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Abstract

We introduce the concept of a “Blind Bernoulli Trial,” a
noninteractive protocol that allows a set of remote, discon-
nected users to individually compute one random bit each
with probability p defined by the sender, such that no re-
ceiver learns any more information about p than strictly nec-
essary. We motivate the problem by discussing several pos-
sible applications in secure distributed systems. We then for-
mally define the problem in terms of correctness and secu-
rity definitions and explore possible solutions using existing
cryptographic primitives. We prove the security of an effi-
cient solution in the standard model. Finally, we implement
the solution and give performance results that show it is prac-
tical with current hardware.

1 Introduction

Distributed systems sometimes require users to make ran-
dom choices to drive network behavior. For example, peer-
to-peer anonymous systems such as Freenet [12], AP3 [26],
and DiscountANODR [36] employs a random “coin flip” in
routing decisions to help obscure information about the path
of a request from an observer. Opportunistic routing proto-
cols may use a random decision on whether to forward or
cache certain content or not. Systems that do rely on users
making coin flips usually model the coin flip as a random
trial that produces a single bit with a fixed probability. They
distribute the probability of the trial’s two possible outcomes
either as a static, pre-defined parameter known to the whole
network, or as a dynamic parameter distributed to users as
cleartext.

However, in some instances the trial probability itself may
be sensitive information. For example, if we use dynamic
trial probabilities to prioritize certain content in a network
(i.e., have some content forwarded with higher probabil-
ity than others), then observers can distinguish and target
higher-priority content. If an anonymous communication
system varied the probability of forwarding to fine-tune the

trade-off between performance and anonymity for individual
messages, then a malicious node could selectively attempt to
deanonymize easier traffic.

For such applications we can envision a cryptographic so-
lution that allows each user to carry out only a single trial and
obtain a random bit with some weighted probability, while
learning as little as possible about the overall probability of
each outcome. The user should not be able to repeat the trial
for a different result, since users can easily approximate the
probability using multiple results. Nor should they be able
to use the trial parameters to learn anything more about the
actual probability of the outcomes. Users should be able to
perform a trial noninteractively, as they would if the proba-
bility were distributed in cleartext. In other words, we want
a way to distribute a weighted coin that each user can flip
once, while revealing as little information as possible about
the weight of the coin. We call this construction a “Blind
Bernoulli Trial, or BBT.”

Specifically, we propose a definition where an authority
generates and distributes unique keys to individual users. For
each trial, the authority generates an encrypted tag that cor-
responds to the desired probability for that trial. Given a user
key and a tag, one can noninteractively compute the outcome
of exactly one trial without learning the overall probability.

We formalize the security of this system with a simulation-
based definition inspired by the usual definition of semantic
security for a cipher. Informally, the definition states that
any function that can efficiently be computed by some num-
ber of identities and trial parameters could also be computed
only knowing the trial results. The definition also includes a
“leakage function” to allow schemes that leak some informa-
tion but still have near-ideal security. The leakage function
formally quantifies and places an upper bound on the amount
of information an attacker can gain.

This paper evaluates three BBT schemes. First we de-
velop a very simple protocol that meets our definitions and
is based on a semantically secure cipher. This scheme essen-
tially encrypts one trial result per user. We discuss why this
trivial solution is unsatisfactory and then show an alterna-
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tive construction from a general functional encryption primi-
tive. Finally, since no practical functional encryption scheme
for general functions is known, we examine more specific
functional encryption schemes that support only a limited
class of functions. We show how to construct a near-ideal
BBT scheme from functional encryption supporting only in-
ner product predicate functions, for which practical schemes
currently exist.

In section 6, we compare the security of the ideal BBT
schemes with the inner product construction using a quanti-
tative attack analysis, discussing what an attacker can learn
about the trial probability given a certain number of trial re-
sults. We design and evaluate a simulation of an attacker’s
perspective on both possible schemes, using the different in-
formation available to the adversary in each case. The attack
simulations show that the information gained by an attacker
for the inner product scheme, on average, is very similar to
the information gained in the ideal case.

Since efficiency is a major concern, we discuss both the
running time and storage requirements for the inner product
scheme. To evaluate the feasibility of current inner product
functional encryption schemes, we implement a recently pro-
posed scheme in software (to our knowledge, the first imple-
mentation of this scheme) and provide benchmarks for each
algorithm involved in a Blind Bernoulli trial scheme. The
benchmarks show that a Blind Bernoulli Trial scheme based
on inner product encryption can run in a reasonable amount
of time on current hardware.

Finally, we explore in more detail some potential appli-
cations of this new cryptographic concept. We discuss two
possible distributed-systems scenarios where random behav-
ior is used and the probability of that random behavior is
sensitive information. In these cases, Blind Bernoulli trials
can enhance privacy in the distributed system by hiding the
weighted probabilities from users.

1.1 Related Work

Protocols for remote parties to agree on a random bit in a
way that is fair and verifiable go back decades in cryptogra-
phy [6]. These protocols differ from BBT in that their goal
is to prevent either party from biasing the result. BBT is al-
most the opposite: here we explicitly want one party to be
able to bias the result and for the other party to be unable to
determine the bias.

More generally, secure multi-party computation (MPC)
encompasses a wide body of related work that deals with al-
lowing remote parties to interactively perform arbitrary com-
putations together. MPC focuses on protocols that enable
distrusting parties to jointly compute a function on private in-
puts, without revealing the inputs to each other. It allows for
private inputs from both parties, and protocols are interac-
tive, proceeding in multiple rounds. Existing MPC schemes
can be practical [31]. Our formulation of BBT does not allow

interactive protocols, and the only private input is the prob-
ability of the trial. Therefore BBT is not compatible with
MPC solutions.

While BBT does not fall under the area of MPC, it does
fit squarely within the functional encryption model. Section
4 gives additional background on functional encryption and
shows how BBT can be instantiated using general functional
encryption.

In contrast with MPC, no practical general functional en-
cryption is known. Recent works have proposed general
functional encryption schemes, although these are not yet
practical [15]. Other works have focused on implementing
efficient functional encryption for specific classes of func-
tions such as inner products and polynomials [18]. This pa-
per primarily focuses on building an efficient construction
specifically for BBTs.

2 Blind Bernoulli Trials

A Bernoulli trial models a random process with two possi-
ble results, where each result occurs with a fixed probability.
This has applications in some distributed systems. For ex-
ample, it provides a very simple means for one user to direct
the behavior of a certain percentage of others without know-
ing exactly how many there are and without needing direct
communication. An authority can distribute the parameters
for a trial, and users can run a Bernoulli trial with the given
parameters to self-organize into groups of approximately the
desired proportions.

However, in some cases it may be important to the secu-
rity goals of the system that individual users do not learn the
overall probability of success. In these cases it is not accept-
able for an authority to distribute the parameters for a trial,
since this directly reveals the overall probability of success
to all users. In response to this need, we formulate the con-
cept of a Blind Bernoulli Trial, or BBT, which allows each
user to obtain a single pseudo-random trial result without re-
vealing additional information about the overall probability
of success.

At first glance, it might appear that trivial solution would
be for the authority to run the trials on a trusted computer and
individually send a different trial result to each user. Since
a user sees only their result, this scheme is secure. How-
ever, this scheme does not meet the requirement that a BBT
be noninteractive. This leaves it with an important draw-
back compared to an unencrypted Bernoulli trial (publishing
the probability parameter in plaintext). For an unencrypted
Bernoulli trial, the authority can publish the probability pa-
rameter once, and any number of users can run a trial or for-
ward the trial parameters to other users. Instead, the trivial
interactive solution forces the authority to open an individ-
ual communication channel for each user. As a result, this
interactive solution presents scalability concerns for systems
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where communication between the authority and users may
be intermittent or costly.

Ideally, a BBT scheme should more closely mirror
the properties we get with a noninteractive unencrypted
Bernoulli trial. The authority should be able to publish an
encrypted object that represents the trial parameters and any
number of users should be able to use this object to ob-
tain a trial result without further interaction with the author-
ity. Therefore, a Blind Bernoulli Trial scheme will try to
construct “tags” that represent encrypted trial parameters of
varying probabilities. Users will be able to use these tags to
conduct trials without interaction with the authority.

In order to hide the overall probability of success for a
trial, users must be able to obtain only one trial result per
tag. If users could run multiple pseudo-random trials with
the same tag they could quickly approximate the probability
of success. To avoid this, we require that trial results are
deterministic on a per user basis. In other words, the same
user will always compute the same result for a given tag.
Since Blind Bernoulli Trials must be deterministic, they are
not true Bernoulli trials and do not have a “probability” of
success in the same sense. Instead, when using a BBT, we are
more interested in the overall probability of a trial’s success
across a distribution of users. Accordingly, when we speak
of the “probability” of an outcome of a Blind Bernoulli Trial,
we are referring to the probability of that outcome when a
trial is performed with a user key that is selected at random
from the set of users. For schemes that require the authority
to store key material for each user, the “set of users” refers to
the set of user keys kept by the authority. Otherwise, it refers
to the set of all possible user keys.

Just as a single user must always get the same result for
the same tag, it is also necessary to prevent one entity from
controlling many user identities and utilizing them to per-
form multiple trials on a tag. For this reason, it must be
impractical for an adversary to create multiple working user
identities. We avoid this by introducing a master key that
is required to generate new user identities. These identities
take the form of a user key, which is combined with the tag to
conduct a single trial. In general, an adversary should not be
able to create a user key without the master key. The impact
of collusion is discussed at length in Section 6.

Taking into account these properties, we can arrive at a
clearer picture for what our scheme must look like: in a cryp-
tographic Blind Bernoulli Trial scheme, an authority uses a
private master key to generate and distribute user keys rep-
resenting individual user identities and tags, each represent-
ing a Bernoulli trial with a fixed probability of success pre-
scribed by the authority. Given a user key and a tag, there
exists a public, deterministic procedure to compute the re-
sult of a single Bernoulli trial (either “success” or “failure”)
without revealing to the user the probability of success asso-
ciated with the trial.

Formally, a Blind Bernoulli Trial encryption scheme con-

sists of the following algorithms:

• Setup(1λ ): Accepts a security parameter λ and returns
a master key sk and public parameters pk.

• KeyGen(sk): returns a user key uk.

• TagGen(x): takes a probability parameter x and returns
a tag t; the exact form of the probability parameter can
vary depending on the construction. In order to be use-
ful, there must be at least two possible probability pa-
rameters that create tags with different probabilities of
success.

• Trial(uk, t): returns a single bit b indicating success or
failure.

This definition does not allow the trivial interactive solu-
tion mentioned earlier, where the authority carries out trials
and directly communicates results to each user individually.
This reflects a key design goal: that users must be able to ob-
tain trial results without online communication with a cen-
tralized infrastructure. Users must be able to transfer tags to
each other and each tag must be usable by all users. This al-
lows individuals in a disconnected distributed system to ob-
tain trial results without needing a direct intermediary.

2.1 Security Definition
Inherently, a BBT must reveal some information about the
underlying priority. For example, an adversary that seeks to
distinguish high-probability trials from low-probability ones
could, after generating a trial result for a tag with their user
key, guess “high-probability” for successful trials and “low-
probability” for unsuccessful ones. Such a trivial adversary
could already achieve non-negligible advantage in distin-
guishing between two types of tags.

Since each trial result unavoidably reveals some informa-
tion about the underlying probability of success (a single
successful trial means that the trial is more likely to have
a higher probability of success), our security definition must
take into account this inherent information leakage. Also,
our definition must take into account collusion, so that the
scheme remains as secure as possible even when a single ad-
versary controls multiple user identities. Therefore, we com-
pare the information an adversary learns from some number
of user keys to that learned by an adversary that learns only
the trial results corresponding to those keys.

Informally, a Blind Bernoulli Trial scheme is secure if an
adversary with access to x user keys and y tags learns no
more about the probabilities of success of any tags than he
would by being given only the results of x trials for each tag.
Since a BBT scheme intends to reveal the outcome of 1 trial
per key, clearly this is the best any scheme could hope to
do. In Section 6 we discuss some possible attacks when an

USENIX Association 28th USENIX Security Symposium    1485



adversary controls multiple keys and quantify the amount of
information gained by such an adversary.

Formally, we use a simulation-based definition to capture
the idea that any function which is efficiently computable
from a trial tag and a set of user keys must also be efficiently
computable using only the trial results. We also include
some allowance for additional information leaked, as this
will be useful later in constructing a scheme that achieves
near-ideal security with much greater efficiency compared to
other schemes.

Definition 2.1 (Security with leakage). A Blind Bernoulli
trial scheme is secure with respect to a leakage function
L if for all probabilistic polynomial time (PPT) algo-
rithms A , there exists a PPT algorithm B such that for all
polynomially-bounded functions f ,h, the advantage of A ,
defined as:

Pr[A (1λ ,uk1,uk2, . . . ,ukn, t,h(1λ ,x))) = f (1λ ,x)]−

Pr[B(1λ ,uk1,uk2, . . . ,ukn,Trial(uk1, t),Trial(uk2, t), . . . ,

Trial(ukn, t),L (t),h(1λ ,x)) = f (1λ ,x)] (1)

is negligible in the security parameter, where x is the prob-
ability parameter and t= TagGen(x).

This definition is closely-related to the usual definition of
semantic security for private-key encryption and formalizes
the idea that an adversary should learn as little as possible
about a tag beyond the results of the trials of all keys known
to the adversary. The leakage function places an upper bound
on the amount of information that an adversary can learn
from a tag because the definition states that any function that
can be efficiently computed with the tag t can also be effi-
ciently computed with only the trial results (which are inten-
tionally revealed) and L (t).

Implicit in this security definition is the design require-
ment that an adversary can not forge additional user keys.
If a BBT system allowed an adversary to forge a non-zero
number of additional keys, that adversary would gain access
to an extra set of trial results beyond those generated from
their originally controled keys. Such a system fails to meet
our security definition.

2.2 Other Design Goals
Security is a necessary property, but it is not the only design
goal. To be usable, a BBT scheme must be efficient, both in
terms of the running times of the algorithms and the space
complexity of keys and tags. As stated previously, we also
require that the protocol is noninteractive; that is, that tags
can be freely transmitted from user to user and that users can
obtain trial results from a tag without direct communication
with the authority.

Each algorithm must be efficient enough to run in a rea-
sonable amount of time. The running time of the Trial algo-
rithm is particularly important, as we expect this algorithm
to be run most frequently. Each user must run a trial for each
tag received. Also, several applications of BBT feature users
with lower computing resources compared to the authority.
The other algorithms that comprise a BBT scheme are likely
to be run less often: Setup is run only once, or only when the
system needs to be re-keyed. And if n tags are created and
m users then we expect the number of trials run to be on the
order of nm if most users receive most tags.

The size of objects in the scheme must also be efficient.
“Efficient” tags and user keys should require space logarith-
mic or at least sublinear in the number of users. In order to
minimize storage requirements for the authority, we would
also prefer that the tag generation algorithm does not depend
on the current state of users. This eliminates the need for the
authority to keep a database of users, and also allows user
keys to be used even with tags that were generated before
the key. This is particularly important in distributed systems
applications that are disconnected or high churn, where new
users may regularly encounter tags that were generated be-
fore the user key.

Another potentially desirable property would be the abil-
ity for users to generate tags. We consider this property de-
sirable because if it is not wanted it can easily be removed
by composing tags with any cryptographic signature scheme.
Users can then simply reject tags that do not have a valid sig-
nature from the authority. On the other hand, it is not clear
how to add this property to a scheme that does not support it,
so we consider a scheme that does allow user tag generation
to be more flexible.

A less-obvious but important property of a BBT scheme
is the possible probability values for a tag. There is no re-
quirement that a scheme support an arbitrary probability, but
only that TagGen accepts some parameter that increases or
decreases the probability of success for trials resulting from
the generated tag. A scheme that allows more fine-grained
control of the probability level is preferable over one that
supports more limited probability levels.

3 Construction from Semantically-Secure En-
cryption

A simple BBT scheme can be trivially constructed from any
symmetric or asymmetric encryption scheme that is semanti-
cally secure. In short, the authority can simply generate and
store a random key for each user and send a tag consisting
of a different ciphertext for each user, which that user can
decrypt to obtain a trial result with the corresponding user
key. To run a trial, users simply decrypt the ciphertext cor-
responding to their key. The security of this scheme follows
immediately from the semantic security of the underlying en-
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cryption system.
Either a public-key or symmetric system can be used

here, as it long it meets the definition for semantic security.
A symmetric-key system will be especially efficient, but a
public-key system has the advantage that users can gener-
ate tags themselves. On the other hand, if a symmetric-key
system is used, then the same keys that create tags can also
decrypt them, which means that only the authority can hold
the keys needed to create tags.

The individual algorithms are described as follows:

Setup

The authority initializes sk as an empty list of encryption
keys.

Generating User Keys

The authority generates a decryption key uk for the under-
lying cryptosystem, gives it to the user, and appends its cor-
responding encryption key to sk (in the case of a symmetric
system, the encryption key may be the same as the decryp-
tion key).

Generating Tags

A single tag consists of a set of ciphertexts, with one cipher-
text per user. The authority generates it as follows:

1. The authority randomly selects a subset S containing x
of |sk | users.

2. For each uki in sk, the authority computes cti ←
Encryptuki

(msuccess) if uki ∈ S, otherwise cti ←
Encryptuki

(mfail)

3. The tag is a tuple of all cti: t← (ct1,ct2, . . . ,ct|sk |)

4. The probability of success for the tag is x/|sk |.

Trials

To perform a trial, a user selects the ciphertext corresponding
to that user’s key from the set of ciphertexts that forms the
tag. The user then decrypts that ciphertext to obtain the trial
result:

1. m← Decryptuki
(cti).

2. Return 1 if m = msuccess.

3. Otherwise, return 0.

3.1 Discussion

Since a trial consists only of a single decryption, trials are
very efficient. User key generation is likewise extremely
efficient as it requires only choosing a random key. Trials
and user key generation are both O(1). However, generating
a tag is linear in the number of users, requiring l encryp-
tions for l users. The space complexity of tags is also O(l).
When the number of users is known to be small, this may
be acceptable. However, especially because BBT schemes
are designed for applications where network resources are
extremely limited, the linear space complexity of tags may
quickly become a concern as the number of users increases.

This type of BBT scheme also allows for the most fine-
grained possible control of probability. The tag generator
can select any subset of users of any size for a successful
trial. This is contrast to the schemes proposed in Sections 4
and 5, which are both limited in the possible subsets of users
that observe a successful trial.

This scheme does not meet the design goal that tag gen-
eration does not depend on user state. The authority must
maintain a central database of all user keys. If an asymmet-
ric key system is used to allow tag generation by users, this
key storage burden is also placed on each user. Each tag will
be valid only for the user keys that existed in the authority’s
database at the time the tag was generated, so it will not be
possible for newly-created users to run older tags.

4 Construction From Functional Encryption

A BBT scheme with ideal security can be constructed from
any functional encryption scheme that supports arbitrary
functions. In functional encryption, given a key k and cipher-
text ct, one can learn the output of a function of the plain-
text fk(m) without learning anything else about the plaintext
[8, 30, 2]. To construct a BBT scheme from a functional en-
cryption primitive, we define the user key functions using a
pseudorandom function family (PRF) and a comparison. The
tag plaintext consists of a random seed and a threshold value
which determines the tag’s likelihood of success. The au-
thority encrypts tags under the functional encryption scheme
and distributes the ciphertexts to users. Each user key corre-
sponds to a function f that is defined as:

f (s, t) = 1 if h(s)< t (2)
= 0 otherwise

where h is a function selected at random from a PRF for
each user key. Although the domain and range of functions
in PRFs are typically viewed as bit strings, for our purposes
it is more convenient to view them as integers in binary rep-
resentation.
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Setup

The authority initializes the functional encryption scheme
and retains the master key sk which allows the creation of
function keys.

Generating User Keys

The authority selects h at random from a PRF and generates
the user key uk as the function key for f , as described above.

Generating Tags

The authority selects a seed s at random from the domain of
each function in the PRF. The threshold t controls the prob-
ability p of the tag and is computed as p ∗max(range(h)).
The authority then encrypts the tuple (s, t) under the func-
tional encryption scheme to obtain the ct.

Trials

To perform a trial, a user computes f (s, t) using the tag ct
and the user key uk. The trial result is the function output.

4.1 Discussion
Although this construction achieves best-case security and
allows fine-grained choice of success probabilities, its de-
scription relies on functional encryption for arbitrary func-
tions. While such schemes do exist, they in turn rely
on other heavy-handed approaches such as fully homomor-
phic encryption for which practical implementations are not
yet available [15]. Therefore, a more practical solution is
needed.

5 Construction from Inner Product Encryp-
tion

In this section we show how to use any fully attribute-hiding
inner product encryption (IPE) scheme to construct a BBT
scheme that is secure with respect to the leakage function
L (t) = pk, where pk is the public key of the IPE scheme
used.

5.1 Background
The term “inner product encryption” has been applied to
multiple related but distinct cryptographic concepts [21, 5,
28, 29, 27, 19, 3], In this context, we use it to refer to a spe-
cific form of predicate encryption where ciphertexts and keys
are each associated with vectors, and the associated predicate
is the inner product function. Predicate encryption is a gen-
eralized form of public key encryption where each key k is
associated with a predicate function fk, and each ciphertext

is associated with an attribute y [18]. A ciphertext with at-
tribute y can be decrypted with key k if and only if fk(y) is
true.

In general, an IPE scheme operates on n-dimensional vec-
tors of integers modulo a prime p. In an IPE scheme, each
key sk~k is associated with a vector~k ∈ Zn

p, and each cipher-
text ct~y is associated with an attribute vector ~y ∈ Zn

p. The

associated predicate is f~k(ct~y) =
~k ·~y ?

= 0. In other words,
given sk~k and a ciphertext ct~y, one can compute the plaintext
m if and only if ~k ·~y = 0. An IPE scheme consists of the
following functions:

• Setup(1λ ) outputs public key pk and secret key sk.

• KeyGen(~k,sk) accepts the secret key sk and a vector~k ∈
Zn

p and outputs sk~k.

• Encrypt(m,~y,pk) outputs ct~y.

• Decrypt(ct~y,sk~k,pk) outputs m if ~k ·~y = 0, otherwise
outputs ⊥.

Attribute-hiding IPE additionally requires that the vector~y
associated with each ciphertext is hidden. Partially attribute
hiding schemes hide~y from users who are not authorized to
decrypt the associated ciphertext, while fully attribute-hiding
schemes hide~y even in the case where~k ·~y = 0.

IPE security is defined by a game between a challenger
and an adversary [28].

Definition 5.1 (Attribute-hiding IPE Security). The security
of a fully attribute-hiding IPE scheme is defined by the fol-
lowing game between the challenger and an admissible ad-
versary A

1. The challenger runs SetupIPE and gives pk to A , re-
taining sk.

2. A adaptively makes any polynomial number of key
queries for key vectors ~ki. The challenger gives A
sk~ki
← KeyGen(~ki,sk)

3. A chooses challenge attribute vectors (~y0,~y1) and
challenge plaintexts (m0,m1),.

4. The challenger randomly selects a bit b = 0 or b = 1.

5. The challenger gives A Encrypt(mb,~yb,pk)

6. A can again adaptively make a polynomial of key
queries for additional key vectors~ki.

7. A outputs a guess b′ and wins the game if b′ = b.

Here, an admissible adversary is defined as one whose
queries adhere to at least one of the following conditions:

1. ~ki ·~y0 6= 0 and~ki ·~y1 6= 0 for all~ki
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2. m0 =m1 and either (~ki ·~y1 6= 0 and~ki ·~y0 6= 0) or (~ki ·~y0 =

0 and~ki ·~y1 = 0) for all~ki.

Without these restrictions an adversary can trivially infer b
by submitting a challenge attribute pair that will be possible
to decrypt for one value of b and not possible to decrypt for
another, or a challenge message pair that can be decrypted to
a different value depending on b.

5.2 Construction
With attribute-hiding IPE and its security now defined, we
can show how to construct a BBT scheme using it. Intu-
itively, we will construct user keys and tags from randomly
sampled vectors. Tags will correspond to IPE ciphertexts,
user keys correspond to IPE user keys, and trials correspond
to IPE decryptions. A successful decryption means a suc-
cessful trial, while a failed decryption indicates a failed trial.
We will vary the number of nonzero components in a tag’s
associated vector to control the probability that a randomly-
selected user key will be able to decrypt it. Because the IPE
scheme is fully attribute-hiding, the vector associated with
tags is hidden from users, regardless of trial result.

Setup

The Setup function for IPE-based BBT additionally accepts
a paramter a that determines the number of nonzero com-
ponents in each user key. The authority runs the following
procedure:

1. Run SetupIPE(1λ ,n) to obtain the private key sk and
public key pk.

2. Store a as a public parameter.

3. Select msuccess randomly from the message space of the
underlying IPE scheme, and store it as a public param-
eter.

Generating User Keys

Every user key has the same number of nonzero components,
which is parameterized as a.

1. ~k is randomly selected from the set of all vectors with a
nonzero entries.

2. uk is computed as KeyGenIPE(~k,sk)

Generating Tags

In this scheme, TagGen accepts the integer probability pa-
rameter 0 < x < n, which represents the number of nonzero
components in the tag vector:

1. ~t is randomly selected from the set of all vectors with x
nonzero entries.

2. t is computed as EncIPE(msuccess,~t,pk).

Trials

1. m← DecIPE(t,uk,pk).

2. Return 1 if m = msuccess.

3. Otherwise, return 0.

5.3 Security
Theorem 1. The IPE-based BBT scheme is secure with re-
spect to the leakage function L (t) = pk.

Proof. The proof is simulation-based. For all PPT adver-
saries A (1λ ,uk1,uk2, . . . ,ukn, t,h(1λ ,~t))) = f (1λ ,~t) there
exists a PPT simulator that achieves the same advantage us-
ing only the trial results and the public key:

B(1λ ,uk1,uk2, . . . ,ukn,Trial(uk1, t),Trial(uk2, t), . . . ,

Trial(ukn, t),pk,h(1λ ,~t)) = f (1λ ,~t)

The simulator B produces an output that is computation-
ally indistinguishable from that of A . The algorithm for B
proceeds as follows:

~s← 〈1,1, . . . ,1,1〉
for 1≤ j ≤ n do
~v j← 〈0,0, . . . ,1, . . . ,0,0〉 where only the jth element is
1.
t j← Encrypt(~v j,pk)

end for
for all uki do

if Trial(uki, t) is success then
for 1≤ j ≤ n do

if Trial(uki, t j) is not success then
~s j← 0

end if
end for

end if
end for
s← Encrypt(~s,pk)
Run A (1λ ,uk1,uk2, . . . ,ukn,s,h(1λ ,~t))) and output the
result.

The output of algorithm B described above must be com-
putationally indistinguishable from the output of A ; other-
wise, an adversary could leverage the difference in the two to
break the security of the underlying IPE scheme as follows:

1. Choose~t as an arbitrary vector.
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2. Submit arbitrary key vectors~k1,~k2, . . . ,~kn.

3. Choose~s as it would be computed by B (i.e., the vector
with the maximal number of non-zero entries that is still
orthogonal to all~ki orthogonal to~t).

4. Choose plaintext m = msuccess.

5. Submit challenge attribute vector (~t,~s) and challenge
plaintext (m,m) and receive x, which is t if b = 0 or
s if b = 1. Note that these submissions are admissible
under the security definition of IPE because~s and~t are
specifically constructed such that~s ·~ki =~t ·~ki for all~ki,
as is required when m0 = m1.

6. Compute outA ←A (1λ ,uk1,uk2, . . . ,ukn,x,h(1λ ,~t))).

7. If outA is as A (1λ ,uk1,uk2, . . . ,ukn, t,h(1λ ,~t))), out-
put 0.

8. Otherwise, if the output outA is as
A (1λ ,uk1,uk2, . . . ,ukn,s,h(1λ ,~t))), output 1.

Clearly, if the adversary has non-negligible
advantage in distinguishing the outputs of
A (1λ ,uk1,uk2, . . . ,ukn, t,h(1λ ,~t))) (which is
exactly the output of the adversary A ) and
A (1λ ,uk1,uk2, . . . ,ukn,s,h(1λ ,~t))) (which is exactly
the output of the simulator B), then the adversary also wins
the IPE security game with non-negligible advantage. But,
for a secure IPE scheme no such adversary can exist. Thus
no PPT algorithm exists that can distinguish the output of
the simulator B from the output of the A .

5.4 Choice of Parameters
Besides the choice of underlying IPE scheme, the IPE-based
BBT scheme also allows the choice of parameters for the
dimension of the vector space n and the number of nonzero
components a in each user key. Choices of these parameters
will affect the number users that the system can support as
well as the available choices for tag probabilities.

The IPE construction uses the number of nonzero compo-
nents in a tag vector to control the probability of a success-
ful trial. Therefore, for a system of dimension n there are
n discrete probability “tiers” where tags in the ith tier have
i nonzero components. Given an IPE scheme of dimension
n, a nonzero components in each user key, and x nonzero
components in a tag, the odds of a successful trial are:

Pr[success] =
(

n− x
a

)
/

(
n
a

)
Here, the numerator counts the number of ways to choose

a user key that is orthogonal to the tag, and the denominator
represents the total number of user keys possible.

This means that the probability tiers are not distributed
uniformly. There are more tiers with lower probabilities of
success than there are tiers with higher probabilities of suc-
cess. For applications that require higher probabilities, we
can simply invert the result of all trials to get a more favor-
able distribution. The remainder of this section follows this
convention of inverting trial results. As a concrete example,
figure 1 visualizes the case where n = 64 components are
used.

Figure 1: The distribution of probability tiers is biased to-
ward the upper end of [0, 1] (using inverted trial results with
n = 64, a = 8).

Two user keys uk1 and uk2 are called functionally unique
if there exists a tag t such that Trial(uk1, t) 6=Trial(uk2, t). In
other words, at least one of the associated key vectors has at
least one non-zero component that is zero in the other vector,
so that it is possible to construct a vector that is orthogonal
to one but not the other. The number of functionally unique
user keys depends on the number of components n and the
choice of number of non-zero components in each user key
a and is given simply as:(

n
a

)
=

n!
a!(n−a)!

Table 5.4 compares the tag size in bits for IPE-BBT and
the alternative scheme described in section 3. For the un-
derlying IPE scheme, we used the state-of-the-art attribute-
hiding IPE scheme due to Chen et al. [10] (our implementa-
tion using this scheme is discussed further in section 7). We
assume a 1024-bit prime is used, for security equivalent to a
symmetric key of 112 bits [16]. Chen’s IPE scheme requires
4n+ 4 group elements for a ciphertext in an n-dimensional
IPE scheme. We assume that group elements can be repre-
sented compactly by specifying only the x coordinate plus
one bit indicating the y coordinate [25]. Thus the total size
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Dimension Users IPE Size ElGamal Size
9 9 5.1 KB 0.5 KB

10 45 5.6 KB 2.5 KB
11 165 6.2 KB 9.3 KB
12 495 6.7 KB 27.8 KB
16 12870 8.7 KB 723.9 KB
32 1.1×107 16.9 KB 591.7 MB
64 4.4×109 33.3 KB 249.0 GB

Table 1: Sizes of tags in a system supporting a given num-
ber of users in IPE-based BBT using Chen’s IPE scheme,
compared with semantically secure cipher construction us-
ing ECC ElGamal variant.

of a tag using Chen’s IPE scheme is (1024+ 1)(4n+ 4) for
IPE dimension n.

For comparison, we selected a public-key cryptosystem
that represents minimal realistic storage requirements for a
public key scheme at a comparable security level. We in-
stantiated the semantically-secure encryption with an ECC
variant of the ElGamal cryptosystem, which has been proven
secure under elliptic curve discrete log assumptions [20].
This cryptosystem requires 2 group elements per ciphertext.
We assume a 224-bit curve for a comparable level of secu-
rity with the IPE scheme, again equivalent to a symmetric
key strength of 112 [4]. This requires a total of 450 bits
per ciphertext. The IPE scheme that supports 165 users (11
components with 8 non-zero user key components) uses less
space than the corresponding public key scheme.

The number of possible tags is defined in the same way
as it is for user keys. Two tags t1 and t2 are functionally
unique if there exists a user key uk such that Trial(uk, t1) 6=
Trial(uk, t2). The number of functionally unique tags is dif-
ferent at each probability tier and depends on the total num-
ber of components in the vector space n and the number of
nonzero components x used for that probability tier:(

n
x

)
Therefore, it may be desirable to restrict the minimum and

maximum probability tiers used so that the number of func-
tionally unique tags at any probability tier does not fall below
a chosen minimum. This means that the number of practi-
cally usable probability tiers may be less than n. For exam-
ple, if one uses n = 64 components then one may only use
tags with at least 8 components and no more than 56, which
ensures that the number of functionally unique tags in any
probability tier is at least

(64
8

)
≈ 232.

The number of nonzero components a in each user key
also affects the range and number of probability tiers: lower
values of a allow a wider range of probability tiers, but fewer
functionally unique user keys. Individual applications will
need to determine a suitable trade-off. Figure 5.4 visualizes

Nonzero Components Users (to nearest power of 2)
4 219

8 232

12 241

Figure 2: Comparison of available probability tiers with IPE
dimension n = 64 with various values of a (nonzero user key
components). Lower values of a give greater flexibility in
probability choice but support fewer users.

the available probability tiers and number of user keys by the
number of nonzero user key components.

6 Practical Security

In practice, the security of any BBT scheme will require that
an adversary does not have access to too many keys. With
enough keys, it is possible for an adversary to approximate
the trial probability. As with any distributed system, the se-
curity of BBT in a system will break down if an adversary
compromises enough nodes. In this section we first consider
ways an adversary might attempt to compromise a system
and then develop a model that quantifies the amount of infor-
mation an attacker learns about trials based on the number of
compromised nodes.

One of the most obvious way an adversary may attempt
to compromise a system is a Sybil attack. In a Sybil at-
tack, a single adversary creates multiple fake identities and
appears to the network as many users instead of one [14].
Fortunately, there are wide range of known defenses against
Sybil attacks for different domains. The authority can at-
tempt to manually attempt to verify node identities before
issuing user keys. In cases where this is impractical, auto-
mated defenses exist. Social network-based defenses such as
SybilGuard [38], SybilLimit [37], and SybilInfer [13] are ca-
pable of detecting Sybil nodes using the social relationships
between nodes in the network, under the assumption that at-
tackers are unable to create many trust relationships with le-
gitimate users. Behavior-based schemes seek to distinguish
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between real and Sybil nodes via behaviors such as network
activity and movement. For example, both work by Abbas
et al. [1] and Jan et al. [17] utilize the heterogeneity of radio
signals to detect Sybil attackers in MANETs and Wireless
Sensor Networks respectively. Puzzle-based defenses such
as SybilControl [22] utilize a proof of work based approach
to mitigating Sybil attacks. Lastly, new approaches which
leverage smart contracts, such as that proposed by Bochem
et al. [7] put an economic price on Sybil identities.

Another simple attack is possible if a protocol misuses
BBTs. For example, if a protocol requires multiple trials at
the same probability protocol, then even a single user may
be able to gain significant information about the probability
of the associated tags. If a user observes several tags and
knows (either from protocol specification or otherwise) that
the tags all use the same probability parameter, then the user
may use the differing results from the tags to approximate
their shared probability.

In the event that an attacker does obtain multiple trial
results, it is critical that we understand how much can be
learned. The following subsections analyze the amount of
knowledge that an attacker gains from multiple trial results,
in both the ideal and the practical IPE schemes. Whether or
not this amount of information leakage is considered accept-
able is ultimately application-dependent.

Attacks on the Ideal Scheme

In an ideal BBT construction, the adversary learns only the
trial results corresponding to the keys that it holds. If the ad-
versary with n keys has no auxiliary information about the
underlying distribution of success probabilities, then its best
estimate for the success probability of a tag is x

n where x
is the number of observed successes. A confidence interval
can also be computed to measure the uncertainty in this es-
timate. As an example, Figure 3 shows the upper and lower
bounds of a 95% confidence interval on a tag with p = 0.5
as the number of the adversary’s keys increases. The con-
fidence interval is computed assuming that the adversary’s
trial results approximate the true tag probability as closely as
possible, which is the best possible case for an attacker. We
use a normal approximation to compute the confidence inter-
val. Figure 3 shows that the attacker’s knowledge increases
with more trials. The attacker gains information rapidly at
first, but trials beyond the first 10-15 bring diminishing re-
turns. After 100 trials, the adversary is 95% confident that
0.4 < p < 0.6.

However, if the adversary has a priori information on the
underlying distribution of success probabilities, then the cal-
culation is different. For example, if an adversary knows
that all tags are drawn from discrete probability tiers (as in
the case of the IPE-based scheme), then the adversary can
use Bayesian inference to compute the likelihood that a tag
comes from any tier given the a priori knowledge and the

Figure 3: The upper and lower bounds of a 95% confidence
interval for the probability of a tag with p= 0.5, as computed
by an attacker whose trial results approximate a 50% success
rate as closely as possible.

trial outcomes. Bayes’ theorem gives the likelihood that a
tag is from tier T given trial results R as:

P(T |R) = P(T )P(R|T )
P(R)

(3)

where P(T ) is the prior likelihood of a probability tier
T , P(R|T ) can be modeled as a binomial distribution, and
P(R) can be computed as ∑P(R|Ti)P(Ti) for each probability
tier Ti. This represents, from the adversary’s point of view,
the likelihood that a tag comes from a given probability tier
given the observed trial results. This serves as an effective
measure of what the adversary knows about the probability
of a trial associated with the tag.

Figure 4 shows the expected view of an attacker in the
ideal discrete case for two different tags in a simplified model
that includes only 4 probability tiers. The tiers used are se-
lected at roughly equal intervals from the tiers available in
the IPE scheme with n = 64, and are listed in table 2. The
attacker’s confidence in each probability tier was computed
using the Bayesian model outlined above and taken as an av-
erage over all possible attacker trial results (weighted using
the binomial distribution for the likelihood of each result).
We assume that each probability tier is equally likely to an
attacker as a prior likelihood. As the number of trial results
available to the attacker increases, the confidence in the true
probability tier increases while the confidence in other tiers
decreases.

Attacks on the IPE Scheme

We know that with ideal security, only the trial results are
learned. In the IPE scheme, additional information is leaked
(constrained by leakage function in the security proof). We
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Figure 4: An attacker’s view of two tags in the ideal discrete case, using a simplified model with 4 probability tiers. Each graph
shows the attacker’s expected confidence in each probability tier as a function of the number of trial results available to the
attacker. The left graph shows the case where the true probability of the tag is p = 0.725, while the right graph shows a tag with
p = 0.8.

Nonzero Components p Prior Likelihood

9 0.725 0.25
11 0.800 0.25
16 0.898 0.25
56 1.000 0.25

Table 2: Distribution of tags used in analysis.

wish to quantify how much an attacker can learn from the
trial results, and how much more can be learned from the
leaked information in the IPE scheme.

Essentially, the attacker can use information about the lo-
cation of nonzero components in user keys to narrow down
the set of possible tags. Knowing the components in each
user key, together with their trial results for a tag, allows the
attacker to quickly rule out any tag configurations that are
inconsistent with the observed trial results.

The leakage function of the security proof takes this into
account by allowing the public key of the underlying IPE
scheme to leak. Since the public key is intentionally public
in an IPE scheme, clearly this does not break the security
guarantees of the underlying IPE; however, it does allow an
adversary to potentially learn more about tags than the ideal
case. Recall that the IPE public key allows one to encrypt
a message under an arbitrary vector and obtain the cipher-
text. In a BBT scheme, the IPE ciphertexts corresponds to
BBT tags. Therefore, an adversary with the IPE public key
can generate arbitrary tags, which allows the adversary to
test user keys (but not tags) for the presence of any non-zero
components. By repeated testing an adversary can determine
exactly which components are zero and nonzero in each user
key. In the rest of this analysis we assume the worst-case;

that is, that the adversary already has access to the upper
bound of information allowed by our security proof.

If an adversary knows which components in each user key
are nonzero, then it can narrow the set of possible tags to
those that give the same trial results for the same keys. Now,
the adversary can estimate P(R|T ) as the proportion of possi-
ble tags from a tier that produce the same results when com-
bined with same set of keys. For example, if trial result of
testing a tag with one user key indicates that the two vectors
are orthogonal, then any tags that share a nonzero component
with the key are eliminated as possibilities. The attacker can
count the number of consistent tags at each probability tier,
and divide by the total number of possible tags in that tier
to obtain a better estimate of P(R|T ). Again, P(R) can be
computed as ∑P(R|Ti)P(Ti). The adversary can then again
compute the overall likelihood that a tag comes from a given
probability tier using the Bayesian inference described by
equation 3.

Comparison

In order to determine the true impact of this attack, we com-
pare the security of the IPE scheme to the ideal case by mod-
elling two adversaries that each calculate the likelihood of
tags differently. The component-aware adversary uses the
full knowledge of the user keys components to compute the
exact number of tags in each probability tier that could have
produced the observed trial results, and then combines this
with the prior likelihood of each probability tier to produce a
confidence that a given tag comes from a given tier. Remem-
ber that no PPT adversary could hope to further distinguish
between possible tags that would have produced the same
trial results, since this directly contradicts the IPE security

USENIX Association 28th USENIX Security Symposium    1493



definition.
On the other hand, the naive adversary uses only the num-

ber of success and number of failures to compute the like-
lihood of probability tiers. The likelihood of an observed
result given a probability tier is modeled only as a binomial
distribution. This is the best that an adversary could hope to
do under the ideal security definition, where only trial results
are revealed.

Figures 5 and 6 show a comparison of the two attacks in
one case. For simulating the two attacks we chose parame-
ters that provide a reasonable balance of performance, secu-
rity, and number of users supported: n = 64 as the dimension
of the IPE scheme and a = 8 for the number of nonzero com-
ponents per user key. For simplicity, we limited tags to only
a set of a few that provided roughly evenly-spaced probabil-
ity tiers from about 0.72 to 1.0, in 0.10 intervals. Table 2 lists
the exact tags used. For the prior distribution of tags, each
probability tier was assumed to be equally likely.

For each attack, we sampled a given number of random
keys, ran the attack with the keys on a randomly sampled tag
at each probability tier, and then reported the resulting com-
puted distribution of tag likelihood for each tag. We repeated
this process many times to obtain an average over uniformly
random sampled n keys and tags sampled randomly from our
distribution of probability tiers. Shannon entropy, defined as
−∑ pi log(pi) can be used as a measure of the uncertainty
over a distribution [33]. After each sampled attack, we com-
puted the entropy of the computed probability tier distribu-
tion. We then computed the average expected entropy over
the sampled sets of user keys and tags and graphed it as a
function of number of user keys held by an attacker. Fig-
ure 5 shows that the difference in the attacker uncertainty is
minimal between the ideal and IPE schemes. The expected
entropy in a tag distribution from an attacker’s point of view
diminishes with each additional key known, and it dimin-
ishes slightly faster for the IPE-based scheme than it does in
an ideal scenario.

We also computed the expected Kullback-Leibler diver-
gence between the component-aware model and the naive
model, using the same tag distribution and random sampling
method. The Kullback-Leibler divergence between two dis-
tributions P and Q is defined as −∑ pi log( pi

qi
). This diver-

gence measures the amount of information that an attacker
gains about a tag probability by exploiting the information
leakage in an IPE-based BBT scheme. Figure 6 shows that
the additional information leaked to an attacker is minimal
and quickly levels off around 0.02 bits.

7 Evaluation

We implemented IPE-based BBT using the adaptively
attribute-hiding IPE scheme by Chen, Gong, and Wee, which
is the current state of the art [10]. Chen et al. propose
multiple variations with different performance characteris-

Figure 5: Expected entropy of computed tag likelihood as a
function of attacker’s number of keys.

Figure 6: Expected Kullback-Leibler divergence between the
component-aware model and the naive model as a function
of attacker’s number of keys.
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Object Size (in elements)
Public key 8n+16
User key 7
Tag 4n+4

Table 3: Size of objects in IPE-BBT implemented with IPE
scheme from Chen et al., in number of group elements.

tics using different standard assumptions. We implemented
the variant described in Section 4.4 of their paper, which is
proved secure under the external decisional linear assump-
tion.

Under this scheme, tags and the public key both require
space that is O(n) in the number of dimensions, or O(log(l))
in the number of functionally unique user keys. User keys
have a constant space requirement of 7 group elements. Ta-
ble 3 details the exact space requirements for each object.

Setup, trials, user key generation, and tag generation all
run in O(n) time. For a typical number of dimensions, the
trial run time is dominated by the pairing operations. Cru-
cially, trials in this scheme require only 7 pairing operations,
regardless of the number of dimensions.

We tested the speed of this implementation on a single
core of an Intel Xeon E5-2680 v4 CPU clocked at 2.40GHz.
For pairing operations, we used the Stanford Pairing-Based
Cryptography (PBC) library [23, 24]. The curve used was of
PBC’s “Type A,” which are curves of the form y2 = x3 + x
over the field Fq, where q is a prime such that q = 3 mod 4.
q was chosen as a random 1024-bit prime, and the parameter
r was chosen as a 224-bit number. Since the curve has em-
bedding degree k = 2, these parameters are equivalent to the
strength of an 112-bit symmetric key, according to the IEEE
Standards for pairing-based cryptography [16].

Although the performance of all BBT steps must be rea-
sonable, the Trial step is of the most concern. Trials are ex-
pected to be carried out by clients who may have limited re-
sources, such as mobile devices. In contrast, Setup, TagGen,
and KeyGen are all expected to be carried out by the sin-
gle authority which would likely have access to significantly
more resources.

Figure 7 shows the runtime of each BBT algorithm in our
implementation using Chen, Gong, and Wee’s IPE scheme.
As expected, each algorithm shows a clear linear trend as
the dimension is increased. As previously mentioned, the
performance of the trial algorithm is the most critical, since
disconnected clients with limited computing resources will
be running it. Our results show that the trial algorithm is
quite practical with parameters that can support a large num-
ber of users. For example, with n = 64 dimensions and a = 8
nonzero components per user key, there are approximately
232 functionally unique user keys and a trial takes about 29
ms.

8 Applications

Any system that requires participants to take actions prob-
abilistically can use BBTs to enhance privacy. Specifically,
we envision several possible applications for BBTS in secure
distributed systems. We provide two example scenarios that
could benefit from deployment of blinded Bernoulli trials.

Probabilistic Forwarding of Content in a Network

Some networks (especially peer-to-peer networks) employ
random walks based on probabilistic forwarding of con-
tent for privacy reasons. For example, in the anonymous
communication systems such as AP3 [26] and DiscountAN-
ODR [36], when presented with a message, nodes randomly
decide to either forward messages to another node in the mix
or to send the message directly to its destination. The ran-
dom process of forwarding obscures the origin of a message:
when a node receives a message, it does not know if the
message originated from the immediate preceding node or
if it comes from 1, 2, or more hops away from that node.
The use of the random coin rather than full circuit specifica-
tion relieves the sending node from having to maintain state
about the network topology outside of its immediate neigh-
bors. The network uses a parameter p to specify the proba-
bility that nodes forward messages on to another node.

This approach introduces a trade-off between anonymity
and network overhead: for lower values of p, messages take
shorter paths (on average) through the network, but an ob-
server can narrow down the set of likely originators to a
smaller set based on the overlay distance to mix nodes and
the distribution of random walk lengths. Higher values of p
increase the number of possible nodes that might be the orig-
inator, but reduce network performance due to longer ran-
dom walks. The authors of AP3 propose p between 0.5 and
0.9.

Using BBTs we can construct a network that allows for
differential service, providing some users faster traffic, while
still retaining the anonymity of longer paths. For example,
consider a system with two classes of traffic. The Priority
Class wants higher performance, and therefore shorter ran-
dom walks, achievable with a low value of p. On the other
hand, the Slow Class has no performance demands, so it
can tolerate a higher value of p, increasing the size of its
anonymity set. Without BBTs the traffic classes are trivial to
distinguish, and as a result Priority traffic can be analyzed in
a vacuum, leading to small anonymity sets. Marking a mes-
sage’s p with a BBT means that the two classes can not be
distinguished based on this value, and in turn the faster class
can benefit from the adversary’s uncertainty about which
peers should be included in the set of possible originators.
This approach works especially well when the majority of
the traffic falls into the Slow Class.

To evaluate the utility of BBT in this system, we simulated
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Figure 7: Runtimes for individual steps of IPE-based BBT implementation, by the dimension of the IPE.

a network that uses probabilistic forwarding with two traffic
classes. Priority traffic uses p = 0.5, while Slow traffic in
our test network uses p = 0.9. We simulated the operation of
a network containing 1,000 nodes, with each node maintain-
ing at least 4 connections to other nodes. The resulting graph
had an average mixing time of slightly more than 7. In this
network, Priority traffic represents 10% of total messages,
and it is assumed that the adversary knows both the overall
proportion of Priority traffic in the network and the full net-
work topology. As expected, Figure 8 shows that Slow traf-
fic takes drastically longer paths through the network, while
Priority traffic reaches its destination much quicker. If an ob-
server can distinguish Priority traffic, then this creates a pri-
vacy concern: because Priority traffic originates from nearby
nodes with high probability, a node that receives it and rec-
ognizes it as Priority traffic has a high degree of confidence
that the sender is in the small set of nodes that are nearby
in the topology. However, if a BBT scheme is used to blind
the priority class of traffic in the network, then Priority traf-
fic can benefit from the reduced latency without resorting to
unacceptably small anonymity sets. As Figure 9 illustrates,
using BBT in the network increases the anonymity set sizes
to levels that are near those of the Slow class. On average,
anonymity sets for the merged class of traffic resulting from
BBT blinding of priority is slightly lower than if only slow

traffic is considered. This is because the adversary knows
the relative frequency of fast and slow traffic, and can adjust
computation of likely nodes based on this information.

Beyond the example systems of AP3 and DiscountAN-
ODR, many anonymous communication protocols feature a
system parameter taking the form of a probability. Exam-
ples include Freenet [12], Crowds [35], and Imprecise Rout-
ing [11]. In each of these protocols, BBT can be used in
a similar manner to adjust network behavior, allowing for
different security properties while blending in with standard
traffic.

Intrusion Detection in Wireless Sensor Networks

Another application for BBTs is masking how many nodes
are conducting a specific behavior. As an example, con-
sider a wireless sensor networks comprised of a large num-
ber of low-cost embedded devices conducting measurements
in an environment [32]. They rely on short-range wireless
communication between low-power devices (often battery-
powered), which makes power consumption a top concern.
Because of the communication range constraints and large
number of devices over a wide area, direct connectivity is
limited; instead sensors distribute messages from device to
device over multiple hops in the wireless network.
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Figure 8: The distribution of path lengths for different traffic
classes in the simulated network. Priority traffic takes signif-
icantly fewer hops to reach its destination, which translate to
improved reliability and decreased latency.

Figure 9: The distribution of anonymity set sizes for traffic
classes. Without BBT, the anonymity set for nodes sending
Priority traffic is less than 10% of the network. If the classes
are indistinguishable, the anonymity set size is more than
50% of the network.

Sensor networks deployed in a hostile environment face
the additional complication that certain compromised sen-
sors may not be trustworthy. Adversaries may attempt to fal-
sify sensor readings from compromised nodes. Recent work
has examined methods for detecting compromised nodes in
sensor networks [9, 34, 39]. In general, prior work has dealt
with detecting falsified results by comparing them to a con-
sensus of trustworthy results, under the assumption that an
adversary is unable to compromise enough nodes to form a
false consensus.

Of course, building a consensus requires a large number
of measurements. Again, this leads to a trade-off between
security and efficiency: employing many nodes in redundant
measurements to build a consensus raises the bar for an at-
tacker, but each sensor measurement uses energy (which is
an extremely limited resource in wireless sensor networks).
An obvious compromise would be to perform some fraction
of measurements using only a small number of sensors, and
sometimes use large-scale “audit” measurements to provide
the necessary data for intrusion detection. If the metadata
associated with a measurement reveals the number of nodes
involved in the measurement, then this solution is vulnerable
to an obvious attack: an adversary can simply refrain from
lying during the audit measurements.

BBTs mitigate the aforementioned attack by limiting the
adversary’s ability to distinguish typical measurements from
audit measurements. The authority can control the scope of
the measurement using the probability of a tag, and nodes
can decide their involvement in the measurement with a trial.
This prevents the attacker from selectively influencing mea-
surements without detection. In addition, the authority can
easily verify that nodes are not returning results for spurious
measurements by duplicating the deterministic trial results
and verifying that the node originating the measurement was
in fact one of the nodes directed to take the measurement.

We evaluated the effect of applying this technique on a
small network of sensor nodes. We modeled the network
as 100 independent sensor nodes, each capable of a fixed
finite number of measurements before it is considered ex-
pired. The adversary controls one node. We assume that
the malicious node is detected if it lies on a measurement
that is performed by at least half of the nodes. For normal
measurements, the network uses a tag with p = 0.05. For
audit measurements, the network sets p = 0.6 (this ensures
with high probability that at least half of the network does
actually perform the measurement). We also assume that the
authority verifies that each returned result is tied to an ac-
tual successful trial. This can be accomplished in general by
requiring that nodes attach their user key to each result, en-
crypted so that only the authority can read it. Note that this is
consistent with the threat model which already assumes that
the authority has unlimited access to user keys.

By varying the “audit rate” (the fraction of measurements
that are audit measurements), the authority can select an arbi-
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Audit Rate Probability of
Detection

Relative Lifetime

0.0 0.00 12.0
0.2 0.71 3.7
0.4 0.86 2.2
0.6 0.93 1.6
0.8 0.97 1.2
1.0 0.99 1.0

Table 4: The trade-off between sensor lifetime and detection
probability. Here, the audit rate is the proportion of measure-
ments that are audit measurements; the detection probability
is the probability that a single lie is detected; and the relative
lifetime is the lifetime of the entire network relative to the
base case where all measurements are audit measurements.
Allowing a small probability of an undetected attack can sig-
nificantly increase the lifetime of the network.

trary trade-off between efficiency (conserving resources for
more useful measurements) and security (performing redun-
dant measurements to detect attacks). As the audit rate in-
creases, so does the probability of detecting a malicious mea-
surement; on the other hand, as the audit rate decreases, the
lifetime of the network increases. Table 4 shows this trade-
off. We sampled audit rates and computed both the resulting
sensor lifetime and the probability that the adversary is de-
tected each time it lies. The expected sensor lifetime is re-
ported relative to the lifetime in the “safe” network (that is,
one with an audit rate of 1). Even at a relatively low audit
rate of 0.2, the probability of detection is high (71%) from
the perspective of the sensor. This is because the number of
sensors employed for normal measurements is much smaller
than the number of sensors involved in an audit measure-
ment. As a result, a given sensor is more likely to be selected
via a large audit measurement than it is to be selected for a
normal measurement.

Because the adversary cannot distinguish normal and audit
measurements, it cannot selectively lie. This effectively lim-
its the number of times an adversary can lie without detec-
tion (with overwhelming probability). Without using BBT,
the adversary is only prevented from lying during audit mea-
surements; otherwise, it can forge measurements without de-
tection indefinitely. With BBT, if the adversary has a 50%
chance of detection per measurement (for example) then it
can expect to lie only about twice before detection, on aver-
age.

Discussion

In practice, the bandwidth and computation overhead of a
BBT scheme will determine its usefulness for any particu-
lar application. In the first application, we assume that the
overhead of computing a trial is low relative to the work re-
quired for a message forward. This assumption is reason-

able, for example, in AP3, where a single forward requires a
distributed hash table lookup and therefore multiple round-
trip messages with peers. In this scenario the combined la-
tency of one forward can be significantly slower than a trial
in the IPE-based BBT construction.

For the sensor network application, the energy savings of
skipping measurements will have to be weighed against the
cost of performing the trials at each sensor. Depending on
resource availability, different BBT constructions might be
more appropriate. For example, if bandwidth is cheap but
computational resources are constrained, then the IND-CPA
construction presented 3 might actually be more suitable.

9 Conclusion

Although many distributed systems make use of probabilis-
tic actions, systems so far either specify the probability as
a fixed parameter or reveal the varying probabilities to each
user. Blind Bernoulli trials are a privacy-enhancing measure
that preserves the semantics of Bernoulli trials across a set of
nodes, while hiding the exact parameters from individuals.

Fundamentally, Blind Bernoulli trials reveal the trial out-
come without revealing the trial parameters. We create a def-
inition that formalizes the idea that users should learn “no
more” about the trial parameters than they would by receiv-
ing only the trial results corresponding to the keys held, and
explore some possible solutions that meet our proposed def-
inition.

Since BBTs are a special case of functional encryption
(FE), they can easily be implemented with any FE primi-
tive that allows arbitrary functions. However, since practical
general functional encryption is not currently available, there
is a need for a specific scheme that achieves the same results
with a more efficient algorithm. Existing forms of functional
encryption for specific classes of functions can be used to
instantiate much more practical Blind Bernoulli trials, al-
beit with some security loss. Specifically, we can construct
a near-ideal BBT scheme from inner product encryption by
varying the number of nonzero components in tags to control
the probability of their trials.

We prove the near-ideal security of the IPE-based scheme
under our definition by showing a reduction to the security
of the underlying IPE scheme. This definition takes into ac-
count the security loss and places an upper bound on exactly
how much information is revealed to an adversary, even one
who controls multiple keys. By simulating the attacker’s
point of view on a large number of trials and keys, we can
measure the average uncertainty towards the distribution of
possible tags for an adversary with multiple keys: the ex-
pected entropy of a tag distribution decreases steadily with
the number of trial results known. We compare the entropy
loss in the ideal case to the IPE-based BBT scheme and show
that the additional entropy loss in the IPE case is small.
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Finally, we implement the IPE-based scheme in software
and analyze its efficiency. We show that, in a system with
realistic parameters, trials can be executed in a reasonable
amount of time. Also, tags and keys in the IPE scheme are
small (logarithmic in the number of users). Even with a rela-
tively small number of users (on the order of 100), this is less
storage than our simple semantically-secure cipher solution
with linear keys.

We conclude that Blind Bernoulli trials can be efficiently
implemented using IPE, and that they are an effective way
obscure probability parameter metadata. This paper pro-
poses two potential applications where this can prevent at-
tacks that would otherwise exploit knowledge of the prob-
ability parameter. We hope that others in the security and
distributed systems communities will explore additional uses
for the primitive.
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