
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

HardFails: Insights into Software-Exploitable
Hardware Bugs

Ghada Dessouky and David Gens, Technische Universität Darmstadt; Patrick Haney and
Garrett Persyn, Texas A&M University; Arun Kanuparthi, Hareesh Khattri, and Jason
M. Fung, Intel Corporation; Ahmad-Reza Sadeghi, Technische Universität Darmstadt;

Jeyavijayan Rajendran, Texas A&M University

https://www.usenix.org/conference/usenixsecurity19/presentation/dessouky

https://www.usenix.org/conference/usenixsecurity19/presentation/dessouky

HardFails: Insights into Software-Exploitable Hardware Bugs

Ghada Dessouky†, David Gens†, Patrick Haney∗, Garrett Persyn∗, Arun Kanuparthi◦,
Hareesh Khattri◦, Jason M. Fung◦, Ahmad-Reza Sadeghi†, Jeyavijayan Rajendran∗

†Technische Universität Darmstadt, Germany. ∗Texas A&M University, College Station, USA.
◦Intel Corporation, Hillsboro, OR, USA.

ghada.dessouky@trust.tu-darmstadt.de,david.gens@trust.tu-darmstadt.de,
prh537@tamu.edu,gpersyn@tamu.edu,arun.kanuparthi@intel.com,

hareesh.khattri@intel.com,jason.m.fung@intel.com,
ahmad.sadeghi@trust.tu-darmstadt.de,jv.rajendran@tamu.edu

Abstract

Modern computer systems are becoming faster, more efficient,
and increasingly interconnected with each generation. Thus,
these platforms grow more complex, with new features con-
tinually introducing the possibility of new bugs. Although the
semiconductor industry employs a combination of different
verification techniques to ensure the security of System-on-
Chip (SoC) designs, a growing number of increasingly so-
phisticated attacks are starting to leverage cross-layer bugs.
These attacks leverage subtle interactions between hardware
and software, as recently demonstrated through a series of
real-world exploits that affected all major hardware vendors.

In this paper, we take a deep dive into microarchitectural
security from a hardware designer’s perspective by reviewing
state-of-the-art approaches used to detect hardware vulnera-
bilities at design time. We show that a protection gap currently
exists, leaving chip designs vulnerable to software-based at-
tacks that can exploit these hardware vulnerabilities. Inspired
by real-world vulnerabilities and insights from our industry
collaborator (a leading chip manufacturer), we construct the
first representative testbed of real-world software-exploitable
RTL bugs based on RISC-V SoCs. Patching these bugs may
not always be possible and can potentially result in a product
recall. Based on our testbed, we conduct two extensive case
studies to analyze the effectiveness of state-of-the-art security
verification approaches and identify specific classes of vulner-
abilities, which we call HardFails, which these approaches
fail to detect. Through our work, we focus the spotlight on
specific limitations of these approaches to propel future re-
search in these directions. We envision our RISC-V testbed
of RTL bugs providing a rich exploratory ground for future
research in hardware security verification and contributing to
the open-source hardware landscape.

1 Introduction

The divide between hardware and software security research
is starting to take its toll, as we witness increasingly sophis-

ticated attacks that combine software and hardware bugs to
exploit computing platforms at runtime [20, 23, 36, 43, 45, 64,
69, 72, 74]. These cross-layer attacks disrupt traditional threat
models, which assume either hardware-only or software-only
adversaries. Such attacks may provoke physical effects to in-
duce hardware faults or trigger unintended microarchitectural
states. They can make these effects visible to software adver-
saries, enabling them to exploit these hardware vulnerabilities
remotely. The affected targets range from low-end embedded
devices to complex servers, that are hardened with advanced
defenses, such as data-execution prevention, supervisor-mode
execution prevention, and control-flow integrity.

Hardware vulnerabilities. Cross-layer attacks circumvent
many existing security mechanisms [20, 23, 43, 45, 64, 69, 72,
74], that focus on mitigating attacks exploiting software vul-
nerabilities. Moreover, hardware-security extensions are not
designed to tackle hardware vulnerabilities. Their implemen-
tation remains vulnerable to potentially undetected hardware
bugs committed at design-time. In fact, deployed extensions
such as SGX [31] and TrustZone [3] have been targets of suc-
cessful cross-layer attacks [69, 72]. Research projects such
as Sanctum [18], Sanctuary [8], or Keystone [39] are also not
designed to ensure security at the hardware implementation
level. Hardware vulnerabilities can occur due to: (a) incor-
rect or ambiguous security specifications, (b) incorrect design,
(c) flawed implementation of the design, or (d) a combination
thereof. Hardware implementation bugs are introduced either
through human error or faulty translation of the design in
gate-level synthesis.

SoC designs are typically implemented at register-transfer
level (RTL) by engineers using hardware description lan-
guages (HDLs), such as Verilog and VHDL, which are synthe-
sized into a lower-level representation using automated tools.
Just like software programmers introduce bugs to the high-
level code, hardware engineers may accidentally introduce
bugs to the RTL code. While software errors typically cause
a crash which triggers various fallback routines to ensure the
safety and security of other programs running on the platform,
no such safety net exists for hardware bugs. Thus, even mi-

USENIX Association 28th USENIX Security Symposium 213

nor glitches in the implementation of a module within the
processor can compromise the SoC security objectives and
result in persistent/permanent denial of service, IP leakage, or
exposure of assets to untrusted entities.

Detecting hardware security bugs. The semiconductor in-
dustry makes extensive use of a variety of techniques, such
as simulation, emulation, and formal verification to detect
such bugs. Examples of industry-standard tools include In-
cisive [10], Solidify [5], Questa Simulation and Questa For-
mal [44], OneSpin 360 [66], and JasperGold [11]. These were
originally designed for functional verification with security-
specific verification incorporated into them later.

While a rich body of knowledge exists within the software
community (e.g., regarding software exploitation and tech-
niques to automatically detect software vulnerabilities [38,
46]), security-focused HDL analysis is currently lagging be-
hind [35, 57]. Hence, the industry has recently adopted a
security development lifecycle (SDL) for hardware [68] —
inspired by software practices [26]. This process combines
different techniques and tools, such as RTL manual code au-
dits, assertion-based testing, dynamic simulation, and auto-
mated security verification. However, the recent outbreak of
cross-layer attacks [20, 23, 37, 43, 45, 47, 48, 49, 51, 52, 53,
64, 69, 74] poses a spectrum of difficult challenges for these
security verification techniques, because they exploit complex
and subtle inter-dependencies between hardware and software.
Existing verification techniques are fundamentally limited in
modeling and verifying these interactions. Moreover, they
also do not scale with the size and complexity of real-world
SoC designs.

Goals and Contributions. In this paper, we show that cur-
rent hardware security verification techniques are fundamen-
tally limited. We provide a wide range of results using a
comprehensive test harness, encompassing different types
of hardware vulnerabilities commonly found in real-world
platforms. To that end, we conducted two case studies to
systematically and qualitatively assess existing verification
techniques with respect to detecting RTL bugs. Together
with our industry partners, we compiled a list of 31 RTL
bugs based on public Common Vulnerabilities and Exposures
(CVEs) [37, 43, 50, 54, 55] and real-world errata [25]. We in-
jected bugs into two open-source RISC-V-based SoC designs,
which we will open-source after publication.

We organized an international public hardware security
competition, Hack@DAC, where 54 teams of researchers
competed for three months to find these bugs. While a number
of bugs could not be detected by any of the teams, several
participants also reported new vulnerabilities of which we
had no prior knowledge. The teams used manual RTL inspec-
tion and simulation techniques to detect the bugs. In industry,
these are usually complemented by automated tool-based and
formal verification approaches. Thus, our second case study
focused on two state-of-the-art formal verification tools: the

first deploys formal verification to perform exhaustive and
complete verification of a hardware design, while the second
leverages formal verification and path sensitization to check
for illegal data flows and fault tolerance.

Our second case study revealed that certain properties of
RTL bugs pose challenges for state-of-the-art verification
techniques with respect to black-box abstraction, timing flow,
and non-register states. This causes security bugs in the RTL
of real-world SoCs to slip through the verification process.
Our results from the two case studies indicate that particu-
lar classes of hardware bugs entirely evade detection—even
when complementing systematic tool-based verification ap-
proaches with manual inspection. RTL bugs arising from
complex and cross-modular interactions in SoCs render these
bugs extremely difficult to detect in practice. Furthermore,
such bugs are exploitable from software, and thus can com-
promise the entire platform. We call such bugs HardFails.

To the best of our knowledge, this is the first work to pro-
vide a systematic and in-depth analysis of state-of-the-art
hardware verification approaches for security-relevant RTL
bugs. Our findings shed light on the capacity of these tools and
demonstrate reproducibly how bugs can slip through current
hardware security verification processes. Being also software-
exploitable, these bugs pose an immense security threat to
SoCs. Through our work, we highlight why further research
is required to improve state-of-the-art security verification of
hardware. To summarize, our main contributions are:

• Systematic evaluation and case studies: We compile
a comprehensive test harness of real-world RTL bugs, on
which we base our two case studies: (1) Hack@DAC’18,
in which 54 independent teams of researchers competed
worldwide over three months to find these bugs using
manual RTL inspection and simulation techniques, and
(2) an investigation of the bugs using industry-leading
formal verification tools that are representative of the
current state of the art. Our results show that particular
classes of bugs entirely evade detection, despite combin-
ing both tool-based security verification approaches and
manual analysis.

• Stealthy hardware bugs: We identify HardFails as
RTL bugs that are distinctly challenging to detect using
industry-standard security verification techniques. We
explain the fundamental limitations of these techniques
in detail using concrete examples.

• Open-sourcing: We will open-source our bugs testbed
at publication to the community.

2 SoC Verification Processes and Pitfalls

Similar to the Security Development Lifecycle (SDL) de-
ployed by software companies [26], semiconductor compa-
nies [15, 35, 40] have recently adapted SDL for hardware
design [57]. We describe next the conventional SDL process
for hardware and the challenges thereof.

214 28th USENIX Security Symposium USENIX Association

FIGURE 1: Typical Security Development Lifecycle (SDL)
process followed by semiconductor companies.

2.1 The Security Development Lifecycle
(SDL) for Hardware

SDL is conducted concurrently with the conventional hard-
ware development lifecycle [68], as shown in Figure 1. The
top half of Figure 1 shows the hardware development lifecy-
cle. It begins with design exploration followed by defining
the specifications of the product architecture. After the archi-
tecture specification, the microarchitecture is designed and
implemented in RTL. Concurrently, pre-silicon verification
efforts are conducted until tape-out to detect and fix all func-
tional bugs that do not meet the functional specification. After
tape-out and fabrication, iterations of post-silicon validation,
functional testing, and tape-out "spins" begin. This cycle is re-
peated until no defects are found and all quality requirements
are met. Only then does the chip enter mass production and
is shipped out. Any issues found later in-field are debugged,
and the chip is then either patched if possible or recalled.

After architectural features are finalized, a security assess-
ment is performed, shown in the bottom half of Figure 1. The
adversary model and the security objectives are compiled in
the security specification. This typically entails a list of assets,
entry points to access these assets, and the adversary capa-
bilities and architectural security objectives to mitigate these
threats. These are translated into microarchitectural security
specifications, including security test cases (both positive and
negative). After implementation, pre-silicon security verifica-
tion is conducted using dynamic verification (i.e., simulation
and emulation), formal verification, and manual RTL reviews.
The chip is not signed off for tape-out until all security specifi-
cations are met. After tape-out and fabrication, post-silicon se-
curity verification commences. The identified security bugs in
both pre-silicon and post-silicon phases are rated for severity
using the industry-standard scoring systems such as the Com-
mon Vulnerability Scoring System (CVSS) [30] and promptly
fixed. Incident response teams handle issues in shipped prod-
ucts and provide patches, if possible.

2.2 Challenges with SDL

Despite multiple tools and security validation techniques used
by industry to conduct SDL, it remains a highly challenging,

tedious, and complex process even for industry experts. Exist-
ing techniques largely rely on human expertise to define the
security test cases and run the tests. The correct security spec-
ifications must be exhaustively anticipated, identified, and
accurately and adequately expressed using security properties
that can be captured and verified by the tools. We discuss
these challenges further in Section 7.

Besides the specifications, the techniques and tools them-
selves are not scalable and are less effective in capturing
subtle semantics that are relevant to many vulnerabilities,
which is the focus of this work. We elaborate next on the lim-
itations of state-of-the-art hardware security verification tools
commonly used by industry. To investigate the capabilities of
these tools, we then construct a comprehensive test-harness
of real-world RTL vulnerabilities.

3 Assessing Hardware Security Verification

In this section, we focus on why the verification of the secu-
rity properties of modern hardware is challenging and provide
requirements for assessing existing verification techniques
under realistic conditions. First, we describe how these ver-
ification techniques fall short. Second, we provide a list of
common and realistic classes of hardware bugs, which we
use to construct a test harness for assessing the effectiveness
of these verification techniques. Third, we discuss how these
bugs relate to the common security goals of a chip.

3.1 Limitations of Automated Verification
Modern hardware designs are highly complex and incorpo-
rate hundreds of in-house and third-party Intellectual Property
(IP) components. This creates room for vulnerabilities to be
introduced in the inter-modular interactions of the design hi-
erarchy. Multi-core architectures typically have an intricate
interconnect fabric between individual cores (utilizing com-
plex communication protocols), multi-level cache controllers
with shared un-core and private on-core caches, memory and
interrupt controllers, and debug and I/O interfaces.

For each core, these components contain logical modules
such as fetch and decode stages, an instruction scheduler, indi-
vidual execution units, branch prediction, instruction and data
caches, the memory subsystem, re-order buffers, and queues.
These are implemented and connected using individual RTL
modules. The average size of each module is several hundred
lines of code (LOC). Thus, real-world SoCs can easily ap-
proach 100,000 lines of RTL code, and some designs may
even have millions of LOC. Automatically verifying, at the
RTL level, the respective interconnections and checking them
against security specifications raises a number of fundamen-
tal challenges for the state-of-the-art approaches. These are
described below.
L-1: Cross-modular effects. Hardware modules are inter-
connected in a highly hierarchical design with multiple inter-

USENIX Association 28th USENIX Security Symposium 215

dependencies. Thus, an RTL bug located in an individual
module may trigger a vulnerability in intra- and inter-modular
information flows spanning multiple complex modules. Pin-
pointing the bug requires analyzing these flows across the
relevant modules, which is highly cumbersome and unreliable
to achieve by manual inspection. It also pushes formal veri-
fication techniques to their limits, which work by modeling
and analyzing all the RTL modules of the design to verify
whether design specifications (expressed using security prop-
erty assertions, invariants and disallowed information flows)
and implementation match.

Detecting such vulnerabilities requires loading the RTL
code of all the relevant modules into the tools to model and
analyze the entire state space, thus driving them quickly
into state explosion due to the underlying modeling algo-
rithms [16, 21]. Alleviating this by providing additional com-
putational resources and time is not scalable as the complexity
of SoCs continues to increase. Selective "black-box" abstrac-
tion of some of the modules, state space constraining, and
bounded-model checking are often used. However, they do
not eliminate the fundamental problem and rely on interactive
human expertise. Erroneously applying them may introduce
false negatives, leading to missed vulnerabilities.
L-2: Timing-flow gap. Current industry-standard techniques
are limited in capturing and verifying security properties re-
lated to timing flow (in terms of clock cycle latency). This
leads to vast sources of information leakage due to software-
exploitable timing channels (Section 8). A timing flow exists
between the circuit’s input and output when the number of
clock cycles required for the generation of the output depends
on input values or the current memory/register state. This can
be exploited to leak sensitive information when the timing
variation is discernible by an adversary and can be used to
infer inputs or memory states. This is especially problematic
for information flows and resource sharing across different
privilege levels. This timing variation should remain indis-
tinguishable in the RTL, or should not be measurable from
the software. However, current industry-standard security ver-
ification techniques focus exclusively on the functional in-
formation flow of the logic and fail to model the associated
timing flow. The complexity of timing-related security issues
is aggravated when the timing flow along a logic path spans
multiple modules and involves various inter-dependencies.
L-3: Cache-state gap. State-of-the-art verification tech-
niques only model and analyze the architectural state of a
processor by exclusively focusing on the state of registers.
However, they do not support analysis of non-register states,
such as caches, thus completely discarding modern proces-
sors’ highly complex microarchitecture and diverse hierarchy
of caches. This can lead to severe security vulnerabilities aris-
ing due to state changes that are unaccounted for, e.g., the
changing state of shared cache resources across multiple privi-
lege levels. Caches represent a state that is influenced directly
or indirectly by many control-path signals and can generate

security vulnerabilities in their interactions, such as illegal
information leakages across different privilege levels. Identi-
fying RTL bugs that trigger such vulnerabilities is beyond the
capabilities of existing techniques.
L-4: Hardware-software interactions. Some RTL bugs re-
main indiscernible to hardware security verification tech-
niques because they are not explicitly vulnerable unless trig-
gered by the software. For instance, although many SoC ac-
cess control policies are directly implemented in hardware,
some are programmable by the overlying firmware to allow
for post-silicon flexibility. Hence, reasoning on whether an
RTL bug exists is inconclusive when considering the hardware
RTL in isolation. These vulnerabilities would only materialize
when the hardware-software interactions are considered, and
existing techniques do not handle such interactions.

3.2 Constructing Real-World RTL Bugs

To systematically assess the state of the art in hardware se-
curity verification with respect to the limitations described
above, we construct a test harness by implementing a large
number of RTL bugs in RISC-V SoC designs (cf. Table 1).
To the best of our knowledge, we are the first to compile and
showcase such a collection of hardware bugs. Together with
our co-authors at Intel, we base our selection and construc-
tion of bugs on a solid representative spectrum of real-world
CVEs [47, 48, 49, 51, 52, 53] as shown in Table 1. For in-
stance, bug #22 was inspired by a recent security vulnerability
in the Boot ROM of video gaming mobile processors [56],
which allowed an attacker to bring the device into BootROM
Recovery Mode (RCM) via USB access. This buffer over-
flow vulnerability affected many millions of devices and is
popularly used to hack a popular video gaming console1.

We extensively researched CVEs that are based on
software-exploitable hardware and firmware bugs and clas-
sified them into different categories depending on the weak-
nesses they represent and the modules they impact. We repro-
duced them by constructing representative bugs in the RTL
and demonstrated their software exploitability and severity
by crafting a real-world software exploit based on one of
these bugs in Appendix D. Other bugs were constructed with
our collaborating hardware security professionals, inspired
by bugs that they have previously encountered and patched
during the pre-silicon phase, which thus never escalated into
CVEs. The chosen bugs were implemented to achieve cover-
age of different security-relevant modules of the SoC.

Since industry-standard processors are based on proprietary
RTL implementations, we mimic the CVEs by reproducing
and injecting them into the RTL of widely-used RISC-V SoCs.
We also investigate more complex microarchitecture features
of another RISC-V SoC and discover vulnerabilities already
existing in its RTL (Section 4). These RTL bugs manifest as:

1https://github.com/Cease-and-DeSwitch/fusee-launcher

216 28th USENIX Security Symposium USENIX Association

https://github.com/Cease-and-DeSwitch/fusee-launcher

• Incorrect assignment bugs due to variables, registers,
and parameters being assigned incorrect literal values,
incorrectly connected or left floating unintended.

• Timing bugs resulting from timing flow issues and in-
correct behavior relevant to clock signaling such as in-
formation leakage.

• Incorrect case statement bugs in the finite state ma-
chine (FSM) models such as incorrect or incomplete
selection criteria, or incorrect behavior within a case.

• Incorrect if-else conditional bugs due to incorrect
boolean conditions or incorrect behavior described
within either branch.

• Specification bugs due to a mismatch between a spec-
ified property and its actual implementation or poorly
specified / under-specified behavior.

These seemingly minor RTL coding errors may constitute
security vulnerabilities, some of which are very difficult to
detect during verification. This is because of their intercon-
nection and interaction with the surrounding logic that affects
the complexity of the subtle side effects they generate in their
manifestation. Some of these RTL bugs may be patched by
modifying parts of the software stack that use the hardware
(e.g., using firmware/microcode updates) to circumvent them
and mitigate specific exploits. However, since RTL is usually
compiled into hardwired integrated circuitry logic, the under-
lying bugs cannot, in principle, be patched after production.

The limited capabilities of current detection approaches in
modeling hardware designs and formulating and capturing rel-
evant security assertions raise challenges for detecting some
of these vulnerabilities, which we investigate in depth in this
work. We describe next the adversary model we assume for
our vulnerabilities and our investigation.

3.3 Adversary Model
In our work, we investigate microarchitectural details at the
RTL level. However, all hardware vendors keep their propri-
etary industry designs and implementations closed. Hence,
we use an open-source SoC based on the popular open-source
RISC-V [73] architecture as our platform. RISC-V supports
a wide range of possible configurations with many standard
features that are also available in modern processor designs,
such as privilege level separation, virtual memory, and multi-
threading, as well as optimization features such as config-
urable branch prediction and out-of-order execution.

RISC-V RTL is freely available and open to inspection
and modification. While this is not necessarily the case for
industry-leading chip designs, an adversary might be able
to reverse engineer or disclose/steal parts of the chip using
existing tools23. Hence, we consider a strong adversary that
can also inspect the RTL code.

In particular, we make the following assumptions:

2https://www.chipworks.com/
3http://www.degate.org/

• Hardware Vulnerability: The attacker has knowledge of
a vulnerability in the hardware design of the SoC (i.e., at
the RTL level) and can trigger the bug from software.

• User Access: The attacker has complete control over a user-
space process, and thus can issue unprivileged instructions
and system calls in the basic RISC-V architecture.

• Secure Software: Software vulnerabilities and resulting
attacks, such as code-reuse [65] and data-only attacks [27]
against the software stack, are orthogonal to the problem
of cross-layer bugs. Thus, we assume all platform software
is protected by defenses such as control-flow integrity [1]
and data-flow integrity [13], or is formally verified.
The goal of an adversary is to leverage the vulnerability

on the chip to provoke unintended functionality, e.g., access
to protected memory locations, code execution with elevated
privileges, breaking the isolation of other processes running
on the platform, or permanently denying services. RTL bugs
in certain hardware modules might only be exploitable with
physical access to the victim device, for instance, bugs in de-
bug interfaces. However, other bugs are software-exploitable,
and thus have a higher impact in practice. Hence, we focus on
software-exploitable RTL vulnerabilities, such as the exploit
showcased in Appendix D. Persistent denial of service (PDoS)
attacks that require exclusive physical access are out of scope.
JTAG attacks, though they require physical access, are still in
scope as the end user may be the attacker and might attempt to
unlock the device to steal manufacturer secrets. Furthermore,
exploiting the JTAG interface often requires a combination of
both physical access and privilege escalation by means of a
software exploit to enable the JTAG interface. We also note
that an adversary with unprivileged access is a realistic model
for real-world SoCs: Many platforms provide services to other
devices over the local network or even over the internet. Thus,
the attacker can obtain some limited software access to the
platform already, e.g., through a webserver or an RPC inter-
face. Furthermore, we emphasize that this work focuses only
on tools and techniques used to detect bugs before tape-out.

4 HardFails: Hardware Security Bugs

In light of the limitations of state-of-the-art verification tools
(Section 3.1), we constructed a testbed of real-world RTL
bugs (Section 3.2) and conducted two extensive case stud-
ies on their detection (described next in Sections 5 and 6).
Based on our findings, we have identified particular classes of
hardware bugs that exhibit properties that render them more
challenging to detect with state-of-the-art techniques. We call
these HardFails. We now describe different types of these
HardFails encountered during our analysis of two RISC-V
SoCs, Ariane [59] and PULPissimo [61]. In Section 5.3, we
describe the actual bugs we instantiated for our case studies.

Ariane is a 6-stage in-order RISC-V CPU that implements
the RISC-V draft privilege specification and can run Linux
OS. It has a memory management unit (MMU) consisting of

USENIX Association 28th USENIX Security Symposium 217

https://www.chipworks.com/
http://www.degate.org/

TABLE 1: Detection results for bugs in PULPissimo SoC based on formal verification (SPV and FPV, i.e., JasperGold Security
Path Verification and Formal Property Verification) and our hardware security competition (M&S, i.e., manual inspection and
simulation). Check and cross marks indicate detected and undetected bugs, respectively. Bugs marked inserted were injected
by our team and based on the listed CVEs, while bugs marked native were already present in the SoC and discovered by the
participants during Hack@DAC. LOC denotes the number of lines of code, and states denotes the total number of logic states
for the modules needed to attempt to detect this bug.

Bug Type SPV FPV M&S Modules LOC # States

1 Address range overlap between peripherals SPI Master and SoC Inserted (CVE-2018-12206 / 3 3 3 91 6685 1.5×1020

CVE-2019-6260 / CVE-2018-8933)

2 Addresses for L2 memory is out of the specified range. Native 3 3 3 43 6746 3.5×1013

3 Processor assigns privilege level of execution incorrectly from CSR. Native 7 3 3 2 1186 2.1×1096

4 Register that controls GPIO lock can be written to with software. Inserted (CVE-2017-18293) 3 3 7 2 1186 2.1×1096

5 Reset clears the GPIO lock control register. Inserted (CVE-2017-18293) 3 3 7 2 408 1

6 Incorrect address range for APB allows memory aliasing. Inserted (CVE-2018-12206 / 3 3 7 1 110 2
CVE-2019-6260)

7 AXI address decoder ignores errors. Inserted (CVE-2018-4850) 7 3 7 1 227 2

8 Address range overlap between GPIO, SPI, and SoC control peripherals. Inserted (CVE-2018-12206 / 3 3 3 68 14635 9.4×1021

(CVE-2017-5704)

9 Incorrect password checking logic in debug unit. Inserted (CVE-2018-8870) 7 3 7 4 436 1

10 Advanced debug unit only checks 31 of the 32 bits of the password. Inserted (CVE-2017-18347 / 7 3 7 4 436 16
CVE-2017-7564)

11 Able to access debug register when in halt mode. Native (CVE-2017-18347 / 7 3 3 2 887 1

12 Password check for the debug unit does not reset after successful check. Inserted (CVE-2017-7564) 7 3 3 4 436 16

13 Faulty decoder state machine logic in RISC-V core results in a hang. Native 7 3 3 2 1119 32

14 Incomplete case statement in ALU can cause unpredictable behavior. Native 7 3 3 2 1152 4

15 Faulty logic in the RTC causing inaccurate time calculation for security-critical flows, e.g., DRM. Native 7 3 7 1 191 1

16 Reset for the advanced debug unit not operational. Inserted (CVE-2017-18347) 7 7 3 4 436 16

17 Memory-mapped register file allows code injection. Native 7 7 3 1 134 1

18 Non-functioning cryptography module causes DOS. Inserted 7 7 7 24 2651 1

19 Insecure hash function in the cryptography module. Inserted (CVE-2018-1751) 7 7 7 24 2651 N/A

20 Cryptographic key for AES stored in unprotected memory. Inserted (CVE-2018-8933 / 7 7 7 57 8955 1
CVE-2014-0881 / CVE-2017-5704)

21 Temperature sensor is muxed with the cryptography modules. Inserted 7 7 3 1 65 1

22 ROM size is too small preventing execution of security code. Inserted (CVE-2018-6242 /) 7 7 3 1 751 N/A
CVE-2018-15383)

23 Disabled the ability to activate the security-enhanced core. Inserted (CVE-2018-12206) 7 7 7 1 282 N/A

24 GPIO enable always high. Inserted (CVE-2018-1959) 7 7 7 1 392 1

25 Unprivileged user-space code can write to the privileged CSR. Inserted (CVE-2018-7522 / 7 7 3 1 745 1
CVE-2017-0352)

26 Advanced debug unit password is hard-coded and set on reset. Inserted (CVE-2018-8870) 7 7 3 1 406 16

27 Secure mode is not required to write to interrupt registers. Inserted (CVE-2017-0352) 7 7 3 1 303 1

28 JTAG interface is not password protected. Native 7 7 3 1 441 1

29 Output of MAC is not erased on reset. Inserted 7 7 3 1 65 1

30 Supervisor mode signal of a core is floating preventing the use of SMAP. Native 7 7 3 1 282 1

31 GPIO is able to read/write to instruction and data cache. Native 7 7 3 1 151 4

218 28th USENIX Security Symposium USENIX Association

data and instruction translation lookaside buffers (TLBs), a
hardware page table walker, and a branch prediction unit to
enable speculative execution. Figure 4 in Appendix A shows
its high-level microarchitecture.

PULPissimo is an SoC based on a simpler RISC-V core
with both instruction and data RAM as shown in Figure 2. It
provides an Advanced Extensible Interface (AXI) for access-
ing memory from the core. Peripherals are directly connected
to an Advanced Peripheral Bus (APB) which connects them
to the AXI through a bridge module. It provides support for
autonomous I/O, external interrupt controllers and features a
debug unit and an SPI slave.
TLB Page Fault Timing Side Channel (L-1 & L-2).
While analyzing the Ariane RTL, we noted a timing
side-channel leakage with TLB accesses. TLB page faults
due to illegal accesses occur in a different number of clock
cycles than page faults that occur due to unmapped memory
(we contacted the developers and they acknowledged the
vulnerability). This timing disparity in the RTL manifests
in the microarchitectural behavior of the processor. Thus,
it constitutes a software-visible side channel due to the
measurable clock-cycle difference in the two cases. Previous
work already demonstrated how this can be exploited by
user-space adversaries to probe mapped and unmapped
pages and to break randomization-based defenses [24, 29].
Timing flow properties cannot be directly expressed by
simple properties or modeled by state-of-the-art verification
techniques. Moreover, for this vulnerability, we identify at
least seven RTL modules that would need to be modeled,
analyzed and verified in combination, namely: mmu.sv -
nbdcache.sv - tlb.sv instantiations - ptw.sv - load_unit.sv
- store_unit.sv. Besides modeling their complex inter- and
intra-modular logic flows (L-1), the timing flows need to be
modeled to formally prove the absence of this timing channel
leakage, which is not supported by current industry-standard
tools (L-2). Hence, the only alternative is to verify this
property by manually inspecting and following the clock
cycle transitions across the RTL modules, which is highly
cumbersome and error-prone. However, the design must still
be analyzed to verify that timing side-channel resilience is
implemented correctly and bug-free in the RTL. This only
becomes far more complex for real-world industry-standard
SoCs. We show the RTL hierarchy of the Ariane core in
Figure 5 in Appendix A to illustrate its complexity.

Pre-Fetched Cache State Not Rolled Back (L-1 & L-3).
Another issue in Ariane is with the cache state when a system
return instruction is executed, where the privilege level of the
core is not changed until this instruction is retired. Before
retirement, linear fetching (guided by branch prediction) of
data and instructions following the unretired system return
instruction continues at the current higher system privilege
level. Once the instruction is retired, the execution mode of the
core is changed to the unprivileged level, but the entries that

RISC-V
Core

Peripheral Interface

TimerCLK Debug

Tightly Coupled Data Memory Interconnect

ROML2
Bank

L2
Bank

Event

AXIAdvanced
Debug Unit

GPIO

uDMA

UARTI2C

I2S

SPI
Master

Camera
Interface

HWPEAPB

= Security Vulnerability

JTAG

GPIO

I2S

SPI CPI I2C UART

AXI

FIGURE 2: Hardware overview of the PULPissimo SoC. Each
bug icon indicates the presence of at least one security vulner-
ability in the module.

were pre-fetched into the cache (at the system privilege level)
do not get flushed. These shared cache entries are visible to
user-space software, thus enabling timing channels between
privileged and unprivileged software.

Verifying the implementation of all the flush control signals
and their behavior in all different states of the processor
requires examining at least eight modules: ariane.sv -
controller.sv - frontend.sv - id_stage.sv - icache.sv - fetch_fifo
- ariane_pkg.sv - csr_regfile.sv (see Figure 5). This is complex
because it requires identifying and defining all the relevant
security properties to be checked across these RTL modules.
Since current industry-standard approaches do not support
expressive capturing and the verification of cache states, this
issue in the RTL can only be found by manual inspection.

Firmware-Configured Memory Ranges (L-4).
In PULPissimo, we added peripherals with injected bugs to
reproduce bugs from CVEs. We added an AES encryption/de-
cryption engine whose input key is stored and fetched from
memory tightly coupled to the processor. The memory ad-
dress the key is stored in is unknown, and whether it is within
the protected memory range or not is inconclusive by observ-
ing the RTL alone. In real-world SoCs, the AES key is stored
in programmable fuses. During secure boot, the bootload-
er/firmware senses the fuses and stores the key to memory-
mapped registers. The access control filter is then configured
to allow only the AES engine access to these registers, thus
protecting this memory range. Because the open-source SoC
we used did not contain a fuse infrastructure, the key storage
was mimicked to be in a register in the Memory-Mapped I/O
(MMIO) space.

Although the information flow of the AES key is defined
in hardware, its location is controlled by the firmware.
Reasoning on whether the information flow is allowed or
not using conventional hardware verification approaches is
inconclusive when considering the RTL code in isolation.

USENIX Association 28th USENIX Security Symposium 219

The vulnerable hardware/firmware interactions cannot be
identified unless they are co-verified. Unfortunately, current
industry-standard tools do not support this.

Memory Address Range Overlap (L-1 & L-4).
PULPissimo provides I/O support to its peripherals by map-
ping them to different memory address ranges. If an address
range overlap bug is committed at design-time or by firmware,
this can break access control policies and have critical secu-
rity consequences, e.g., privilege escalation. We injected an
RTL bug where there is address range overlap between the
SPI Master Peripheral and the SoC Control Peripheral. This
allowed the untrusted SPI Master to access the SoC Control
memory address range over the APB bus.

Verifying issues at the SoC interconnect in such complex
bus protocols is challenging since too many modules needed
to support the interconnect have to be modeled to properly
verify their security. This increases the scope and the com-
plexity of potential bugs far beyond just a few modules, as
shown in Table 1. Such an effect causes an explosion of the
state space since all the possible states have to be modeled
accurately to remain sound. Proof kits for accelerated verifica-
tion of advanced SoC interconnect protocols were introduced
to mitigate this for a small number of bus protocols (AMBA3
and AMBA4). However, this requires an add-on to the default
software and many protocols are not supported4.

5 Crowdsourcing Detection

We organized and conducted a capture-the-flag competition,
Hack@DAC, in which 54 teams (7 from leading industry
vendors and 47 from academia) participated. The objective
for the teams was to detect as many RTL bugs as possi-
ble from those we injected deliberately in real-world open-
source SoC designs (see Table 1). This is designed to mimic
real-world bug bounty programs from semiconductor com-
panies [17, 32, 62, 63]. The teams were free to use any tech-
niques: simulation, manual inspection, or formal verification.

5.1 Competition Preparation
RTL of open-source RISC-V SoCs was used as the testbed
for Hack@DAC and our investigation. Although these SoCs
are less complex than high-end industry proprietary designs,
this allows us to feasibly inject (and detect) bugs into less
complex RTL. Thus, this represents the best-case results for
the verification techniques used during Hack@DAC and our
investigation. Moreover, it allows us to open-source and show-
case our testbed and bugs to the community.Hack@DAC con-
sisted of two phases: a preliminary Phase 1 and final Phase 2,
which featured the RISC-V Pulpino and PULPissimo SoCs,

4http://www.marketwired.com/press-release/jasper-
introduces-intelligent-proof-kits-faster-more-accurate-
verification-soc-interface-1368721.htm

respectively. Phase 1 was conducted remotely over a two-
month period. Phase 2 was conducted in an 8-hour time frame
co-located with DAC (Design Automation Conference).

For Phase 1, we chose the Pulpino [60] SoC since it was
a real-world, yet not an overly complex SoC design for the
teams to work with. It features a RISC-V core with instruction
and data RAM, an AXI interconnect for accessing memory,
with peripherals on an APB accessing the AXI through a
bridge module. It also features a boot ROM, a debug unit and
a serial peripheral interface (SPI) slave. We inserted security
bugs in multiples modules of the SoC, including the AXI,
APB, debug unit, GPIO, and bridge.

For Phase 2, we chose the more complex PULPissimo [61]
SoC, shown in Figure 2. It additionally supports hardware pro-
cessing engines, DMA, and more peripherals. This allowed us
to extend the SoC with additional security features, making
room for additional bugs. Some native security bugs were dis-
covered by the teams and were reported to the SoC designers.

5.2 Competition Objectives
For Hack@DAC, we first implemented additional security
features in the SoC, then defined the security objectives and
adversary model and accordingly inserted the bugs. Specify-
ing the security goals and the adversary model allows teams to
define what constitutes a security bug. Teams had to provide
a bug description, location of RTL file, code reference, the se-
curity impact, adversary profile, and the proposed mitigation.
Security Features: We added password-based locks on the
JTAG modules of both SoCs and access control on certain
peripherals. For the Phase-2 SoC, we also added a crypto-
graphic unit implementing multiple cryptographic algorithms.
We injected bugs into these features and native features to
generate security threats as a result.
Security Goals: We provided the three main security goals
for the target SoCs to the teams. Firstly, unprivileged code
should not escalate beyond its privilege level. Secondly, the
JTAG module should be protected against an adversary with
physical access. Finally, the SoCs should thwart software
adversaries from launching denial-of-service attacks.

5.3 Overview of Competition Bugs
As described earlier in Section 3.2, the bugs were selected
and injected together with our Intel collaborators. They are
inspired by their hardware security expertise and real-world
CVEs (cf. Table 1) and aim to achieve coverage of different
security-relevant components of the SoC. Several participants
also reported a number of native bugs already present in the
SoC that we did not deliberately inject. We describe below
some of the most interesting bugs.
UDMA address range overlap: We modified the memory
address range of the UDMA so that it overlaps with the master
port to the SPI. This bug allows an adversary with access to

220 28th USENIX Security Symposium USENIX Association

http://www.marketwired.com/press-release/jasper-introduces-intelligent-proof-kits-faster-more-accurate-verification-soc-interface-1368721.htm
http://www.marketwired.com/press-release/jasper-introduces-intelligent-proof-kits-faster-more-accurate-verification-soc-interface-1368721.htm
http://www.marketwired.com/press-release/jasper-introduces-intelligent-proof-kits-faster-more-accurate-verification-soc-interface-1368721.htm

the UMDA memory to escalate its privileges and modify the
SPI memory. This bug is an example of the "Memory Address
Range Overlap" HardFail type in Section 4. Other address
range configuration bugs (#1, 2, 6 and 8) were also injected
in the APB bus for different peripherals.
GPIO errors: The address range of the GPIO memory was
erroneously declared. An adversary with GPIO access can
escalate its privilege and access the SPI Master and SoC Con-
trol. The GPIO enable was rigged to display a fixed erroneous
status of ’1’, which did not give the user a correct display of
the actual GPIO status. The GPIO lock control register was
made write-accessible by user-space code, and it was flawed
to clear at reset. Bugs #4, 5, 24 and 31 are such examples.
Debug/JTAG errors: The password-checking logic in the
debug unit was flawed and its state was not being correctly
reset after a successful check. We hard-coded the debug unit
password, and the JTAG interface was not password protected.
Bugs #9, 10, 11, 16, 26, and 28 are such examples.
Untrusted boot ROM: A native bug (bug #22) would allow
unprivileged compromise of the boot ROM and potentially
the execution of untrusted boot code at a privileged level, thus
disclosing sensitive information.
Erroneous AXI finite-state machine: We injected a bug
(bug #7) in the AXI address decoder such that, if an error
signal is generated on the memory bus while the underlining
logic is still handling an outstanding transaction, the next sig-
nal to be handled will instead be considered operational by the
module unconditionally. This bug can be exploited to cause
computational faults in the execution of security-critical code
(we showcase how to exploit this vulnerability—which was
not detected by all teams—in Appendix D).
Cryptographic unit bugs: We injected bugs in a crypto-
graphic unit that we inserted to trigger denial-of-service, a
broken cryptographic implementation, insecure key storage,
and disallowed information leakage. Bugs #18, 19, 20, 21,
and 29 are such examples.

5.4 Competition Results

Various insights were drawn from the submitted bug reports
and results, which are summarized in Table 1.

Analyzing the bug reports: Bug reports submitted by teams
revealed which bug types were harder to detect and analyze
using existing approaches. We evaluated the submissions and
rated them for accuracy and detail, e.g., bug validity, method-
ology used, and security impact.
Detected bugs: Most teams easily detected two bugs in
PULPissimo. The first one is where debug IPs were used
when not intended. The second bug was where we declared
a local parameter PULP_SEC, which was always set to ’1’,
instead of the intended PULP_SECURE. The former was de-
tected because debugging interfaces represent security-critical
regions of the chip. The latter was detected because it indi-

cated intuitively that exploiting this parameter would lead
to privilege escalation attacks. The teams reported that they
prioritized inspecting security-relevant modules of the SoC,
such as the debug interfaces.
Undetected bugs: Many inserted bugs were not detected.
One was in the advanced debug unit, where the password bit
index register has an overflow (bug #9). This is an example of
a security flaw that would be hard to detect by methods other
than verification. Moreover, the presence of many bugs within
the advanced debug unit password checker further masked
this bug. Another bug was the cryptographic unit key storage
in unprotected memory (bug #20). The teams could not detect
it as they focused on the RTL code in isolation and did not
consider HW/FW interactions.
Techniques used by the teams: The teams were free to use
any techniques to detect the bugs but most teams eventually
relied on manual inspection and simulation.

• Formal verification: One team used an open-source
formal verification tool (VeriCoq), but they reported little
success because these tools (i) did not scale well with
the complete SoC and (ii) required expertise to use and
define the security properties. Some teams deployed
their in-house verification techniques, albeit with little
success. They eventually resorted to manual analysis.

• Assertion-based simulation: Some teams prepared
RTL testbenches and conducted property-based simu-
lations using SystemVerilog assertion statements.

• Manual inspection: All teams relied on manual inspec-
tion methods since they are the easiest and most accessi-
ble and require less expertise than formal verification, es-
pecially when working under time constraints. A couple
of teams reported prioritizing the inspection of security-
critical modules such as debug interfaces.

• Software-based testing: One team detected software-
exposure and privilege escalation bugs by running C
code on the processor and attempting to make arbitrary
reads/writes to privileged memory locations. In doing
this, they could detect bugs #4, #8, #15, and #17.

Limitations of manual analysis: While manual inspection
can detect the widest array of bugs, our analysis of the
Hack@DAC results reveals its limitations. Manual analysis
is qualitative and difficult to scale to cross-layer and more
complex bugs. In Table 1, out of 16 cross-module bugs (span-
ning more than one module) only 9 were identified using
manual inspection. Three of them (#18, #19, and #20) were
also undetected by formal verification methods, which is 10%
of the bugs in our case studies.

6 Detection Using State-of-The-Art Tools

Our study reveals two results: (1) a number of bugs could not
be detected by means of manual auditing and other ad-hoc
methods, and (2) the teams were able to find bugs already
existing in the SoC which we did not inject and were not

USENIX Association 28th USENIX Security Symposium 221

aware of. This prompted us to conduct a second in-house
case study to further investigate whether formal verification
techniques can be used to detect these bugs. In practice,
hardware-security verification engineers use a combination of
techniques such as formal verification, simulation, emulation,
and manual inspection. Our first case study covered manual
inspection, simulation and emulation techniques. Thus, we
focused our second case study on assessing the effectiveness
of industry-standard formal verification techniques usually
used for verifying pre-silicon hardware security.

In real-world security testing (see Section 2), engineers will
not have prior knowledge of the specific vulnerabilities they
are trying to find. Our goal, however, is to investigate how an
industry-standard tool can detect RTL bugs that we deliber-
ately inject in an open-source SoC and have prior knowledge
of (see Table 1). Since there is no regulation or explicitly de-
fined standard for hardware-security verification, we focus our
investigation on the most popular and de-facto standard for-
mal verification platform used in industry [11]. This platform
encompasses a representative suite of different state-of-the-art
formal verification techniques for hardware security assur-
ance. As opposed to simulation and emulation techniques,
formal verification guarantees to model the state space of the
design and formally prove the desired properties. We empha-
size that we deliberately fix all other variables involved in the
security testing process, in order to focus in a controlled set-
ting on testing the capacity and limitations of the techniques
and tools themselves. Thus, our results reflect the effective-
ness of tools in a best case where the bug is known a priori.
This eliminates the possibility of writing an incorrect security
property assertion which fails to detect the bug.

6.1 Detection Methodology
We examined each of the injected bugs and its nature in order
to determine which formal technique would be best suited to
detect it. We used two formal techniques: Formal Property
Verification (FPV) and JasperGold’s Security Path Verifica-
tion (SPV) [12]. They represent the state of the art in hardware
security verification and are used widely by the semiconductor
industry [4], including Intel.

FPV checks whether a set of security properties, usually
specified as SystemVerilog Assertions (SVA), hold true for
the given RTL. To describe the assertions correctly, we exam-
ined the location of each bug in the RTL and how its behavior
is manifested with the surrounding logic and input/output re-
lationships. Once we specified the security properties using
assert, assume and cover statements, we determined which
RTL modules we need to model to prove these assertions.
If a security property is violated, the tool generates a coun-
terexample; this is examined to ensure whether the intended
security property is indeed violated or is a false alarm.

SPV detects bugs which specifically involve unauthorized
information flow. Such properties cannot be directly captured
using SVA/PSL assertions. SPV uses path sensitization tech-

Privilege
escalation

DoS Secret
leakage

Code
injectionBug class

1

2

3

4

5

6

7

of

 b
ug

s

SPV
FPV
M&S
Undetected

FIGURE 3: Verification results grouped by bug class and
the number of bugs in each class detected by Security Path
Verification (SPV), Formal Property Verification (FPV) and
manual inspection and simulation techniques (M&S).

niques to exhaustively and formally check if unauthorized
data propagates (through a functional path) from a source
to a destination signal. To specify the SPV properties, we
identified source signals where the sensitive information was
located and destination signals where it should not propagate.
We then identified the bounding preconditions to constrain the
paths the tool searches to alleviate state and time explosion.
Similar to FPV, we identified the modules that are required
to capture the information flow of interest. This must include
source, destination and intermediate modules, as well as mod-
ules that generate control signals which interfere with the
information flow.

6.2 Detection Results
Of the 31 bugs we investigated, shown in Table 1, using the
formal verification techniques described above, only 15 (48%)
were detected. While we attempted to detect all 31 bugs for-
mally, we were able to formulate security properties for only
17 bugs. This indicates that the main challenge with using
formal verification tools is identifying and expressing security
properties that the tools are capable of capturing and checking.
Bugs due to ambiguous specifications of interconnect logic,
for instance, are examples of bugs that are difficult to create
security properties for.

Our results, shown in Figure 3, indicate that privilege es-
calation and denial-of-service (DoS) bugs were the most de-
tected at 60% and 67% respectively. Secret leakage only had
a 17% detection rate due to incorrect design specification for
one bug, state explosion and the inability to express proper-
ties that the tool can assert for the remaining bugs. The code
injection bug was undetected by formal techniques. Bugs at
the interconnect level of the SoC such as bugs #1 and #2 were
especially challenging since they involved a large number of
highly complex and inter-connected modules that needed to be
loaded and modeled by the tool (see L-1 in Section 3.1). Bug
#20, which involves hardware/firmware interactions, was also

222 28th USENIX Security Symposium USENIX Association

detected by neither the state-of-the-art FPV nor SPV since
they analyze the RTL in isolation (see L-4 in Section 3.1). We
describe these bugs in more detail in Appendix C.

6.3 State-Explosion Problem
Formal verification techniques are quickly driven into state
space explosion when analyzing large designs with many
states. Many large interconnected RTL modules, like those
relevant to bugs #1 and #2, can have states in the order of
magnitude of 1020. Even smaller ones, like these used for bugs
#3 and #4, can have a very large number of states, as shown
in Table 1. When combined, the entire SoC will have a total
number of states significantly higher than any of the results
in Table 1. Attempting to model the entire SoC drove the tool
into state explosion, and it ran out of memory and crashed.
Formal verification tools, including those specific to security
verification are currently incapable of handling so many states,
even when computational resources are increased. This is
further aggravated for industry-standard complex SoCs.

Because the entire SoC cannot be modeled and analyzed at
once, detecting cross-modular bugs becomes very challeng-
ing. Engineers work around this (not fundamentally solve
it) by adopting a divide-and-conquer approach and selecting
which modules are relevant for the properties being tested
and which can be black-boxed or abstracted. However, this
is time-consuming, non-automated, error-prone, and requires
expertise and knowledge of both the tools and design. By
relying on the human factor, the tool can no longer guarantee
the absence of bugs for the entire design, which is the original
advantage of formal verification.

7 Discussion and Future Work

We now describe why microcode patching is insufficient for
RTL bugs while emphasizing the need for advancing the hard-
ware security verification process. We discuss the additional
challenges of the overall process, besides the limitations of
the industry-standard tools, which is the focus of this work.

7.1 Microcode Patching

While existing industry-grade SoCs support hotfixes by mi-
crocode patching for instance, this approach is limited to a
handful of changes to the instruction set architecture, e.g.,
modifying the interface of individual complex instructions
and adding or removing instructions [25]. Some vulnerabili-
ties cannot even be patched by microcode, such as the recent
Spoiler attack [33]. Fundamentally mitigating this requires
fixing the hardware of the memory subsystem at the hardware
design phase. For legacy systems, the application developer is
advised to follow best practices for developing side channel-

resilient software5. For vulnerabilities that can be patched,
patches at this higher abstraction level in the firmware only
act as a "symptomatic" fix that circumvent the RTL bug. How-
ever, they do not fundamentally patch the bug in the RTL,
which is already realized as hardwired logic. Thus, microcode
patching is a fallback for RTL bugs discovered after produc-
tion, when you can not patch the RTL. They may also incur
performance impact 6 that could be avoided if the underlying
problem is discovered and fixed during design.

7.2 Additional Challenges in Practice

Functional vs. Security Specifications. As described in Sec-
tion 2, pre- and post-silicon validation efforts are conducted
to verify that the implementation fully matches both its func-
tional and security specifications. The process becomes in-
creasingly difficult (almost impossible) as the system com-
plexity increases and specification ambiguity arises. Devi-
ations from specification occur due to either functional or
security bugs, and it is important to distinguish between them.
While functional bugs generate functionally incorrect results,
security bugs are not reflected in functionality. They arise due
to unconsidered and corner threat cases that are unlikely to
get triggered, thus making them more challenging to detect
and cover. It is, therefore, important to distinguish between
functional and security specifications, since these are often
the references for different verification teams working con-
currently on the same RTL implementation.

Specification Ambiguity. Another challenge entails antic-
ipating and identifying all the security properties that are
required in a real-world scenario. We analyzed the efficacy
of industry-standard tools in a controlled setting—where we
have prior knowledge of the bugs. However, in practice hard-
ware validation teams do not have prior knowledge of the
bugs. Security specifications are often incomplete and am-
biguous, only outlining the required security properties under
an assumed adversary model. These specifications are inval-
idated once the adversary model is changed. This is often
the case with IP reuse, where the RTL code for one product
is re-purposed for another with a different set of security re-
quirements and usage scenarios. Parameters may be declared
multiple times and get misinterpreted by the tools, thus caus-
ing bugs to slip undetected. Furthermore, specs usually do
not specify bugs and information flows that should not exist,
and there is no automated approach to determine whether one
is proving the intended properties. Thus, a combination of
incomplete or incorrect design decisions and implementation
errors can easily introduce bugs to the design.

5https://www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00238.html

6https://access.redhat.com/articles/3307751

USENIX Association 28th USENIX Security Symposium 223

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00238.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00238.html
https://access.redhat.com/articles/3307751

7.3 Future Research Directions
Through our work, we shed light on the limitations of state-
of-the-art verification techniques. In doing so, we hope to
motivate further research in advancing these techniques to
adequately capture and detect these vulnerabilities.

Although manual RTL inspection is generally useful and
can potentially cover a wide array of bugs, its efficacy de-
pends exclusively on the expertise of the engineer. This can
be inefficient, unreliable and ad hoc in light of rapidly evolv-
ing chip designs. Exhaustive testing of specifications through
simulation requires amounts of resources exponential in the
size of the input (i.e., design state space) while coverage
must be intelligently maximized. Hence, current approaches
face severe scalability challenges, as diagnosing software-
exploitable bugs that reside deep in the design pipeline can
require simulation of trillions of cycles [14]. Our results indi-
cate that it is important to first identify high-risk components
due to software exposure, such as password checkers, crypto
cores, and control registers, and prioritize analyzing them.
Scalability due to complex inter-dependencies among mod-
ules is one challenge for detection. Vulnerabilities associated
with non-register states (such as caches) or clock-cycle depen-
dencies (i.e., timing flows) are another open problem. Initial
research is underway [71] to analyze a limited amount of
low-level firmware running on top of a simulated RTL de-
sign for information and timing flow violations. However,
these approaches are still in their infancy and yet to scale for
real-world SoC designs.

8 Related Work

We now present related work in hardware security verifica-
tion while identifying limitations with respect to detecting
HardFails. We also provide an overview of recent software
attacks exploiting underlying hardware vulnerabilities.

8.1 Current Detection Approaches
Security-aware design of hardware has gained significance
only recently as the critical security threat posed by hardware
vulnerabilities became acutely established. Confidentiality
and integrity are the commonly investigated properties [19]
in hardware security. They are usually expressed using infor-
mation flow properties between entities at different security
levels. Besides manual inspection and simulation-based tech-
niques, systematic approaches proposed for verifying hard-
ware security properties include formal verification methods
such as proof assistance, model-checking, symbolic execu-
tion, and information flow tracking. We exclude the related
work in testing mechanisms, e.g., JTAG/scan-chain/built-in
self-test, because they are leveraged for hardware testing af-
ter fabrication. However, the focus of this work is on veri-
fying the security of the hardware before fabrication. Inter-

estingly, this includes verifying that the test mechanisms are
correctly implemented in the RTL, otherwise they may consti-
tute security vulnerabilities when used after fabrication (see
bugs#9,#10,#11,#12,#16, #26 of the JTAG/debug interface).

Proof assistant and theorem-proving methods rely on
mathematically modeling the system and the required secu-
rity properties into logical theorems and formally proving if
the model complies with the properties. VeriCoq [7] based on
the Coq proof assistant transforms the Verilog code that de-
scribes the hardware design into proof-carrying code.VeriCoq
supports the automated conversion of only a subset of Verilog
code into Coq. However, this assumes accurate labeling of the
initial sensitivity labels of each and every signal in order to
effectively track the flow of information. This is cumbersome,
error-prone, generates many faluse positives, and does not
scale well in practice beyond toy examples. Moreover, timing
(and other) side-channel information flows are not modeled.
Finally, computational scalability to verifying real-world com-
plex SoCs remains an issue given that the proof verification
for a single AES core requires ≈ 30 minutes to complete [6].

Model checking-based approaches check a given prop-
erty against the modeled state space and possible state tran-
sitions using provided invariants and predefined conditions.
They face scalability issues as computation time scales ex-
ponentially with the model and state space size. This can
be alleviated by using abstraction to simplify the model or
constraining the state space to a bounded number of states
using assumptions and conditions. However, this introduces
false positives, may miss vulnerabilities, and requires expert
knowledge. Most industry-leading tools, such as the one we
use in this work, rely on model checking algorithms such as
boolean satisfiability problem solvers and property specifica-
tion schemes, e.g., assertion-based verification to verify the
required properties of a given hardware design.

Side-channel leakage modeling and detection remain
an open problem. Recent work [76] uses the Murϕ model
checker to verify different hardware cache architectures for
side-channel leakage against different adversary models. A
formal verification methodology for SGX and Sanctum en-
claves under a limited adversary was introduced in [67]. How-
ever, such approaches are not directly applicable to hardware
implementation. They also rely exclusively on formal veri-
fication and remain inherently limited by the underlying al-
gorithms in terms of scalability and state space explosion,
besides demanding particular expertise to use.

Information flow analysis (such as SPV) works by assign-
ing a security label (or a taint) to a data input and monitoring
the taint propagation. In this way, the designer can verify
whether the system adheres to the required security policies.
Recently, information flow tracking (IFT) has been shown ef-
fective in identifying security vulnerabilities, including timing
side channels and information-leaking hardware Trojans.

IFT techniques are proposed at different levels of abstrac-
tion: gate-, RT, and language-levels. Gate-level information

224 28th USENIX Security Symposium USENIX Association

flow tracking (GLIFT) [2, 58, 70] performs the IFT analysis
directly at gate-level by generating GLIFT analysis logic that
is derived from the original logic and operates in parallel to it.
Although gate-level IFT logic is easy to automatically gener-
ate, it does not scale well. Furthermore, when IFT uses strict
non-interference, it taints any information flow conservatively
as a vulnerability [34] which scales well for more complex
hardware, but generates too many false positives.

At the language level, Caisson [42] and Sapper [41] are
security-aware HDLs that use a typing system where the de-
signer assigns security "labels" to each variable (wire or reg-
ister) based on the security policies required. However, they
both require redesigning the RTL using a new hardware de-
scription language which is not practical. SecVerilog [22, 75]
overcomes this by extending the Verilog language with a dy-
namic security type system. Designers assign a security label
to each variable (wire or register) in the RTL to enable a
compile-time check of hardware information flow. However,
this involves complex analysis during simulation to reason
about the run-time behavior of the hardware state and depen-
dencies across data types for precise flow tracking.

Hardware/firmware co-verification to capture and verify
hardware/firmware interactions remains an open challenge
and is not available in widely used industry-standard tools. A
co-verification methodology [28] addresses the semantic gap
between hardware and firmware by modeling hardware and
firmware using instruction-level abstraction to leverage soft-
ware verification techniques. However, this requires modeling
the hardware that interacts with firmware into an abstraction
which is semi-automatic, cumbersome, and lossy.

While research is underway [71] to analyze a limited
amount of low-level firmware running on top of a simulated
RTL design these approaches are still under development and
not scalable. Current verification approaches focus on register-
state information-flow analysis, e.g., to monitor whether sensi-
tive locations are accessible from unprivileged signal sources.
Further research is required to explicitly model non-register
states and timing explicitly alongside the existing capabilities
of these tools.

8.2 Recent Attacks
We present and cautiously classify the underlying hardware
vulnerabilities of recent cross-layer exploits (see Table 2 in
Appendix B), using the categories introduced in 3.1. We do
not have access to proprietary processor implementations,
so our classification is only based on our deductions from
the published technical descriptions. Yarom et al. demon-
strate that software-visible side channels can exist even below
cache-line granularity in CacheBleed [74]–undermining a
core assumption of prior defenses, such as scatter-gather [9].
MemJam [45] exploits false read-after-write dependencies in
the CPU to maliciously slow down victim accesses to mem-
ory blocks within a cache line. We categorize the underlying
vulnerabilities of CacheBleed and MemJam as potentially

hard to detect in RTL due to the many cross-module connec-
tions involved and the timing-flow leakage. The timing flow
leakage is caused by the software triggering clock cycle differ-
ences in accesses that map to the same bank below cache line
granularity, thus breaking constant-time implementations.

The TLBleed [23] attack shows how current TLB imple-
mentations can be exploited to break state-of-the-art cache
side-channel protections. As described in Section 4, TLBs
are typically highly interconnected with complex processor
modules, such as the cache controller and memory manage-
ment unit, making vulnerabilities therein very hard to detect
through automated verification or manual inspection.

BranchScope [20] extracts information through the direc-
tional branch predictor, thus bypassing software mitigations
that prevent leakage via the BTB. We classify it as a cache-
state gap in branch prediction units, which is significantly
challenging to detect using existing RTL security verification
tools, which cannot capture and verify cache states. Melt-
down [43] exploits speculative execution on modern proces-
sors to completely bypass all memory access restrictions. Van
Bulck et al. [72] also demonstrated how to apply this to Intel
SGX. Similarly, Spectre [37] exploits out-of-order execution
across different user-space processes as arbitrary instruction
executions would continue during speculation. We recognize
these vulnerabilities are hard to detect due to scalability chal-
lenges in existing tools, since the out-of-order scheduling
module is connected to many subsystems in the CPU. Addi-
tionally, manually inspecting these interconnected complex
RTL modules is very challenging and cumbersome.

CLKScrew [69] abuses low-level power-management func-
tionality that is exposed to software to induce faults and
glitches dynamically at runtime in the processor. We cat-
egorize CLKScrew to have vulnerable hardware-firmware
interactions and timing-flow leakage, since it directly exposes
clock-tuning functionality to attacker-controlled software.

9 Conclusion

Software security bugs and their impact have been known for
many decades, with a spectrum of established techniques to
detect and mitigate them. However, the threat of hardware
security bugs has only recently become significant as cross-
layer exploits have shown that they can completely undermine
software security protections. While some hardware bugs can
be patched with microcode updates, many cannot, often leav-
ing millions of affected chips in the wild. In this paper, we
presented the first testbed of RTL bugs and systematically
analyzed the effectiveness of state-of-the-art formal verifica-
tion techniques, manual inspection and simulation methods
in detecting these bugs. We organized an international hard-
ware security competition and an in-house study. Our results
have shown that 54 teams were only able to detect 61% of
the total number of bugs, while with industry-leading formal
verification techniques, we were only able to detect 48% of

USENIX Association 28th USENIX Security Symposium 225

the bugs. We showcase that the grave security impact of many
of these undetected bugs is only further exacerbated by being
software-exploitable.

Our investigation revealed the limitations of state-of-the-
art verification/detection techniques with respect to detecting
certain classes of hardware security bugs that exhibit partic-
ular properties. These approaches remain limited in the face
of detecting vulnerabilities that require capturing and verify-
ing complex cross-module inter-dependencies, timing flows,
cache states, and hardware-firmware interactions. While these
effects are common in SoC designs, they are difficult to model,
capture, and verify using current approaches. Our investiga-
tive work highlights the necessity of treating the detection
of hardware bugs as significantly as that of software bugs.
Through our work, we highlight the pressing call for further
research to advance the state of the art in hardware security
verification. Particularly, our results indicate the need for in-
creased scalability, efficacy and automation of these tools,
making them easily applicable to large-scale commercial SoC
designs—without which software protections are futile.

Acknowledgments

We thank our anonymous reviewers and shepherd, Stephen
Checkoway, for their valuable feedback. The work was sup-
ported by the Intel Collaborative Research Institute for Col-
laborative Autonomous & Resilient Systems (ICRI-CARS),
the German Research Foundation (DFG) by CRC 1119
CROSSING P3, and the Office of Naval Research (ONR
Award #N00014-18-1-2058). We would also like to ac-
knowledge the co-organizers of Hack@DAC: Dan Holcomb
(UMass-Amherst), Siddharth Garg (NYU), and Sourav Sudhir
(TAMU), and the sponsors of Hack@DAC: the National Sci-
ence Foundation (NSF CNS-1749175), NYU CCS, Mentor - a
Siemens Business and CROSSING, as well as the participants
of Hack@DAC.

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow in-
tegrity. ACM conference on Computer and communications security,
pages 340–353, 2005.

[2] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner. Register Trans-
fer Level Information Flow Tracking for Provably Secure Hardware
Design. Design, Automation & Test in Europe, pages 1695–1700, 2017.

[3] ARM. Security technology building a secure system using trust-
zone technology (white paper). http://infocenter.arm.com/
help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf, 2009.

[4] R. Armstrong, R. Punnoose, M. Wong, and J. Mayo. Sur-
vey of Existing Tools for Formal Verification. Sandia Na-
tional Laboratories https://prod.sandia.gov/techlib-noauth/
access-control.cgi/2014/1420533.pdf, 2014.

[5] Averant. Solidify. http://www.averant.com/storage/
documents/Solidify.pdf, 2018.

[6] M.-M. Bidmeshki, X. Guo, R. G. Dutta, Y. Jin, and Y. Makris. Data Se-
crecy Protection Through Information Flow Tracking in Proof-Carrying
Hardware IP—Part II: Framework Automation. IEEE Transactions on
Information Forensics and Security, 12(10):2430–2443, 2017.

[7] M.-M. Bidmeshki and Y. Makris. VeriCoq: A Verilog-to-Coq Con-
verter for Proof-Carrying Hardware Automation. IEEE International
Symposium on Circuits and Systems, pages 29–32, 2015.

[8] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf. SANC-
TUARY: ARMing TrustZone with User-space Enclaves. Network and
Distributed System Security Symposium (NDSS), 2019.

[9] E. Brickell, G. Graunke, M. Neve, and J.-P. Seifert. Software mitiga-
tions to hedge AES against cache-based software side channel vulnera-
bilities. IACR Cryptology ePrint Archive, 2006:52, 2006.

[10] Cadence. Incisive Enterprise Simulator. https://www.cadence.com/
content/cadence-www/global/en_US/home/tools/system-
design-and-verification/simulation-and-testbench-
verification/incisive-enterprise-simulator.html, 2014.

[11] Cadence. JasperGold Formal Verification Platform. https:
//www.cadence.com/content/cadence-www/global/en_US/
home/tools/system-design-and-verification/formal-
and-static-verification/jasper-gold-verification-
platform.html, 2014.

[12] Cadence. JasperGold Security Path Verification App.
https://www.cadence.com/content/cadence-www/global/en_
US/home/tools/system-design-and-verification/formal-
and-static-verification/jasper-gold-verification-
platform/security-path-verification-app.html, 2018. Last
accessed on 09/09/18.

[13] M. Castro, M. Costa, and T. Harris. Securing software by enforcing
data-flow integrity. USENIX Symposium on Operating Systems Design
and Implementation, pages 147–160, 2006.

[14] D. P. Christopher Celio, Krste Asanovic. The Berkeley Out-of-Order
Machine. https://riscv.org/wp-content/uploads/2016/01/
Wed1345-RISCV-Workshop-3-BOOM.pdf, 2016.

[15] Cisco. Cisco: Strengthening Cisco Products. https://www.
cisco.com/c/en/us/about/security-center/security-
programs/secure-development-lifecycle.html, 2017.

[16] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani. Model check-
ing and the state explosion problem. Tools for Practical Software
Verification, 2012.

[17] K. Conger. Apple announces long-awaited bug bounty program.
https://techcrunch.com/2016/08/04/apple-announces-
long-awaited-bug-bounty-program/, 2016.

[18] V. Costan, I. A. Lebedev, and S. Devadas. Sanctum: Minimal Hardware
Extensions for Strong Software Isolation. USENIX Security Symposium,
pages 857–874, 2016.

[19] O. Demir, W. Xiong, F. Zaghloul, and J. Szefer. Survey of ap-
proaches for security verification of hardware/software systems. https:
//eprint.iacr.org/2016/846.pdf, 2016.

[20] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, D. Ponomarev, et al.
BranchScope: A New Side-Channel Attack on Directional Branch
Predictor. ACM Conference on Architectural Support for Programming
Languages and Operating Systems, pages 693–707, 2018.

226 28th USENIX Security Symposium USENIX Association

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://prod.sandia.gov/techlib-noauth/access-control.cgi/2014/1420533.pdf
https://prod.sandia.gov/techlib-noauth/access-control.cgi/2014/1420533.pdf
http://www.averant.com/storage/documents/Solidify.pdf
http://www.averant.com/storage/documents/Solidify.pdf
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://riscv.org/wp-content/uploads/2016/01/Wed1345-RISCV-Workshop-3-BOOM.pdf
https://riscv.org/wp-content/uploads/2016/01/Wed1345-RISCV-Workshop-3-BOOM.pdf
https://www.cisco.com/c/en/us/about/security-center/security-programs/secure-development-lifecycle.html
https://www.cisco.com/c/en/us/about/security-center/security-programs/secure-development-lifecycle.html
https://www.cisco.com/c/en/us/about/security-center/security-programs/secure-development-lifecycle.html
https://techcrunch.com/2016/08/04/apple-announces-long-awaited-bug-bounty-program/
https://techcrunch.com/2016/08/04/apple-announces-long-awaited-bug-bounty-program/
https://eprint.iacr.org/2016/846.pdf
https://eprint.iacr.org/2016/846.pdf

[21] F. Farahmandi, Y. Huang, and P. Mishra. Formal Approaches to Hard-
ware Trust Verification. The Hardware Trojan War, 2018.

[22] A. Ferraiuolo, R. Xu, D. Zhang, A. C. Myers, and G. E. Suh. Verifi-
cation of a Practical Hardware Security Architecture Through Static
Information Flow Analysis. ACM Conference on Architectural Support
for Programming Languages and Operating Systems, pages 555–568,
2017.

[23] B. Gras, K. Razavi, H. Bos, and C. Giuffrida. Translation Leak-aside
Buffer: Defeating Cache Side-channel Protections with TLB Attacks.
USENIX Security Symposium, 2018.

[24] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. Prefetch Side-
Channel Attacks: Bypassing SMAP and Kernel ASLR. Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 368–379, 2016.

[25] M. Hicks, C. Sturton, S. T. King, and J. M. Smith. SPECS:
A Lightweight Runtime Mechanism for Protecting Software from
Security-Critical Processor Bugs. In Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS. ACM, 2015.

[26] M. Howard and S. Lipner. The Security Development Lifecycle. Mi-
crosoft Press Redmond, 2006.

[27] H. Hu, S. Shinde, A. Sendroiu, Z. L. Chua, P. Saxena, and Z. Liang.
Data-oriented programming: On the expressiveness of non-control data
attacks. IEEE Symposium on Security and Privacy, 2016.

[28] B.-Y. Huang, S. Ray, A. Gupta, J. M. Fung, and S. Malik. Formal Se-
curity Verification of Concurrent Firmware in SoCs Using Instruction-
level Abstraction for Hardware. ACM Annual Design Automation
Conference, pages 91:1–91:6, 2018.

[29] R. Hund, C. Willems, and T. Holz. Practical timing side channel attacks
against kernel space ASLR. Symposium on Security and Privacy, 2013.

[30] F. Inc. Common Vulnerability Scoring System v3.0. https://www.
first.org/cvss/cvss-v30-specification-v1.8.pdf, 2018.

[31] Intel. Intel Software Guard Extensions (Intel SGX). https://
software.intel.com/en-us/sgx, 2016. Last accessed on 09/05/18.

[32] Intel. Intel Bug Bounty Program. https://www.intel.
com/content/www/us/en/security-center/bug-bounty-
program.html, 2018.

[33] S. Islam, A. Moghimi, I. Bruhns, M. Krebbel, B. Gulmezoglu, T. Eisen-
barth, and B. Sunar. SPOILER: Speculative Load Hazards Boost
Rowhammer and Cache Attacks. https://arxiv.org/abs/1903.
00446, 2019.

[34] R. Kastner, W. Hu, and A. Althoff. Quantifying Hardware Security
Using Joint Information Flow Analysis. IEEE Design, Automation &
Test in Europe, pages 1523–1528, 2016.

[35] H. Khattri, N. K. V. Mangipudi, and S. Mandujano. Hsdl: A security
development lifecycle for hardware technologies. IEEE International
Symposium on Hardware-Oriented Security and Trust, pages 116–121,
2012.

[36] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu. Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors. ACM SIGARCH
Computer Architecture News, 42(3):361–372, 2014.

[37] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre At-
tacks: Exploiting Speculative Execution. http://arxiv.org/abs/
1801.01203, 2018.

[38] C. Lattner and V. S. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. International Symposium
on Code Generation and Optimization, 2004.

[39] D. Lee. Keystone enclave: An open-source secure enclave for risc-v.
https://keystone-enclave.org/, 2018.

[40] Lenovo. Lenovo: Taking Action on Product Security.
https://www.lenovo.com/us/en/product-security/about-
lenovo-product-security, 2017.

[41] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam, R. Kast-
ner, T. Sherwood, B. Hardekopf, and F. T. Chong. Sapper: A Language
for Hardware-level Security Policy Enforcement. International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, pages 97–112, 2014.

[42] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood,
and B. Hardekopf. Caisson: A Hardware Description Language for
Secure Information Flow. ACM SIGPLAN Conference on Programming
Language Design and Implementation, 46(6):109–120, 2011.

[43] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown. https:
//arxiv.org/abs/1801.01207, 2018.

[44] Mentor. Questa Verification Solution. https://www.mentor.com/
products/fv/questa-verification-platform, 2018.

[45] A. Moghimi, T. Eisenbarth, and B. Sunar. MemJam: A false depen-
dency attack against constant-time crypto implementations in SGX.
Cryptographers’ Track at the RSA Conference, pages 21–44, 2018.
10.1007/978-3-319-76953-0_2.

[46] F. Nielson, H. R. Nielson, and C. Hankin. Principles of program
analysis. Springer, 1999.

[47] NIST. HP: Remote update feature in HP LaserJet printers does not re-
quire password. https://nvd.nist.gov/vuln/detail/CVE-2004-
2439, 2004.

[48] NIST. Microsoft: Hypervisor in Xbox 360 kernel allows attackers
with physical access to force execution of the hypervisor syscall with a
certain register set, which bypasses intended code protection. https:
//nvd.nist.gov/vuln/detail/CVE-2007-1221, 2007.

[49] NIST. Apple: Multiple heap-based buffer overflows in the AudioCodecs
library in the iPhone allows remote attackers to execute arbitrary code
or cause DoS via a crafted AAC/MP3 file. https://nvd.nist.gov/
vuln/detail/CVE-2009-2206, 2009.

[50] NIST. Broadcom Wi-Fi chips denial of service. https://nvd.nist.
gov/vuln/detail/CVE-2012-2619, 2012.

[51] NIST. Vulnerabilities in Dell BIOS allows local users to bypass in-
tended BIOS signing requirements and install arbitrary BIOS images.
https://nvd.nist.gov/vuln/detail/CVE-2013-3582, 2013.

[52] NIST. Google: Escalation of Privilege Vulnerability in MediaTek
WiFi driver. https://nvd.nist.gov/vuln/detail/CVE-2016-
2453, 2016.

[53] NIST. Samsung: Page table walks conducted by MMU during Virtual
to Physical address translation leaves in trace in LLC. https://nvd.
nist.gov/vuln/detail/CVE-2017-5927, 2017.

[54] NIST. AMD: Backdoors in security co-processor ASIC. https://
nvd.nist.gov/vuln/detail/CVE-2018-8935, 2018.

[55] NIST. AMD: EPYC server processors have insufficient access con-
trol for protected memory regions. https://nvd.nist.gov/vuln/
detail/CVE-2018-8934, 2018.

USENIX Association 28th USENIX Security Symposium 227

https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://www.intel.com/content/www/us/en/security-center/bug-bounty-program.html
https://www.intel.com/content/www/us/en/security-center/bug-bounty-program.html
https://www.intel.com/content/www/us/en/security-center/bug-bounty-program.html
https://arxiv.org/abs/1903.00446
https://arxiv.org/abs/1903.00446
http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203
https://keystone-enclave.org/
https://www.lenovo.com/us/en/product-security/about-lenovo-product-security
https://www.lenovo.com/us/en/product-security/about-lenovo-product-security
https://arxiv.org/abs/1801.01207
https://arxiv.org/abs/1801.01207
 https://www.mentor.com/products/fv/questa-verification-platform
 https://www.mentor.com/products/fv/questa-verification-platform
10.1007/978-3-319-76953-0_2
https://nvd.nist.gov/vuln/detail/CVE-2004-2439
https://nvd.nist.gov/vuln/detail/CVE-2004-2439
https://nvd.nist.gov/vuln/detail/CVE-2007-1221
https://nvd.nist.gov/vuln/detail/CVE-2007-1221
https://nvd.nist.gov/vuln/detail/CVE-2009-2206
https://nvd.nist.gov/vuln/detail/CVE-2009-2206
https://nvd.nist.gov/vuln/detail/CVE-2012-2619
https://nvd.nist.gov/vuln/detail/CVE-2012-2619
https://nvd.nist.gov/vuln/detail/CVE-2013-3582
https://nvd.nist.gov/vuln/detail/CVE-2016-2453
https://nvd.nist.gov/vuln/detail/CVE-2016-2453
https://nvd.nist.gov/vuln/detail/CVE-2017-5927
https://nvd.nist.gov/vuln/detail/CVE-2017-5927
https://nvd.nist.gov/vuln/detail/CVE-2018-8935
https://nvd.nist.gov/vuln/detail/CVE-2018-8935
https://nvd.nist.gov/vuln/detail/CVE-2018-8934
https://nvd.nist.gov/vuln/detail/CVE-2018-8934

[56] NIST. Buffer overflow in bootrom recovery mode of nvidia tegra mo-
bile processors. https://nvd.nist.gov/vuln/detail/CVE-2018-
6242, 2018.

[57] J. Oberg. Secure Development Lifecycle for Hardware Becomes an Im-
perative. https://www.eetimes.com/author.asp?section_id=
36&doc_id=1332962, 2018.

[58] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner. The-
oretical Analysis of Gate Level Information Flow Tracking. IEEE/ACM
Design Automation Conference, pages 244–247, 2010.

[59] PULP Platform. Ariane. https://github.com/pulp-platform/
ariane, 2018.

[60] PULP Platform. Pulpino. https://github.com/pulp-platform/
pulpino, 2018.

[61] PULP Platform. Pulpissimo. https://github.com/pulp-
platform/pulpissimo, 2018.

[62] Qualcomm. Qualcomm Announces Launch of Bounty Program.
https://www.qualcomm.com/news/releases/2016/11/17/
qualcomm-announces-launch-bounty-program-offering-
15000-usd-discovery, 2018.

[63] Samsung. Rewards Program. https://security.samsungmobile.
com/rewardsProgram.smsb, 2018.

[64] M. Seaborn and T. Dullien. Exploiting the DRAM rowhammer bug to
gain kernel privileges. Black Hat, 15, 2015.

[65] H. Shacham. The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86). ACM Symposium on Computer
and Communication Security, pages 552–561, 2007.

[66] O. Solutions. OneSpin 360. https://www.onespin.com/
fileadmin/user_upload/pdf/datasheet_dv_web.pdf, 2013.

[67] P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas, and S. A. Seshia. A
Formal Foundation for Secure Remote Execution of Enclaves. ACM
SIGSAC Conference on Computer and Communications Security, pages
2435–2450, 2017.

[68] Sunny .L He and Natalie H. Roe and Evan C. L. Wood and Noel
Nachtigal and Jovana Helms. Model of the Product Development
Lifecycle. https://prod.sandia.gov/techlib-noauth/access-
control.cgi/2015/159022.pdf, 2015.

[69] A. Tang, S. Sethumadhavan, and S. Stolfo. CLKSCREW: exposing
the perils of security-oblivious energy managemen. USENIX Security
Symposium, pages 1057–1074, 2017.

[70] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood. Complete Information Flow Tracking from the Gates Up.
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 109–120, 2009.

[71] Tortuga Logic. Verifying Security at the Hardware/Software Boundary.
http://www.tortugalogic.com/unison-whitepaper/, 2017.

[72] J. Van Bulck, F. Piessens, and R. Strackx. Foreshadow: Extracting the
Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution.
USENIX Security Symposium, 2018.

[73] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic. The
RISC-V Instruction Set Manual. Volume 1: User-Level ISA, Version
2.0. https://content.riscv.org/wp-content/uploads/2017/
05/riscv-spec-v2.2.pdf, 2014.

[74] Y. Yarom, D. Genkin, and N. Heninger. CacheBleed: a timing attack on
OpenSSL constant-time RSA. Journal of Cryptographic Engineering,
7(2):99–112, 2017. 10.1007/s13389-017-0152-y.

[75] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers. A Hardware De-
sign Language for Timing-Sensitive Information-Flow Security. In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems, pages 503–516, 2015.

[76] T. Zhang and R. B. Lee. New Models of Cache Architectures Char-
acterizing Information Leakage from Cache Side Channels. ACSAC,
pages 96–105, 2014.

Appendix

A Ariane Core and RTL Hierarchy
Figure 4 shows the high-level microarchitecture of the Ariane
core to visualize its complexity. This RISC-V core is far
less complex than an x86 or ARM processor and their more
sophisticated microarchitectural and optimization features.

Figure 5 illustrates the hierarchy of the RTL components of
the Ariane core. This focuses only on the core and excludes all
uncore components, such as the AXI interconnect, peripherals,
the debug module, boot ROM, and RAM.

B Recent Microarchitectural Attacks
We reviewed recent microarchitectural attacks with respect
to existing hardware verification approaches and their limita-
tions. We observe that the underlying vulnerabilities would
be difficult to detect due to the properties that they exhibit,
rendering them as potential HardFails. We do not have access
to their proprietary RTL implementation and cannot inspect
the underlying vulnerabilities. Thus, we only infer from the
published technical descriptions and errata of these attacks
the nature of the underlying RTL issues. We classify in Ta-
ble 2 the properties of these vulnerabilities that represent
challenges for state-of-the-art hardware security verification.

C Details on the Pulpissimo Bugs
We present next more detail on some of the RTL bugs used in
our investigation.

Bugs in crypto units and incorrect usage: We extended
the SoC with a faulty cryptographic unit with a multiplexer
to select between AES, SHA1, MD5, and a temperature sen-
sor. The multiplexer was modified such that a race condition
occurs if more than one bit in the status register is enabled,
causing unreliable behavior in these security critical modules.

Furthermore, both SHA-1 and MD5 are outdated and bro-
ken cryptographic hash functions. Such bugs are not de-
tectable by formal verification, since they occur due to a
specification/design issue and not an implementation flaw,
therefore they are out of the scope of automated approaches
and formal verification methods. The cryptographic key is

228 28th USENIX Security Symposium USENIX Association

https://nvd.nist.gov/vuln/detail/CVE-2018-6242
https://nvd.nist.gov/vuln/detail/CVE-2018-6242
https://www.eetimes.com/author.asp?section_id=36&doc_id=1332962
https://www.eetimes.com/author.asp?section_id=36&doc_id=1332962
https://github.com/pulp-platform/ariane
https://github.com/pulp-platform/ariane
https://github.com/pulp-platform/pulpino
https://github.com/pulp-platform/pulpino
https://github.com/pulp-platform/pulpissimo
https://github.com/pulp-platform/pulpissimo
https://www.qualcomm.com/news/releases/2016/11/17/qualcomm-announces-launch-bounty-program-offering-15000-usd-discovery
https://www.qualcomm.com/news/releases/2016/11/17/qualcomm-announces-launch-bounty-program-offering-15000-usd-discovery
https://www.qualcomm.com/news/releases/2016/11/17/qualcomm-announces-launch-bounty-program-offering-15000-usd-discovery
https://security.samsungmobile.com/rewardsProgram.smsb
https://security.samsungmobile.com/rewardsProgram.smsb
https://www.onespin.com/fileadmin/user_upload/pdf/datasheet_dv_web.pdf
https://www.onespin.com/fileadmin/user_upload/pdf/datasheet_dv_web.pdf
https://prod.sandia.gov/techlib-noauth/access-control.cgi/2015/159022.pdf
https://prod.sandia.gov/techlib-noauth/access-control.cgi/2015/159022.pdf
http://www.tortugalogic.com/unison-whitepaper/
https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
10.1007/s13389-017-0152-y

FIGURE 4: High-level architecture of the Ariane core [59].Ariane RISC-V Core RTL Module Hierarchy

ariane

frontend id_stage issue_stage ex_stage commit_stage csr_regfile perf_counters controller
std_cache_
subsystem

alu branch_unit lsu csr_buffer

nbdcache mmu load_unit store_unit lsu_arbiter lsu_bypass

ptwdtlbitlb

scoreboard re_name issue_read_operands

ariane_regfile

icache

lfsr
data_s

ram
tag_
sram

ras btb bht
fetch
_fifo

instr_
scan

Acronym Legend
ras return address stack
btb branch trace buffer
bht branch history table
dltb data translation lookaside buffer
iltb instruction translation lookaside buffer
mmu memory management unit
nbdcache non-blocking data cache
lsu load/store unit
csr configuration status register
id_stage instruction decode stage

FIGURE 5: Illustration of the RTL module hierarchy of the Ariane core.

Attack Privilege Level
Memory
Corruption

Information
Leakage

Cross-
modular

HW/FW-
Interaction

Cache-State
Gap

Timing-Flow
Gap

HardFail

Cachebleed [74] unprivileged 7 3 7 7 7 3 3

TLBleed [23] unprivileged 7 3 3 7 3 3 3

BranchScope [20] unprivileged 7 3 7 7 3 7 3

Spectre [37] unprivileged 7 3 3 7 3 7 3

Meltdown [43] unprivileged 7 3 3 7 3 7 3

MemJam [45] supervisor 7 3 3 7 7 3 3

CLKScrew [69] supervisor 3 3 7 3 7 3 3

Foreshadow [72] supervisor 3 3 3 3 3 7 3

TABLE 2: Classification of the underlying vulnerabilities of recent microarchitectural attacks by their HardFail properties.

USENIX Association 28th USENIX Security Symposium 229

stored and read from unprotected memory, allowing an at-
tacker access to the key. The temperature sensor register value
is incorrectly muxed as output instead of the crypto engine
output and vice versa, which are illegal information flows that
could compromise the cryptographic operations.

LISTING 1: Incorrect use of crypto RTL: The key input for
the AES (g_input) is connected to signal b. This signal is then
passed through various modules until it connects directly to a
tightly coupled memory in the processor.

input logic [127:0] b,
...
aes_1cc aes(
.clk(0),
.rst(1),
.g_input(b),
.e_input(a),
.o(aes_out)
);

Bugs in security modes: We replaced the standard
PULP_SECURE parameter in the riscv_cs_registers and
riscv_int_controller modules with another constant param-
eter to permanently disable the security/privilege checks for
these two modules. Another bug we inserted is switching the
write and read protections for the AXI bus interface, causing
erroneous checks for read and write accesses.

Bugs in the JTAG module: We implemented a JTAG
password-checker and injected multiple bugs in it, includ-
ing the password being hardcoded in the password checking
file. The password checker also only checks the first 31 bits,
which reduces the computational complexity of brute-forcing
the password. The password checker does not reset the state
of the correctness of the password when an incorrect bit is
detected, allowing for repeated partial checks of passwords
to end up unlocking the password checker. This is also facil-
itated by the fact that the index overflows after the user hits
bit 31, allowing for an infinite cycling of bit checks.

D Exploiting Hardware Bugs From Software
We now explain how one of our hardware bugs can be ex-
ploited in real-world by software. This RTL vulnerability
manifests in the following way. When an error signal is gen-
erated on the memory bus while the underlining logic is still
handling an outstanding transaction, the next signal to be han-
dled will instead be considered operational by the module
unconditionally. This lets erroneous memory accesses slip
through hardware checks at runtime. Armed with the knowl-
edge about this vulnerability, an adversary can force memory
access errors to evade the checks. As shown in Figure 6, the
memory bus decoder unit (unit of the memory interconnect)
is assumed to have the bug. This causes errors to be ignored

Userspace

Kernel

Task B

Task A

NULL

Core Core

Memory
Interconnect D

R
A
M

12

3

5

4

PCBB
...

Task B Task A

IVT PCBA PCBB MM

OS Kernel

6

FIGURE 6: Our attack exploits a bug in the implementation
of the memory bus of the PULPissimo SoC: by 1 spamming
the bus with invalid transactions an adversary can make 4

malicious write requests be set to operational.

under certain conditions (see bug number #7 in Table 1). In
the first step 1 , the attacker generates a user program (Task
A) that registers a dummy signal handler for the segmenta-
tion fault (SIGSEGV) access violation. Task A then executes a
loop with 2 a faulting memory access to an invalid memory
address (e.g., LW x5, 0x0). This will generate an error in
the memory subsystem of the processor and issue an invalid
memory access interrupt (i.e., 0x0000008C) to the processor.
The processor raises this interrupt to the running software (in
this case the OS), using the pre-configured interrupt handler
routines in software. The interrupt handler in the OS will then
forward this as a signal to the faulting task 3 , which keeps
looping and continuously generating invalid accesses. Mean-
while, the attacker launches a separate Task B, which will
then issue a single memory access 4 to a privileged memory
location (e.g., LW x6, 0xf77c3000). In this situation, multi-
ple outstanding memory transactions will be generated on the
memory bus, all of which but one will be flagged as faulty by
the address decoder. An invalid memory access will always
proceed the single access of Task B. Due to the bug in the
memory bus address decoder, 5 the malicious memory ac-
cess will become operational instead of triggering an error.
Thus, the attacker can issue read and write instructions to
arbitrary privileged (and unprivileged) memory by forcing the
malicious illegal access to be preceded with a faulty access.
Using this technique the attacker can eventually leverage this
read-write primitive, e.g., 6 to escalate privileges by writing
the process control block (PCBB) for his task to elevate the
corresponding process to root. This bug leaves the attacker
with access to a root process, gaining control over the en-
tire platform and potentially compromising all the processes
running on the system.

230 28th USENIX Security Symposium USENIX Association

	Introduction
	SoC Verification Processes and Pitfalls
	The Security Development Lifecycle (SDL) for Hardware
	Challenges with SDL

	Assessing Hardware Security Verification
	Limitations of Automated Verification
	Constructing Real-World RTL Bugs
	Adversary Model

	HardFails: Hardware Security Bugs
	Crowdsourcing Detection
	Competition Preparation
	Competition Objectives
	Overview of Competition Bugs
	Competition Results

	Detection Using State-of-The-Art Tools
	Detection Methodology
	Detection Results
	State-Explosion Problem

	Discussion and Future Work
	Microcode Patching
	Additional Challenges in Practice
	Future Research Directions

	Related Work
	Current Detection Approaches
	Recent Attacks

	Conclusion
	Ariane Core and RTL Hierarchy
	Recent Microarchitectural Attacks
	Details on the Pulpissimo Bugs
	Exploiting Hardware Bugs From Software

