
This paper is included in the Proceedings of the 
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the 
28th USENIX Security Symposium 

is sponsored by USENIX.

Devils in the Guidance: Predicting Logic 
Vulnerabilities in Payment Syndication Services 

through Automated Documentation Analysis
Yi Chen, Institute of Information Engineering, CAS; Luyi Xing, Yue Qin, Xiaojing Liao, 

and XiaoFeng Wang, Indiana University Bloomington; Kai Chen and Wei Zou, 
Institute of Information Engineering, CAS

https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yi



Devils in the Guidance: Predicting Logic Vulnerabilities in Payment Syndication
Services through Automated Documentation Analysis

Yi Chen1,3∗, Luyi Xing2, Yue Qin2, Xiaojing Liao2, XiaoFeng Wang2, Kai Chen1,3, Wei Zou1,3

1{CAS-KLONAT†, BKLONSPT‡, SKLOIS§},Institute of Information Engineering, CAS, 2Indiana University Bloomington,
3School of Cyber Security, University of Chinese Academy of Sciences

{luyixing, qinyue, xliao, xw7}@indiana.edu, {chenyi, chenkai, zouwei}@iie.ac.cn

Abstract
Finding logic flaws today relies on the program analysis that
leverages the functionality information reported in the pro-
gram’s documentation. Our research, however, shows that the
documentation alone may already contain information for
predicting the presence of some logic flaws, even before the
code is analyzed. Our first step on this direction focuses on
emerging syndication services that facilitate integration of
multiple payment services (e.g., Alipay, Wechat Pay, PayPal,
etc.) into merchant systems. We look at whether a syndication
service will cause some security requirements (e.g., checking
payment against price) to become unenforceable due to losing
visibility of some key parameters (e.g., payment, price) to the
parties involved in the syndication, or bring in implementation
errors when required security checks fail to be communicated
to the developer. For this purpose, we developed a suite of
Natural Language Processing techniques that enables auto-
matic inspection of the syndication developer’s guide, based
upon the payment models and security requirements from
the payment service. Our approach is found to be effective in
identifying these potential problems from the guide, and leads
to the discovery of 5 new security-critical flaws in popular
Chinese merchant systems that can cause circumvention of
payment once exploited.

1 Introduction
Logic vulnerabilities are a category of security defects caused
by faulty program logic, which have long been known to be
hard to analyze, due to their close ties to specific functionali-
ties of a system. Finding these defects relies on evaluating the
target system’s behaviors, at the code level, against a set of
invariants describing its function-related security properties
(e.g., expected authentication and authorization operations).

∗Work was done when the first author was at Indiana University Bloom-
ington.

†Key Laboratory of Network Assessment Technology, CAS.
‡Beijing Key Laboratory of Network Security and Protection Technology
§State Key Laboratory of Information Security, IIE, CAS

A great source for such invariants is the system’s documen-
tation, which states its security goals and has been leveraged
by prior research for the purposes such as model checking
on the system’s code [27]. In the meantime, the documen-
tation also provides detailed accounts of how the system is
designed to achieve the goals and how it should be used to
remain secure. Such information can be valuable for predict-
ing whether security-critical logic flaws are present in the
system or applications that use the system: for example, prior
research shows that logic vulnerabilities could be related to
low-quality documentations, such as those missing explana-
tions about implicit assumptions for secure integration of
authentication SDKs [49]; also a conflict between the sys-
tem’s operations, as described in its documentation, and its
security goals may indicate the existence of a design flaw.
However, never before has any effort been made to dig into
the details contained in a myriad of software documentations
to understand their security implications, not to mention any
attempt to exploit their full value for logic flaw detection.

Logic vulnerabilities in payment syndication. In this pa-
per, we present preliminary evidence that system documenta-
tions indeed carry abundant vulnerability-related indicators,
which can help identify logic flaws even before the code
of the system has been analyzed. Further we show that this
documentation-based approach can be automated, enabling
more effective vulnerability detection through providing guid-
ance to program analysis such as fuzzing. This first step has
been made possible by a study on syndication services that
facilitate integration of various payment services (e.g., Ali-
pay [2], WeChat Pay [17], PayPal [25]) in mobile apps. These
payment services have different APIs and SDKs, and an app
often needs to use all of them to offer its customers different
payment options. To simplify integration of these options, a
syndication service encapsulates each payment service with
a wrapper that exposes to the developer a uniform interface.
This, however, injects the syndicator as a proxy into the al-
ready complicated payment interactions among the payer (the
app user), the payee (the merchant) and the payment service
provider (e.g., Paypal). Logic flaws can therefore be induced

USENIX Association 28th USENIX Security Symposium    747



Payment Result Notification 
string transaction_id
integer transaction_fee
string sub_channel_type
bool trande_success
long timestamp
string signature

Alipay SR

After you received the asynchronous 
notification, you must perform these 
important checks: 
• Check the notify_id to verify the 

notice comes from Alipay 
•  ……

BeeCloud Specification

Figure 1: Incosistency example.

at the design level, when the wrapper causes some security
checks hard to proceed (e.g., verification of payment against
price), or at the implementation level, when the developer
fails to perform security checks correctly, due to incomplete
instructions given by the syndicator.

These payment syndication services today become increas-
ingly popular: according to the reports [35, 36], their total
transactions in year 2018 have reached 21.1 trillion yuan (3.15
trillion dollars). Any vulnerability inside these services, once
exploited, will have significant impacts, affecting 251 million
syndication users world-wide. We believe that their documen-
tations, developer’s guide in particular, contain information
that can help predict or even detect the logic flaws in their
customers’ systems. As an example, Figure 1 demonstrates
the inconsistency discovered when comparing an Alipay’s
security requirement, which asks for inspecting notify_id,
with the payment notification issued by BeeCloud [6] (a pop-
ular service syndicating Alipay and other payment services),
which does not include this information, as discovered from
its developer’s guide; therefore, the merchant server receiving
the notification will not be able to perform the required check.
This logic problem has been confirmed in our research. A
question here is how to systematically identify such logic
vulnerabilities from documentation. Also, developer’s guides
are typically long and complicated, including a lot of irrele-
vant information (e.g., instructions for using the syndicator’s
tools like dashboard). For example, Ping++ has 1093 KB
text documents online with at least 278 KB related technical
content [12]. Inspecting all the content manually is both time-
consuming and error-prone. Automated techniques therefore
need to be developed to help vulnerability discovery.

Document analysis for flaw detection. In our research, we
developed Dilution (Documentation Inspector for Logic Vul-
nerability Prediction), a new technique that automatically
analyzes the developer’s guide of a payment syndication to
infer potential security flaws in the merchant systems inte-
grating the service. Dilution is designed to predict missing
security checks in the integration, which is caused by either
improper encapsulation of a payment service that renders its
security checks impossible to perform through the wrapper,
or failure in communicating the necessary checks to the de-
veloper through the guide. For this purpose, we utilize natural
language processing (NLP) to automatically recover semantic
information from the wrapper’s integration instructions docu-

mented by the developer’s guide and compared it against the
finite state machine (FSM) of the payment service encapsu-
lated. Note that this payment FSM was manually extracted
but considered as one-time efforts (Section 3.1). Our analysis
automatically infers the relation between the syndication pay-
ment process and the payment FSM, maps important payment
states to the related instructions in the guide and further recov-
ers the parameters for required security checks (e.g., Alipay
key for signature verification, price) at the state from the text.
By analyzing the merchant or syndicator’s visibility of the
parameters, we can determine whether these checks can still
be performed by the merchant or the syndicator. Also from
related descriptions in the guide, our approach can automati-
cally find out whether the developer is informed about these
security requirements when integrating the wrapper. Missing
such instructions indicates the possible absence of security
checks in the merchant’s code.

We implemented Diluation using a suite of NLP techniques,
including dependency parsing and word embedding, and eval-
uated it on labeled content extracted from the developer’s
guides of real-world syndication services. Our study shows
that Dilution accurately caught logic flaws and went through
182 KB text document content within 3.18 seconds, averagely.

Finding. Further, we ran Dilution on the documentations of
eight popular syndication services, including Ping++ [12],
Paymax [11], BeeCloud [6], etc., which have tens of thou-
sands of merchants each and power the apps with millions
of users. From 1,456 KB documentations, our approach au-
tomatically predicted totally 41 potential issues, including
11 highly likely to be logic flaws from five syndication ser-
vices: Fuqianla [8], BeeCloud, TrPay [15], UMF Pay [16] and
66zhifu [1]. All the issues reported were found to be accurate
by our manual inspection of the documentations. Despite the
challenges in finding the apps integrating these services, due
to the obfuscations these services suggest [20, 23, 26], we
collected 17 popular Chinese apps using two of these syndica-
tion services. Through a black-box testing on these apps and
their merchant systems, we concluded that all 5 logic flaws
related to these syndication services predicted by Dilution are
indeed present in either the syndicators’ systems or their cus-
tomers’ code. All such confirmed flaws are security-critical,
and once exploited, will have serious consequences, allowing
the adversary to shop at a lower price or even for free. We
reported our findings to the providers of the syndications and
the merchants who are affected, and they all acknowledged
the importance of the problems we discovered. Now we are
in the process of helping them fix these vulnerabilities. Video
demos of our attacks are posted online [4].

Contributions. The contributions of the paper are outlined
as follows:

• New direction. We explore the potential to predict the pres-
ence of logic vulnerabilities in a software system from its
documentation. Our preliminary study on payment syndica-

748    28th USENIX Security Symposium USENIX Association



tion services shows that this is indeed feasible. Research along
this line could bring in a new perspective to software security
analysis, enabling more effective and intelligent vulnerability
detection and helping enhance software security quality.
• New techniques. We developed Dilution, the first semantics-
based documentation analyzer, to automatically inspect the
developer’s guide and infer possible security fallacies in the
merchant’s integration of the syndication service. Our ap-
proach includes a suite of NLP techniques tuned towards
software documentation, which are found to be effective and
efficient, as demonstrated by our evaluation.
• New findings. We analyzed the developer’s guides of 8 most
popular syndication services using Dilution and discovered
potential security issues. Among these we can validate, we
confirmed that all 5 logic flaws predicted by our approach
are indeed present in syndicator or merchant systems. These
vulnerabilities, once exploited, allows the adversary to shop at
an arbitrarily low price he set or completely for free, affecting
millions of users. We are working with affected syndicators
and merchants to fix these problems.

2 Background
Payment and syndication service. A third-party payment
service (aka. a payment processor) like PayPal [25] is an In-
ternet service to help handle transactions between the buyer
(the payer) and the seller (the payee) [43]. Such a service
simplifies transaction managements on both the payer and
the payee sides and therefore plays an important role in e-
commerce. Figure 2(a) shows how the service works using
Alipay [2], the largest online payment processor with over
1 billion users around the world [47], as an example. The
buyer first places an order through the app (À) and receives
a payment-related credential from the merchant (Á), in-
cluding order ID, price, seller account and others, and then
forwards it to Alipay (Â). After the order is paid by the buyer,
Alipay issues a notification to inform the merchant the com-
pletion of the transaction (Ã). The interfaces exposed by these
payment services tend to be complicated. Figure 3(a) further
details the process the app developer (working for the mer-
chant) is supposed to do for using Alipay : the merchant server
generates an Alipay specific argument orderInfo (part of
credential) with 36 entries once the buyer places an order;
then the buyer-side app of the merchant invokes Alipay’s
payment service.

To simplify this integration process, syndication services
emerge to wrap different payment processors into a uniform
interface for the developer to conveniently incorporate them
into her app. Figure 2(b) and 3(b) shows a common syndica-
tion payment process for Alipay. Instead of asking merchant
developer to implement anything specific to Alipay, the syn-
dicator receives an order from the buyer on behalf of the mer-
chant (À), construct the credential (Á) and then invokes
Alipay payment service from the buyer’s app (Â). Note that,

Buyer Merchant 

Payment 
processor 

① place order

② return credential

③ pay 

(credential)
④ send 

notification
Buyer Syndicator 

Payment 
processor 

① place order

② return credential

③ pay 

(credential)
④ send 

notification
Merchant 

⑤ send 
notification

Buyer Merchant 

Payment 
processor ③ pay


(credential)

④ send

notification① place


order
② return

credential

Syndicator 
⑤ send

notification

Buyer Merchant 

Payment 
processor 

③
 pay


(credential) ④ send

notification① place


order
② return

credential

Buyer Merchant 

③ invoke


payment

④ send

notification① place


order
② return

credential

Syndicator 
⑤ send

notification

Buyer Merchant 

③
 invoke


paym
ent

④ send

notification① place


order
② return

credential

Buyer Merchant 

③ pay


(credential)

④ send

notification① place


order
② return

credential

Syndicator 
⑤ send

notification

Buyer Merchant 
③

 pay


(credential) ④ send

notification① place


order
② return

credential

(a) Payment process

Buyer Merchant 

Payment 
processor 

① place order

② return credential

③ pay 

(credential)
④ send 

notification
Buyer Syndicator 

Payment 
processor 

① place order

② return credential

③ pay 

(credential)
④ send 

notification
Merchant 

⑤ send 
notification

Buyer Merchant 

Payment 
processor ③ pay


(credential)

④ send

notification① place


order
② return

credential

Syndicator 
⑤ send

notification

Buyer Merchant 

Payment 
processor 

③
 pay


(credential) ④ send

notification① place


order
② return

credential

Buyer Merchant 

③ invoke


payment

④ send

notification① place


order
② return

credential

Syndicator 
⑤ send

notification

Buyer Merchant 

③
 invoke


paym
ent

④ send

notification① place


order
② return

credential

Buyer Merchant 

③ pay


(credential)

④ send

notification① place


order
② return

credential

Syndicator 
⑤ send

notification

Buyer Merchant 
③

 pay


(credential) ④ send

notification① place


order
② return

credential

(b) Syndication process

Figure 2: Examples of payment and syndication process.

FuqianLaPay pay = new FuQianLaPay

          .Builder(this)

          .orderID(“YOUR_ORDERID”)

          .amount(100)

          .subject(“YOUR_SUBJECT”)

          .body(“YOUR_BODY”)

          .notifyUrl(“YOUR_NOTIFY_URL”)

          .build();

pay.startPay(FuQianLa.ALI);

step 1: call interface at client step 1: prepare orderInfo at server 
Set 36


parameters 

Map <String,String> result =  
        alipay.payV2(orderInfo,true);

step 2: call interface at client 

Sign

orderInfo Encode

orderInfo

FuqianLaPay pay = new FuQianLaPay

          .Builder(this)

          .orderID(“YOUR_ORDERID”)

          .amount(100)

          .subject(“YOUR_SUBJECT”)

          .body(“YOUR_BODY”)

          .notifyUrl(“YOUR_NOTIFY_URL”)

          .build();

pay.startPay(FuQianLa.ALI);

step 1: invoke generic payment interface 
at the buyer-side app

step 1: prepare orderInfo at server 
Set 36


parameters 

Map <String,String> result =  
        alipay.payV2(orderInfo,true);

step 2: invoke Alipay payment at 
the buyer-side app

Sign

orderInfo Encode

orderInfo

(a) To integrate Alipay

FuqianLaPay pay = new FuQianLaPay

          .Builder(this)

          .orderID(“YOUR_ORDERID”)

          .amount(100)

          .subject(“YOUR_SUBJECT”)

          .body(“YOUR_BODY”)

          .notifyUrl(“YOUR_NOTIFY_URL”)

          .build();

pay.startPay(FuQianLa.ALI);

step 1: call interface at client step 1: prepare orderInfo at server 
Set 36


parameters 

Map <String,String> result =  
        alipay.payV2(orderInfo,true);

step 2: call interface at client 

Sign

orderInfo Encode

orderInfo

FuqianLaPay pay = new FuQianLaPay

          .Builder(this)

          .orderID(“YOUR_ORDERID”)

          .amount(100)

          .subject(“YOUR_SUBJECT”)

          .body(“YOUR_BODY”)

          .notifyUrl(“YOUR_NOTIFY_URL”)

          .build();

pay.startPay(FuQianLa.ALI);

step 1: invoke generic payment interface 
at the buyer-side app

step 1: prepare orderInfo at server 
Set 36


parameters 

Map <String,String> result =  
        alipay.payV2(orderInfo,true);

step 2: invoke Alipay payment at 
the buyer-side app

Sign

orderInfo Encode

orderInfo

(b) To integrate a syndicator Fuqianla

Figure 3: The implementation examples.

Â only requires the app to invoke a generic payment interface
provided by the syndicator’s SDK in the app, and the target
payment processor, i.e., Alipay in this case, will be invoked by
the syndicator’s SDK. Once the payment is done, the syndica-
tor receives the notification from the the payment processor
(Ã) and restructures the message to a uniform format before
forwarding it to the merchant server (Ä). In this way, a simple
integration of a single syndication service on both the app
end and the merchant server end will allow the merchant to
work with multiple payment processors supported by the syn-
dicator. The developer is only supposed to follow a single
set of instructions from the syndicator to ensure the secure
payment process.
Security requirements. Online payment is a security-critical
process, so it is safeguarded by various security checks per-
formed both by the payment processor and by the merchant,
as required by the payment processor on its developer’s guide.
We call these checks security requirements (SRs)1 throughout
the paper. For instance, most third-party payments ask their
merchants to verify the payment amount on the notification
against the price of the purchase, the seller account informa-
tion to ensure that the merchants are intended payees, etc. In
Section 4.2, we present more examples for common security
requirements. In the case that the payment syndication is used,
we expect that either the developer or the syndicator is still
at the position to perform these required checks, and also in
the former case, the developer should be properly informed
through the guide provided by the syndicator.
Natural language processing. In our research, we utilized
two NLP techniques to automatically analyze the documenta-
tion of the payment syndication service: dependency parsing
and word embedding, as explained below.

1All the abbreviation’s explanation are summarized in Table 5 at Ap-
pendix for convenience.

USENIX Association 28th USENIX Security Symposium    749



Table 1: Examples of the relations between linguistic units
Example sentence: She gave me a very happy smile and a hug.
Abbreviation Description Relation example

SBV Subject-verb She <- gave
VOB Verb-object gave ->smile, gave ->hug
IOB Indirect object gave ->her
ATT Attribute happy <- smile
ADV Adverbial very <- happy
COO Coordinate smile ->hug

Dependency parsing is an NLP technique to reveal the syn-
tactic structure of a sentence by analyzing the grammatical
relations between linguistic units such as words. Examples of
such relations include subject-verb(SBV), verb-object(VOB),
indirect object(IOB), attribute(ATT), adverbial(ADV), coordi-
nate(COO) and others (see detailed explanation and examples
of these relations in Table 1). The result of the dependency
parsing is represented as a rooted parsing tree. At the center
of the tree is the verb of a clause structure, which is linked,
directly or indirectly, by other linguistic units. The state-of-
the-art dependency parser (e.g., Stanford parser [31]) can
achieve a 92.2% accuracy in grammatical relation discovery
from a sentence. In our study, we leveraged the parsing tree
generated from sentences in a developer’s guide to locate
the parties involved in a payment process and the content
transmitted between them.

Word Embedding is a set of language modeling and feature
learning techniques that map text (words or phrases) from a
vocabulary to high-dimensional vectors of real numbers. Such
a mapping can be implemented in different ways. The state-
of-the-art word embedding tool, Word2vec [37], initializes
word representations by random values and uses as its input a
joint probability distribution of words’ context by applying a
continuous Bag-of-Words or a skip-gram model. This distri-
bution is then utilized during the training of a neural network,
in which word vectors are continuously updated to maximize
the joint probability. The outcome of the training ensures that
related words are given approximate vectors for their simi-
lar contexts while irrelevant words are mapped into different
vectors. In our study, we leveraged Word2vec to generate a
semantic vector for each word and measured their semantic
difference by cosine distance between vectors.
Threat model. In our research, we consider a malicious buyer
who intends to get a product for free or at a lower price by
exploiting the vulnerabilities in the payment process, particu-
larly the logic flaws caused by incorrect or inadequate security
checks on the merchant or the syndicator side. This adversary
has the capability to modify or forge the messages delivered
to both the merchant server and the syndicator.

3 Dilution: Design
3.1 Overview
We believe that a critical security goal of a payment syndi-
cation is to ensure that all the security requirements made
by the payment processor it wraps are met through proper

validation

payment

service

Documentation 
Analyzer

syndication

logic flaw

FSM
SR

configuration

Logic-flaw 
PredictorFSM

SR

validation

payment

processor

Documentation 
Analyzer

syndication

logic flaw

FSM
SRs

configuration

Logic-flaw 
PredictorFSM

SRs

Figure 4: Architecture of our approach.

security checks, either by the merchant integrating the service
or by the sydnicator itself. The purpose of Dilution, therefore,
is to identify from the developer’s guide of the syndication
indicators that some SRs may fall through the cracks.

To this end, our approach is designed to compare the infor-
mation observed by the syndicator and the merchant (includ-
ing its app) with the SRs expected at individual states of the
original payment process (e.g., that of Alipay), to determine
whether either of the syndicator or the merchant has enough
information to fulfill these requirements at the states. Also an-
alyzed is whether these SRs have been explicitly stated in the
developer’s guide provided by the syndicator, when related
checks need to be done on the merchant’s side. More specifi-
cally, we first extract an FSM from the payment process, with
some of its states associated with SRs and the parameters they
are predicated on. This FSM is then extended to include the
operations performed by the wrapper, based upon the infor-
mation automatically recovered from the guide. Further using
the text content related to each state of the extended FSM,
we evaluate whether all parameters of each SR at the state
are still visible to the merchant or the syndicator. Finally, our
approach automatically analyzes the content of the guide to
determine whether the SRs are explained to the developer.

Architecture. Figure 4 illustrates the architecture of Dilu-
tion, including a preprocessing component, Documentation
Analyzer (DoA), Logic-flaw Predictor (LfP) and a validation
component. The preprocessing step is done manually in our
current system, which involves extraction of the FSM and
label of SRs for a payment processor. Since our focus is the
syndication service, so we consider this step as a one-time
effort: for each third-party payment, the information identi-
fied can be used to automatically analyze tens of syndication
services, each with a development guide containing hundreds
of thousands of words. Such documentations are inspected by
DoA, which utilizes NLP techniques to extend the payment
FSM with the states representing the wrapper’s actions, and
further recover the description for each SR from the guide.
The extended FSM and the parameters are then analyzed by
the LfP to identify the SRs that cannot be fulfilled by the mer-
chant and the syndicator, and those that have not been properly
explained to the developer. Also, the logic flaws predicted by
LfP are validated on the merchant’s integration of the syndi-
cator (the merchant’s app and its server-side component) to
confirm the presence of these vulnerabilities.

Example. Here, we use an example to describe how our ap-
proach works. Figure 5(a) shows Alipay’s FSM, with one of

750    28th USENIX Security Symposium USENIX Association



its SRs at state m f being verification of the payment amount
against the price of an item. Analyzing the developer’s guide
from Fuqianla (a popular syndicator), DoA discovers that the
order has been sent to the syndicator, instead of the merchant
(“The merchant client sends a payment query to the Fuqianla
server”), and the notification from Alipay is delivered to the
syndicator (“The Fuqianla server will receive a payment noti-
fication from the payment service”), before it is forwarded to
the merchant . The semantics recovered from the text is then
used to replace state m1 in Figure 5(a) with state w1 and add
state w2 to the FSM, converting it to the syndication FSM as
shown in Figure 5(b). This extended FSM and all the parame-
ters it carries is then further inspected by LfP. Here let us look
at the aforementioned SR at m f . At this state, LfP concludes
that the syndicator cannot check the payment amount, as it
gets the price information from the buyer not the merchant,
which cannot be trusted. On the other hand, though the mer-
chant is at the position to make the security check, LfP cannot
find a sentence, right after the description of the last communi-
cation (from w2 to m f ), informing the developer about the SR,
through a dependency analysis on all the sentences involving
terms related to the subject (the merchant), the object (price
and payment amount) and the expected action of the security
check. This leads to the conclusion that the SR may not be
communicated to the developer, and so may not be fulfilled
on the merchant side.

3.2 Preprocessing
As mentioned earlier, our approach involves a one-time pre-
processing step in which the FSMs of major payment pro-
cessors (Alipay, Wechat, PayPal, etc.) are constructed and
the SRs for different states are identified. Such information
can typically be found from these payment services’ inte-
gration guides. For example, Figure 11 at Appendix shows
the excerpts from Alipay’s documents. Its payment process
is clearly described through a diagram, which can be easily
converted into an FSM. From the figure, we can also see the
content for SRs, their parameters and the relations with the
payment process. Following we present the FSM that models
the payment process and the SRs. From such content, we
extract the payment process model and security checks, as
formally described below.

Payment model. The FSM for a payment process is de-
scribed as a 5-tuple: (S, D, E, b1, m f ). Here S is a set of
payment states, in each of which an actor (buyer b, merchant m
or syndicator w) can send out a message d ∈D; E : S×D→ S
is a function that drives the transition from one payment state
to the next, given a specific message d ∈ D sent out from the
former; b1 is the initial state in which the buyer places an
order to start the whole payment transaction, and m f is the
final state that the merchant receives the last message and the
transaction is complete. For example, Figure 5(a) illustrates
such an FSM for Alipay.

bn: buyer’s state 
mn: merchant’s state 
pn: payment processor’s state

bn: buyer’s state 
mn: merchant’s state 
wn: syndicator’s state 
pn: payment processor’s state

b1 order

credential

credential

notice
b2

w1

p1

mf w2notice

b1 order

credential

credential

noticeb2

m1

p1

mf

(a) The FSM of the payment processor using Alipay

bn: buyer’s state 
mn: merchant’s state 
pn: payment processor’s state

bn: buyer’s state 
mn: merchant’s state 
wn: syndicator’s state 
pn: payment processor’s state

b1 order

credential

credential

notice
b2

w1

p1

mf w2notice

b1 order

credential

credential

noticeb2

m1

p1

mf

(b) The FSM of the syndication using Fuqianla

Figure 5: FSM examples of the payment processor and syndi-
cation.

Security requirement. A security requirement SR describes
a security check that needs to be performed at a certain state:
for example, at m f of Alipay’s FSM (Figure 5(a)), the mer-
chant is supposed to verify payment = price. As we can see
from the example, central to the SR are the state (m f ), sub-
ject (merchant), object (payment), a verification function (the
equal function in the example) and additional parameters for
the verification (price). However, in the context of the pay-
ment FSM, each state is bound to an actor who is actually the
subject performing a security check. Further since all we care
is the feasibility of fulfilling the SR at a given state, we just
need to know whether all the inputs of the verification func-
tion (object and other parameters) are visible to the subject
at the state, not the function itself. Therefore, we can simply
model an SR as a 3-tuple: (SRstate, SRob j, SRpara), to repre-
sent its state, object and other parameters for the expected
security check. Note that the object and parameters here are
types of information, i.e., the key part of a key-value pair. This
is because all we want to know is whether the merchant at a
state can see these keys (payment and price) so as to perform
the required check; the outcome of the check, which depends
on their specific values, is not important for our purpose.

3.3 Syndication FSM Discovery
With the FSM and SRs collected from a payment processor,
we can run DoA to automatically analyze the developer’s
guides of different syndication services that wrap the proces-
sor. Most important here is to discover the syndicated payment
process through extending the payment FSM, which further
allows us to find out whether the parameters of required se-
curity checks are still visible to the new states supposed to
perform the checks, and how these security requirments are
explained to the developer (Section 3.4).
FSM extension structures. Fundamentally, a syndication
service is meant to support a merchant’s interactions with
the payment service, in terms of generating the input for the

USENIX Association 28th USENIX Security Symposium    751



service and converting its output to a unified form easy for
the merchant to interpret. This observation allows us to come
up with a set of possible extension structures, which are then
confirmed by the evidence extracted from the syndication’s
document (its developer’s guide).

Specifically, given a payment processor’s FSM, we consider
two types of states2 that the syndicator can help: m where
the merchant generates an input for the payment service, and
m f when the merchant receives the final notification from the
payment service. More specifically, the operations at the state
m can be assisted by a syndication state for input construction;
payment notification the merchant finally receives at m f can
be converted by a syndication state first. Following this line of
thinking, we can identify all possible extensions of m and m f ,
which are present in Figure 6. As we can see here, for m, the
extensions include the situations when either the merchant or
the syndicator produces the full output of m, that is, the input
for the payment service (see a.1 and a.4), and those when
they jointly create the output (see a.2, a.3, a.5 and a.6). The
latter can be further broken down into the cases when the
same party receives and issues the messages related to m (see
a.2 and a.5), or when different parties do (see a.3 and a.6).
For m f , since the payment process must end at this merchant
state, only three situations exist: no extension (see b.1), the
merchant getting the input (see b.2) and the syndicator receiv-
ing the original input (see b.3). DoA automatically inspects
every merchant state and evaluates the consistency between
each possible extension structure and the evidence discovered
from the developer’s guide through NLP, to find out how the
syndication indeed happens.

Taking the syndicator Fuqianla as an example (see Fig-
ure 5(b)), through inspecting it documentation, DoA deter-
mines that Fuqianla uses the extension structures a.4 and b.3
to wrap the payment processor. Specifically, its state w1 re-
places the original state m1 to generate credential, which is an
input for invoking the payment processor; the syndicator at
state w2 receives the payment notification from the merchant
and converts it to a unified form (across different payment
services it supports) before forwarding it to the merchant at
state m f .
Extension discovery from document. The evidence col-
lected from the syndication developer’s guide is the sentence
that describes the message transferred from a sender to a
receiver in the FSM (the buyer, the merchant, the payment
provider and the syndicator). For example, from the sentence
“the merchant client sends a payment query to the Fuqianla
server”, we know that the payment query from the buyer has
been sent to the syndication server, not the merchant, which
confirms the existence of a transition from b to w in the ex-
tension structure a.5 and a.6 (Figure 6). Our idea is to find all

2Note that we are only interested in these states because per payment
services’ guides [2,17,25], the inputs they accept are supposed to be generated
by the merchant server and the outcome of a transaction will be delivered to
the server.

m1 m1

w1

m1 w1
m2

(a.2) (a.3)(a.1)

w1 w1

m1

w1 m1
w2

(a.5) (a.6)(a.4)

w1

mf

m1 w1
mf

(b.2) (b.3)(b.1)

original extension

m1

(a)

(b)
mf

mf

mn: merchant’s state    wn: syndicator’s state

Figure 6: FSM possible extension structures.

such descriptions and extract their transition-related semantic
information, in the form of (Sender, Receiver, Content), to
identify all transitions introduced by the syndication and fur-
ther determine the way merchant states have been extended.

For this purpose, we utilized a suite of NLP techniques to
first find out all sentences related to transmission activities
(e.g., including predicates like “send”, “receive”, etc.), then
performs a syntactic analysis on each sentence and further
converts detected syntactic elements to a semantic triplet de-
scribing the parties involved in a transition as well as the
message sent (Sender, Receiver, Content). The challenges
here come from the ambiguity of the descriptions and diver-
sity of sentence structures in the developer’s guide. Particu-
larly, we found that a variety of terms are used to describe
message delivery and reception: not only common synonyms
like “transmit”, “dispatch”, etc., but also those specific to the
integration domains such as “call” (a remote function) and
“invoke” (a remote client).

To identify those synonymous terms, we leverage the obser-
vation that such expressions, no matter how diverse they are,
all share the similar context. For example, from the sentences
“call the merchant API to place an order” and “send the order
to the merchant”, we know that “call” and “send” are seman-
tically close given their relations with ‘merchant’ and ‘order’.
So in our research, we trained a word embedding model [18]
over the documentations of two syndicators, Ping++ [12] and
Fuqianla [8], and two payment service providers, Alipay [2]
and Wechat Pay [17]. The model maps each word to a vector
that represents its context. So the cosine distance between the
vectors quantifies their semantic similarity. In our research
we first manually collected a small set of “seeds”, words se-
mantically related to “send” and “receive”, such as “call” and
“invoke”, and then built a synonym list for these words with
the embedding model we trained over the aforementioned
documentations, using LTP [19] to segment Chinese words.
These lists are utilized to identify sentences in a developer’s
guide involving these transmission-related terms.

On each sentence discovered, DoA needs to extract its se-
mantics – the triplet. For this purpose, we come up with a
unique technique that utilizes dependency parsing (LTP [19])
to first identify a sentence’s syntactic elements (subject, object,
etc.) and then determine their semantics (Sender, Receiver,

752    28th USENIX Security Symposium USENIX Association



verify equalsMerchant

invoke

Client sends

receives

payment_platform

need

Sentence: When Client receives payment_credential, need invoke payment_platform.  
When  

Client

payment_credential

SBV  

VOB

COO
ADV

VOB

VOB

Sentence: Client sends payment_element to your server.

to server

payment_element

your SBV  

VOB

ADV POB ATT

Sentence: Merchant need verify whether the payment amount equals the order price.

SBV  

VOB

ATT

predicate
need

payment

amount

price

the

order thewhether

SRsub
SRobj
SRpara

VOB
ADV

SBV  

ATT

VOB
ATT

ATT

predicate
sender
content
receiver

predicate
sender
content
receiver

Figure 7: Entities in data-transmission related sentence.

verify equalsMerchant

invoke

Client sends

receives

payment_platform

need

Sentence: When Client receives payment_credential, need invoke payment_platform.  
When  

Client

payment_credential

SBV  

VOB

COO
ADV

VOB

VOB

Sentence: Client sends payment_element to your server.

to server

payment_element

your SBV  

VOB

ADV POB ATT

Sentence: Merchant need verify whether the payment amount equals the order price.

SBV  

VOB

ATT

predicate
need

payment

amount

price

the

order thewhether

SRsub
SRobj
SRpara

VOB
ADV

SBV  

ATT

VOB
ATT

ATT

predicate
sender
content
receiver

predicate
sender
content
receiver

Figure 8: Entities in complex sentence.

Content). This is quite intuitive for a simple sentence. For
example, Figure 73 shows the dependency relations between
the predicate “send” and other words or phrases. As we can
see here, the subject of the predicate (“client”) is Sender,
direct object (“payment_element”) is Content (the message
delivered), and indirect object (“your server”) is the receiver.
These elements can then be mapped to a transition on the
FSM, based upon their semantic similarity with payment par-
ties, as measured by the distances between their vectors. How-
ever, the semantics of the syntactic elements become more
difficult to determine in the presence of more complicated
sentence structures. For example, Figure 8 shows a complex
sentence with multiple clauses, including both “When Client
receives payment_credential” and “(Client) needs to invoke
payment_platform”. In this case, the subject of “receives”
(“Client”) becomes Sender, the object of “invoke” (“pay-
ment_platform”) is Receiver and the Content in the sentence
is found to be the object of "receives" (“payment_credential”).
To address this challenge, we trained an SVM classifier on a
labeled dataset with transmission related sentences discovered
from payment documentations and syndication documenta-
tions. The model uses the predicates and their relations (e.g.,
order) as features to predict their subject, object and indirect
object’s semantic class labels (Sender, Receiver or Content).

Using the triplets recovered from the sentences, DoA con-
tinues to inspect each merchant state to determine whether
and how it is extended by a syndicator. Specifically, for each
transition in the extension structures described in Figure 6,
denoted by s′ = E(s,d), we try to align Sender to the name
of the actor at s (e.g., “merchant”), Receiver to the actor of s′

(e.g., “syndicator”) and Content to d (representing message
name here, such as “order”). Note that in the case any of these
entities is described by a phrase, instead of a word (e.g., “pay-
ment element”), we calculate its phase vector as the average
of its individual word vectors (e.g., those of “payment” and
“element”). We consider that an alignment succeeds when
all these elements are found to be similar to their counter-
parts on the transition. When this happens, we believe that

3Figure 7, Figure 8 and Figure 10 show Chinese grammatical relations
between words. The words shown in the figure were translated from Chinese.

this transition exists in the extended FSM. To discover more
transitions, our approach also leverages partial information
collected, when only two elements of the triplet has been
recovered. If one of these elements is Content, DoA still com-
pares them against the transitions and confirms the presence
of a transition if an alignment is found.

Based upon all the transitions discovered, our approach fur-
ther determines the extension structure used by a syndication:
the one contains all these transitions is selected. When there
are more than one such structures, we consider that all such
extensions are possible and predict the presence of potential
logic flaws if one of them is found to be problematic.

3.4 SR Information Discovery
The syndication FSM discovered tells us how a payment
transaction proceeds among the buyer, the merchant and the
payment service provider, in the presence of the syndicator.
To find out whether all security checks required by the pay-
ment service can be performed on this new FSM, we need
to take a further look at the information visible to the states
that need to fulfill these security requirements. Also to be
understood is how the SRs are presented to the developers
who are supposed to integrate these checks in merchant-side
code. All such information has been automatically recovered
from the syndication developer’s guide, as elaborated below.
API parameter discovery. At a syndication or merchant
state a security check is expected to happen (SRstate), the in-
formation required for the check (SRob j, SRpara) either comes
from the message it receives (e.g., payment_result) or is al-
ready in the possession of the syndicator or the merchant.
In the former case, the communication with the syndicator
always goes through its APIs, as integrated in the merchant’s
client or server side code. These APIs are documented in the
developer’s guide and their attributes describe the information
passed by a message. A question is how to determine which
API is used in a transition. Such an API is explicitly men-
tioned in some sentences, such as “call the Creating Charge
to invoke a payment processor”. In our research, we utilized a
SVM model for labeling syntactic elements to detect the API
names, which serve as the object of “call”.

However this approach turns out to be inadequate, since
more often than not, a transition-related sentence in the de-
veloper’s guide does not include any API name: for exam-
ple,“initiate payment”. In this case, we found that the seman-
tics of the message name (d in the transition and its corre-
sponding Content) is always highly related to the name of
the API to be used. In the above example, an API “initiate
payment” is responsible for sending the message of payment
requirement. This is understandable since the guide is sup-
posed to inform the developer how to establish communica-
tion with the syndicator. If this has not been done explicitly,
using semantically related API names is an implicit way to
do so. Our DoA automatically identifies such APIs using our

USENIX Association 28th USENIX Security Symposium    753



Alipay configuration
APP ID:

seller account:
seller private key:
Alipay public key:

HTML
<div> 

<h4 style=“display:inline”> 
            Alipay public key: </h4> 
<input type=“text” 
            id=“alipay_public_key” /> 

</div>

Figure 9: An excerpt of configuration HTML.

word-embedding model to compare the phrase similarity be-
tween each API name and d and Content. Again, here we
utilized LTP [19] for Chinese word segmentation and word
extraction from API names. Whenever an API is found to be
semantically similar to either d or its related Content, our ap-
proach collects all its attributes and consider that their values
have been exposed to the actor at the state receiving d.

Configuration information extraction. As mentioned ear-
lier, the information for a security check can also be provided
to the actor in a certain state before a transaction happens.
For example, the merchant has her private key for signing
a payment credential and she can also delegate this task to
the syndicator by configuring her account on the syndication
website. Such preconfigured information is documented by
the developer’s guide. However, the details are often included
in images, together with those irrelevant ones for explaining
the payment or syndication service. Content extraction from
these images using OCR [39] did not work well in our study.
So our DoA is designed to discover the configuration data
directly from the syndication website, the one from which we
collect the developer documentation.

Specifically, our approach first searches for the entry link
labeled with “Alipay configuration”, “Wechat Pay manage-
ment”, “PayPal setup”, etc., the standard names for the config-
uration page on a syndication site, using named entity recog-
nition and keywords (e.g., Alipay) together with synonyms
for “configuration”, etc. On such a page, we inspect its HTML
tags, looking for the input type – the entry item for the mer-
chant to enter her data, and its inline header, which is the key
for the data. Figure 9 shows part of the configuration page of
Ping++ [12]. From the text entry identified, we can recover its
header “Alipay public key” under the tag h4. Also as we can
see from the example, other keys that can be found from the
configuration page includes APP ID, seller account, etc. The
information is gathered for comparing with SR parameters
for a given payment service such as Alipay.

SR description recovery. Also important to logic vulnerabil-
ity discovery is to find out whether required security checks
have been properly explained to the developer. For this pur-
pose, DoA has also been made to search for the description
of the SRs for a given payment service. Such an SR is typ-
ically presented in a sentence: e.g., “The merchant should
verify whether the payment amount equals to the order price.”
From the sentence, we know that the merchant is the party
responsible for this SR, so the check is supposed to happen
on a merchant state (SRstate), payment amount is the object

verify equalsMerchant

invoke

Client sends

receives

payment_platform

need

Sentence: When Client receives payment_credential, need invoke payment_platform.  
When  

Client

payment_credential

SBV  

VOB

COO
ADV

VOB

VOB

Sentence: Client sends payment_element to your server.

to server

payment_element

your SBV  

VOB

ADV POB ATT

Sentence: Merchant need verify whether the payment amount equals the order price.

SBV  

VOB

ATT

predicate
need

payment

amount

price

the

order thewhether

SRsub
SRobj
SRpara

VOB
ADV

SBV  

ATT

VOB
ATT

ATT

predicate
sender
content
receiver

predicate
sender
content
receiver

Figure 10: Entities in sentences describing SR.

(SRob j) and the order price is the additional parameter for the
security check (SRpara). Our idea is to automatically discover
all SR-related sentences based upon the actions to be taken,
as we did in the FSM extension discovery (see Section 3.3),
and then perform a syntactic analysis to discover SRob j and
SRpara, before finally determining the state of the potential
check (SRstate).

Specifically, to find all SR-related sentences, our approach
first utilizes a small set of seed action terms including “check”,
“match”, “verify”, etc., and runs our word-embedding model
on the training documents (guides for syndication and pay-
ment services) to extend these seeds with their synonyms.
Then DoA inspects a given document to collect all the sen-
tences containing the term(s) on the list. Each of them is
analyzed using dependency parsing to label the subject, ob-
ject and indirect object of the action term (“verify”, “check”,
etc.), as demonstrated by the example in Figure 10. Given
the fact that the developer’s guide is meant to explain imple-
mentation details to the developer working for the merchant,
we expect that an SR-related subject should be “merchant”,
“developer”, “you”, and their synonyms (e.g, “seller”,“verdor”,
etc.). Also we consider the merchant to be the subject of all
imperative sentences, e.g., “please make sure that the payment
amount equals to the order price”. From these sentences, we
further identify the object and indirect object (if exists) of the
predicate, and label them as potential SRob j and SRpara.

Before we can report possible SR-related description, we
also need to determine the state for the potential security
check (SRstate). Our approach is to look at where the sentence
is found: intuitively a reminder of a security check should
appear under the context of state transition. For example, the
sentence “The merchant needs to verify whether the payment
amount matches the order price.” comes right after “The syn-
dicator will send a Webhook request to the merchant server.
” in Beecloud [6]. So for each potential SR-related sentence,
DoA tries to locate a transition-related sentence in the same
paragraph, before the SR sentence. Once the transition is
found, we further check whether its destination is a merchant
state, so the merchant is supposed to perform the security
inspection mentioned in the sentence. In this case, we set
SRstate to that merchant state.

The only other place where security check description can
be found is the specification of the API used for the state
transition. For example, under the API “Transaction-result-
notification” (iAppPay [9]), there is a note that reminds the
developer to inspect payment: “Please verify the transaction

754    28th USENIX Security Symposium USENIX Association



payment is the same as the product price”. So when the SR-
related sentence is discovered in such a specification, we look
at the state the API leads to, and make it SRstate if it is a
merchant state.

3.5 Logic-flaw Prediction and Validation
From the FSM and the SR information discovered from the
syndication documentation, LfP infers the possible presence
of logic flaws: the SRs expected by the payment processor
(e.g., Alipay) that cannot be fulfilled in the syndication FSM,
and those that have not been explained to the developer. Fol-
lowing we explicate how to determine the states expected to
perform the required security checks, how to evaluate whether
the checks can take place, and how to capture the SRs that
have not been properly communicated to the developer.
Security goals. Consider a syndicator W that wraps a pay-
ment service P. We believe that W needs to achieve the fol-
lowing two security goals:
• Secure Design (SD): for any security requirement SR to be
enforced at a state s of P, there exists an enforceable SR′ at
the state s′ of W such that SR and SR′ are equivalent except
their states, and s′ is a state in the extension structures for
s (Figure 6). Intuitively, this means that every payment SR
should still be fulfilled after syndication.
• Secure Implementation (SI): every SR of W is correctly
implemented by either the merchant or the syndicator.

To achieve SD, for every SR of the state s in the payment
FSM, LfP first identifies all extended states of s and then
inspects each of them s′ to determine whether the state has the
visibility of the object (SRob j) and other parameters (SRpara)
of SR. As mentioned earlier, s′ is identified by the extension
structures (Figure 6). Any state among these replacing s is
considered to be a possible location for enforcing SR. As
an example, consider b.3, which is an extension of b, and
SR = (m f , payment, price), which checks payment = price.
This inspection can happen at either m f or w, when at least
one of them can observe both payment from the payment
service (e.g., Alipay) and price from the merchant.

For SI, without looking at the code of the extended FSM,
LfP goes through the developer’s guide for the indicators that
could lead to implementation flaws. The most important one
used in our current design is the absence of the explanations
about SRs, a clear signal that the related security checks might
not be implemented by the uninformed developer. Also we
are concerned about the SRs that can only be enforced by the
syndication state, since they are out of the merchant’s control.
So in both cases, LfP will predict potential logic flaws and
suggests a code-level validation.
Design flaws identification. When none of the states in the
extension structure of a payment state can observe SRob j and
SRpara for a security requirement SR, we can conclude that
the syndication service contains a design flaw. To detect such
a flaw, LfP needs to analyze visibility of data at each exten-

sion state. As mentioned earlier, such data either comes from
the message a given state receives, whose content is described
by all the attributes of the API used for transmitting the mes-
sage (Section 3.4), or preconfigured by the merchant in her
syndication account, with all data attributes (APP ID, public
key, seller account, etc.) discovered by DoA. Our approach
directly compares these attributes with the SR information.
Note that only the data delivered through a secure channel
and from a trusted source can be used in a security check: for
example, the payment amount should be signed by the pay-
ment provider and the price should come from the merchant
(through preconfiguration, signed message or local storage).

Specifically, at a given extension state, let TA be a set
of trusted message attributes (e.g., signed by the payment
provider) as collected from related API specifications, and
when the state is controlled by the syndicator, TC be a set of
collected attributes for preconfigured merchant information.
Also, we abuse notations a little bit, using SRob j and SRpara to
represent the sets for the object and for the additional parame-
ters, respectively, of a given security requirement SR at that
state. The objective of LfP is to find out whether there exists
an extension state such that for a given SR on the correspond-
ing payment state, SRob j ∪SRpara ⊆ TA∪TC for the TA and
TC of the extension state (TC includes all the local data for
a merchant state). If none of such an extension state can be
found, LfP reports that the SR can no longer be enforced and
therefore a design flaw is detected.

For a data attribute (e.g., “price”, “public_key”, etc.) a ∈
SRob j ∪SRpara, it is nontrivial to determine whether it is also
in TA∪TC, simply because the attribute names of the SR col-
lected from a payment service (e.g., Alipay) may not match
those included in the message API and the configuration web
page. Our solution here, again, is using our word-embedding
model to product a semantic vector for a and then find whether
there is an attribute in TA∪TC whose vector is sufficiently
close to that of a. When every attribute of the SR can find its
counterpart in TA or TC, we consider that the SR is enforce-
able at the current extension state.
Implementation flaws prediction. As mentioned earlier, im-
plementation flaws can also be predicted when a required
security check has not been properly communicated to the
developer. LfP is designed to inspect the SR descriptions
recovered by DoA to identify such missing security guidance.

Specifically, for each SR enforced at the state s in the pay-
ment FSM, LfP searches across all security requirements dis-
covered from the guide by DoA for those associated with
the extension states of s. Let SR′ be such a requirement.
Our approach tries to determine whether SRob j = SR′ob j and
SRpara = SR′para. Again, here we need to deal with the incon-
sistency in attribute names during the comparisons, which
has been addressed in our implementation using our word-
embedding model and distance measurement between seman-
tic vectors. If SR′ here indeed matches SR, we have reason to
believe that the developer knows the security check required

USENIX Association 28th USENIX Security Symposium    755



by the payment provider. If such SR′ cannot be found, then
we know that such information has not been conveyed to the
developer. When the SR can only be enforced by the merchant,
LfP will raise the alarm since we doubt that an uninformed
developer can make the protection right.

Even when all the SRs are found to be enforceable on
the syndication FSM and all merchant-side SRs are properly
mentioned in the developer’s guide, we are still concerned
about the security checks that can only be performed by the
syndicator, who does not mention that this has actually been
implemented. Given the fact that the merchant essentially
loses the control of these security checks that they could do
without the syndication, we believe that these SRs should
be evaluated to ensure that they have been put in place. So
our current implementation of LfP also reports all such SRs,
which are evaluated during the validation step.
Validation. Fully automated verification of our predicted
flaws is possible but nontrivial, due to the requirements of
entering user credentials (password, fingerprint) to trigger a
payment process and handling diverse user interfaces in differ-
ent mobile apps for entering purchase information (product,
quantity, address, etc.). Although existing GUI testing tools
could be enhanced to serve this purpose and likely industry-
grade fuzzers can already support these operations, building
such techniques are outside the scope of our research. So we
manually validated all the flaws predicted by Dilution. Specif-
ically, based upon the specific security requirement that we
consider hard to enforce, we acted as a malicious buyer to ad-
just the payment parameters to find out whether the predicted
flaw can indeed be exploited. As an example, consider the
payment process in Figure 5(b). Dilution predicts an imple-
mentation flaw that the merchant does not check the payment
amount. In our research, we set a lower price in the orderInfo
given to an app. This transaction got through (Section 5.2),
which confirmed the presence of the flaw we predicted.

4 Implementation and Evaluation

4.1 Implementation
Dilution is implemented in a prototype. In the DoA, we em-
ploy Language Technology Platform (LTP) [19], for word
segmenting, POS tagging and dependency parsing to analyze
the sentences. To adopt the open domain toolkit to payment
document analysis, we craft external dictionaries containing
48 domain-specific terms (e.g., payment element and payment
credential) in the payment process to improve the perfor-
mance of word segmenting and embedding. Taking the results
of dependency parsing as features we further implement the
classifier for entity recognition with LIBSVM [30] in version
3.23. To map words into vectors we utilize the word2vec
model in Gensim library [18] in 3.7.1 version. Moreover, we
ran the crawler Scrapy [44] in version 1.6 to crawl all the
web pages of syndications’ official websites, and then utilize
the BeautifulSoup [42] in version 4.4.0 to parse webpages

and extract the developer’s guides and configuration. For the
LfP, we implement with 404 lines of Python code for inter-
ring the supposed SRs and inspecting each of them to predict
flaws. We are going to release the source code of Dilution
online [14].

4.2 Experiment Settings
Dataset. In our research, we utilized four datasets for model
training and evaluation:
• Groundtruth set. The groundtruth set was used for logic
flaw detection, entity recognition and phrase alignment.

For logic flaw detection, the groundtruth set includes two
syndication documents (Ping++ [12] and Fuqianla [8]) and
their corresponding 17 potential logic flaws. In particular, we
manually analyzed the documents and identified 11 implemen-
tation flaws in the documentations of syndication Ping++, 1
design flaw and 5 implementation flaws in the documentation
of syndication Fuqianla, as elaborated in Section 5.

The groundtruth set for entity recognition in the payment
process consists of 574 entities (148 Sender, 175 Receiver and
251 Content) from 242 sentences describing data transmis-
sion. These sentences were collected from a training corpus
including documents of two payment services Alipay and
Wechat and two syndicators Ping++ and Fuqianla. We imple-
mented a 2-fold cross validation with half of the data as the
training set each time.

We manually labelled the groundtruth set for phrase align-
ment upon the syndication documents of Ping++ and Fuqianla,
which contain 14 data-transmission sentences, 103 APIs and
1,986 parameters in total. The groundtruth set includes 63 and
203 positive pairs, and 45 and 40,866 negative pairs in tran-
sition mapping for extension discovery and API parameter
discovery, respectively.
• Unknown syndication documents. To evaluate Dilution, we
ran our prototype on the developer’s guides of six syndica-
tions, including Paymax [11], BeeCloud [6], iAppPay [9],
Trpay [15], UMF Payment [16] and 66zhifu [1]. These docu-
ments consist of 3,613 sentences and 46,098 words in total.
They are all publicly available, well-written documentations
including the description of data transmission in payment pro-
cesses, API parameter explanations, SRs and configuration
information. Note that those services are popular, serving tens
of thousands apps and millions users.
• Third-party payment documents. The third-party payment
documents we manually analyzed to extract FSMs and SRs
come from Alipay, WeChat Pay and PayPal, which are the
three most popular mobile payment services in the world [45].
We read all the related documentations about the payment
process and searched keywords related to SRs including “secu-
rity", “requirement", “check", “inspect", “compare" to collect
all the SRs. Three experts spent 2 days to finish the extrac-
tion and the SRs are validated across all three experts. The
detailed SRs are summarized in Table 2.

756    28th USENIX Security Symposium USENIX Association



Table 2: Security requirements of payment service
noti f yid : The id of a notification, sellerid : The id of a seller, txnid : The id of a transaction,

receiveremail : The account of the merchant, mcgross: The amount of a payment, mccurrency: The currency of a payment.
Payment Service No. SR description SR

Alipay

SR1 Check the signature in the notification. (m2,noti f ication,key)
SR2 Check the noti f yid to verify the message comes from Alipay. (m2,noti f yid , /0)
SR3 Check the price in the notification is the same with the amount in the order. (m2, payment, price)
SR4 Check the sellerid represents the supposed merchant. (m2,sellerid ,merchant)

WeChat Pay SR5 Verify the signature in the payment notification message. (m2,noti f ication,key)
SR6 Check the price in the notification equals the price in the order. (m2, payment, price)

PayPal

SR7 Verify the message came from PayPal. (m2,message, /0)

SR8 Check the txnid against the previous PayPal transaction that you processed
to ensure the IPN message it not duplicate. (m2, txnid , previous txnid)

SR9 Check that the receiveremail is the email address registered in your account. (m2,receiveremail ,registered email)
SR10 Check that the price carried in mcgross are correct for the item. (m2, payment, price)
SR11 Check that the currency carried in mccurrency are correct for the item. (m2,receipt currency,supposed currency)

• Payment corpora for word embedding model training. For
training the word embedding model, we built a corpus for pay-
ment service by combining two payment documentations (Ali-
pay, Wechat) and two syndication documentations (Ping++,
Fuqianla), which were crawled from the corresponding web-
sites. After word segmenting, the training corpus contains
1715.2 KB text with 23,576 sentences and 306,680 words.
Parameters. The parameters for our implementation are set
as follows:
• Entity classifier. We implemented the classifier for entity
recognition with LIBSVM [30]. The classifier was trained
with the following settings: c=8.0, g=0.5 and default settings.
•Word2vec. We utilized skip-gram with negative sampling as
the framework of the word2vec model, which was trained with
the following parameters: sg=1, size=100, sample=0.0001,
window=10, iter=5, min_count=1, negative=20 and other de-
fault settings.
• Threshold. We utilized phrase similarity to find out whether
two phrases are semantically close. For payment-related ex-
pressions (e.g.,payment_element, payment_credential ), the
threshold used in transition mapping, API name matching and
parameter matching were set to 0.91, 0.91, and 0.97 respec-
tively. As for other phrases, the threshold in three tasks were
set to 0.87, 0.87, and 0.96, respectively.
Platform. All the experiments in our study were conducted
on the macOS with 2.3GHz CPU, 16GB memory and 512GB
hard drivers using a single process.

4.3 Effectiveness
We first evaluated the overall effectiveness of our prototype
in predicting potential logic flaws from documentations. Run-
ning on both the groundtruth set (Ping++ and Fuqinala) and
the unknown dataset containing six syndicators, Dilution
achieved 100% accurate predictions. More specifically, on the
six unknown documentations, our system predicted 1 design
flaw and 16 potential implementation flaws. We manually
verified each of them and found that all reports were correct
(based upon the descriptions in the documentations).

Further, we evaluated the two internal modules of DoA: en-

tity recognition and API parameter discovery. The evaluation
for entity recognition was run on the groundtruth set for entity
recognition (242 data-transmission related sentences with 574
entities including 148 Sender, 175 Receiver and 251 Content).
Under the two-fold cross validation, our model achieved a
precision of 89.38%, 93.28%, 94.57% and a recall of 96.88%,
97.72%, 96.81% when taking Sender, Receiver, Content as
the positive class, respectively. The effectiveness of our model
is acceptable since our algorithm for discovering the state ex-
tension is capable of addressing the false positives and false
negatives induced by entity recognition through alignment
with the transitions in the extension structures (Section 3.3).
As for the API parameter discovery, the experiment results on
the guides of all eight syndications show that all phrase pairs
aligned by DoA are accurate.

4.4 Performance
We ran Dilution on the developer’s guide of 8 syndications
(1,456KB) to predict the presence of logic flaws. Averagely,
our system spent merely 3,177.8 ms to go through the whole
process on one syndication. The time of the analysis ranges
from 2,743.2ms to 3,873.8 ms, with the medium being 3,099.1
ms. More specifically, DoA spent 2,738.8 ms to 3,840.0 ms
with an average of 3,166.2 ms. LfP took 2.9 ms to 33.8 ms
with an average of 11.6 ms. This result offers strong evidence
that Dilution can easily scale to the level expected for pro-
cessing a large amount of documentation.

5 Discoveries in the Wild
In this section, we report the logic flaws predicted by Dilution
from the developer’s guides of real-world syndication services
and the end-to-end exploits to validate the predictions through
popular merchant apps. We show that our document-only
predictions are indeed accurate, leading to the discovery of
security-critical vulnerabilities.

5.1 Finding from Documentations
There are more than 30 syndication services, with the number
continuing to grow. However, most of them provide devel-
oper’s guides to paid users only. Actually we found that just

USENIX Association 28th USENIX Security Symposium    757



Table 3: Summary of predictions by Dilution
(DF: design flow, IF: implementation flow, CI: cases of interest)

(a) design & implementation
Syndication Type SR No.

Fuqianla DF 1
IF 3, 6

BeeCloud DF 1
IF 11

TrPay IF 3, 6
UMF Pay IF 3, 6
66zhifu IF 3, 6

Total DF 2
IF 9

(b) cases of interest
Syndication Type SR No.
Ping++ CI 1 - 11
Fuqianla CI 2, 4, 5
Paymax CI 1 - 6
BeeCloud CI 2, 4, 5, 7, 8, 9
iAppPay CI 2
TrPay CI 2
UMF Pay CI 2
66zhifu CI 2

Total CI 30

8 of them have well-documented guides publicly available.
These syndicators are all popular, with hundreds of millions
of users. In our research, we ran Dilution on all of their guides
(over 1.4 MB), which reported its findings in a few seconds.
Landscape. Table 3 shows all the syndications we analyzed
and the logic flaws predicted. Specifically, Dilution reported
41 potential issues from all the syndications. Among them,
11 are highly likely to be logic flaws, including 2 design
flaws (in BeeCloud and Fuqianla), in which required security
checks cannot be done, and 9 likely implementation flaws,
with critical security checks missed in the guides. In addition,
the remaining 30 are “cases of interest”, since their SRs can
only be or should be fulfilled by syndicators if merchants
cannot achieve them or do not be told. Therefore they are
considered to be risky and need to be validated.
Design flaws. Among all the syndication services, BeeCloud
and Fuqianla are found to contain a design flaw each (SR1
in Table 2). Specifically, Dilution reported that these syndica-
tors receive payment notifications from Alipay on behalf of
their merchants, helping them finish the final security checks
before informing them of the completion of the transactions.
The problem is that the merchants of these services cannot
configure their Alipay’s verification keys4 to the syndicators.
As a result, the syndicators cannot check the authenticity of
the messages, nor can their merchants, since they do not get
the signed notifications. We further found that the practice of
processing payment messages for the merchants without for-
warding them the original messages is very common across
all syndications we studied. This is because the syndication
aims to unify the merchant-side interfaces with different pay-
ment services to reduce the complexity in integrating them,
which, however, makes the syndicator-side operations compli-
cated and error-prone. Although only two design flaws were
revealed by Dilution, due to the small number of syndicators
we evaluated, we believe that the practice likely brings in
design lapses to other syndication services.
Implementation flaws. Dilution predicted 9 potential imple-
mentation flaws by the merchant developers in 5 syndication
services. Specifically, our approach found that the syndica-
tors Fuqianla, TrPay, UMP Pay and 66zhifu cannot verify the

4Each merchant has a unique key-pair for verifying the messages from
Alipay.

payment amount since they do not have access to the price
of a purchase.In the meantime, they fail to remind their mer-
chant developers of enforcing the security requirements (SR3
and SR6) through verifying the amount. Similarly, BeeCloud
encapsulates PayPal but does not tell its merchant that the
currency type for a purchased item needs to be checked. As a
result, we believe that very likely the required security checks
will fall through the cracks.

5.2 Attacks on Real-World Systems
Challenges in validating predicted flaws. To find out
whether the predicted logic flaws are indeed present in syn-
dicators or the merchant-side code, we need to validate them
through merchant apps. This attempt, however, faces two chal-
lenges. First, finding the apps integrating a given syndication
is difficult. Even though these services are popular (e.g., at
least 25K apps using Ping++), with tens of millions of users
according to their websites, rarely do they provide a list of
the merchants that use their services. Actually, most syndi-
cators ask their merchant developers to obfuscate their code,
possibly for the purpose of IP protection [29]. Second, even
given an app integrating a syndication, exploiting its logic
flaws may need additional resources we do not have and some
of the flaws may not even be exploitable in the absence of
other flaws. Particularly, in 7 out of the 30 cases of interest
reported by Dilution, we need to produce Alipay’s signature
on the payment notification to confirm whether the syndica-
tor (e.g., Paymax) indeed fails to perform a security check
(e.g., on the payment amount), since the syndicator may still
verify Alipay’s signature. The exploit can only be executed
with the help of a merchant under our control: we can make a
purchase from our own merchant and use the notification to
determine whether the syndicatior indeed verifies its attributes
(e.g., payment amount). We manually analyzed our findings
and believe that if the predicted flaws are there, we can ex-
ploit them in this way. However, merchant registration (with
Alipay) is complicated, which we did not do in our research.

Despite the challenges, still we were able to find 17 apps to
confirm 5 logic flaws across 2 syndication services and their
merchants. These 17 apps were found from over 50K apps
we analyzed. Most importantly, for every merchant app that
could be analyzed, every single logic flaw or case of interest
predicted by Dilution has been confirmed. Specifically, we
randomly crawled over 50K apps from the Baidu Market, a
top Chinese app market [5], and ran Apktool [3] to reserve-
engineer them. The 17 were found because the names of their
syndication SDKs or the domains of syndication servers have
not been obfuscated. Among them, 16 use BeeCloud [6] and
1 uses TrPay [15]. Both the syndication services and the apps
are very popular. As shown in Table 4 in Appendix, BeeCloud
claims to have tens of thousands merchants, and these apps
have hundreds of millions of users. In our experiment, we
ran a proxy called Burp Suite [7] and a network API testing
tool called Postman [13] to modify or forge the messages

758    28th USENIX Security Symposium USENIX Association



delivered from the apps or our site to the merchant or the
syndicator server.
Attacks on design flaws. As mentioned earlier (Section 5.1),
Dilution reported two design flaws, one for BeeCloud and
the other for Fuqianla, in which the syndicator cannot verify
Alipay’s signature on a payment notification due to its lack
of the verification key. In our research, we could not find the
app using Fuqianla possibly due to the obfuscation it sug-
gests to its users [23]. The 16 apps using BeeCloud, however,
were predicted to all have the same logic flaw. Therefore, we
just randomly picked one of them, a Chinese education app
called Chuangyebang [21], for the validation. Specifically,
we placed an order for an online class provided by the app
without payment, then used Postman to forge an unsigned
Alipay’s notification and delivered to the BeeCloud server. As
predicted, the syndicator accepted the fake message and we
successfully got the digital product for free 5. This demon-
strates that the design flaw is real and exploitable, which has
a serious consequence given the fact that BeeCloud is serv-
ing tens of thousands of merchants [28]. Actually, the 16
apps we collected have 82.8 million downloads in total, sell-
ing products ranging from 0.1 dollars to 2,000 dollars. Even
Changyebang is reported 490,000 installs.
Attacks on implementation flaws. Also we were able to
find a Chinese tool app called OffPhone [24] (with 830,000
downloads) that integrates TrPay, another popular syndication
service [15] wrapping WeChat and Alipay payment services.
This enabled us to validate 2 potential implementation flaws
that Dilution predicted. Both problems happen at the final
state m f (one for WeChat and the other for Alipay), where the
merchant is supposed to check the payment amount, which
the developer’s guide of TrPay fails to mention. Since in both
cases, the syndicator generates the credential (including the
price of the order) for payment at WeChat or Alipay, based
upon the order issued through the app, the adversary can
control the app to provide wrong price information to mislead
TrPay into producing a credential with a lower price. If the
payment amount reported by WeChat Pay or Alipay has not
been verified by the merchant (OffPhone) at m f , the adversary
can get the item with the price she set. In our experiment, we
modified the order placed through the OffPhone app to reduce
the price of a VIP membership from 5 dollars to just 1 cent,
causing TrPay to send a credential to the payment services.
In the end, both transactions went through, which indicates
that indeed the payment amount has not been checked by the
merchant, as Dilution predicted.

Furthermore, Dilution also reported 2 “cases of interest”
in BeeCloud, where the syndicator is supposed to perform
some security checks on behalf of the merchant. Specifically,
we found that on receiving the payment notification from
Alipay, BeeCloud only passes some of the notification con-
tent to the merchant. An attribute not being forwarded is

5All the exploit video demos are post online [4].

notify_id, the merchant’s identity issued by Alipay for finding
out whether the merchant is the right recipient of the notifica-
tion. Also, although another attribute, seller_id, serving the
same purpose is indeed sent to the merchant, BeeCloud fails
to mention in its developer’s guide that the attribute should
be verified. Both attributes are required to be inspected by
Alipay [2]. Here, we tried to find out whether the checks
have been done by BeeCloud on the merchant’s behalf. For
this purpose, we randomly selected another app from the
16 apps, called Clean [22], a memory cleaner with 850,000
downloads, to find out whether the SR2 and SR4 in Table 2
have been enforced. In the experiment, we ran Postman to
fake a payment notification including a random notify_id and
seller_id, which did not prevent our payment transaction from
getting through. In the end, we got a paid version of the app
(without Ads) for free. The same attack also succeeded on
Chuangyebang. Evidently, not only does BeeCloud fail to
verify notify_id and seller_id, but Clean (the merchant) does
not check seller_id either, in line with the predictions made
by Dilution. These flaws open the door for an attack in which
one pays for her own merchant while getting product from a
different store [49]. Also note that since the merchant is not
given notify_id, remaining 15 apps and others using BeeCloud
are certain to have the same flaw.
Responsible experiment design. We carefully designed our
end-to-end attack in a responsible manner. The entire study
was conducted under the guidance of a lawyer at our Univer-
sity. We strictly followed the principles below when attacking
the real-world apps and services: (1) we performed no intru-
sion of either merchant servers and syndicator servers; (2) we
ensured that no financial damage caused by returning items,
paying the shipping costs, not getting refunded, not using
electronic products, paying for items hard to return; (3) we re-
ported all security flaws to affected apps and syndications and
did what we could to help them improve their systems. All the
flaws discovered have been acknowledged by the syndicators
and merchants, who are very grateful for our help.

6 Discussion
Limitations. Our research demonstrates that logic flaws can
be predicted from the developer’s documentation, even before
the system code is inspected. This finding can lead to new
techniques that make full use of information available for
enhancing software security. Our current design and imple-
mentation, however, are still preliminary. We only focus on
the payment syndication service with limited targets on miss-
ing security checks. More complicated flaws, such as policy
enforcement weaknesses (possibly caused by inaccurate guid-
ance), and more complicated service procedures (e.g., refund,
bonus, etc.), are all missing from the picture, not to mention
documentation-based analysis on other security-critical sys-
tems. Further, the NLP techniques underlying Dilution can
only deal with well-written documents, not those containing

USENIX Association 28th USENIX Security Symposium    759



typos, grammatical errors, ambiguous sentence structures, etc.
as observed in real-world developer’s guides. Also, our cur-
rent approach still needs human involvements: particularly,
we extracted SRs and FSMs of payment processors manually,
which has two reasons. First, the number of payment proces-
sors is small. Second, we want the extracted SRs and FSMs
to be precise, based on which we built syndicators’ FSMs
and predicted logic flaws. However, we envision it’s possible
to automate this process using open-source NER tools. All
these issues need to be addressed in the future research.
Future research. Down the road, we expect more explo-
rations on this new direction, toward the end of an intelligent,
semantics-based methodology that combine documentation-
level and code-level analysis together for more effective flaw
discovery. In addition to the direct improvement of our ap-
proach mentioned above, we envision that document-based
flaw prediction will be applied to secure other syndication
services, those for single sign-on services in particular, such
as MobSDK [10]. More importantly, we believe that with the
help of machine learning and automatic inference, other sub-
tle, semantics-dependent weaknesses only detectable by expe-
rienced analysts today will become increasingly manageable
by automatic techniques, leading to a significant improvement
in software security quality.

7 Related Work

Numerous studies have looked into logic flaw detection in var-
ious applications. For example, [49] discovered logic flaws
of the payment service. [48, 50] investigated logic flaws on
authorization. Traditional logic flaws discovery heavily relies
on domain experts [33]. Recent year witnesses the trend of au-
tomatic logic flaw detection, mainly based on model checking.
The typical approach based on model check first standardizes
a logic process, and then detects whether the application vio-
lates the predefined logic. For instance, both [41] and [32]
automatically extracted a model from a number of correct
behavioral patterns. Then, they checked the source code stati-
cally, using model checking over symbolic input to identify
violated program paths. [34] manually summarized the cor-
rect usage of OpenSSL APIs and then statically analyzed
whether an application violates the correct usage. Different
from previous researches, our approach does not touch pro-
gram code and automatically utilizes only documentation to
predict logic flaws.

The closest to our study are the works of payment logic
flaw assessment [49] [51]. [49] is the first work, which relies
on human effort, to discover serious payment logic vulnerabil-
ities and reveal their security implications. A set of follow-up
studies identified different types of payment logic flaws in
various applications. For instance, [51] extended the work
of [49] to investigate the logic flaws in mobile payment and
detected seven security rule violations to the payment in An-
droid apps. [46] detected violations of the invariant in secure

checkout processes, which revealed 11 new logic vulnerabili-
ties in web payment modules. Given these studies, a bunch
of policies and guidelines for secure online shopping were
investigated [38, 40]. In contrast to previous works, which
assessed logic flaws by manual efforts, we report the first
work towards automatic payment logic flaw discovery. Also,
we investigate a novel payment service, payment syndication,
which has never been studied before.

8 Conclusion
In this paper, we report the first step towards automatic
documentation-based logic flaw discovery. Our study on the
emerging payment syndication services shows that their de-
veloper’s guide contains abundant information that can be
leveraged to predict the presence of logic flaws in their cus-
tomers’ systems. Using a suite of NLP techniques, our ap-
proach effectively analyzed over 1.4 MB of technical docu-
mentations from real-world syndicators within seconds, and
accurately predicted 5 new security-critical flaws in the Chi-
nese merchant systems with millions of users. The research
demonstrates that software documentations can be more effec-
tively used to help find the security risks hard to automatically
detect today.

9 Acknowledgment

We would like to thank our shepherd Adam Doupé and
the anonymous reviewers for their insightful comments.
The IU authors are supported in part by NSF-1527141,
1618493, 1838083, 1801432 and 1850725, ARO W911NF-
16-1-0127 and Indiana University FRSP-SF. IIE authors are
supported in part by NSFC U1836211, U1836209, 61728209,
61602470, 61802394, National Top-notch Youth Talents Pro-
gram of China, Youth Innovation Promotion Association
CAS, Beijing Nova Program, Beijing Natural Science Foun-
dation (No.JQ18011), National Frontier Science and Tech-
nology Innovation Project (No. YJKYYQ20170070), Strate-
gic Priority Research Program of the CAS (XDC02040100,
XDC02030200, XDC02020200), National Key Research and
Development Program of China (2016QY071405) and the
Program of Beijing Municipal Science & Technology Com-
mission (NO. D181100000618004).

References

[1] 66zhifu. https://www.66zhifu.com.

[2] Alipay. https://www.alipay.com.

[3] apktool. https://ibotpeaches.github.io/
Apktool/.

[4] Attack demos. https://sites.google.com/view/
dilution/home/attack-demos.

760    28th USENIX Security Symposium USENIX Association

https://www.66zhifu.com
https://www.alipay.com
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://sites.google.com/view/dilution/home/attack-demos
https://sites.google.com/view/dilution/home/attack-demos


[5] Baidu mobile assistant. https://shouji.baidu.com.

[6] Beecloud. https://beecloud.cn.

[7] Burp suite. https://portswigger.net/burp.

[8] Fuqianla. https://fuqianla.net.

[9] iapppay. https://www.iapppay.com.

[10] Mobsdk. http://www.mob.com.

[11] Paymax. https://paymax.cc.

[12] Ping++. https://www.pingxx.com.

[13] Postman. https://www.getpostman.com.

[14] Source code of Dilution:. https://github.com/
ccy1991911/Dilution.

[15] Trpay. http://pay.trsoft.xin/front/index.
html.

[16] UMF pay. https://xy.umfintech.com.

[17] WeChat pay. https://pay.weixin.qq.com.

[18] Gensim. https://github.com/
rare-technologies/gensim, 2018.

[19] LTP. https://github.com/HIT-SCIR/pyltp, 2018.

[20] 66zhifu obfuscation guide. https://www.66zhifu.
com/show/help, 2019.

[21] Chuangyebang download link. http://m.cyzone.cn/
app/, 2019.

[22] Clean download link. https://shouji.baidu.com/
software/25240151.html, 2019.

[23] Fuqianla obfuscation guide. https://fuqianla.net/
docs.html?Android_SDK, 2019.

[24] Offphone download link. http://offphone.net,
2019.

[25] Paypal. https://www.paypal.com, 2019.

[26] Trpay obfuscation guide. http://pay.trsoft.xin/
front/documentation.html, 2019.

[27] Rajeev Alur, Costas Courcoubetis, and David Dill.
Model-checking for real-time systems. In Logic in
Computer Science, 1990. LICS’90, Proceedings., Fifth
Annual IEEE Symposium on e, pages 414–425. IEEE,
1990.

[28] BeeCloud. Beecloud news. https://beecloud.cn/
about/#honor, 2019.

[29] Chandan Kumar Behera and D Lalitha Bhaskari. Differ-
ent obfuscation techniques for code protection. Procedia
Computer Science, 70:757–763, 2015.

[30] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a li-
brary for support vector machines. ACM transactions
on intelligent systems and technology (TIST), 2011.

[31] Danqi Chen and Christopher Manning. A fast and ac-
curate dependency parser using neural networks. In
Proceedings of the 2014 conference on empirical meth-
ods in natural language processing (EMNLP), pages
740–750, 2014.

[32] Viktoria Felmetsger, Ludovico Cavedon, Christopher
Kruegel, and Giovanni Vigna. Toward automated de-
tection of logic vulnerabilities in web applications. In
USENIX Security Symposium, volume 58, 2010.

[33] OWASP Testing Guide. Testing for business logic.
https://www.owasp.org/index.php/Testing_
for_business_logic/, 2019.

[34] Boyuan He, Vaibhav Rastogi, Yinzhi Cao, Yan Chen,
VN Venkatakrishnan, Runqing Yang, and Zhenrui
Zhang. Vetting ssl usage in applications with sslint.
In 2015 IEEE Symposium on Security and Privacy (SP),
pages 519–534. IEEE, 2015.

[35] Prospective Industry Research Institute. China’s syn-
dication payment industry market prospects and in-
vestment strategic planning analysis report for 2018-
2023. https://bg.qianzhan.com/report/detail/
1703301644253052.html, 2018.

[36] iyiou. China syndication payment industry development
report in 2018. https://www.iyiou.com/p/88682.
html, 2018.12.28.

[37] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S
Corrado, and Jeffrey Dean. Distributed representations
of words and phrases and their compositionality. neu-
ral information processing systems, pages 3111–3119,
2013.

[38] Chandan Kumar Giri MimansaGantayat. Security issues,
challenges and solutions for e-commerce applications
over web.

[39] Shunji Mori, Hirobumi Nishida, and Hiromitsu Yamada.
Optical character recognition. John Wiley & Sons, Inc.,
1999.

[40] M Niranjanamurthy and DR Dharmendra Chahar. The
study of e-commerce security issues and solutions. In-
ternational Journal of Advanced Research in Computer
and Communication Engineering, 2(7), 2013.

USENIX Association 28th USENIX Security Symposium    761

https://shouji.baidu.com
https://beecloud.cn
https://portswigger.net/burp
https://fuqianla.net
https://www.iapppay.com
http://www.mob.com
https://paymax.cc
https://www.pingxx.com
https://www.getpostman.com
https://github.com/ccy1991911/Dilution
https://github.com/ccy1991911/Dilution
http://pay.trsoft.xin/front/index.html
http://pay.trsoft.xin/front/index.html
https://xy.umfintech.com
https://pay.weixin.qq.com
https://github.com/rare-technologies/gensim
https://github.com/rare-technologies/gensim
https://github.com/HIT-SCIR/pyltp
https://www.66zhifu.com/show/help
https://www.66zhifu.com/show/help
http://m.cyzone.cn/app/
http://m.cyzone.cn/app/
https://shouji.baidu.com/software/25240151.html
https://shouji.baidu.com/software/25240151.html
https://fuqianla.net/docs.html?Android_SDK
https://fuqianla.net/docs.html?Android_SDK
http://offphone.net
https://www.paypal.com
http://pay.trsoft.xin/front/documentation.html
http://pay.trsoft.xin/front/documentation.html
https://beecloud.cn/about/#honor
https://beecloud.cn/about/#honor
https://www.owasp.org/index.php/Testing_for_business_logic/
https://www.owasp.org/index.php/Testing_for_business_logic/
https://bg.qianzhan.com/report/detail/1703301644253052.html
https://bg.qianzhan.com/report/detail/1703301644253052.html
https://www.iyiou.com/p/88682.html
https://www.iyiou.com/p/88682.html


[41] Giancarlo Pellegrino and Davide Balzarotti. Toward
black-box detection of logic flaws in web applications.
In NDSS, 2014.

[42] Leonard Richardson. Beautiful soup. https://www.
crummy.com/software/BeautifulSoup/, 2019.

[43] David Sacks. System and method for third-party pay-
ment processing, February 7 2002. US Patent App.
09/901,962.

[44] Scrapinghub. Scrapy. https://scrapy.org, 2019.

[45] Statista. Number of users of leading mobile
payment platforms worldwide as of august 2017.
https://www.statista.com/statistics/744944/
mobile-payment-platforms-users/, 2017.

[46] Fangqi Sun, Liang Xu, and Zhendong Su. Detecting
logic vulnerabilities in e-commerce applications. In
NDSS, 2014.

[47] TechNode. Briefing: Alipay now has over 1 billion
users worldwide. https://technode.com/2019/01/
10/alipay-1-billion-users/, 2019.

[48] Rui Wang, Shuo Chen, and XiaoFeng Wang. Signing
me onto your accounts through facebook and google: A
traffic-guided security study of commercially deployed
single-sign-on web services. In Security and Privacy
(SP), 2012 IEEE Symposium on, pages 365–379. IEEE,
2012.

[49] Rui Wang, Shuo Chen, XiaoFeng Wang, and Shaz
Qadeer. How to shop for free online–security analy-
sis of cashier-as-a-service based web stores. In Security
and Privacy (SP), 2011 IEEE Symposium on, pages 465–
480. IEEE, 2011.

[50] Luyi Xing, Xiaolong Bai, Tongxin Li, XiaoFeng Wang,
Kai Chen, Xiaojing Liao, Shi-Min Hu, and Xinhui Han.
Cracking app isolation on apple: Unauthorized cross-
app resource access on mac os. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Com-
munications Security, pages 31–43. ACM, 2015.

[51] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Hui Liu, Qing
Wang, Yueheng Zhang, and Dawu Gu. Show me the
money! finding flawed implementations of third-party
in-app payment in android apps. In Proceedings of the
Annual Network & Distributed System Security Sympo-
sium (NDSS), 2017.

762    28th USENIX Security Symposium USENIX Association

https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://scrapy.org
https://www.statista.com/statistics/744944/mobile-payment-platforms-users/
https://www.statista.com/statistics/744944/mobile-payment-platforms-users/
https://technode.com/2019/01/10/alipay-1-billion-users/
https://technode.com/2019/01/10/alipay-1-billion-users/


APPENDIX

merchant

server

mobile

app

Alipay

client

Alipay

Server

1. place order
2. place order 

3. return credential
4. invoke payment

5. apply payment

11. asynchronous notice

6. finish pay
7. synchronous notice

8. synchronous notice
9. show result

IMPORTANT: After you received the asynchronous notification, 
you must perform these important checks: 
1. Check signature 
2. Check the notify_id to verify the notice comes from Alipay 
3. ……

Figure 11: An excerpt of the Alipay diagram and security
requirements.

Table 4: Collected apps

App Package name Category Syndication Downloads
Max+ com.dotamax.app Game BeeCloud 1,300,000
Zhihuiwuxi com.hoge.android.wuxiwireless Business BeeCloud 1,160,000
Zhongyizhiku com.zk120.aportal Life BeeCloud 1,100,000
Clean com.ktls.fileinfo Tool BeeCloud 850,000
Yuebanchuxing com.ynwl.yueban Social BeeCloud 770,000
Jiaoshisuishixue cn.ixunke.suishixue Education BeeCloud 660,000
Chuangyebang com.cyzone.news Education BeeCloud 490,000
Yikeweiqi com.indeed.golinks Game BeeCloud 360,000
Hediandian com.hoge.android.app.hdd Business BeeCloud 350,000
Zhihuiyancheng com.hoge.android.yancwireless Business BeeCloud 170,000
Huiyouhui com.huiuhuisc.zoj Business BeeCloud 90,000
Wuxianhuaian com.hoge.android.huaian Business BeeCloud 70,000
Zhongyiguji com.zk120.ji Health BeeCloud 50,000
Zhongyiyian com.zk120.an Health BeeCloud 10,000
Quandashi com.dream.ipm Business BeeCloud 10,000
Shuohua com.etang.talkart Art BeeCloud 10,000
OffPhone com.alion.silent Tool TrPay 830,000

USENIX Association 28th USENIX Security Symposium    763



Table 5: Abbreviation summary in alphabetical order.

Abbreviation Denote
ADV Adverbial
AT T Attribute
b,bi Buyer state (No.i)
b1 The initial state
B Buyer
COO Coordinate
d A message transmitted among a buyer, a merchant and a syndicator
D A set of messages
DoA Documentation Analyzer
E A function that drives the transition from one payment state to the next
FSM Finite state machine
LfP Logic-flaw Predictor
m, mi Merchant state (No.i)
m f The final state
M Merchant
p, pi Payment processor state (No.i)
P Payment processor
POB Preposition-object
s A state in an FSM
S A set of payment states
SBV Subject-verb
SD Secure design goal
SI Secure implementation goal
SR Security Requirement
SRi The No.i Security Requirement in Table 2
SRob j The object to check for an SR
SRpara The parameters for an SR when checking
SRstate An SR’s corresponding state
TA A set of trusted message attributes as collected from related API specifications
TC A set of collected attributes for preconfigured merchant information
VOB Verb-object
w, wi Syndicator state (No.i)
W Syndicator

764    28th USENIX Security Symposium USENIX Association


	Introduction
	Background
	Dilution: Design
	Overview
	Preprocessing
	Syndication FSM Discovery
	SR Information Discovery
	Logic-flaw Prediction and Validation

	Implementation and Evaluation
	Implementation
	Experiment Settings
	Effectiveness
	Performance

	Discoveries in the Wild
	Finding from Documentations
	Attacks on Real-World Systems

	Discussion
	Related Work
	Conclusion
	Acknowledgment

