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Abstract
Transferability captures the ability of an attack against a
machine-learning model to be effective against a different,
potentially unknown, model. Empirical evidence for transfer-
ability has been shown in previous work, but the underlying
reasons why an attack transfers or not are not yet well un-
derstood. In this paper, we present a comprehensive analysis
aimed to investigate the transferability of both test-time eva-
sion and training-time poisoning attacks. We provide a unify-
ing optimization framework for evasion and poisoning attacks,
and a formal definition of transferability of such attacks. We
highlight two main factors contributing to attack transferabil-
ity: the intrinsic adversarial vulnerability of the target model,
and the complexity of the surrogate model used to optimize
the attack. Based on these insights, we define three metrics
that impact an attack’s transferability. Interestingly, our results
derived from theoretical analysis hold for both evasion and
poisoning attacks, and are confirmed experimentally using a
wide range of linear and non-linear classifiers and datasets.

1 Introduction

The wide adoption of machine learning (ML) and deep learn-
ing algorithms in many critical applications introduces strong
incentives for motivated adversaries to manipulate the results
and models generated by these algorithms. Attacks against
machine learning systems can happen during multiple stages
in the learning pipeline. For instance, in many settings training
data is collected online and thus can not be fully trusted. In
poisoning availability attacks, the attacker controls a certain
amount of training data, thus influencing the trained model
and ultimately the predictions at testing time on most points in
testing set [4,18,20,28–30,34,36,41,48]. Poisoning integrity
attacks have the goal of modifying predictions on a few tar-
geted points by manipulating the training process [20,41]. On
the other hand, evasion attacks involve small manipulations
of testing data points that results in misprediction at testing
time on those points [3, 8, 10, 14, 32, 38, 42, 45, 49].

Creating poisoning and evasion attack points is not a trivial
task, particularly when many online services avoid disclos-
ing information about their machine learning algorithms. As
a result, attackers are forced to craft their attacks in black-
box settings, against a surrogate model instead of the real
model used by the service, hoping that the attack will be ef-
fective on the real model. The transferability property of an
attack is satisfied when an attack developed for a particular
machine learning model (i.e., a surrogate model) is also ef-
fective against the target model. Attack transferability was
observed in early studies on adversarial examples [14,42] and
has gained a lot more interest in recent years with the advance-
ment of machine learning cloud services. Previous work has
reported empirical findings about the transferability of evasion
attacks [3, 13, 14, 21, 26, 32, 33, 42, 43, 47] and, only recently,
also on the transferability of poisoning integrity attacks [41].
In spite of these efforts, the question of when and why do
adversarial points transfer remains largely unanswered.

In this paper we present the first comprehensive evaluation
of transferability of evasion and poisoning availability attacks,
understanding the factors contributing to transferability of
both attacks. In particular, we consider attacks crafted with
gradient-based optimization techniques (e.g., [4, 8, 23]), a
popular and successful mechanism used to create attack data
points. We unify for the first time evasion and poisoning at-
tacks into an optimization framework that can be instantiated
for a range of threat models and adversarial constraints. We
provide a formal definition of transferability and show that,
under linearization of the loss function computed under attack,
several main factors impact transferability: the intrinsic ad-
versarial vulnerability of the target model, the complexity of
the surrogate model used to optimize the attacks, and its align-
ment with the target model. Furthermore, we derive a new
poisoning attack for logistic regression, and perform a com-
prehensive evaluation of both evasion and poisoning attacks
on multiple datasets, confirming our theoretical analysis.

In more detail, the contributions of our work are:

Optimization framework for evasion and poisoning at-
tacks. We introduce a unifying framework based on gradient-

USENIX Association 28th USENIX Security Symposium    321



descent optimization that encompasses both evasion and poi-
soning attacks. Our framework supports threat models with
different adversarial goals (integrity and availability), amount
of knowledge available to the adversary (white-box and black-
box), as well as different adversarial capabilities (causative
or exploratory). Our framework generalizes existing attacks
proposed by previous work for evasion [3, 8, 14, 23, 42] and
poisoning [4, 18, 20, 24, 27, 48]. Under our framework, we
derive a novel gradient-based poisoning availability attack
against logistic regression. We remark here that poisoning
attacks are more difficult to derive than evasion ones, as they
require computing hypergradients from a bilevel optimization
problem, to capture the dependency on how the machine-
learning model changes while the training poisoning points
are modified [4, 18, 20, 24, 27, 48].

Transferability definition and theoretical bound. We give
a formal definition of transferability of evasion and poisoning
attacks, and an upper bound on a transfer attack’s success.
This allows us to derive three metrics connected to model
complexity. Our formal definition unveils that transferabil-
ity depends on: (1) the size of input gradients of the target
classifier; (2) how well the gradients of the surrogate and
target models align; and (3) the variance of the loss landscape
optimized to generate the attack points.

Comprehensive experimental evaluation of transferabil-
ity. We consider a wide range of classifiers, including logistic
regression, SVMs with both linear and RBF kernels, ridge
regression, random forests, and deep neural networks (both
feed-forward and convolutional neural networks), all with
different hyperparameter settings to reflect different model
complexities. We evaluate the transferability of our attacks
on three datasets related to different applications: handwrit-
ten digit recognition (MNIST), Android malware detection
(DREBIN), and face recognition (LFW). We confirm our
theoretical analysis for both evasion and poisoning attacks.

Insights into transferability. We demonstrate that attack
transferability depends strongly on the complexity of the tar-
get model, i.e., on its inherent vulnerability. This confirms that
reducing the size of input gradients, e.g., via regularization,
may allow us to learn more robust classifiers not only against
evasion [22,35,39,44] but also against poisoning availability
attacks. Second, transferability is also impacted by the sur-
rogate model’s alignment with the target model. Surrogates
with better alignments to their targets (in terms of the angle
between their gradients) are more successful at transferring
the attack points. Third, surrogate loss functions that are sta-
bler and have lower variance tend to facilitate gradient-based
optimization attacks to find better local optima (see Figure 1).
As less complex models exhibit a lower variance of their loss
function, they typically result in better surrogates.

Organization. We discuss background on threat modeling
against machine learning in Section 2. We introduce our unify-
ing optimization framework for evasion and poisoning attacks,
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Figure 1: Conceptual representation of transferability. We
show the loss function of the attack objective as a function of
a single feature x. The top row includes 2 surrogate models
(high and low complexity), while the bottom row includes
both models as targets. The adversarial samples are repre-
sented as red dots for the high-complexity surrogate and as
blue dots for the low-complexity surrogate. If the adversar-
ial sample loss is below a certain threshold (i.e., the black
horizontal line), the point is correctly classified, otherwise it
is misclassified. The adversarial point computed against the
high-complexity model (top left) lays in a local optimum due
to the irregularity of the objective. This point is not effective
even against the same classifier trained on a different dataset
(bottom left) due to the variance of the high-complexity classi-
fier. The adversarial point computed against the low complex-
ity model (top right), instead, succeeds against both low and
high-complexity targets (left and right bottom, respectively).

as well as the poisoning attack for logistic regression in Sec-
tion 3. We then formally define transferability for both evasion
and poisoning attacks, and show its approximate connection
with the input gradients used to craft the corresponding attack
samples (Section 4). Experiments are reported in Section 5,
highlighting connections among regularization hyperparame-
ters, the size of input gradients, and transferability of attacks,
on different case studies involving handwritten digit recog-
nition, Android malware detection, and face recognition. We
discuss related work in Section 6 and conclude in Section 7.

2 Background and Threat Model

Supervised learning includes: (1) a training phase in which
training data is given as input to a learning algorithm, result-
ing in a trained ML model; (2) a testing phase in which the
model is applied to new data and a prediction is generated. In
this paper, we consider a range of adversarial models against
machine learning classifiers at both training and testing time.
Attackers are defined by: (i) their goal or objective in attack-
ing the system; (ii) their knowledge of the system; (iii) their
capabilities in influencing the system through manipulation
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of the input data. Before we detail each of these, we introduce
our notation, and point out that the threat model and attacks
considered in this work are suited to binary classification, but
can be extended to multi-class settings.
Notation. We denote the sample and label spaces with X
and Y ∈ {−1,+1}, respectively, and the training data with
D = (xi,yi)

n
i=1, where n is the training set size. We use

L(D,w) to denote the loss incurred by classifier f : X 7→ Y
(parameterized by w) on D. Typically, this is computed by
averaging a loss function `(y,x,w) computed on each data
point, i.e., L(D,w) = 1

n ∑
n
i=1 `(yi,xi,w). We assume that the

classifier f is learned by minimizing an objective function
L(D,w) on the training data. Typically, this is an estimate of
the generalization error, obtained by the sum of the empirical
loss L on training data D and a regularization term.

2.1 Threat Model: Attacker’s Goal
We define the attacker’s goal based on the desired security
violation. In particular, the attacker may aim to cause either
an integrity violation, to evade detection without compromis-
ing normal system operation; or an availability violation, to
compromise the normal system functionalities available to
legitimate users.

2.2 Threat Model: Attacker’s Knowledge
We characterize the attacker’s knowledge κ as a tuple in an ab-
stract knowledge space K consisting of four main dimensions,
respectively representing knowledge of: (k.i) the training data
D; (k.ii) the feature set X ; (k.iii) the learning algorithm f ,
along with the objective function L minimized during train-
ing; and (k.iv) the parameters w learned after training the
model. This categorization enables the definition of many dif-
ferent kinds of attacks, ranging from white-box attacks with
full knowledge of the target classifier to black-box attacks in
which the attacker has limited information about the target
system.
White-Box Attacks. We assume here that the attacker has full
knowledge of the target classifier, i.e., κ = (D,X , f ,w). This
setting allows one to perform a worst-case evaluation of the
security of machine-learning algorithms, providing empirical
upper bounds on the performance degradation that may be
incurred by the system under attack.
Black-Box Attacks. We assume here that the input feature
representation X is known. For images, this means that we
do consider pixels as the input features, consistently with
other recent work on black-box attacks against machine learn-
ing [32, 33]. At the same time, the training data D and the
type of classifier f are not known to the attacker. We consider
the most realistic attack model in which the attacker does not
have querying access to the classifier.

The attacker can collect a surrogate dataset D̂ , ideally sam-
pled from the same underlying data distribution as D, and

train a surrogate model f̂ on such data to approximate the tar-
get function f . Then, the attacker can craft the attacks against
f̂ , and then check whether they successfully transfer to the
target classifier f . By denoting limited knowledge of a given
component with the hat symbol, such black-box attacks can
be denoted with κ̂ = (D̂,X , f̂ , ŵ).

2.3 Threat Model: Attacker’s Capability
This attack characteristic defines how the attacker can influ-
ence the system, and how data can be manipulated based on
application-specific constraints. If the attacker can manipulate
both training and test data, the attack is said to be causative.
It is instead referred to as exploratory, if the attacker can only
manipulate test data. These scenarios are more commonly
known as poisoning [4,18,24,27,48] and evasion [3,8,14,42].

Another aspect related to the attacker’s capability depends
on the presence of application-specific constraints on data
manipulation; e.g., to evade malware detection, malicious
code has to be modified without compromising its intrusive
functionality. This may be done against systems leveraging
static code analysis, by injecting instructions that will never
be executed [11, 15, 45]. These constraints can be generally
accounted for in the definition of the optimal attack strategy by
assuming that the initial attack sample x can only be modified
according to a space of possible modifications Φ(x).

3 Optimization Framework for Gradient-
based Attacks

We introduce here a general optimization framework that
encompasses both evasion and poisoning attacks. Gradient-
based attacks have been considered for evasion (e.g., [3, 8, 14,
23, 42]) and poisoning (e.g., [4, 18, 24, 27]). Our optimization
framework not only unifies existing evasion and poisoning
attacks, but it also enables the design of new attacks. After
defining our general formulation, we instantiate it for evasion
and poisoning attacks, and use it to derive a new poisoning
availability attack for logistic regression.

3.1 Gradient-based Optimization Algorithm
Given the attacker’s knowledge κ ∈K and an attack sample
x′ ∈ Φ(x) along with its label y, the attacker’s goal can be
defined in terms of an objective function A(x′,y,κ) ∈ R (e.g.,
a loss function) which measures how effective the attack
sample x′ is. The optimal attack strategy can be thus given as:

x? ∈ arg max
x′∈Φ(x)

A(x′,y,κ) . (1)

Note that, for the sake of clarity, we consider here the opti-
mization of a single attack sample, but this formulation can
be easily extended to account for multiple attack points. In
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Algorithm 1 Gradient-based Evasion and Poisoning Attacks

Input: x,y: the input sample and its label; A(x,y,κ): the at-
tacker’s objective; κ = (D,X , f ,w): the attacker’s knowl-
edge parameter vector; Φ(x): the feasible set of manipu-
lations that can be made on x; t > 0: a small number.

Output: x′: the adversarial example.
1: Initialize the attack sample: x′← x
2: repeat
3: Store attack from previous iteration: x← x′
4: Update step: x′←ΠΦ (x+η∇xA(x,y,κ)), where the

step size η is chosen with line search (bisection method),
and ΠΦ ensures projection on the feasible domain Φ.

5: until |A(x′,y,κ)−A(x,y,κ)| ≤ t
6: return x′

particular, as in the case of poisoning attacks, the attacker can
maximize the objective by iteratively optimizing one attack
point at a time [5, 48].

Attack Algorithm. Algorithm 1 provides a general pro-
jected gradient-ascent algorithm that can be used to solve
the aforementioned problem for both evasion and poison-
ing attacks. It iteratively updates the attack sample along
the gradient of the objective function, ensuring the result-
ing point to be within the feasible domain through a pro-
jection operator ΠΦ. The gradient step size η is determined
in each update step using a line-search algorithm based on
the bisection method, which solves maxη A(x′(η),y,κ), with
x′(η) = ΠΦ (x+η∇xA(x,y,κ)). For the line search, in our
experiments we consider a maximum of 20 iterations. This al-
lows us to reduce the overall number of iterations required by
Algorithm 1 to reach a local or global optimum. We also set
the maximum number of iterations for Algorithm 1 to 1,000,
but convergence (Algorithm 1, line 5) is typically reached
only after a hundred iterations.

We finally remark that non-differentiable learning algo-
rithms, like decision trees and random forests, can be attacked
with more complex strategies [17,19] or using gradient-based
optimization against a differentiable surrogate learner [31,37].

3.2 Evasion Attacks
In evasion attacks, the attacker manipulates test samples to
have them misclassified, i.e., to evade detection by a learning
algorithm. For white-box evasion, the optimization problem
given in Eq. (1) can be rewritten as:

max
x′

`(y,x′,w) , (2)

s.t. ‖x′−x‖p ≤ ε , (3)
xlb � x′ � xub , (4)

where ‖v‖p is the `p norm of v, and we assume that the clas-
sifier parameters w are known. For the black-box case, it

surrogate classifier !"($) used to craft black-box adversarial examples

target classifier ! $ used to craft white-box adversarial examples

minimum-distance black-box adversarial example

maximum-confidence black-box adversarial example
maximum-confidence white-box adversarial example

initial / source example

minimum-distance white-box adversarial example

Figure 2: Conceptual representation of maximum-confidence
evasion attacks (within an `2 ball of radius ε) vs. minimum-
distance adversarial examples. Maximum-confidence attacks
tend to transfer better as they are misclassified with higher
confidence (though requiring more modifications).

suffices to use the parameters ŵ of the surrogate classifier f̂ .
In this work we consider `(y,x′,w) =−y f (x′), as in [3].

The intuition here is that the attacker maximizes the loss
on the adversarial sample with the original class, to cause
misclassification to the opposite class. The manipulation con-
straints Φ(x) are given in terms of: (i) a distance constraint
‖x′− x‖p ≤ ε, which sets a bound on the maximum input
perturbation between x (i.e., the input sample) and the cor-
responding modified adversarial example x′; and (ii) a box
constraint xlb � x′ � xub (where u � v means that each ele-
ment of u has to be not greater than the corresponding element
in v), which bounds the values of the attack sample x′.

For images, the former constraint is used to implement ei-
ther dense or sparse evasion attacks [12,25,37]. Normally, the
`2 and the `∞ distances between pixel values are used to cause
an indistinguishable image blurring effect (by slightly manip-
ulating all pixels). Conversely, the `1 distance corresponds
to a sparse attack in which only few pixels are significantly
manipulated, yielding a salt-and-pepper noise effect on the
image [12, 37]. The box constraint can be used to bound each
pixel value between 0 and 255, or to ensure manipulation of
only a specific region of the image. For example, if some pix-
els should not be manipulated, one can set the corresponding
values of xlb and xub equal to those of x.

Maximum-confidence vs. minimum-distance evasion. Our
formulation of evasion attacks aims to produce adversarial
examples that are misclassified with maximum confidence
by the classifier, within the given space of feasible modifica-
tions. This is substantially different from crafting minimum-
distance adversarial examples, as formulated in [42] and in
follow-up work (e.g., [33]). This difference is conceptually
depicted in Fig. 2. In particular, in terms of transferability, it
is now widely acknowledged that higher-confidence attacks
have better chances of successfully transfering to the target
classifier (and even of bypassing countermeasures based on
gradient masking) [2, 8, 13]. For this reason, in this work we
consider evasion attacks that aim to craft adversarial examples
misclassified with maximum confidence.

Initialization. There is another factor known to improve trans-
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ferability of evasion attacks, as well as their effectiveness in
the white-box setting. It consists of running the attack starting
from different initialization points to mitigate the problem of
getting stuck in poor local optima [3, 13, 50]. In addition to
starting the gradient ascent from the initial point x, for non-
linear classifiers we also consider starting the gradient ascent
from the projection of a randomly-chosen point of the oppo-
site class onto the feasible domain. This double-initialization
strategy helps finding better local optima, through the identi-
fication of more promising paths towards evasion [13, 47, 50].

3.3 Poisoning Availability Attacks
Poisoning attacks consist of manipulating training data
(mainly by injecting adversarial points into the training set) to
either favor intrusions without affecting normal system opera-
tion, or to purposely compromise normal system operation to
cause a denial of service. The former are referred to as poison-
ing integrity attacks, while the latter are known as poisoning
availability attacks [5,48]. Recent work has mostly addressed
transferability of poisoning integrity attacks [41], including
backdoor attacks [9, 16]. In this work we focus on poisoning
availability attacks, as their transferability properties have not
yet been widely investigated. Crafting transferable poisoning
availability attacks is much more challenging than crafting
transferable poisoning integrity attacks, as the latter have a
much more modest goal (modifying prediction on a small set
of targeted points).

As for the evasion case, we formulate poisoning in a white-
box setting, given that the extension to black-box attacks is
immediate through the use of surrogate learners. Poisoning
is formulated as a bilevel optimization problem in which
the outer optimization maximizes the attacker’s objective A
(typically, a loss function L computed on untainted data),
while the inner optimization amounts to learning the classifier
on the poisoned training data [4, 24, 48]. This can be made
explicit by rewriting Eq. (1) as:

max
x′

L(Dval,w?) =
m

∑
j=1

`(y j,x j,w?) (5)

s.t. w? ∈ arg min
w

L(Dtr∪ (x′,y),w) (6)

where Dtr and Dval are the training and validation datasets
available to the attacker. The former, along with the poisoning
point x′, is used to train the learner on poisoned data, while
the latter is used to evaluate its performance on untainted data,
through the loss function L(Dval,w?). Notably, the objective
function implicitly depends on x′ through the parameters w?

of the poisoned classifier.
The attacker’s capability is limited by assuming that the

attacker can inject only a small fraction α of poisoning points
into the training set. Thus, the attacker solves an optimization
problem involving a set of poisoned data points (αn) added
to the training data.

Poisoning points can be optimized via gradient-ascent pro-
cedures, as shown in Algorithm 1. The main challenge is to
compute the gradient of the attacker’s objective (i.e., the vali-
dation loss) with respect to each poisoning point. In fact, this
gradient has to capture the implicit dependency of the optimal
parameter vector w? (learned after training) on the poisoning
point being optimized, as the classification function changes
while this point is updated. Provided that the attacker function
is differentiable w.r.t. w and x, the required gradient can be
computed using the chain rule [4, 5, 24, 27, 48]:

∇xA = ∇xL+
∂w
∂x

>
∇wL , (7)

where the term ∂w
∂x captures the implicit dependency of the

parameters w on the poisoning point x. Under some regular-
ity conditions, this derivative can be computed by replacing
the inner optimization problem with its stationarity (Karush-
Kuhn-Tucker, KKT) conditions, i.e., with its implicit equation
∇wL(Dtr∪(x′,y),w) = 0 [24,27].1 By differentiating this ex-
pression w.r.t. the poisoning point x, one yields:

∇x∇wL +
∂w
∂x

>
∇

2
wL = 0 . (8)

Solving for ∂w
∂x , we obtain ∂w

∂x
>

= −(∇x∇wL)(∇2
wL)−1,

which can be substituted in Eq. (7) to obtain the required
gradient:

∇xA = ∇xL− (∇xc∇wL)(∇2
wL)−1

∇wL . (9)

Gradients for SVM. Poisoning attacks against SVMs were
first proposed in [4]. Here, we report a simplified expression
for SVM poisoning, with L corresponding to the dual SVM
learning problem, and L to the hinge loss (in the outer opti-
mization):

∇xc A =−αc
∂kkc

∂xc
yk +αc

[
∂ksc
∂xc

0
][Kss 1

1> 0

]−1 [Ksk

1>

]
yk . (10)

We use c, s and k here to respectively index the attack
point, the support vectors, and the validation points for which
`(y,x,w)> 0 (corresponding to a non-null derivative of the
hinge loss). The coefficient αc is the dual variable assigned
to the poisoning point by the learning algorithm, and k and K
contain kernel values between the corresponding indexed sets
of points.

Gradients for Logistic Regression. Logistic regression is a
linear classifier that estimates the probability of the positive
class using the sigmoid function. A poisoning attack against
logistic regression has been derived in [24], but maximizing a
different outer objective and not directly the validation loss.

1More rigorously, we should write the KKT conditions in this case as
∇wL(Dtr ∪ (x′,y),w) ∈ 0, as the solution may not be unique.
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One of our contributions is to compute gradients for logistic
regression under our optimization framework. Using logistic
loss as the attacker’s loss, the poisoning gradient for logistic
regression can be computed as:

∇xc A =−
[

∇xc ∇θL
C zc θ

]> [
∇2

θ
L X z C

C z X C ∑
n
i zi

]−1 [X(y◦σ−y)
y>(σ−1)

]
C,

where θ are the classifier weights (bias excluded), ◦ is the
element-wise product, z is equal to σ(1−σ), σ is the sigmoid
of the signed discriminant function (each element of that
vector is therefore: σi =

1
1+exp(−yi fi)

with fi = xiθ+b), and:

∇
2
θL =C

n

∑
i

xizix>i + I, (11)

∇xc ∇θL =C(I◦ (ycσc− yc)+ zcθx>c ) (12)

In the above equations, I is the identity matrix.

4 Transferability Definition and Metrics

We discuss here an intriguing connection among transfer-
ability of both evasion and poisoning attacks, input gradients
and model complexity, and highlight the factors impacting
transferability between a surrogate and a target model. Model
complexity is a measure of the capacity of a learning algo-
rithm to fit the training data. It is typically penalized to avoid
overfitting by reducing either the number of classifier param-
eters to be learnt or their size (e.g., via regularization) [6].
Given that complexity is essentially controlled by the hyper-
parameters of a given learning algorithm (e.g., the number
of neurons in the hidden layers of a neural network, or the
regularization hyperparameter C of an SVM), only models
that are trained using the same learning algorithm should be
compared in terms of complexity. As we will see, this is an im-
portant point to correctly interpret the results of our analysis.
For notational convenience, we denote in the following the
attack points as x? = x+ δ̂, where x is the initial point and δ̂

the adversarial perturbation optimized by the attack algorithm
against the surrogate classifier, for both evasion and poison-
ing attacks. We start by formally defining transferability for
evasion attacks, and then discuss how this definition and the
corresponding metrics can be generalized to poisoning.
Transferability of Evasion Attacks. Given an evasion attack
point x?, crafted against a surrogate learner (parameterized
by ŵ), we define its transferability as the loss attained by
the target classifier f (parameterized by w) on that point, i.e.,
T = `(y,x+ δ̂,w). This can be simplified through a linear
approximation of the loss function as:

T = `(y,x+ δ̂,w)u `(y,x,w)+ δ̂
>

∇x`(y,x,w) . (13)

This approximation may not only hold for sufficiently-small
input perturbations. It may also hold for larger perturbations

if the classification function is linear or has a small curvature
(e.g., if it is strongly regularized). It is not difficult to see
that, for any given point x,y, the evasion problem in Eqs. (2)-
(3) (without considering the feature bounds in Eq. 4) can be
rewritten as:

δ̂ ∈ arg max
‖δ‖p≤ε

`(y,x+δ, ŵ) . (14)

Under the same linear approximation, this corresponds to the
maximization of an inner product over an ε-sized ball:

max
‖δ‖p≤ε

δ
>

∇x`(y,x, ŵ) = ε‖∇x`(y,x, ŵ)‖q , (15)

where `q is the dual norm of `p.
The above problem is maximized as follows:

1. For p = 2, the maximum is δ̂ = ε
∇x`(y,x,ŵ)
‖∇x`(y,x,ŵ)‖2

;

2. For p = ∞, the maximum is δ̂ ∈ ε · sign{∇x`(y,x, ŵ)};

3. For p= 1, the maximum is achieved by setting the values
of δ̂ that correspond to the maximum absolute values of
∇x`(y,x, ŵ) to their sign, i.e., ±1, and 0 otherwise.

Substituting the optimal value of δ̂ into Eq. (13), we can
compute the loss increment ∆`= δ̂>∇x`(y,x,w) under a trans-
fer attack in closed form; e.g., for p = 2, it is given as:

∆`= ε
∇x ˆ̀>

‖∇x ˆ̀‖2
∇x`≤ ε‖∇x`‖2 , (16)

where, for compactness, we use ˆ̀ = `(y,x, ŵ) and ` =
`(y,x,w). In this equation, the left-hand side is the increase in
the loss function in the black-box case, while the right-hand
side corresponds to the white-box case. The upper bound is
obtained when the surrogate classifier ŵ is equal to the tar-
get w (white-box attacks). Similar results hold for p = 1 and
p = ∞ (using the dual norm in the right-hand side).

Intriguing Connections and Transferability Metrics. The
above findings reveal some interesting connections among
transferability of attacks, model complexity (controlled by the
classifier hyperparameters) and input gradients, as detailed
below, and allow us to define simple and computationally-
efficient transferability metrics.

(1) Size of Input Gradients. The first interesting observation
is that transferability depends on the size of the gradient of
the loss ` computed using the target classifier, regardless of
the surrogate: the larger this gradient is, the larger the attack
impact may be. This is inferred from the upper bound in
Eq. (16). We define the corresponding metric S(x,y) as:

S(x,y) = ‖∇x`(y,x,w)‖q , (17)

where q is the dual of the perturbation norm.
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Figure 3: Size of input gradients (averaged on the test set)
and test error (in the absence and presence of evasion attacks)
against regularization (controlled via weight decay) for a neu-
ral network trained on MNIST89 (see Sect. 5.1.1). Note how
the size of input gradients and the test error under attack de-
crease as regularization (complexity) increases (decreases).

The size of the input gradient also depends on the complex-
ity of the given model, controlled, e.g., by its regularization hy-
perparameter. Less complex, strongly-regularized classifiers
tend to have smaller input gradients, i.e., they learn smoother
functions that are more robust to attacks, and vice-versa. No-
tably, this holds for both evasion and poisoning attacks (e.g.,
the poisoning gradient in Eq. 10 is proportional to αc, which
is larger when the model is weakly regularized). In Fig. 3
we report an example showing how increasing regularization
(i.e., decreasing complexity) for a neural network trained on
MNIST89 (see Sect. 5.1.1), by controlling its weight decay,
reduces the average size of its input gradients, improving ad-
versarial robustness to evasion. It is however worth remarking
that, since complexity is a model-dependent characteristic,
the size of input gradients cannot be directly compared across
different learning algorithms; e.g., if a linear SVM exhibits
larger input gradients than a neural network, we cannot con-
clude that the former will be more vulnerable.

Another interesting observation is that, if a classifier has
large input gradients (e.g., due to high-dimensionality of the
input space and low level of regularization), for an attack
to succeed it may suffice to apply only tiny, imperceptible
perturbations. As we will see in the experimental section,
this explains why adversarial examples against deep neural
networks can often only be slightly perturbed to mislead
detection, while when attacking less complex classifiers in
low dimensions, modifications become more evident.

(2) Gradient Alignment. The second relevant impact fac-
tor on transferability is based on the alignment of the input
gradients of the loss function computed using the target and
the surrogate learners. If we compare the increase in the loss
function in the black-box case (the left-hand side of Eq. 16)
against that corresponding to white-box attacks (the right-
hand side), we find that the relative increase in loss, at least
for `2 perturbations, is given by the following value:

R(x,y) =
∇x ˆ̀>∇x`

‖∇x ˆ̀‖2‖∇x`‖2
. (18)

x

`(
y
,x
,ŵ

) V (x, y)

Figure 4: Conceptual representation of the variability of the
loss landscape. The green line represents the expected loss
with respect to different training sets used to learn the surro-
gate model, while the gray area represents the variance of the
loss landscape. If the variance is too large, local optima may
change, and the attack may not successfully transfer.

Interestingly, this is exactly the cosine of the angle between
the gradient of the loss of the surrogate and that of the target
classifier. This is a novel finding which explains why the co-
sine angle metric between the target and surrogate gradients
can well characterize the transferability of attacks, confirming
empirical results from previous work [21]. For other kinds
of perturbation, this definition slightly changes, but gradient
alignment can be similarly evaluated. Differently from the
gradient size S, gradient alignment is a pairwise metric, al-
lowing comparisons across different surrogate models; e.g.,
if a surrogate SVM is better aligned with the target model
than another surrogate, we can expect that attacks targeting
the surrogate SVM will transfer better.

(3) Variability of the Loss Landscape. We define here an-
other useful metric to characterize attack transferability. The
idea is to measure the variability of the loss function ˆ̀ when
the training set used to learn the surrogate model changes,
even though it is sampled from the same underlying distri-
bution. The reason is that the loss ˆ̀ is exactly the objective
function A optimized by the attacker to craft evasion attacks
(Eq. 1). Accordingly, if this loss landscape changes dramati-
cally even when simply resampling the surrogate training set
(which may happen, e.g., for surrogate models exhibiting a
large error variance, like neural networks and decision trees),
it is very likely that the local optima of the corresponding
optimization problem will change, and this may in turn imply
that the attacks will not transfer correctly to the target learner.

We define the variability of the loss landscape simply as
the variance of the loss, estimated at a given attack point x,y:

V (x,y) = ED{`(y,x, ŵ)2}−ED{`(y,x, ŵ)}2 , (19)

where ED is the expectation taken with respect to different
(surrogate) training sets. This is very similar to what is typi-
cally done to estimate the variance of classifiers’ predictions.
This notion is clarified also in Fig. 4. As for the size of input
gradients S, also the loss variance V should only be compared
across models trained with the same learning algorithm.

USENIX Association 28th USENIX Security Symposium    327



The transferability metrics S, R and V defined so far depend
on the initial attack point x and its label y. In our experiments,
we will compute their mean values by averaging on different
initial attack points.
Transferability of Poisoning Attacks. For poisoning attacks,
we can essentially follow the same derivation discussed be-
fore. Instead of defining transferability in terms of the loss
attained on the modified test point, we define it in terms
of the validation loss attained by the target classifier un-
der the influence of the poisoning points. This loss func-
tion can be linearized as done in the previous case, yielding:
T u L(D,w)+ δ̂>∇xL(D,w), where D are the untainted val-
idation points, and δ̂ is the perturbation applied to the initial
poisoning point x against the surrogate classifier. Recall that
L depends on the poisoning point through the classifier param-
eters w, and that the gradient ∇xL(D,w) here is equivalent
to the generic one reported in Eq. (9). It is then clear that the
perturbation δ̂ maximizes the (linearized) loss when it is best
aligned with its derivative ∇xL(D,w), according to the con-
straint used, as in the previous case. The three transferability
metrics defined before can also be used for poisoning attacks
provided that we simply replace the evasion loss `(y,x,w)
with the validation loss L(D,w).

5 Experimental Analysis

In this section, we evaluate the transferability of both evasion
and poisoning attacks across a range of ML models. We high-
light some interesting findings about transferability, based
on the three metrics developed in Sect. 4. In particular, we
analyze attack transferability in terms of its connection to the
size of the input gradients of the loss function, the gradient
alignment between surrogate and target classifiers, and the
variability of the loss function optimized to craft the attack
points. We provide recommendations on how to choose the
most effective surrogate models to craft transferable attacks
in the black-box setting.

5.1 Transferability of Evasion Attacks
We start by reporting our experiments on evasion attacks. We
consider here two distinct case studies, involving handwritten
digit recognition and Android malware detection.

5.1.1 Handwritten Digit Recognition

The MNIST89 data includes the MNIST handwritten digits
from classes 8 and 9. Each digit image consists of 784 pixels
ranging from 0 to 255, normalized in [0,1] by dividing such
values by 255. We run 10 independent repetitions to average
the results on different training-test splits. In each repetition,
we run white-box and black-box attacks, using 5,900 samples
to train the target classifier, 5,900 distinct samples to train the
surrogate classifier (without even relabeling the surrogate data
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Figure 5: White-box evasion attacks on MNIST89. Test error
against increasing maximum perturbation ε.

with labels predicted by the target classifier; i.e., we do not
perform any query on the target), and 1,000 test samples. We
modified test digits in both classes using Algorithm 1 under
the `2 distance constraint ‖x−x′‖2 ≤ ε, with ε ∈ [0,5].

For each of the following learning algorithms, we train a
high-complexity (H) and a low-complexity (L) model, by
changing its hyperparameters: (i) SVMs with linear ker-
nel (SVMH with C = 100 and SVML with C = 0.01); (ii)
SVMs with RBF kernel (SVM-RBFH with C = 100 and SVM-
RBFL with C = 1, both with γ = 0.01); (iii) logistic classifiers
(logisticH with C = 10 and logisticL with C = 1); (iv) ridge
classifiers (ridgeH with α = 1 and ridgeL with α = 10);2 (v)
fully-connected neural networks with two hidden layers in-
cluding 50 neurons each, and ReLU activations (NNH with
no regularization, i.e., weight decay set to 0, and NNL with
weight decay set to 0.01), trained via cross-entropy loss mini-
mization; and (vi) random forests consisting of 30 trees (RFH
with no limit on the depth of the trees and RFL with a maxi-
mum depth of 8). These configurations are chosen to evaluate
the robustness of classifiers that exhibit similar test accuracies
but different levels of complexity.

How does model complexity impact evasion attack suc-
cess in the white-box setting? The results for white-box eva-
sion attacks are reported for all classifiers that fall under our
framework and can be tested for evasion with gradient-based
attacks (SVM, Logistic, Ridge, and NN). This excludes ran-
dom forests, as they are not differentiable. We report the
complete security evaluation curves [5] in Fig. 5, showing the
mean test error (over 10 runs) against an increasing maximum
admissible distortion ε. In Fig. 6a we report the mean test
error at ε = 1 for each target model against the size of its input
gradients (S, averaged on the test samples and on the 10 runs).

The results show that, for each learning algorithm, the low-
complexity model has smaller input gradients, and it is less
vulnerable to evasion than its high-complexity counterpart,
confirming our theoretical analysis. This is also confirmed by
the p-values reported in Table 1 (first column), obtained by

2Recall that the level of regularization increases as α increases, and as C
decreases.
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Figure 6: Evaluation of our metrics for evasion attacks on MNIST89. (a) Test error under attack vs average size of input gradients
(S) for low- (denoted with ‘×’) and high-complexity (denoted with ‘◦’) classifiers. (b) Average transfer rate vs variability of loss
landscape (V). (c) Pearson correlation coefficient ρ(δ̂,δ) between black-box (δ̂) and white-box (δ) perturbations (values in Fig. 8,
right) vs gradient alignment (R, values in Fig. 8, left) for each target-surrogate pair. Pearson (P) and Kendall (K) correlations
between ρ and R are also reported along with the p-values obtained from a permutation test to assess statistical significance.

Evasion Poisoning

MNIST89 DREBIN MNIST89 LFW

ε = 1 ε = 1 ε = 5 ε = 30 5% 20% 5% 20%

SVM <1e-2 <1e-2 <1e-2 <1e-2 <1e-2 <1e-2 <1e-2 0.75
logistic <1e-2 <1e-2 <1e-2 0.02 <1e-2 <1e-2 0.10 0.21

ridge <1e-2 <1e-2 <1e-2 <1e-2 0.02 <1e-2 0.02 0.75
SVM-RBF <1e-2 <1e-2 <1e-2 <1e-2 <1e-2 <1e-2 <1e-2 0.11

NN <1e-2 <1e-2 <1e-2 0.02

Table 1: Statistical significance of our results. For each attack,
dataset and learning algorithm, we report the p-values of
two two-sided binomial tests, to respectively reject the null
hypothesis that: (i) for white-box attacks, the test errors of the
high- and low-complexity target follow the same distribution;
and (ii) for black-box attacks, the transfer rates of the high-
and low-complexity surrogate follow the same distribution.
Each test is based on 10 samples, obtained by comparing
the error of the high- and low-complexity models for each
learning algorithm in each repetition. In the first (second)
case, success corresponds to a larger test (transfer) error for
the high-complexity target (low-complexity surrogate).

running a binomial test for each learning algorithm to com-
pare the white-box test error of the corresponding high- and
low-complexity models. All the p-values are smaller than
0.05, which confirms 95% statistical significance. Recall that
these results hold only when comparing models trained using
the same learning algorithm. This means that we can com-
pare, e.g., the S value of SVMH against SVML, but not that
of SVMH against logisticH. In fact, even though logisticH
exhibits the largest S value, it is not the most vulnerable clas-
sifier. Another interesting finding is that nonlinear classifiers
tend to be less vulnerable than linear ones.

How do evasion attacks transfer between models in black-
box settings? In Fig. 7 we report the results for black-box
evasion attacks, in which the attacks against surrogate models
(in rows) are transferred to the target models (in columns).

The top row shows results for surrogates trained using only
20% of the surrogate training data, while in the bottom row
surrogates are trained using all surrogate data, i.e., a training
set of the same size as that of the target. The three columns
report results for ε ∈ {1,2,5}.

It can be noted that lower-complexity models (with stronger
regularization) provide better surrogate models, on average.
In particular, this can be seen best in the middle column for
medium level of perturbation, in which the lower-complexity
models (SVML, logisticL, ridgeL, and SVM-RBFL) provide
on average higher error when transferred to other models.
The reason is that they learn smoother and stabler functions,
that are capable of better approximating the target function.
Surprisingly, this holds also when using only 20% of training
data, as the black-box attacks relying on such low-complexity
models still transfer with similar test errors. This means that
most classifiers can be attacked in this black-box setting with
almost no knowledge of the model, no query access, but pro-
vided that one can get a small amount of data similar to that
used to train the target model.

These findings are also confirmed by looking at the variabil-
ity of the loss landscape, computed as discussed in Sect. 4 (by
considering 10 different training sets), and reported against
the average transfer rate of each surrogate model in Fig. 6b. It
is clear from that plot that higher-variance classifiers are less
effective as surrogates than their less-complex counterparts,
as the former tend to provide worse, unstable approximations
of the target classifier. To confirm the statistical significance
of this result, for each learning algorithm we also compare the
mean transfer errors of high- and low-complexity surrogates
with a binomial test whose p-values (always lower than 0.05)
are reported in Table 1 (second column).

Another interesting, related observation is that the adversar-
ial examples computed against lower-complexity surrogates
have to be perturbed more to evade (see Fig. 9), whereas the
perturbation of the ones computed against complex models
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Figure 7: Black-box (transfer) evasion attacks on MNIST89. Each cell contains the test error of the target classifier (in columns)
computed on the attack samples crafted against the surrogate (in rows). Matrices in the top (bottom) row correspond to attacks
crafted against surrogate models trained with 20% (100%) of the surrogate training data, for ε ∈ {1,2,5}. The test error of each
target classifier in the absence of attack (target error) and under (white-box) attack are also reported for comparison, along with
the mean transfer rate of each surrogate across targets. Darker colors mean higher test error, i.e., better transferability.

can be smaller. This is again due to the instability induced
by high-complexity models into the loss function optimized
to craft evasion attacks, whose sudden changes cause the
presence of closer local optima to the initial attack point.

On the vulnerability of random forests. A noteworthy find-
ing is that random forests can be effectively attacked at small
perturbation levels using most other models (see last two
columns in Fig. 7). We looked at the learned trees and dis-
covered that trees often are susceptible to small changes. In
one example, a node of the tree checked if a particular feature
value was above 0.002, and classified samples as digit 8 if that
condition holds (and digit 9 otherwise). The attack modified
that feature from 0 to 0.028, causing it to be immediately
misclassified. This vulnerability is intrinsic in the selection
process of the threshold values used by these decision trees to
split each node. The threshold values are selected among the
existing values in the dataset (to correctly handle categorical
attributes). Therefore, for pixels which are highly discriminant
(e.g., mostly black for one class and white for the other), the
threshold will be either very close to one extreme or the other,
making it easy to subvert the prediction by a small change.
Since `2-norm attacks change almost all feature values, with
high probability the attack modifies at least one feature on

every path of the tree, causing misclassification.

Is gradient alignment an effective transferability metric?
In Fig. 8, we report on the left the gradient alignment com-
puted between surrogate and target models, and on the right
the Pearson correlation coefficient ρ(δ̂,δ) between the per-
turbation optimized against the surrogate (i.e., the black-box
perturbation δ̂) and that optimized against the target (i.e., the
white-box perturbation δ). We observe immediately that gradi-
ent alignment provides an accurate measure of transferability:
the higher the cosine similarity, the higher the correlation
(meaning that the adversarial examples crafted against the
two models are similar). We correlate these two measures in
Fig. 6c, and show that such correlation is statistically signif-
icant for both Pearson and Kendall coefficients. In Fig. 6d
we also correlate gradient alignment with the ratio between
the test error of the target model in the black- and white-box
setting (extrapolated from the matrix corresponding to ε = 1
in the bottom row of Fig. 7), as suggested by our theoretical
derivation. The corresponding permutation tests confirm sta-
tistical significance. We finally remark that gradient alignment
is extremely fast to evaluate, as it does not require simulating
any attack, but it is only a relative measure of the attack trans-
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Figure 8: Gradient alignment and perturbation correlation
for evasion attacks on MNIST89. Left: Gradient alignment
R (Eq. 18) between surrogate (rows) and target (columns)
classifiers, averaged on the unmodified test samples. Right:
Pearson correlation coefficient ρ(δ, δ̂) between white-box and
black-box perturbations for ε = 5.

ferability, as the latter also depends on the complexity of the
target model; i.e., on the size of its input gradients.

SVML SVMH SVM-RBFL SVM-RBFH

ε = 1.7 ε = 0.45 ε = 1.1 ε = 0.85

ε = 2.35 ε = 0.95 ε = 2.9 ε = 2.65

Figure 9: Digit images crafted to evade linear and RBF SVMs.
The values of ε reported here correspond to the minimum
perturbation required to evade detection. Larger perturbations
are required to mislead low-complexity classifiers (L), while
smaller ones suffice to evade high-complexity classifiers (H).

5.1.2 Android Malware Detection

The Drebin data [1] consists of around 120,000 legitimate and
around 5000 malicious Android applications, labeled using
the VirusTotal service. A sample is labeled as malicious (or
positive, y =+1) if it is classified as such from at least five
out of ten anti-virus scanners, while it is flagged as legitimate
(or negative, y =−1) otherwise. The structure and the source
code of each application is encoded as a sparse feature vector
consisting of around a million binary features denoting the
presence or absence of permissions, suspicious URLs and
other relevant information that can be extracted by statically
analyzing Android applications. Since we are working with
sparse binary features, we use the `1 norm for the attack.

We use 30,000 samples to learn surrogate and target clas-
sifiers, and the remaining 66,944 samples for testing. The
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Figure 10: White-box evasion attacks on DREBIN. Evasion
rate against increasing maximum perturbation ε.

classifiers and their hyperparameters are the same used for
MNIST89, apart from (i) the number of hidden neurons for
NNH and NNL, set to 200, (ii) the weight decay of NNL, set
to 0.005; and (iii) the maximum depth of RFL, set to 59.

We perform feature selection to retain those 5,000 fea-
tures which maximize information gain, i.e., |p(xk = 1|y =
+1)− p(xk = 1|y = −1)|, where xk is the kth feature. While
this feature selection process does not significantly affect the
detection rate (which is only reduced by 2%, on average, at
0.5% false alarm rate), it drastically reduces the computa-
tional complexity of classification.

In each experiment, we run white-box and black-box eva-
sion attacks on 1,000 distinct malware samples (randomly
selected from the test data) against an increasing number of
modified features in each malware ε ∈ {0,1,2, . . . ,30}. This
is achieved by imposing the `1 constraint ‖x′−x‖1 ≤ ε. As in
previous work, we further restrict the attacker to only inject
features into each malware sample, to avoid compromising
its intrusive functionality [3, 11].

To evaluate the impact of the aforementioned evasion at-
tack, we measure the evasion rate (i.e., the fraction of malware
samples misclassified as legitimate) at 0.5% false alarm rate
(i.e., when only 0.5% of the legitimate samples are misclas-
sified as malware). As in the previous experiment, we report
the complete security evaluation curve for the white-box at-
tack case, whereas we report only the value of test error for
the black-box case. The results, reported in Figs. 10, 11, 12,
and 13, along with the statistical tests in Table 1 (third and
fourth columns) confirm the main findings of the previous
experiments. One significant difference is that random forests
are much more robust in this case. The reason is that the `1-
norm attack (differently from the `2) only changes a small
number of features, and thus the probability that it will change
features in all the ensemble trees is very low.

5.2 Transferability of Poisoning Attacks

For poisoning attacks, we report experiments on handwritten
digits and face recognition.
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Figure 11: Evaluation of our metrics for evasion attacks on DREBIN. See the caption of Fig. 6 for further details.

5.2.1 Handwritten Digit Recognition

We apply our optimization framework to poison SVM, logis-
tic, and ridge classifiers in the white-box setting. Designing
efficient poisoning availability attacks against neural networks
is still an open problem due to the complexity of the bilevel
optimization and the non-convexity of the inner learning prob-
lem. Previous work has mainly considered integrity poisoning
attacks against neural networks [5, 20, 41], and it is believed
that neural networks are much more resilient to poisoning
availability attacks due to their memorization capability. Poi-
soning random forests is not feasible with gradient-based
attacks, and we are not aware of any existing attacks for
this ensemble method. We thus consider as surrogate learn-
ers: (i) linear SVMs with C = 0.01 (SVML) and C = 100
(SVMH); (ii) logistic classifiers with C = 0.01 (logisticL)
and C = 10 (logisticH); (iii) ridge classifiers with α = 100
(ridgeL) and α = 10 (ridgeH); and (iv) SVMs with RBF kernel
with γ = 0.01 and C = 1 (SVM-RBFL) and C = 100 (SVM-
RBFH). We additionally consider as target classifiers: (i) ran-
dom forests with 100 base trees, each with a maximum depth
of 6 for RFL, and with no limit on the maximum depth for
RFH; (ii) feed-forward neural networks with two hidden lay-
ers of 200 neurons each and ReLU activations, trained via
cross-entropy loss minimization with different regularization
(NNL with weight decay 0.01 and NNH with no decay); and
(iii) the Convolutional Neural Network (CNN) used in [7].

We consider 500 training samples, 1,000 validation sam-
ples to compute the attack, and a separate set of 1,000 test
samples to evaluate the error. The test error is computed
against an increasing number of poisoning points into the
training set, from 0% to 20% (corresponding to 125 poisoning
points). The reported results are averaged on 10 independent,
randomly-drawn data splits.
How does model complexity impact poisoning attack suc-
cess in the white-box setting? The results for white-box poi-
soning are reported in Fig. 14. Similarly to the evasion case,
high-complexity models (with larger input gradients, as shown
in Fig. 15a) are more vulnerable to poisoning attacks than
their low-complexity counterparts (i.e., given that the same

learning algorithm is used). This is also confirmed by the sta-
tistical tests in the fifth column of Table 1. Therefore, model
complexity plays a large role in a model’s robustness also
against poisoning attacks, confirming our analysis.

How do poisoning attacks transfer between models in
black-box settings? The results for black-box poisoning are
reported in Fig. 16. For poisoning attacks, the best surrogates
are those matching the complexity of the target, as they tend
to be better aligned and to share similar local optima, except
for low-complexity logistic and ridge surrogates, which seem
to transfer better to linear classifiers. This is also witnessed
by gradient alignment in Fig. 17, which is again not only
correlated to the similarity between black- and white-box per-
turbations (Fig. 15c), but also to the ratio between the black-
and white-box test errors (Fig. 15d). Interestingly, these error
ratios are larger than one in some cases, meaning that attack-
ing a surrogate model can be more effective than running a
white-box attack against the target. A similar phenomenon has
been observed for evasion attacks [33], and it is due to the fact
that optimizing attacks against a smoother surrogate may find
better local optima of the target function (e.g., by overcoming
gradient obfuscation [2]). According to our findings, for poi-
soning attacks, reducing the variability of the loss landscape
(V) of the surrogate model is less important than finding a
good alignment between the surrogate and the target. In fact,
from Fig. 15b it is evident that increasing V is even beneficial
for SVM-based surrogates (and all these results are statisti-
cally significant according to the p-values in the sixth column
of Table 1). A visual inspection of the poisoning digits in
Fig. 18 reveals that the poisoning points crafted against high-
complexity classifiers are only minimally perturbed, while
the ones computed against low-complexity classifiers exhibit
larger, visible perturbations. This is again due to the presence
of closer local optima in the former case. Finally, a surprising
result is that RFs are quite robust to poisoning, as well as
NNs when attacked with low-complexity linear surrogates.
The reason may be that these target classifiers have a large
capacity, and can thus fit outlying samples (like the digits
crafted against low-complexity classifiers in Fig. 18) without
affecting the classification of the other training samples.
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Figure 12: Black-box (transfer) evasion attacks on DREBIN. See the caption of Fig. 7 for further details.
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Figure 13: Gradient alignment and perturbation correlation
(at ε = 30) for evasion attacks on DREBIN. See the caption
of Fig. 8 for further details.

5.2.2 Face Recognition

The Labeled Face on the Wild (LFW) dataset consists of faces
of famous peoples collected on Internet. We considered the
six identities with the largest number of images in the dataset.
We considered the person with most images as positive class,
and all the others as negative. Our dataset consists of 530
positive and 758 negative images. The classifiers and their
hyperparameters are the same used for MNIST89, except that
we set: (i) C = 0.1 for logisticL, (ii) α = 1 for ridgeH, (iii)
γ = 0.001,C = 10 for SVM-RBFL, (iv) γ = 0.001,C = 1000
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Figure 14: White-box poisoning attacks on MNIST89. Test
error against an increasing fraction of poisoning points.

for SVM-RBFH, and (v) weight decay to 0.001 for NNL. We
run 10 repetitions with 300 samples in each training, valida-
tion and test set. The results are shown in Figs 19, 20, 21
and 22, confirming the main findings discussed for poisoning
attacks on MNIST89. Statistical tests for significance are re-
ported in Table 1 (seventh and eighth columns). In this case,
there is not a significant distinction between the mean transfer
rates of high- and low-complexity surrogates, probably due to
the reduced size of the training sets used. Finally, in Fig. 23
we report examples of perturbed faces against surrogates with
different complexities, confirming again that larger perturba-
tions are required to attack lower-complexity models.
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Figure 15: Evaluation of our metrics for poisoning attacks on MNIST89. See the caption of Fig. 6 for further details.
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Figure 16: Black-box (transfer) poisoning attacks on MNIST89. See the caption of Fig. 7 for further details.
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Figure 17: Gradient alignment and perturbation correlation
(at 20% poisoning) for poisoning attacks on MNIST89. See
the caption of Fig. 8 for further details.

5.3 Summary of Transferability Evaluation

We summarize the results of transferability for evasion and
poisoning attacks below.

(1) Size of input gradients. Low-complexity target classifiers
are less vulnerable to evasion and poisoning attacks than high-
complexity target classifiers trained with the same learning
algorithm, due to the reduced size of their input gradients. In
general, nonlinear models are more robust than linear models
to both types of attacks.

(2) Gradient alignment. Gradient alignment is correlated

SVML SVMH SVM-RBFL SVM-RBFH

Figure 18: Poisoning digits crafted against linear and RBF
SVMs. Larger perturbations are required to have signifi-
cant impact on low-complexity classifiers (L), while minimal
changes are very effective on high-complexity SVMs (H).

with transferability. Even though it cannot be directly mea-
sured in black-box scenarios, some useful guidelines can
be derived from our analysis. For evasion attacks, low-
complexity surrogate classifiers provide stabler gradients
which are better aligned, on average, with those of the tar-
get models; thus, it is generally preferable to use strongly-
regularized surrogates. For poisoning attacks, instead, gradi-
ent alignment tends to improve when the surrogate matches
the complexity (regularization) of the target (which may be
estimated using techniques from [46]).

(3) Variability of the loss landscape. Low-complexity surro-
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Figure 19: White-box poisoning attacks on LFW. Test error
against an increasing fraction of poisoning points.

gate classifiers provide loss landscapes with lower variability
than high-complexity surrogate classifiers trained with the
same learning algorithm, especially for evasion attacks. This
results in better transferability.

To summarize, for evasion attacks, decreasing complexity
of the surrogate model by properly adjusting the hyperparam-
eters of its learning algorithm provides adversarial examples
that transfer better to a range of models. For poisoning attacks,
the best surrogates are generally models with similar levels of
regularization as the target model. The reason is that the poi-
soning objective function is relatively stable (i.e., it has low
variance) for most classifiers, and gradient alignment between
surrogate and target becomes a more important factor.

Understanding attack transferability has two main impli-
cations. First, even when attackers do not know the target
classifier, our findings suggest that low-complexity surrogates
have a better chance of transferring to other models. Our rec-
ommendation to performing black-box evasion attacks is to
choose surrogates with low complexity (e.g., by using strong
regularization and reducing model variance). To perform poi-
soning attacks, our recommendation is to acquire additional
information about the level of regularization of the target and
train a surrogate model with a similar level of regularization.
Second, our analysis also provides recommendations to de-
fenders on how to design more robust models against evasion
and poisoning attacks. In particular, lower-complexity models
tend to have more resilience compared to more complex mod-
els. Of course, we need to take into account the bias-variance
trade-off and choose models that still perform relatively well
on the original prediction tasks.

6 Related Work

Transferability for evasion attacks. Transferability of eva-
sion attacks has been studied in previous work, e.g., [3, 13,
14, 21, 26, 32, 33, 42, 43, 47]. Biggio et al. [3] have been the
first to consider evasion attacks against surrogate models in a
limited-knowledge scenario. Goodfellow et al. [14], Tramer
et al. [43], and Moosavi et al. [26] have made the observation
that different models might learn intersecting decision bound-

aries in both benign and adversarial dimensions and in that
case adversarial examples transfer better. Tramer et al. have
also performed a detailed study of transferability of model-
agnostic perturbations that depend only on the training data,
noting that adversarial examples crafted against linear models
can transfer to higher-order models. We answer some of the
open questions they posed about factors contributing to attack
transferability. Liu et al. [21] have empirically observed the
gradient alignment between models with transferable adver-
sarial examples. Papernot et al. [32, 33] have observed that
adversarial examples transfer across a range of models, includ-
ing logistic regression, SVMs and neural networks, without
providing a clear explanation of the phenomenon. Prior work
has also investigated the role of input gradients and Jaco-
bians. Some authors have proposed to decrease the magnitude
of input gradients during training to defend against evasion
attacks [22, 35] or improve classification accuracy [40, 44].
In [35, 39], the magnitude of input gradients has been identi-
fied as a cause for vulnerability to evasion attacks. A number
of papers have shown that transferability of adversarial ex-
amples is increased by averaging the gradients computed for
ensembles of models [13, 21, 43, 47]. We highlight that we
obtain similar effect by attacking a strongly-regularized sur-
rogate model with a smoother and stabler decision boundary
(resulting in a lower-variance model). The advantage of our
approach is to reduce the computational complexity compared
to attacking classifier ensembles. Through our formalization,
we shed light on the most important factors for transferabil-
ity. In particular, we identify a set of conditions that explain
transferability including the gradient alignment between the
surrogate and targeted models, and the size of the input gradi-
ents of the target model, connected to model complexity. We
demonstrate that adversarial examples crafted against lower-
variance models (e.g., those that are strongly regularized) tend
to transfer better across a range of models.

Transferability for poisoning attacks. There is very little
work on the transferability of poisoning availability attacks,
except for a preliminary investigation in [27]. That work in-
dicates that poisoning examples are transferable among very
simple network architectures (logistic regression, MLP, and
Adaline). Transferability of targeted poisoning attacks has
been addressed recently in [41]. We are the first to study in
depth transferability of poisoning availability attacks.

7 Conclusions

We have conducted an analysis of the transferability of eva-
sion and poisoning attacks under a unified optimization frame-
work. Our theoretical transferability formalization sheds light
on various factors impacting the transfer success rates. In
particular, we have defined three metrics that impact the trans-
ferability of an attack, including the complexity of the tar-
get model, the gradient alignment between the surrogate and
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Figure 20: Evaluation of our metrics for poisoning attacks on LFW. See the caption of Fig. 6 for further details.
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Figure 21: Black-box (transfer) poisoning attacks on LFW. See the caption of Fig. 7 for further details.
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Figure 22: Gradient alignment and perturbation correlation
(at 20% poisoning) for poisoning attacks on LFW. See the
caption of Fig. 8 for further details.

target models, and the variance of the attacker optimization
objective. The lesson to system designers is to evaluate their
classifiers against these criteria and select lower-complexity,
stronger regularized models that tend to provide higher ro-
bustness to both evasion and poisoning. Interesting avenues
for future work include extending our analysis to multi-class
classification settings, and considering a range of gray-box
models in which attackers might have additional knowledge
of the machine learning system (as in [41]). Application-
dependent scenarios such as cyber security might provide
additional constraints on threat models and attack scenarios
and could impact transferability in interesting ways.

SVML SVMH SVM-RBFL SVM-RBFH

Figure 23: Adversarial examples crafted against linear and
RBF SVMs. Larger perturbations are required to have signifi-
cant impact on low-complexity classifiers (L), while minimal
changes are very effective on high-complexity SVMs (H).
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