoo filter only contains the re-
sults of PRF evaluations, the second server does not learn
anything about the items in the main server’s set. The client
then performs the OPRF evaluation for each of its items with
the first server and then runs a multi-server PIR protocol to
retrieve the fingerprints stored in the Cuckoo filter.

The communication complexity for the multi-server PIR
lookup is O(κ logn), where κ is the symmetric security param-
eter and n the size of the server database [14, 21]. Since the
overall client-server communication therefore is logarithmic
and not linear in the size of the server database, our protocols
are expected to remain practical even for server databases
with more than a billion items. In practice, the remaining
challenge for messaging services is to find a trustworthy part-
ner operating the second PIR server while at the same time
making it credible to users that no collusion is happening.

5 Android Implementation

To demonstrate the feasibility of our optimized PSI protocols
for performing private contact discovery on mobile devices,
we provide implementations for smartphones running on An-
droid.6 Previous works [34, 40] presented experiments on
dedicated mobile devices, but the performance of these im-
plementations was not sufficient for real-world usage. For
example, the Java implementation of [40], which is based on
the ObliVM framework [43], takes more than a second to
evaluate a single garbled AES-128 circuit. In our implemen-
tation, we make use of native C/C++ code support in Android
and also use hardware acceleration for cryptographic opera-
tions available in modern smartphones. More precisely, native

6https://contact-discovery.github.io

1456 28th USENIX Security Symposium USENIX Association

https://contact-discovery.github.io

AES-128 instructions are used both as a PRNG and during the
creation and evaluation of the garbled circuit. These features
allow our implementation to reach truly practical performance.
Compared to the Java-based implementation of [40], we eval-
uate a garbled AES-128 circuit more than 1,000x faster.

5.1 Base OTs and OT Extension
For performing base OTs, we use the OT protocol of Chou and
Orlandi [20] with the additional verification step proposed
by Doerner et al. [26]. Together with the (C-)OT extension
protocol of Keller, Orsini, and Scholl [39], this results in a
maliciously secure protocol (cf. [26]).

Our OT implementation is based on libOTe by Rindal [60],
which is heavily optimized for the x86 architecture. Thus, we
ported large parts of the library to the ARMv8 architecture
to achieve high performance on mobile devices. At the same
time, we kept the library compatible with its x86 counterpart
to facilitate natural development of client-server applications.

5.2 GC-PSI Implementation
For the GC-PSI protocol, we implement Yao’s GC protocol
(cf. §3.2) with Free-XOR [42] and Half-Gates [63], resulting
in no communication for XOR-gates and two wire labels
of κ bits each per AND gate, where κ = 128 is the symmetric
security parameter.

For creating and evaluating the garbled tables, the most ef-
ficient choice today is fixed-key AES [11], mainly due to the
hardware support for AES that is widespread in modern x86
CPUs. The ARM Cryptography Extensions (CE) introduced
in the ARMv8 architecture similarly provide hardware in-
structions for AES, SHA-1, and SHA-2 variants, resulting in
AES speedups of factor 35x compared to a standard AES
software implementation. This allows us to also use fixed-key
AES [11] for garbling in our implementation.7 Additionally,
the ARMv8 architecture provides instructions for vector oper-
ations on 128-bit registers (the so-called NEON instruction
set), which we use to efficiently work with 128-bit wire labels.
In Tab. 7 in App. B, we demonstrate the wide availability of
ARM CE in most recent smartphone processors.

5.3 NR-PSI Implementation
For implementing the NR-PSI protocol, we use the modified
libOTe version described in §5.1 for C-OT precomputation
as well as the GNU GMP8 library for modular arithmetic oper-
ations and the MIRACL9 library for instantiating the protocol

7As recently reported by [29], many secure computation implementations
use fixed-key AES incorrectly. However, according to [29], our instantiation
for garbling following the definitions of [63] is not affected. In contrast,
libOTe [60] is currently vulnerable. The suggested fixes however are not
expected to result in a significant negative performance impact [29].

8https://gmplib.org
9https://github.com/miracl/MIRACL

with elliptic curve P-256. The advantage of instantiating the
NR-PSI protocol with ECC instead of using a plain finite field
with comparable security parameters is that the size of the
values g̃i transferred during the online phase (cf. Fig. 2) is re-
duced by factor 8x. Also, computationally expensive modular
exponentiations are replaced with point multiplications. We
refer to this variant as ECC-NR-PSI in the following. All li-
braries are compiled specifically for the ARMv8 architecture.

6 Performance Evaluation

We empirically evaluate the performance of our optimized
GC-PSI and NR-PSI protocols and compare them to other
unbalanced PSI protocols from the literature.

Benchmark Settings. For easy comparison to related work,
we choose similar sizes for the server’s and the client’s set:
Ns ∈ {220,224,226,228} and Nc ∈ {1,28,210}. Here, Nc = 1
represents the case where a client wants to check a new con-
tact. All items have a bitlength of α = 128. We instantiate all
primitives and protocols with 128-bit security.

In all of our experiments, the sever is equipped with an
Intel CoreTM i7-4600U CPU @ 2.6GHz and 16GiB of RAM.
The client is a Google Pixel XL 2 smartphone with a Snap-
dragon 835 CPU @ 2.45GHz and 4GiB of RAM. We con-
sider two network settings: (i) an IEEE 802.11ac WiFi con-
nection with ≈ 230Mbit/s down-/upload and 70ms RTT
and (ii) a mobile LTE connection with 42Mbit/s down-
load (S→C), 4Mbit/s upload (S←C), and 80ms RTT.

Note that the LTE network speeds are real-world param-
eters and exhibit a significant difference in the down- and
upload rates. This is common in commercially available data
plans and often not taken into account in previous evaluations.

6.1 GC-PSI and NR-PSI Protocol

The runtime and communication costs for the base, setup, and
online phase of our protocols are shown in Tab. 3, Tab. 4,
and Tab. 5, respectively, and are averaged over 100 execu-
tions (except for the setup phase, where we chose 10 or less
executions due to the larger runtime). We use LowMC in-
stance (3) from Tab. 2 for the evaluation. In all tests, only a
single thread was used for both the server and the client. Since
all phases of our protocols can be parallelized trivially, we
expect a near-linear speedup when using multiple threads, ex-
cept in situations where the bottleneck is network bandwidth.
Furthermore, note that in the base and online phases of the
GC-PSI protocol, only one party actually performs the compu-
tationally expensive task of garbling or evaluating the circuit.
Therefore, if both parties are ready, the base and online phases
of the GC-PSI protocol can be interleaved in a pipelined fash-
ion, where the server sends the garbled circuits and the client
evaluates them as soon as parts of them are available. This

USENIX Association 28th USENIX Security Symposium 1457

https://gmplib.org
https://github.com/miracl/MIRACL

Parameters Time [s] Comm. [MiB]
Npre

c Protocol WiFi LTE S→C S←C

210
AES-GC-PSI 7.14 38.98 162.52 2.02
LowMC-GC-PSI 1.85 6.57 22.01 2.02
ECC-NR-PSI 0.61 4.21 0.01 1.99

Table 3: Base phase of our PSI protocols. Precomputation for
checking Npre

c client contacts. Best results marked in bold.

Parameters Server Setup [s] Transmission [s] Comm. [MiB]
Ns Protocol WiFi LTE S→C

228
AES-GC-PSI 23.94

32.66 211.30 1072LowMC-GC-PSI 1,869.13
ECC-NR-PSI 52,332.38

226
AES-GC-PSI 4.87

8.13 52.55 268LowMC-GC-PSI 467.29
ECC-NR-PSI 12,787.79

224
AES-GC-PSI 1.12

2.13 13.05 67LowMC-GC-PSI 116.66
ECC-NR-PSI 3,297.96

220
AES-GC-PSI 0.06

0.25 0.63 4.19LowMC-GC-PSI 7.27
ECC-NR-PSI 241.54

Table 4: Setup phase of our PSI protocols. Server setup run
once for all clients. The Cuckoo filter parameters are set as
described in §4.1 (εmax = 2−29.4,v = 32,b = 3). Best results
marked in bold. Note that the size of the client set does not
influence the runtime of the setup phase and the client does
not send any data during the setup phase in any protocol.

method can reduce the runtime of the combined base and
online phase to the runtime of the slower phase.

We observe that using LowMC instead of AES in the GC-
PSI protocol leads to 7.4x less communication and thus to
a much smaller runtime in the base phase, while the on-
line phase of both protocol versions is very comparable.
Only during the one-time setup phase, the AES version is
more efficient due to AES-NI instructions. Using a hardware-
accelerated implementation of LowMC could reduce this run-
time close to the one of AES, but we again stress that the
setup phase is a one-time cost. This confirms our choice of
LowMC over AES as the PRF in GC-PSI.

ECC-NR-PSI is the most efficient protocol during the base
phase since it does not send garbled circuits to the client: com-
pared to the LowMC version of GC-PSI, it requires 12x less
communication. The ECC-NR-PSI online phase is slightly
slower than both GC-PSI protocols, while being the fastest for
a single item. The one-time setup phase of the ECC-NR-PSI
protocol is much slower than both GC-PSI protocol versions
due to elliptic curve operations.

6.2 Comparison with Related Work
We now highlight differences to other works in the literature
and compare our optimized GC- and NR-PSI protocols and
implementations to other unbalanced PSI implementations
available for Android in Tab. 6. Comparisons with implemen-
tations for the x86 architecture are given in App. D.

Parameters Time [s] Comm. [KiB]
Nc Protocol WiFi LTE S→C S←C

210
AES-GC-PSI 1.43 1.86 2,048 16.00
LowMC-GC-PSI 1.71 2.02 2,048 16.00
ECC-NR-PSI 2.31 2.32 4,147 16.00

28
AES-GC-PSI 0.34 0.47 512 4.00
LowMC-GC-PSI 0.37 0.48 512 4.00
ECC-NR-PSI 0.61 0.61 1,037 4.00

1
AES-GC-PSI 0.03 0.03 2.00 0.02
LowMC-GC-PSI 0.04 0.05 2.00 0.02
ECC-NR-PSI 0.01 0.02 4.06 0.04

Table 5: Online phase of our PSI protocols. Best results
marked in bold. The influence of the server set size on runtime
and communication is negligible and therefore not listed.

Chen et al. [18, 19]. The protocols of [18, 19] for unbal-
anced PSI are based on leveled fully homomorphic encryp-
tion (FHE). They both work as follows: the client encrypts all
its items and sends them to the server, which then computes
the intersection under encryption with all of its own items
and returns the result in encrypted form. The client can then
decrypt the received ciphertexts to find the intersection.

The protocol in [19] is only defined for 32bit strings, a
limitation that stems from the parameter choice of the FHE
scheme. Since the universe of possible items is larger than 232

in the use case of contact discovery, we exclude this protocol
from further comparisons. However, this limitation was lifted
in the subsequent work [18] where arbitrary length items are
supported. The benefits of [18] compared to our protocols
are that the client is not required to store any data and that
the total communication is sublinear in the size of the server
database. For example, for Ns = 228, the total communication
in the protocol of [18] is only 18.4MB.

However, there is a huge computational overhead during
the online phase of the protocol: even on a high-end server it
takes more than 12s on 32 threads to compute the intersection
with Nc = 1024 client elements. Unfortunately, the online
phase needs to be repeated whenever there are updates on
client or server side. Also, due to the employed FHE batching
optimizations, the runtime for a single item is almost equal
to the runtime for thousands of items. Assuming that each of
the Ns = 228 registered clients runs one update per day, this
would require the service provider to pay for 228 ·12.1 ·32≈
28.9 million core hours every day. In contrast, the online
phases of our protocols run in ≈ 2s for Nc = 1024 in the
WiFi setting on a single-threaded smartphone and require
no cryptographic operations on server side. The evaluation
of [18] was performed on two servers with Intel Xeon CPUs
in a 10Gbit/s local network. Therefore, it is also unclear how
the FHE encryption and decryption routines perform in a
mobile setting on real smartphones.

Resende and de Freitas Aranha [59]. In [59], the authors
present implementation improvements for the PSI protocol
of [7]. For each element in the client’s set, they perform 3

1458 28th USENIX Security Symposium USENIX Association

Parameters PSI Protocol Base + Online Time [s] Communication [MiB] Setup Communication / Setup Transfer [s] Server Setup [s]
Ns Nc WiFi LTE S→C S←C Client Storage [MiB] WiFi LTE

228

1,024

AES-GC-PSI [40] 1,507.73 2,742.66 177.23 4.00 1,380.25 42.05 272.06 26.70
NR-PSI [40] 171.23 221.20 64.25 2.02 1,380.25 42.05 272.06 194,130.21
LowMC-GC-PSI (Ours) 3.54 8.59 22.01 2.02 1,072.00 32.66 211.30 1,869.13
ECC-NR-PSI (Ours) 2.92 6.53 4.07 2.00 1,072.00 32.66 211.30 52,332.38

1

AES-GC-PSI [40] 1.53 2.95 0.18 0.02 1,380.25 42.05 272.06 26.70
NR-PSI [40] 0.17 0.21 0.06 0.01 1,380.25 42.05 272.06 194,130.21
LowMC-GC-PSI (Ours) 0.17 0.18 0.04 0.02 1,072.00 32.66 211.30 1,869.13
ECC-NR-PSI (Ours) 0.13 0.13 0.01 0.01 1,072.00 32.66 211.30 52,332.38

224

1,024

AES-GC-PSI [40] 1,507.73 2,742.66 177.23 4.00 86.26 2.74 16.80 1.18
NR-PSI [40] 171.23 221.20 64.25 2.02 86.26 2.74 16.80 12,174.40
LowMC-GC-PSI (Ours) 3.54 8.59 22.01 2.02 67.00 2.13 13.05 116.66
ECC-NR-PSI (Ours) 2.92 6.53 4.07 2.00 67.00 2.13 13.05 3,297.96

1

AES-GC-PSI [40] 1.53 2.95 0.18 0.02 86.26 2.74 16.80 1.18
NR-PSI [40] 0.17 0.21 0.06 0.01 86.26 2.74 16.80 12,174.40
LowMC-GC-PSI (Ours) 0.17 0.18 0.04 0.02 67.00 2.13 13.05 116.66
ECC-NR-PSI (Ours) 0.13 0.13 0.01 0.01 67.00 2.13 13.05 3,297.96

220

1,024

AES-GC-PSI [40] 1,507.73 2,742.66 177.23 4.00 5.39 0.32 0.81 0.05
NR-PSI [40] 171.23 221.20 64.25 2.02 5.39 0.32 0.81 758.40
LowMC-GC-PSI (Ours) 3.54 8.59 22.01 2.02 4.19 0.25 0.63 7.27
ECC-NR-PSI (Ours) 2.92 6.53 4.07 2.00 4.19 0.25 0.63 241.54

1

AES-GC-PSI [40] 1.53 2.95 0.18 0.02 5.39 0.32 0.81 0.05
NR-PSI [40] 0.17 0.21 0.06 0.01 5.39 0.32 0.81 758.40
LowMC-GC-PSI (Ours) 0.17 0.18 0.04 0.02 4.19 0.25 0.63 7.27
ECC-NR-PSI (Ours) 0.13 0.13 0.01 0.01 4.19 0.25 0.63 241.54

Table 6: Comparison of PSI protocols with smartphone implementations. Numbers for protocols of [40] are obtained by running
their implementations in our benchmarking environment. In all tests Npre

c = Nc. Best in class marked in bold.

point multiplications and transmit 2 group elements. This
results in a lower communication than our approaches (64B
for 2 group elements vs. 22KiB per garbled circuit vs. 6KiB
per item in NR-PSI). However, one major contribution of [59]
is a significant optimization of the GLS-254 curve for x86
CPUs. It is therefore unclear how their protocol performs on
smartphones with ARMv8-A hardware. Furthermore, their
Cuckoo filters parameters allow for a false positive probability
that is too high for real-world deployment (cf. §4.1). Finally,
their protocol assumes semi-honest adversaries, and while a
maliciously secure variant [38] of their basic protocol exists,
its performance has not yet been evaluated.

Kiss et al. [40]. In [40], the authors consider various semi-
honest PSI protocols, from which their GC-PSI and NR-PSI
protocols are the foundation of our work. Their Android im-
plementation (in pure Java) takes about 1.5s for a single obliv-
ious AES evaluation in their GC-PSI protocol. The authors
therefore conclude that instead their ECC-DH-PSI protocol is
most suited for the mobile use case since the evaluation time
for a single item is 23ms. However, both of our optimized
protocols with security against malicious clients are more
than competitive with an evaluation time of less than 2ms
for a single item. For Nc = 1024 client elements, the com-
bined base and online time of our optimized GC- and NR-PSI
protocols improves by more than a factor of 300x and 30x,
respectively, compared to the unoptimized semi-honest im-
plementations of [40] in both the WiFi and the LTE network
setting. Also, the total communication during the base and

online phase improves by factors 7.5x and 10.9x compared
to the respective GC- and NR-PSI protocols of [40].

7 Conclusion

Our native implementations of our optimized NR- and GC-
PSI protocols are two almost equivalently outstanding solu-
tions for large-scale mobile private contact discovery with se-
curity against malicious clients. The Signal developers stated
that to actually deploy PSI-based contact discovery, it would
need to be able to handle a server database with 1 billion users
while address books are assumed to contain up to 10,000 con-
tacts. In terms of latency, lookups are required to take less
than 2s, while in terms of throughput a single core should be
able to handle 1,600 contacts per second. Clearly, we cannot
meet these demanding requirements yet. Therefore, as part
of future work, we suggest to implement and evaluate our
proposed extensions (especially the combination with PIR) to
take the next important steps towards real-world deployment.

Acknowledgments

This work was co-funded by the DFG as part of project E4
within the CRC 1119 CROSSING and project A.1 within
the RTG 2050 “Privacy and Trust for Mobile Users”, by the
BMBF and the HMWK within CRISP, and by the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 644052 (HECTOR). Daniel Kales
has been supported by iov42 Ltd.

USENIX Association 28th USENIX Security Symposium 1459

References

[1] WhatsApp Legal Info. https://www.whatsapp.com
/legal, 2019.

[2] Martin R. Albrecht, Christian Rechberger, Thomas
Schneider, Tyge Tiessen, and Michael Zohner. Ciphers
for MPC and FHE. In EUROCRYPT, volume 9056 of
LNCS, pages 430–454. Springer, 2015.

[3] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and
Michael Zohner. More Efficient Oblivious Transfer and
Extensions for Faster Secure Computation. In CCS,
pages 535–548. ACM, 2013.

[4] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and
Michael Zohner. More Efficient Oblivious Transfer
Extensions with Security for Malicious Adversaries. In
EUROCRYPT, volume 9056 of LNCS, pages 673–701.
Springer, 2015.

[5] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and
Michael Zohner. More Efficient Oblivious Transfer Ex-
tensions. Journal of Cryptology, 30(3):805–858, 2017.

[6] N. Asokan, Alexandra Dmitrienko, Marcin Nagy, Elena
Reshetova, Ahmad-Reza Sadeghi, Thomas Schneider,
and Stanislaus Stelle. CrowdShare: Secure Mobile Re-
source Sharing. In ACNS, volume 7954 of LNCS, pages
432–440. Springer, 2013.

[7] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro,
Paolo Gasti, and Gene Tsudik. Countering GATTACA:
Efficient and Secure Testing of Fully-Sequenced Human
Genomes. In CCS, pages 691–702. ACM, 2011.

[8] Donald Beaver. Precomputing Oblivious Transfer. In
CRYPTO, volume 963 of LNCS, pages 97–109. Springer,
1995.

[9] Donald Beaver. Correlated Pseudorandomness and the
Complexity of Private Computations. In STOC, pages
479–488. ACM, 1996.

[10] Donald Beaver, Silvio Micali, and Phillip Rogaway. The
Round Complexity of Secure Protocols (Extended Ab-
stract). In STOC, pages 503–513. ACM, 1990.

[11] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi,
and Phillip Rogaway. Efficient Garbling from a Fixed-
Key Blockcipher. In IEEE Symposium on Security and
Privacy, pages 478–492. IEEE Computer Society, 2013.

[12] Burton H. Bloom. Space/Time Trade-offs in Hash Cod-
ing with Allowable Errors. Communications of the ACM,
13(7):422–426, 1970.

[13] Joan Boyar and René Peralta. A New Combinational
Logic Minimization Technique with Applications to
Cryptology. In Symposium on Experimental Algorithms,
volume 6049 of LNCS, pages 178–189. Springer, 2010.

[14] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function
Secret Sharing: Improvements and Extensions. In CCS,
pages 1292–1303. ACM, 2016.

[15] Alexander Breslow and Nuwan Jayasena. Morton Fil-
ters: Faster, Space-Efficient Cuckoo Filters via Biasing,
Compression, and Decoupled Logical Sparsity. Proceed-
ings of the VLDB Endowment (PVLDB), 11(9):1041–
1055, 2018.

[16] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the Keys to the Intel SGX King-
dom with Transient Out-of-Order Execution. In USENIX
Security, pages 991–1008. USENIX Association, 2018.

[17] Henry Carter, Benjamin Mood, Patrick Traynor, and
Kevin R. B. Butler. Secure Outsourced Garbled Circuit
Evaluation for Mobile Devices. In USENIX Security,
pages 289–304. USENIX Association, 2013.

[18] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal.
Labeled PSI from Fully Homomorphic Encryption with
Malicious Security. In CCS, pages 1223–1237. ACM,
2018.

[19] Hao Chen, Kim Laine, and Peter Rindal. Fast Private Set
Intersection from Homomorphic Encryption. In CCS,
pages 1243–1255. ACM, 2017.

[20] Tung Chou and Claudio Orlandi. The Simplest Protocol
for Oblivious Transfer. In LATINCRYPT, volume 9230
of LNCS, pages 40–58. Springer, 2015.

[21] Daniel Demmler, Peter Rindal, Mike Rosulek, and
Ni Trieu. PIR-PSI: Scaling Private Contact Discovery.
PoPETs, 2018(4):159–178, 2018.

[22] Itai Dinur, Daniel Kales, Angela Promitzer, Sebastian
Ramacher, and Christian Rechberger. Linear Equiva-
lence of Block Ciphers with Partial Non-Linear Lay-
ers: Application to LowMC. In EUROCRYPT, volume
11476 of LNCS, pages 343–372. Springer, 2019.

[23] Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang.
Optimized Interpolation Attacks on LowMC. In
ASIACRYPT, volume 9453 of LNCS, pages 535–560.
Springer, 2015.

[24] Christoph Dobraunig, Maria Eichlseder, and Florian
Mendel. Higher-Order Cryptanalysis of LowMC. In
ICISC, volume 9558 of LNCS, pages 87–101. Springer,
2015.

1460 28th USENIX Security Symposium USENIX Association

https://www.whatsapp.com/legal
https://www.whatsapp.com/legal

[25] Yevgeniy Dodis and Aleksandr Yampolskiy. A Verifi-
able Random Function with Short Proofs and Keys. In
PKC, volume 3386 of LNCS, pages 416–431. Springer,
2005.

[26] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi she-
lat. Secure Two-party Threshold ECDSA from ECDSA
Assumptions. In IEEE Symposium on Security and Pri-
vacy, pages 980–997. IEEE Computer Society, 2018.

[27] Bin Fan, David G. Andersen, Michael Kaminsky, and
Michael Mitzenmacher. Cuckoo Filter: Practically Bet-
ter Than Bloom. In Conference on emerging Networking
EXperiments and Technologies (CoNEXT), pages 75–88.
ACM, 2014.

[28] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and
Omer Reingold. Keyword Search and Oblivious Pseu-
dorandom Functions. In TCC, volume 3378 of LNCS,
pages 303–324. Springer, 2005.

[29] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Effi-
cient and Secure Multiparty Computation from Fixed-
Key Block Ciphers. IACR Cryptology ePrint Archive,
2019:074, 2019. https://ia.cr/2019/074.

[30] Carmit Hazay and Yehuda Lindell. Efficient Protocols
for Set Intersection and Pattern Matching with Security
Against Malicious and Covert Adversaries. In TCC,
volume 4948 of LNCS, pages 155–175. Springer, 2008.

[31] Carmit Hazay and Yehuda Lindell. Efficient Protocols
for Set Intersection and Pattern Matching with Security
Against Malicious and Covert Adversaries. Journal of
Cryptology, 23(3):422–456, 2010.

[32] Wilko Henecka and Thomas Schneider. Faster secure
two-party computation with less memory. In ASIACCS,
pages 437–446. ACM, 2013.

[33] Kashmir Hill. Facebook recommended that this
psychiatrist’s patients friend each other. https://spli
nternews.com/facebook-recommended-that-thi
s-psychiatrists-patients-f-1793861472, 2016.

[34] Yan Huang, Peter Chapman, and David Evans. Privacy-
Preserving Applications on Smartphones. In HotSec,
pages 4–4. USENIX Association, 2011.

[35] Russell Impagliazzo and Steven Rudich. Limits on the
Provable Consequences of One-way Permutations. In
STOC, pages 44–61. ACM, 1989.

[36] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank.
Extending Oblivious Transfers Efficiently. In CRYPTO,
volume 2729 of LNCS, pages 145–161. Springer, 2003.

[37] Stanislaw Jarecki and Xiaomin Liu. Efficient Oblivious
Pseudorandom Function with Applications to Adaptive
OT and Secure Computation of Set Intersection. In TCC,
volume 5444 of LNCS, pages 577–594. Springer, 2009.

[38] Stanislaw Jarecki and Xiaomin Liu. Fast Secure Com-
putation of Set Intersection. In SCN, volume 6280 of
LNCS, pages 418–435. Springer, 2010.

[39] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Ac-
tively Secure OT Extension with Optimal Overhead.
In CRYPTO, volume 9215 of LNCS, pages 724–741.
Springer, 2015.

[40] Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan,
and Benny Pinkas. Private Set Intersection for Un-
equal Set Sizes with Mobile Applications. PoPETs,
2017(4):177–197, 2017.

[41] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek,
and Ni Trieu. Efficient Batched Oblivious PRF with
Applications to Private Set Intersection. In CCS, pages
818–829. ACM, 2016.

[42] Vladimir Kolesnikov and Thomas Schneider. Improved
Garbled Circuit: Free XOR Gates and Applications. In
ICALP, volume 5126 of LNCS, pages 486–498. Springer,
2008.

[43] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan
Huang, and Elaine Shi. ObliVM: A Programming
Framework for Secure Computation. In IEEE Sympo-
sium on Security and Privacy, pages 359–376. IEEE
Computer Society, 2015.

[44] Moxie Marlinspike. The Difficulty Of Private Contact
Discovery. https://signal.org/blog/contact-d
iscovery, 2014.

[45] Moxie Marlinspike. Technology Preview: Private Con-
tact Discovery for Signal. https://signal.org/blo
g/private-contact-discovery, 2017.

[46] Benjamin Mood, Debayan Gupta, Kevin R. B. Butler,
and Joan Feigenbaum. Reuse It Or Lose It: More Effi-
cient Secure Computation Through Reuse of Encrypted
Values. In CCS, pages 582–596. ACM, 2014.

[47] Moni Naor and Omer Reingold. Number-Theoretic
Constructions of Efficient Pseudo-Random Functions.
Journal of the ACM, 51(2):231–262, 2004.

[48] Rasmus Pagh and Flemming Friche Rodler. Cuckoo
Hashing. In Annual European Symposium on Algo-
rithms, volume 2161 of LNCS, pages 121–133. Springer,
2001.

USENIX Association 28th USENIX Security Symposium 1461

https://ia.cr/2019/074
https://splinternews.com/facebook-recommended-that-this-psychiatrists-patients-f-1793861472
https://splinternews.com/facebook-recommended-that-this-psychiatrists-patients-f-1793861472
https://splinternews.com/facebook-recommended-that-this-psychiatrists-patients-f-1793861472
https://signal.org/blog/contact-discovery
https://signal.org/blog/contact-discovery
https://signal.org/blog/private-contact-discovery
https://signal.org/blog/private-contact-discovery

[49] Panagiotis Papadopoulos, Antonios A. Chariton, Elias
Athanasopoulos, and Evangelos P. Markatos. Where’s
Wally?: How to Privately Discover your Friends on the
Internet. In ASIACCS, pages 425–430. ACM, 2018.

[50] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters.
A Framework for Efficient and Composable Oblivious
Transfer. In CRYPTO, volume 5157 of LNCS, pages
554–571. Springer, 2008.

[51] Benny Pinkas, Thomas Schneider, Gil Segev, and
Michael Zohner. Phasing: Private Set Intersection Using
Permutation-based Hashing. In USENIX Security, pages
515–530. USENIX Association, 2015.

[52] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and
Stephen C. Williams. Secure Two-Party Computation Is
Practical. In ASIACRYPT, volume 5912 of LNCS, pages
250–267. Springer, 2009.

[53] Benny Pinkas, Thomas Schneider, Oleksandr
Tkachenko, and Avishay Yanai. Efficient Circuit-based
PSI with Linear Communication. In EUROCRYPT,
volume 11476 of LNCS, pages 122–153. Springer,
2019.

[54] Benny Pinkas, Thomas Schneider, Christian Weinert,
and Udi Wieder. Efficient Circuit-Based PSI via Cuckoo
Hashing. In EUROCRYPT, volume 10822 of LNCS,
pages 125–157. Springer, 2018.

[55] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Faster Private Set Intersection Based on OT Extension.
In USENIX Security, pages 797–812. USENIX Associa-
tion, 2014.

[56] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Scalable Private Set Intersection Based on OT Extension.
ACM Transactions on Privacy and Security, 21(2):7:1–
7:35, 2018.

[57] Michael Rabin. How to Exchange Secrets with Oblivi-
ous Transfer. In Technical Report TR-81. Aiken Com-
putation Laboratory: Harvard University, 1981.

[58] Christian Rechberger, Hadi Soleimany, and Tyge
Tiessen. Cryptanalysis of Low-Data Instances of Full
LowMCv2. IACR Transactions on Symmetric Cryptol-
ogy, 2018(3):163–181, 2018.

[59] Amanda Cristina Davi Resende and Diego de Fre-
itas Aranha. Faster Unbalanced Private Set Intersection.
In FC, LNCS. Springer, 2018.

[60] Peter Rindal. libOTe: A fast, portable, and easy to use
Oblivious Transfer Library. https://github.com/o
su-crypto/libOTe.

[61] Statista. Most Popular Global Mobile Messenger Apps.
https://www.statista.com/statistics/258749/
most-popular-global-mobile-messenger-apps,
2019.

[62] Andrew Chi-Chih Yao. How to Generate and Exchange
Secrets (Extended Abstract). In FOCS, pages 162–167.
IEEE, 1986.

[63] Samee Zahur, Mike Rosulek, and David Evans. Two
Halves Make a Whole - Reducing Data Transfer in Gar-
bled Circuits Using Half Gates. In EUROCRYPT, vol-
ume 9057 of LNCS, pages 220–250. Springer, 2015.

A Protocol Extensions

We propose further extensions for improving practicality.

Combination with FHE Protocols. Protocols for unbal-
anced PSI based on fully homomorphic encryption (FHE),
e.g., [18], are computationally expensive and thus much
slower during the online phase than our protocols (cf. §6.2).
However, their advantage is that the total amount of commu-
nication is sublinear in the size of the server database. When
clients install a new messaging application and are not con-
nected to a high-speed WiFi network, such FHE-based pro-
tocols likely produce faster contact discovery results, which
leads to higher user satisfaction. Thus, we recommend the
following hybrid use of contact discovery protocols: Directly
after installation of a mobile messaging application, a FHE-
based protocol (e.g., [18]) is used to perform the initial contact
discovery. Then, while the phone is charging overnight and
is connected to a WiFi network, the base and setup phase of
one of our protocols is performed. This leads to very efficient
online phases for future protocol runs, which are performed
regularly when updates on client or server side happen (poten-
tially over mobile data plans where communication matters).
See also §6.2 for a more detailed comparison between FHE-
based unbalanced PSI protocols and our work.

Dedicated Server for Cuckoo Filter Membership Tests.
In many scenarios, a large number of clients is part of a sin-
gle organization. For example, consider the mobile malware
detection scenario discussed in [40], where all applications in-
stalled on a client’s smartphone are checked against a database
of malicious applications. When employing such a malware
detection service in an enterprise context, a company usually
buys a volume license for all of its employees.

To reduce the overall data communication, the company
could host a dedicated server which would receive the large en-
crypted database of server items represented as a compressed
Cuckoo filter once. If a client then wants to compute the inter-
section between installed and malicious applications, it only
communicates with the malware detection service provider to

1462 28th USENIX Security Symposium USENIX Association

https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps

perform OPRF evaluations and then hands off the encrypted
items to the trusted company server, which performs the set
intersection on behalf of the clients and reports back the result.
Since this trusted server does not have knowledge of the PRF
key, it cannot directly deduce which items the client holds.

However, since the OPRF result is deterministic when using
the same secret key, the trusted server can learn when multiple
clients request the same item. Furthermore, it could interact
with the malware detection service provider itself to obtain
encryptions of known items, which it can compare to the
encrypted items of the clients. However, this kind of leakage
can be argued to be acceptable in many settings, such as the
company-internal setting mentioned above.

Partitioning the Database. A simple solution to reduce the
required communication during the setup phase is to partition
the server database s.t. clients only download Cuckoo filters
relevant for the contacts in their address book (for example
w.r.t. number prefixes, states, countries, or regions).

Assuming that the majority of users has contacts in only
very few such partitions, this approach leads to practical data
transmission sizes even for services with billions of users. In
the worst case (i.e., a user has contacts in all partitions or
prefers to leak no information at all), multiple runs of our
protocols can cover the worldwide user base.

However, this solution presents a significant performance /
privacy trade-off since clients leak information about their
social graph. For example, intelligence agencies might find it
suspicious if US citizens evidently have contacts in middle
eastern countries. How severe the privacy of users is threat-
ened also depends on how fine-grained the chosen partitions
are: if they are too small, it might even be possible to identify
an individual just by observing Cuckoo filter downloads.

B ARM Cryptography Extensions (CE)

The wide availability of the ARM Cryptography Exten-
sions (CE) in modern smartphone processors is highlighted
in Tab. 7.

System-on-a-Chip (SoC) Example Smartphones and Tablets CE

Apple A4, A5, A6 iPhone 4, iPad, iPad 2, iPhone 5 7
Apple A7, A8, A9 iPhone (5s,6), iPad Air, iPad mini 2 3
Apple A10, A11, A12 iPhone (7,8,X,Xs), iPad (2018), iPad Pro 3
Snapdragon 801 HTC One (E8), OnePlus One 7
Snapdragon 805 Galaxy S5+, Nexus 6 7
Snapdragon 808 Nexus 5X, LG G4, Moto X Style 3
Snapdragon 810 OnePlus 2, Nexus 6P, Sony Xperia Z5 3
Snapdragon 820 OnePlus 3, Galaxy S7, LG G5 3
Snapdragon 821 Google Pixel (XL), LG G6 3
Snapdragon 835 Google Pixel 2 (XL), Galaxy S8 3
Snapdragon 845 OnePlus 6, Galaxy S9, Sony Xperia Z2 3

Table 7: Availability of ARM Cryptography Extensions (CE)
in modern smartphone and tablet systems-on-a-chip (SoCs).

C Signal Integration Demonstrator

As a proof-of-concept, we modified the client application of
the open-source messenger Signal to perform contact discov-
ery using our PSI protocols. To be able to run the modified
client with the official servers, the integration works as fol-
lows: Whenever Signal triggers the contact discovery routine,
we run one of the PSI protocols with our own PSI server10.
The resulting matches are then used as input for the unmodi-
fied Signal contact discovery routine. This way, the official
Signal server only learns the hashes of phone numbers which
are already registered to the service. Our changes to the user
interface of the Android version of the Signal application are
depicted in Fig. 3.

(a) Signal registration. (b) Contact discovery result.

Figure 3: Screenshots of our prototype integration into the
open-source messenger Signal.

D Comparison of Unbalanced PSI Protocols
on the x86 Architecture

The goal of our paper is to provide efficient private contact
discovery for mobile messaging applications via improved
unbalanced PSI protocols with implementations optimized for
smartphones. Therefore, we focus our implementation and
evaluation efforts on the mobile use case and perform our
experiments on real smartphones with ARMv8 architecture.
However, to present the complete picture, we give a compari-
son to protocols for unbalanced PSI running on x86 hardware
and communicating in a local network in Tab. 8.

10In practice, this PSI server would be run by Signal and use the actual
database of Signal users.

USENIX Association 28th USENIX Security Symposium 1463

Parameters Protocol Online Time [s] Online Communi- Setup Communication / Server Setup [s]
Ns Nc cation [MiB] Client Storage [MiB]

228 1,024

[59] ∗0.16 0.07 806 ∗182
[18] ∗12.10 18.57 0 ∗4,628
LowMC-GC-PSI (Ours) 0.93 24.01 1,072 1,869
ECC-NR-PSI (Ours) 1.34 6.06 1,072 52,332

224

11,041

[59] 0.71 0.67 48 342
[19] 44.70 23.20 0 71
[18] 20.10 41.48 0 656
LowMC-GC-PSI (Ours) 12.51 258.79 67 117
ECC-NR-PSI (Ours) 11.94 65.24 67 3,298

5,535

[59] 0.35 0.34 48 342
[19] 40.10 20.10 0 64
[18] 22.01 16.39 0 806
LowMC-GC-PSI (Ours) 5.63 129.73 67 117
ECC-NR-PSI (Ours) 5.93 32.71 67 3,298

220

11,041

[59] 0.71 0.67 3 22
[19] 6.40 11.50 0 6.4
[18] 4.49 14.34 0 43
LowMC-GC-PSI (Ours) 12.51 258.79 4.2 7.3
ECC-NR-PSI (Ours) 11.94 65.24 4.2 242

5,535

[59] 0.35 0.34 3 22
[19] 4.30 5.60 0 4.3
[18] 4.23 11.50 0 43
LowMC-GC-PSI (Ours) 5.63 129.73 4.2 7.3
ECC-NR-PSI (Ours) 5.93 32.71 4.2 242

Table 8: Comparison of unbalanced PSI protocols in the LAN setting (10Gbit/s, 0.02ms RTT) on PC hardware (x86 architecture).
Numbers for other protocols are taken from [18]. All numbers are from single-core executions, except those marked with ∗,
which was an execution with 32 cores on the server side and 4 cores on the client side. The bit length α of all items is 128, except
for [19], where α = 32 due to limitations of the protocol.

1464 28th USENIX Security Symposium USENIX Association

	Introduction
	Our Contributions
	Motivating Survey

	Related Work
	Background
	Oblivious Transfer (Extensions)
	Garbled Circuits
	OPRF Evaluation
	Cuckoo Filters
	Unbalanced PSI with Precomputation

	Optimizing OPRF-based PSI Protocols
	More Efficient Database Representations
	More Efficient PRF for GC-PSI
	Optimized GC-PSI Protocol
	Optimized NR-PSI Protocol
	Malicious Security
	Further Extensions

	Android Implementation
	Base OTs and OT Extension
	GC-PSI Implementation
	NR-PSI Implementation

	Performance Evaluation
	GC-PSI and NR-PSI Protocol
	Comparison with Related Work

	Conclusion
	Protocol Extensions
	ARM Cryptography Extensions (CE)
	Signal Integration Demonstrator
	Comparison of Unbalanced PSI Protocols on the x86 Architecture

