
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

simTPM: User-centric TPM for Mobile Devices
Dhiman Chakraborty, CISPA Helmholtz Center for Information Security, Saarland University;

Lucjan Hanzlik, CISPA Helmholtz Center for Information Security, Stanford University;
Sven Bugiel, CISPA Helmholtz Center for Information Security

https://www.usenix.org/conference/usenixsecurity19/presentation/chakraborty

simTPM: User-centric TPM for Mobile Devices

Dhiman Chakraborty
CISPA Helmholtz Center
for Information Security,

Saarland University

Lucjan Hanzlik
CISPA Helmholtz Center
for Information Security,

Stanford University

Sven Bugiel
CISPA Helmholtz Center
for Information Security

Abstract

Trusted Platform Modules are valuable building blocks for
security solutions and have also been recognized as beneficial
for security on mobile platforms, like smartphones and tablets.
However, strict space, cost, and power constraints of mobile
devices prohibit an implementation as dedicated on-board
chip and the incumbent implementations are software TPMs
protected by Trusted Execution Environments.

In this paper, we present simTPM, an alternative imple-
mentation of a mobile TPM based on the SIM card available
in mobile platforms. We solve the technical challenge of im-
plementing a TPM2.0 in the resource-constrained SIM card
environment and integrate our simTPM into the secure boot
chain of the ARM Trusted Firmware on a HiKey960 refer-
ence board. Most notably, we address the challenge of how
a removable TPM can be bound to the host device’s root of
trust for measurement. As such, our solution not only pro-
vides a mobile TPM that avoids additional hardware while
using a dedicated, strongly protected environment, but also
offers promising synergies with co-existing TEE-based TPMs.
In particular, simTPM offers a user-centric trusted module.
Using performance benchmarks, we show that our simTPM
has competitive speed with a reported TEE-based TPM and a
hardware-based TPM.

1 Introduction

Trusted computing technology has become a valuable build-
ing block for security solutions. The most widely deployed
form of trusted computing on end-consumer devices is the
Trusted Platform Module (TPM), a dedicated hardware chip
that offers facilities for crypto co-processing, protected cre-
dentials, secure storage, or even the attestation of its host
platform’s state. By today, software and system vendors have
built various security solutions on top of TPM. For instance,
Microsoft’s BitLocker uses it to release disk-encryption cre-
dentials only to a trustworthy bootloader [49]; or Google’s
Chromium uses the TPM for a range of objectives [60], such

as preventing software version rollback, protecting RSA keys,
or attesting protected keys.

TPM is also of interest for the different stakeholders on
mobile devices. However, the particular benefits that the TPM
offers have historically hung on the TPM’s implementation
as a dedicated security chip that can act as a "local trusted
third party" on devices. Mobile devices are, however, con-
strained in space, cost, and power consumption, which pro-
hibits a classical deployment of TPM. To address the par-
ticular problems of the mobile domain, the Trusted Com-
puting Group (TCG) introduced the Mobile Trusted Mod-
ule (MTM) specifications [61]. Although the MTM concept
has never left the prototype status, its ideas influenced the
latest TPM2.0 specification [64]. The TPM2.0 mobile ref-
erence architecture [63] proposed different alternatives for
implementing a TPM on a mobile device, including virtu-
alization, dedicated cores, or hardware-based isolation. The
de-facto implementation of mobile TPMs today are protected
environments through hardware-based trusted execution envi-
ronment (TEE) [23, 24, 32, 45, 46, 54], like ARM TrustZone
that is available on virtually all mobile platforms today, where
the TPM is implemented as protected software application
inside the TEE.

Given the different proposals for realizing TPMs on mo-
bile platforms, we conduct a systematic comparison of the
different solutions in terms of security of the TPM itself, their
applicability in current systems, and deploy-ability in the spe-
cific setting of mobile devices. While the solutions naturally
differ in their security guarantees for the TPM (i.e., TPM state
or execution) due to differences in the underlying technology
(e.g., dedicated hardware chip vs. virtual machine), we see
particularly shortcomings of the current solutions in terms of
applicability and deploy-ability. In particular, the currently
incumbent fTPM (firmware TPM) is strictly bound to the plat-
form vendors and serves their purposes (e.g., securing vendor
credentials), but is not or only very limited available to other
stakeholders in the system, such as the user. Moreover, an
fTPM [54] that is based on a TEE falls short on providing
a fully measured boot by itself. The availability of an fTPM

USENIX Association 28th USENIX Security Symposium 533

depends on the availability of the TEE during boot, which is
one of the last steps in the long boot-chain. In light of recent
attacks against mobile bootloaders [55] and trusted software
in TEE [3, 8, 18, 39, 41, 51, 56–58], this lacking support to
attest the entire, early boot-chain, including the software in
the TEE, is unsatisfactory.

To put a new perspective on solving those issues of fTPM,
we add in this paper an alternative implementation of a hard-
ware TPM called simTPM to the landscape of mobile TPM im-
plementations by using the subscriber identity module (SIM)
card. We have implemented a prototype of our solution on a
Hikey960 reference board [1] and using a Gemalto Multos
card as SIM card. Our simTPM solves the technical chal-
lenge of implementing TPM2.0 compliant functionality on
the SIM card, which does not require any additional hard-
ware for the TPM. This approach keeps the costs down and
leverages dormant hardware capabilities of mobile devices.
Through performance tests, we show that simTPM is compet-
itively fast to reported fTPM implementations. A particular
challenge of this design is the lack of the usual physical bind-
ing between the TPM and its host platform’s root of trust for
measurement (RTM), that is, a SIM card can be moved to
another platform. We discuss two strategies in the particular
setting of mobile devices on how to bind the simTPM to a
device’s RTM, either through an extended secure boot and
TEE proxy or through a distance bounding protocol. Once
bound to the device’s RTM, we also integrated simTPM with
the ARM Trusted Firmware (ATF) boot chain to augment the
ATF secure boot with an authenticated boot. Our solution not
only fills the gap of TEE-based TPMs for measured boots, but
the co-existence of a fTPM and simTPM on a mobile device
creates also promising synergies between the two TPMs (e.g.,
to support multiple stakeholders). Our contribution can be
summarized as follows:

1. A systematic comparison of existing solutions for mo-
bile TPMs and their enabling technologies. We discover
that incumbent solutions fall short on applicability and
deploy-ability aspects.

2. We implemented the first SIM card based TPM2.0 for
mobile devices by developing a simTPM, which can be
executed in this constrained environment. Our solution
enables a user-centric trusted module offering a portable
sealed storage.

3. We propose an integration with the on-board TEE to
solve the problem of binding the simTPM to the RTM
and discuss an alternative solution based on distance
bounding. As a result of this binding, a fully measured
boot on the ARM Trusted Firmware (ATF) secure boot
chain is possible.

4. The performance of our simTPM is competitively fast
to a reported fTPM implementation and is comparable
with existing hardware TPMs.

Processor Bootloader 1 Bootloader 2

Bootloader 3-1Bootloader 3-2

Bootloader 3-3

TEE
(Optional)

Operating
System

1 2

34

5

6 7

M2

M3

M4
M5

M6

M7

P1 P2

P3

P4

P5

P6

P7

TPM
ARM Trusted

Firmware

0

Figure 1: Trusted Boot Process with TPM; P(#) = boot chain
path; M(#) = measurement of component #

2 Background

We briefly introduce necessary background information about
ARM Trusted Firmware, TPM, and SIM cards.

2.1 ARM Trusted Firmware (ATF)
ATF implements a subset of the trusted board boot require-
ments for ARM reference platform [5]. Figure 1 illustrates
the bootloader settings and boot chain. ATF is triggered when
the platform is powered on. After the primary CPU and all
other CPU cores are initialized successfully, the primary core
triggers the ATF (P1). ATF is divided in five steps depending
on modularity: 1 BootLoader stage 1 (BL1) for AP trusted
boot ROM, 2 BootLoader stage 2 (BL2) for Trusted Boot
Firmware, 3 BootLoader stage 3-1 (BL3-1) for EL3 Run-
time Firmware, 4 BootLoader stage 3-2 (BL3-2) for Secure-
EL1 Payload (optional), 5 BootLoader stage 3-3 (BL3-3)
for Non-trusted Firmware.

Secure boot: ATF implements a secure boot in which every
component along the boot chain P# verifies the authenticity
and integrity of the next component. Since BL1 does not have
a preceding component, it has to be axiomatically trusted.
Thus, BL1 verifies BL2, BL2 verifies BL3.x, and so forth.
Verification is usually based on certificates, where a hash of
a trusted (vendor) public key is fused into the hardware and
is available to BL1 to ensure a trustworthy signature of BL2.
At the end of a successful secure boot, every component in
the boot chain has been checked for integrity and authenticity
before handing control to it. If any verification fails, the boot
aborts.

2.2 Trusted Platform Module (TPM)
TPM by the Trusted Computing Group is the most wide-
spread trusted computing technology on end-user devices. By
today, the TPM specification is in its version 2.0, addressing

534 28th USENIX Security Symposium USENIX Association

many of the security issues and practical concerns of previ-
ous versions 1.0–1.2. According to this specification, a TPM
provides a number of desirable hardware and security fea-
tures. It is equipped with secure non-volatile memory, a set of
platform configuration register (PCR) banks, a processor to
run TPM code in isolation, co-processors for common cryp-
tographic primitives (e.g., RSA, ECC, SHA-1, SHA-256), a
clock, and a random number generator. By default, a TPM
is deployed as a hardware chip soldered onto a platform’s
motherboard. Besides acting as a cryptographic co-processor,
a TPM provides the facilities to securely store measurement
about the host platform’s configuration (e.g., software state)
in its PCRs and to reliably report those measurements to a
remote verifier (remote attestation based on a pre-installed
endorsement key), as well as creating secure storage through
TPM protected credentials and data sealing with extended au-
thorization policies. Further, the TPM non-volatile memory,
including secure monotonic counters, can be attractive for
building security solutions, e.g., version rollback prevention
for software updates.

By now, a number of real world applications make use of
TPM. For instance, IBM’s password manager uses it for stor-
ing keys, Microsoft windows management instrumentation
uses TPM for cryptographic co-processing, Intel’s Trusted
eXecution Technology or AMD’s Secure Technology rely
on a hardware TPM, several VPN apps can make use of it,
TPM is used in full disk encryption (e.g., Microsoft Bitlocker,
dm-crypt), and even browsers like Chrome make use of TPM
for different purposes.

Measured boot: Of particular relevance for this paper is
measured (or authenticated) boot based on TPM (see Fig-
ure 1). During a measured boot, every component in the boot
chain P# measures the next component—a cryptographic
hash of the component—and then stores this measurement in
the PCR of the TPM (M#) before passing on control. Since
BL1 does not have a preceding component, it is not mea-
sured and acts as the Root of Trust for Measurement, which
starts the measurement chain. In contrast to a secure boot,
the components are not verified and the boot is not aborted,
however, after a measured boot the software configuration of
the boot components can be attested by the TPM or used to
seal storage to this configuration (i.e., values in the PCR).

2.3 Subscriber Identification Module (SIM)

SIM card is the module that authenticates the mobile device
in the network. The primary job of the SIM card is to prove
the identity of the owner of subscription to the cellular carrier
to enable services like calling, Internet, and various others.

Through physically separated pins, a SIM module can
achieve the same degree of independence from power supply,
reset capability, clock signal, and separated I/O communica-
tion with the host platform like a TPM.

Since SIM cards are smart cards, they use command-

response communication and the application protocol data
unit (APDU) to communicate with their reader. The Android
radio interface layer can be extended to send specialized
APDU commands to the SIM card, which we use in simTPM.
It is worth noting, that this APDU command sent by the An-
droid radio interface has to go through the baseband pro-
cessor. The structure of the APDU commands are defined
in the ISO/IEC 7816-4 standard and are recalled later on in
Section 4.

3 Requirement Analysis & Systematization of
Existing Solutions

There exists many approaches to realize TPM in a way dif-
ferent than using a dedicated hardware TPM. In this section,
we systematically compare different solutions of trusted com-
puting procedures using both hardware and software that
are representative for the different implementation options.
For comparison, we first re-enumerate the objectives a se-
cure and practical TPM implementation needs to fulfill (Sec-
tion 3.1) and then discuss the existing solutions (Sections 3.2
through 3.4). In particular, this systematization should help
to understand the trade-off of the proposed solutions in com-
parison to the default hardware TPM and where our simTPM
solution fits into. Table 1 summarizes the discussion in the
remainder of this section.

3.1 Objectives
We start by briefly formulating the objectives a trusted mod-
ule, in particular for mobile devices, should fulfill. We group
them into security of the TPM itself, the applicability of the
implementation, and desirable deploy-ability objectives.

3.1.1 Security of TPM

These are objectives that should be fulfilled to ensure the
security of the TPM state, its execution and trustworthiness,
and secure operations.

S1 Confidentiality and integrity of TPM state: The TPM
state should be confidential and protected against untrusted
code (e.g., host platform, non-TEE apps) and only be avail-
able to authorized entities. We assign 4 if the confidentiality
and integrity of the state is protected through strong security
means (e.g., physical isolation), J if they depend on software
integrity (e.g., of the OS), and 8 in other cases.

S2 Rollback Protection: Reverting the TPM state back to
a former version must be prevented or at least be detectable.
We assign 4 if rollback protection is guaranteed through
hardware means (e.g., hardware counters), J if there is a
dependency on untrusted OS but rollbacks can be detected, 8
if no rollback protection or detection is provided.

USENIX Association 28th USENIX Security Symposium 535

S3 Trustworthy Endorsement: A TPM should be carrying
an asymmetric encryption key called Endorsement key (EK)
that can live as long as the TPM and for which credentials ex-
ist that verify the authenticity of the TPM and allow a verifier
to recognize a genuine TPM. We assign 4 if endorsement
credentials are available to the TPM (e.g., pre-installed at man-
ufacturing time or derived from other verifiable credentials),
J if the TPM has to create an EK and prove it is genuine
through a remote verification, 8 otherwise.

S4 Secure Counter: TPM has to provide secure, persistent
monotonic counters, e.g., for its clients or extended authoriza-
tion policies. We assign 4 if the TPM provides such counters
backed by hardware support or NV-storage of the TPM soft-
ware state that is protected (i.e., S1, S2 both 4). We assign
J if the security of the counter depends on software integrity
(e.g., of the OS or hypervisor). Otherwise 8.

S5 Secure Clock: A clock is needed for attestation, for gener-
ation of timed attestation keys, and for authorization policies
with lock-out time. If a secure clock is available to the TPM
(e.g., its own hardware clock), we assign 4; if the clock de-
pends on shared resources but manipulation can be detected
we assign J, otherwise 8.

S6 Security of TPM Execution: The execution of the TPM
code or firmware has to be protected against compromise.
We assign 4 if a strong security boundary exists between
untrusted code and the TPM execution environment (e.g.,
dedicated physical chip). If the execution environment shares
hardware resources (e.g., CPU or RAM) with untrusted code
and the shared resources provide isolation (e.g., modes of
operation of CPU and separate memory regions), we assign
J, since the shared resources open an attack surface. If the
security of the TPM execution environment is based purely
on software means (e.g., hypervisor or OS), we assign 8 for
this weakest form of isolation.

3.1.2 Applicability

These are objectives related to the application of TPM, such
as authenticated boot or providing secure storage to clients.

A1 Secure Persistent Storage: TPM provides a persistent
storage to securely store limited amounts of data (e.g., certifi-
cates). We assign 4 if the TPM provides such storage (e.g.,
NV-RAM in a dedicated chip) and J if the persistent storage
is part of an outsourced TPM state that is protected (i.e., S1,
S2 both 4). We assign 8 in other cases.

A2 Early Availability: A main use-case for TPM is storing
the measurement of loaded software components, i.e., mea-
sured boot. To be able to attest the entire software stack, the
TPM has to be early available during the boot sequence. If the
trusted module is available as soon as the platform has power,
we assign 4. Otherwise, if the TPM becomes available at late

stage during boot (e.g., after initializing a separate execution
environment), we assign 8.

A3 Multiple Stakeholders: Computer systems, in particular
mobile platforms and enterprise devices, usually have mul-
tiple stakeholders co-existing with an interest in protecting
credentials and software on the platform (e.g., end-user, ad-
ministrator, network operator, software vendor). If the TPM
was designed to support both platform software and users
(e.g., distinct hierarchies), we assign 4. If the TPM primar-
ily supports the platform but offers limited functionality to
the end-user, we give J. If the TPM was designed solely as
support for the platform vendor, we give 8.

3.1.3 Deploy-ability

Objectives related to the deployment of TPM, in particular if
deployment complies with the requirements of mobile devices
or if it is bound to a specific platform.

D1 Mobile Availability: We want to have the TPM available
for mobile devices. This imposes strict constraints, such as not
changing the current architecture by adding a new on-board
chip. If the TPM implementation adheres to this constraints,
we assign 4, otherwise 8.

D2 Movability: The TCG specification has introduced the
TPM as being bound to its host platform (e.g., fixed part of
the motherboard). However, depending on the context, the
movability of the TPM to another platform is desirable, e.g.,
if an associated virtual machine migrates to another platform.
If the TPM is generally easily moved to another platform, we
assign 4, if it is bound to a specific platform, we assign 8.

D3 Bound RTM: The measurements during a measured
boot are given to the TPM by the host platform, starting with
the Root of Trust for Measurement (RTM). To ensure that the
provided measurements indeed describe the TPM’s host plat-
form’s configuration, TPM and RTM must be bound together
on the same platform. If this binding is achieved via physi-
cal means (e.g., TPM and RTM are fixed parts of the same
motherboard), we assign 4. If the TPM receives those mea-
surements from another trusted entity (e.g., another, bound
TPM, or a secure boot anchored at the RTM), we assign J. If
the TPM cannot establish trust into the RTM, we assign 8.

In Section 2.2, while introducing the hardware TPM, we
explained all its properties, which allow the TPM to achieve
the objectives we defined in Section 3.1 and summarized in
Table 1. Objectives S1 to S6 and A1 to A3 are our interpreta-
tion of properties derived from TCG’s mobile TPM [61, 63]
and standard TPM specification [62, 64]. We define Deploy-
ability as added objectives that simTPM should achieve. The
current TCG specifications do not stipulate a removable TPM.
We will use the standard hardware TPM as the baseline that
simTPM should achieve.

536 28th USENIX Security Symposium USENIX Association

Table 1: Comparison of existing TPM implementations

Category Objective fT
PM

[5
4]

vT
PM

?
[9

]

In
te

lS
G

X
[1

9]

si
m

T
PM

H
ar

dw
ar

e
T

PM

Security of TPM

Security of TPM state
S1. Confidentiality and integrity 4 4/ J R 4 4
S2. Rollback protection 4 4/ J 4 4 4

S3. Trustworthy Endorsement 4 J/ J 4 4 4
S4. Secure counter 4 4/ J 4 4 4
S5. Secure clock J 4/ 8 8 4 4
S6. Security of TPM execution J 4/ 8 R 4 4

Applicability
A1. Secure persistent storage J 4/ 8 J 4 4
A2. Early availability 8 4/ 4 8 4 4
A3. Multiple stake holder 8 4/ 4 4 4 4

Deploy-ability D1. Mobile availability 4 8/ 8 8 4 8
D2. Movability 8 4/ 4 8 4 8
D3. Bound RTM 4 8/ J 4 J 4

4 = fulfilled by the implementation; J = partially fulfilled by the implementation; 8 = not fulfilled by the implementation; R = not applicable for the implementation

? First column is for Secure co-processor based vTPM (SCoP) implementation and second column is for Software only vTPM (SW-only) implementation

3.2 fTPM

Specifically for the mobile domain, a number of past im-
plementations [25, 54, 66] leveraged trusted execution en-
vironments (TEE) to realize a software-based TPM. We use
Microsoft’s fTPM [54] as a representative for those imple-
mentations, since it is one of the most recent solutions. The
fTPM implementation is widely deployed in Microsoft mo-
bile devices using a TEE on top of ARM TrustZone (D1: 4).
TrustZone creates a memory and process isolation between
the protected environment ("secure world") running inside the
TEE and the "normal world" (i.e., Android or similar), and
allows the execution to switch contexts between those two
worlds via a secure monitor.

fTPM provides confidentiality, integrity (S1: 4), and roll-
back protection (S2: 4) for fTPM states by creating a trusted
storage through a combination of encryption with fused keys,
device UUID, and Replay Protected Memory Block (RPMB)
with authenticated writes and write counter. Any form of se-
cure persistent storage the fTPM offers to clients is based on
this securely outsourced state (A1: J), which is also used to
provide secure counters to clients (S4: 4).

Due to ARM TrustZone, the execution of the fTPM en-
vironment is isolated from the normal world, however, both
worlds still share the CPU and RAM (S6: J), which has
opened TrustZone TEEs to attacks (e.g., [41]).

fTPM does not have a separate secure clock. It uses the
clock of the system in cooperation with the untrusted OS
(S5: J). To handle the shared clock situation, fTPM imple-
ments fate sharing, where fTPM refuses to provide any func-

tionality if the OS does not cooperate.
fTPM is primarily designed to provide TPM support to

the platform vendor (A3: 8). The fTPM is a software imple-
mentation and bound to one device (D2: 8), since it derives
many of its credentials from device-specific keys or UUIDs,
including its endorsement credentials (S3: 4).

Since the fTPM is implemented as software in the TEE on
top of ARM TrustZone, the fTPM becomes only available
once the TEE has been initialized during the boot sequence
(see also Section 2). That means the fTPM (or any TEE-based
TPM) is not early enough available to store measurements
of the early boot stages (A2: 8). But this can be alleviated
by introducing shared memory between the bootloaders and
TEE for measurement storage. We will discuss this solution
in more details in Section 4.3.

Although the fTPM is only available after the bootchain
has created the TEE, the secure boot transitively extends the
trust put into the RTM (BL1) to the remainder of the secure
bootchain on the same platform as the TEE. Thus, fTPM can
assume that the measurements are done as if by the RTM on
the same platform (D3: 4) if the measurements comes from
a component of the secure bootchain.

3.3 vTPM

Another way of implementing a software TPM is by creating
virtual instances over a physical TPM [9]. This, in particular,
targets cloud environments in which virtual machines need a
TPM, but sharing a single physical TPM (or providing an array

USENIX Association 28th USENIX Security Symposium 537

of physical TPM) is not an option. The representative work
for virtual TPM, or vTPM, is based on the Xen hypervisor and
proposes two different implementation options: 1) a software
only implementation with vTPM instances running inside a
privileged VM, and 2) a secure co-processor (SCoP) to run all
vTPM instances with better isolation at the cost of additional
hardware. Both options are not feasible for mobile TPMs
(D1: 8), since virtualization is not sufficiently supported or
effective, and adding a secure co-processor is too costly in
terms of space and power. However, by design vTPMs must
be movable to different platforms to support migration of
associated VMs between platforms (D2: 4).

In both deployment options, a vTPM has to create its en-
dorsement key at creation time. To establish trust into the EK
for a remote verifier, a genuine, primary TPM on the plat-
form (hardware TPM) must attest the trustworthiness of the
vTPM’s EK (S3: J).

In case of SCoP-vTPM, the TPM logic and vTPM in-
stances are executed inside the secure co-processor (S6|SCoP-
vTPM: 4). Further, the secure co-processor used in [9] (an
IBM PCIXCC) provides CMOS RAM backed persistent stor-
age. We assume it provides the confidentiality, integrity, and
rollback protection of the vTPM states as well as sufficient se-
cure persistent storage to the vTPM clients (S1, S2, A1|SCoP-
vTPM: 4). The same co-processor also offers facilities for
secure counters (S4|SCoP-vTPM: 4) and a secure clock
(S5|SCoP-vTPM: 4).

For SW-only-vTPM the vTPM instances reside in Xen’s
privileged dom0. Thus, their execution is protected from
untrusted VMs by only the Xen hypervisor (S6|SW-only-
vTPM: 8), and their state, when stored in persistent storage
in dom0, is also protected by only the access control and isola-
tion of the hypervisor and dom0 (S1, S2|SW-only-vTPM: J).
Similar, the protection of any persistent storage offered to
vTPM clients depends on the integrity and trustworthiness
of dom0 (A1|SW-only-vTPM: 8) as does any counter stored
in the vTPM state (S4|SCoP-vTPM: J). A vTPM relies
on the platform’s clock shared between all vTPMs includ-
ing untrusted code and not specifically protected (S5|SCoP-
vTPM: 8). Although vTPM instances are created after the
host platform has booted up, a vTPM receives the initial mea-
surement from the underlying hardware TPM of its platform,
which also attests the vTPM trustworthiness, and dom0 pro-
tects the vTPM state from migrating to an untrusted platform
(D3|SW-only-vTPM: J). Further, vTPM instances are cre-
ated together with their associated VM, hence, allowing the
VM to measure its entire bootchain and store the measure-
ments in its vTPM (A2: 4).

In case of SCoP-vTPM, the TPM resides entirely in the
IBM PCIXCC, a removable peripheral. Thus, no physical
binding to the RTM exists and no authenticity/trustworthiness
of the RTM is being ensured (D3|SCoP-vTPM: 8), hence,
an attacker could move the TPM to an untrusted platform that
feeds the TPM with arbitrary measurements. This situation

is very similar to our simTPM, which is also removable, and
we discuss solutions to this challenge in Section 4.3, which
might also be applicable to SCoP-vTPM.

The vTPM does not make any assumptions about which
stakeholder—user or platform—within the associated VM
uses the vTPM and supports, like a regular hardware TPM,
multiple hierarchies (A3: 4).

3.4 Intel SGX

Although Intel SGX is not an implementation of a TPM but a
solution to allow applications to establish a TEE, enclave in
SGX jargon (S1, S7: R), we include it here for comparison
because it offers in many dimensions similar protections as
a hardware TPM and shares a lot of a TPM’s objectives (we
mark non-applicable objectives with R in Table 1). For this
work we have only considered stock SGX implementations
in Intel processor to keep the comparison on par with other
candidates. SGX is currently only supported by desktop and
server class Intel processors (D1: 8) and binds any credentials,
like generated and derived keys, and transitively sealed data
strictly to the CPU (D2: 8).

In SGX, attestation means verifying that a certain enclave
code was initialized correctly and not tampered with by the
untrusted host OS. For remote attestation in SGX an Intel-
provided Quoting Enclave provides the facilities to enclaves
to do direct anonymous attestation (DAA) using attestation
keys endorsed by Intel (S3: 4). The SGX extensions to the
CPU measure the enclaves, hence, the enclaves are physically
bound to their RTM (D3: 4).

SGX supports enclaves in sealing data for storing it on
untrusted persistent storage, since enclaves themselves do
not have any persistent storage like NV-RAM (A1: J). In
addition, Intel has added support for monotonic counters [30,
43] that allow rollback protection of sealed data (S4, S2: 4).

It is a processor based technology, so it can fully utilize
the clock of the system. But the current SGX implementation
does not accommodate a trusted and fine grained clock for the
user-level enclaves. There is an API provided by Intel, e.g.,
get_trusted_time, but this call can be arbitrarily modified by
the untrusted OS, since it requires to make an OCALL [4, 6,
17, 31, 37]. Moreover, any timing mechanism must account
for the fact that the OS can interrupt the enclave at any point
in its execution, wait for an arbitrary period of time, and then
resume the enclave using ERESUME (S5: 8).

Both regular applications and system software can use en-
claves and SGX is not restricted to particular stakeholders
(A3: 4). However, an early firmware initialized enclave is
not possible, since the OS is needed for memory management
of enclaves (A2: 8).

538 28th USENIX Security Symposium USENIX Association

3.5 Java-card based MTM
Dietrich and Winter proposed a way of implementing a mo-
bile trusted module (MTM) in a Java-based smart-card for
mobile devices [21, 26]. The implementation is for applica-
tions running on mobiles and the TPM communicates through
NFC.

The TPM is installed as a set of applets in the Java-card,
where a master-applet provides services to other applets, like
TPM command handling and controls the access to the en-
dorsement key. The actual processing of TPM commands is
handled by specific applets implementing those commands.

Although this implementation seems like closest related
work to our simTPM, their work described a proof-of-concept
prototype and is unfortunately silent about many aspects, such
as secure persistent storage, and some functionality is not
available, such as attestation of the system or authenticated
boot. The Java-card communicates with the system over NFC,
so binding the card with the system is not possible and early
availability of the trusted module is also not possible before
the NFC driver is loaded.

Their implementation provides important insights on the
implementation of MTM on mobile devices through a pro-
grammable TPM and presented pioneering work, but given
the lack of documentation and also differences in engineering
(see Section 4), we cannot provide a full and fair comparison
with simTPM and exclude it from our systematization.

4 System Design and Security Analysis

The main component of simTPM is a smart card based imple-
mentation of a SIM TPM. However, to properly work it also
requires changes in the bootloader and the operating system
(i.e., Android). In this section, we describe the design and
implementation of simTPM in more details. We also discuss
how our solution solves the shortcomings described in Sec-
tion 3 and argue about our design’s security. Along with the
design descriptions, we indicate how the objectives shown in
Table 1 are met by simTPM.

4.1 SIM TPM
Modern SIM cards are usually general purpose smart cards
running an applet created by the mobile network provider.
The two most prominent smart card technologies are Java
Cards and Multos cards. Both introduce a custom OS (i.e.,
Java Card OS and Multos OS) and APIs that can be used
by programmers for cryptographic (e.g., encryption, signing)
and non-cryptographic (e.g., memory allocation and copy)
operations that are implemented and executed directly on the
microprocessor. Depending on the technology, applets can be
programmed in C/C++ (e.g., Multos cards) or in Java (e.g.,
Java Card). Additional cryptographic algorithms, not provided
by the API, can be implemented in software.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CLA INS P1 P2

DATA_LEN

DATA
(up to 255 bytes)

EXP_DATA_SIZE

Figure 2: Generic APDU command structure

Both card technologies have support for multiple applets.
To properly manage them, cards provide a specialized secu-
rity manager that is responsible for installing and deleting of
user defined applets. Once an applet is uploaded, the security
manager creates its instance and allows the applet to create
necessary objects and allocate memory.

4.1.1 API Limitations of Smart Cards

As mentioned above, each Smart Card OS provides a card
specific API that allows applets to perform extended opera-
tions. This forces the programmer to use only a predefined
set of functions. For example, in case of Java cards the API
supports only a subset of the standard Java language and is
limited to high level cryptographic operations (e.g., encryp-
tion, hashing, signing). There is no support for mathematical
functions like modular multiplication or elliptic curve point
addition, which are one of the main building blocks of public
key cryptography. In other words, the developer cannot use
hardware support for those low-level operations and is limited
to software implementations that are inefficient due to the
overhead of the virtualization layer.

Obviously, those limitation do not directly concern TPM
commands that only use basic cryptographic operations. Un-
fortunately, the TPM standard defines a remote attestation
scheme that is not supported by the cards API, because it uses,
e.g., zero-knowledge proofs. This constitutes an interesting
engineering problem that we solve. In particular, we were
able to implement simTPM on a Gemalto MultiApp Multos
smart card with an Infineon SLE78CLX family microproces-
sor. This card also helped us achieving process isolation from
the general-purpose processor (S6: 4). It is worth noting,
that in this paper we focused mainly on the Multos API [42],
because it supports a broader range of functions than the Java
card API. In particular, we were able to efficiently implement
a remote attestation scheme on-card.

4.1.2 Smart Cards and TPM Command Parsing

SIM cards are connected to the main processing unit over
a separate bus and available for mobile telephony services
(D1: 4). Smart cards work in a command/response manner,
i.e., given an input the card executes the code and returns a
response. The input data is defined by an APDU command

USENIX Association 28th USENIX Security Symposium 539

(see Figure 2), which consists of a class byte (CLA), an in-
struction byte (INS), two bytes for parameters (P1, P2), one
byte for the expected response length, one byte for the data
length (DATA_LEN), and DATA_LEN bytes of data. The
cards’ response contains the response data and two bytes that
constitute the status word (not shown in the figure). The data
field is limited to 255 bytes. There exist an extended length
APDU specification that allows for a larger data field but it is
not widely implemented.

In a multi applet system, an APDU command will be for-
warded to the currently selected applet. To select an applet,
the SELECT APDU command with an unique applet identifier
has to be sent to the card. This command is then recognized
and executed by the OS. Once selected, the applet can parse
incoming commands according to its work flow. In particu-
lar, this means that the developer can use the instruction and
parameters bytes to program the behavior of the card.

The APDU data structure provides a convenient way to
communicate with the card. We designed a custom APDU
command that implements TPM commands. The data length
size of up to 255 bytes is sufficient for the payload sizes of
most TPM commands, and for TPM commands with larger
payload sizes (e.g., sealed data blobs), we send the payload
split across multiple APDU messages and use the parameter
bytes to communicate the card if more data is to be expected.

Changes to Android’s radio interface: The Android Ra-
dio interface layer (RIL) is responsible for communicating
with the device’s SIM card. To allow RIL to communicate
with simTPM, we introduced a set of TPM commands. We
implemented a custom RIL as a shared library, which sends
APDU commands as bulk transfer to the simTPM and receives
its responses.

4.1.3 TPM Commands

We now briefly discuss how we designed the card to handle
basic TPM commands related to PCR banks and sealing. The
former case is easy, the applet reserves enough non-volatile
memory to store the PCRs. The number of banks is defined
by the installation parameter of the TPM applet, which also
defines the algorithm we use to extend the PCR (e.g., SHA1
or SHA256). In a standard setup we use 24 PCRs. For the
TPM_EXTEND and TPM_READ commands we used two separate
instruction bytes (respectively, 0x10 and 0x20) to form the
APDU. In both cases the number of the PCRs is given using
parameter P1.

To design (un-)sealing on a smart card was a bit harder. Due
to the limited input data size, the card has to encrypt/decrypt
the input in chunks, which are split across multiple APDU
messages. The storage key for sealing is generated by the card
after receiving the TPM_INIT command. The key is stored in
the non-volatile memory that is allocated during installation
of the applet (see next Section 4.1.4).

It is worth noting that smart cards can be programmed to
execute all TPM commands that require basic cryptographic
algorithms, on-card key generation, key agreement, or stor-
ing data in volatile/non-volatile memory. Unfortunately, the
privacy-preserving variant of remote attestation (i.e., direct
anonymous attestation, DAA) requires zero-knowledge proofs
and other unsupported crypto operations. What is more, in
versions below TPM 2.0 the specification defined only one
algorithm for anonymous attestation [14], which is based on
groups with hidden order (i.e., using a RSA modulus) and
Camenisch-Lysyanskaya signatures. The TPM 2.0 specifica-
tion, however, allows for algorithm agility. We leveraged this
fact and used a custom scheme. We present the full scheme
and security proofs in the technical report of our paper [16].
Here, we only draft the idea behind the scheme, which fol-
lows the generic approach used by other DAA schemes: The
TPM receives a signature/certificate under its secret DAA key
from an authority. It then uses this secret key to certify its
attestation key using a proof. In this zero-knowledge proof
the TPM shows that it knows a certificate under a DAA key
and a signature created using this key under an attestation
key. The scheme uses Boneh and Boyen [11] signatures and
an efficient zero-knowledge proof for the above statement
that is made non-interactive using the Fiat-Shamir transfor-
mation [28]. The main advantage of the scheme is that it can
be executed solely by the TPM (i.e., on-card) and does not
require any involvement of the host platform. To further im-
prove efficiency of our scheme, we decided to optimize the
workload between commands, i.e., if the TPM_CREATE com-
mand recognizes that the TPM is creating an attestation key, it
already does some pre-computation for the DAA certification.

4.1.4 PCR and NV storage

All smart cards implement a small amount of non-volatile
storage that can be used for various purposes. This memory
of the smart card is by design tamper-resistant and therefore
offers memory isolation from the rest of the system (S6: 4).
Modification of this memory is only possible by the applet
that reserved it and we reserve some of the NV storage for
the simTPM (A1: 4). Smart cards are equipped with features
preventing updates of its internal state by the outside world.
To update stored content (e.g., applets), one has to issue an
authorized command to the card manager to update storage
or perform applet specific commands, e.g., PCR extension
(S1: 4). Our simTPM is equipped with PCR banks that are
initialized when power cycling the device and, hence, the SIM
card, and can only be changed between power cycles using
PCR_EXTEND.

System software or user level software can keep a counter
containing the current version of the software inside the NV-
storage and updates to the counter are only allowed via au-
thorized commands. This provides an easy setup for secure
counter and rollback protection (S4: 4).

540 28th USENIX Security Symposium USENIX Association

4.1.5 Trustworthy endorsement & Clock

Trustworthy endorsement of a TPM is very important. The
standard solution is to use an asymmetric encryption key
called endorsement key. This key is unique per TPM and
should stay alive as long as the TPM is alive. This key differ-
entiates a genuine from a rogue TPM. simTPM can achieve
secure endorsement by putting a (vendor) certified endorse-
ment key inside its NV-storage and implementing TPM logic
that ensures that the private portion of the key is never released
to the outside world (S3: 4).

SIM cards are equipped with a clock pin connected to
the baseband processor. Thus, they cannot be clocked higher
or lower by an untrusted application or OS. This separate
clock helps simTPM to work on a different clock frequency
not under direct influence of the main processor. What is
more, the baseband processor can be used as a secure external
clock. In particular, since the baseband processor is by default
isolated with a strong security boundary from untrusted code
on the platform, it can prepend any APDU command with an
APDU command containing the current time (this can also
be limited to time-sensitive TPM commands only). This way
simTPM can be provided with a secure clock (S5: 4).

4.1.6 Movability & Stakeholders

The other unique feature of the simTPM architecture is its
movability (D2: 4). simTPM implements the TPM inside the
SIM card. So by design, simTPM can be transferred to a dif-
ferent device. This creates some interesting use-cases, which
we discuss in more details in Section 6.2, but also challenges,
which we discuss separately in Section 4.3. simTPM is not
specifically bound to one particular stakeholder and supports
the multiple stakeholder model proposed by TCG (A3: 4),
although we think the end-users and their apps are the primary
beneficiaries of simTPM.

4.2 ATF boot-loader changes
In Section 2.1, we have briefly introduced ATF and its boot-
loader chains. In this section we describe the changes we
have implemented to enable communication between the
bootloader components and the simTPM. Figure 1 can be
helpful as a visual aid for understanding.

After turning on the secondary cores on the cold boot path,
the processor kicks in the first stage BL1 of the bootloader (
1). Current bootloaders are not implemented such as to be

able to communicate with a device like a SIM card and to run
a command response protocol. Thus, we have extended all the
boot-loaders with the capability to communicate with the SIM
card via bus communication. This modification in ATF makes
the simTPM already available to the early BL1 stage (A2:
4). The bootloader software is capable of translating TPM
commands to APDU commands, sending them to simTPM,
receiving responses, and translating them to a meaningful

response that can be used to make decisions (e.g., failed/suc-
cessful PCR extension commands). One thing that needed to
be addressed here is that except for BL3-3, all bootloaders
are secure mode software (i.e., secure world in TrustZone).
So during execution, simTPM has to be initialized as secure
mode hardware to be available to the bootloader. We initialize
the simTPM as a secure mode hardware, but after a successful
boot chain verification, we switch simTPM to normal mode
(of TrustZone). This allows us to maintain normal efficiency
in the normal world, since the SIM card functionality (e.g.,
calls or text messages) is accessed by Android and switching
context from normal world to secure world every time before
accessing the SIM card in Android can interrupt the normal
world execution and would be highly inefficient.

4.3 Bootstrapping trust for movable simTPM
Parno [53] was first to identify the problem of how to boot-
strap trust into a hardware TPM and the possibility of cuckoo
attacks. A fundamental problem of TPM is that the verifier
(e.g., local user) does not know if they are talking to the in-
tended (e.g., local) TPM, just that they are talking to a genuine
TPM. In a cuckoo attack, an attacker that compromised the
local platform can exploit this problem and fool the verifier
into trusting the compromised platform: the attacker simply
relays the verifier’s communication to another (remote) TPM
on an attacker-controlled platform, which then can attest an
arbitrary, trustworthy state to the verifier. The preferred solu-
tions to prevent cuckoo attacks are hardwired channels via a
special purpose hardware interface to the on-board TPM or,
alternatively, a cryptographically secured verifier-TPM com-
munication where the verifier has knowledge of the public
key of the TPM on the intended platform.

However, those solutions make an implicit assumption:
Historically TPMs are soldered onto the motherboard, elim-
inating the issue of ensuring proper binding to the device’s
root of trust of measurement (RTM), usually in form of an im-
mutable piece of trusted code in the BIOS. Due to this static
design a TPM is ensured that the very first received measure-
ment in a chain-of-trust is coming from a trusted, local RTM.
Only a sophisticated hardware attack can break this binding.
A TPM that is by-design movable, such as our simTPM or
the PCI-attached secure co-processor for vTPM [9], raises
an interesting question about how to re-establish this bond
between TPM and RTM.

Lack of chain-of-trust: Without binding the TPM to a
trusted, local RTM, the measurements of any authenticated
boot cannot be trusted. An adversary could simply plug the
simTPM into an attacker-controlled platform and replay1 any
desired measurements sequence, i.e., create arbitrary PCR
values akin to a TPM reset attack [29, 36]. This allows the

1The TPM is a passive device to which the measurements have to be
provided by its caller.

USENIX Association 28th USENIX Security Symposium 541

Se
cu

re
 C

ha
nn

el

Bootloader1 Bootloader2

Bootloader31TEE

OS

 S
ec

ur
e

C
ha

nn
el

Benign Phone
with malicious

SIM card

Malicious OS

Relay P
ipe

Attacker controlled
Phone

 Secure Channel

 Secure Channel

Figure 3: Using TEE as TPM proxy to bind simTPM with
RTM and to mitigate the effects of relay attacks.

attacker to fool a remote verifier during remote attestation but
also to gain access to sealed secrets, whose release is bound
to the platform state (i.e., PCR values).

Binding simTPM and RTM: To create a binding between
the simTPM and a trusted, local RTM, we need the simTPM to
1) authenticate the RTM to ensure its a trusted code (e.g., BL1
of ATF); and to 2) ensure policies (e.g., for data release) and
commands (e.g., attestation) are only executed for exactly the
platform for which the simTPM stores the measurements. To
address those challenges, we identified two possible solutions,
using the device’s TEE as a proxy to the simTPM (see below)
or using distance bounding protocols (discussion deferred to
the technical report of our implementation [16]).

Using TEE as TPM proxy: One way to bind the simTPM
with the device’s RTM is by leveraging the platform security
building blocks of mobile devices and using the TEE as a
proxy to simTPM (see Figure 3). On a genuine device with
secure boot in place, i.e., BL1 as a trusted RTM, the TEE
has exclusive access to device-specific credentials that are
certified by the device vendor. Using those credentials, the
simTPM and TEE can establish a secure end-to-end channel.
In this setup, simTPM will only respond to PCR extensions,
attestation requests, or unsealing of encrypted data if the com-
mands come via this secure channel. As a result, an attacker
cannot forge arbitrary PCR values without compromising the
device-specific key. Further, if the TPM enforces a particular
device key, it can ensure that only the intended platform is
using the simTPM; however, even without this strict set of
device keys, this solution still ensures that any TPM com-
mands, such as releasing data to the host platform, can only
come from a genuine mobile platform with an intact secure
boot from which it received the measurements. Considering
previously mentioned software-based attacks against TEE
(see Section 3.2), an attacker could compromise the TEE to
steal the device-specific key and impersonate the TEE to the
simTPM. This can be alleviated by using session keys instead
of the long-term secret device-specific key for communication
between TEE and simTPM, which could be setup during the
bootstrapping and, hence, before untrusted code can attack
the TEE. A drawback of this solution is that the simTPM

requires the TEE to be bootstrapped to become itself opera-
tional, which prevents an early availability of the simTPM.
Since the simTPM is not early available in this setup, ATF’s
secure boot has to be extended to store the measurements of
verified software components and pass those measurements
on to the TEE, which then can forward them to the simTPM
via the secured channel (D3: J). It should be noted that while
this extension to ATF would also provide a solution to the
early availability of fTPM [54], simTPM gives a user-centric
solution and additional interesting use-cases in comparison
to fTPM (see Section 6). We discuss an alternative solution
based on a distance bounding protocol in Appendix A.

4.4 Security analysis
Lastly, we analyze the security of simTPM in comparison to
the closest solutions fTPM and hardware TPM, specifically
considering the deployment of our TPM on a SIM card.

Off-chip protection: As mentioned in Section 3, fTPM de-
pends on the integrity of the secure world, which has been
under attack recently [3, 8, 18, 41, 51, 55–57]. Our simTPM
implements an off-board TPM on the SIM card and, like
a discrete TPM, is physically isolated from untrusted code.
This provides a stronger protection of the simTPM’s trusted
computing base, however, we cannot fully exclude potential
software attacks against the SIM card software. For instance,
in the past smart cards have exhibited bugs [50] like hidden
commands, buffer overflows, weaknesses of cryptographic
protocols [52], or malicious applets [52]. Further, like a hard-
ware TPM, simTPM is connected via a bus, which makes it
prone to advanced bus attacks [12, 34, 36] that, however, are
considered outside the attacker model for consumer grade
hardware like the TPM.

SIM card cloning: Deployment on a SIM card also raises
the concern of card cloning [65], which could easily enable
impersonation attacks or theft of credentials. However, driven
by the interests of telecommunication companies, modern
SIM cards come with anti-cloning defenses that mitigate this
attack vector [42].

SIM swapping attack: In SIM swap attack, an attacker ob-
tains details about the victim and then tricks the telephony
company to port the victim’s phone number to a fraudulent
SIM card owned by the attacker, usually with the goal to re-
ceive all SMS including highly sensitive information, like
OTP for online banking. In our design, the TPM is not depen-
dent on the SIM telephony functionalities. simTPM works as
a local co-processor with desirable attributes. An attacker can
port the telephony services to a fraudulent SIM card, but not
the TPM state, as it is bound to the local SIM-card and would
require explicit migration policies to other (SIM)TPM.

542 28th USENIX Security Symposium USENIX Association

Side-channel attacks: To be compliant with the TPM 2.0
specification, the hardware has to implement cryptographic
functions that are resilient to timing-based side-channel at-
tacks. There exists a similar requirement for smart cards,
which are designed to be resistant against various types of
side-channel attacks. Thus, simTPM immediately benefits
from the security features of the underlying smart card.

However, a motivated attacker can easily move simTPM
to a controlled environment and mount different active side-
channel attacks, such as clock frequency, heat measurement,
probing [33], fault injection [35], or power analysis [40,47,48].
While similar attacks have been shown against ARM Trust-
Zone (e.g., [39, 58]) and discrete TPM chips [59], deploying
the TPM on a removable card might ease mounting those
attacks. Nevertheless, it should be noted that such sophisti-
cated hardware attacks are not only strenuous, exorbitant, and
inconsistent, but also beyond the protection that a consumer
grade security chip can offer.

5 Performance Evaluation

We evaluate the performance of simTPM on a HiKey960
board in comparison with a hardware TPM. We focus on the
most frequent commands executed by a TPM, i.e., key gen-
eration, sealing/unsealing of data, extending/reading a PCR,
generating random bytes, and computing a hash value of an
input. Beside simTPM we prepared two test setups equipped
with an Infineon SLB 9670 TPM chip. One of these two test
benches is a plug-able TPM on a Raspberry-Pi (piTPM) and
the other one is an embedded TPM on a standard Lenovo
laptop (embTPM). More details about the setups is given
in [16]. We have used a TSS implementation by IBM [2]
to communicate with the Infineon TPM. The results of our
benchmarks are summarized in Figure 4. All results come
from 50 measurements per command per device. We report
the 95% confidence intervals.

5.1 Test cases and results
Key generation: We measured the time to generate a 256-
bit ECC key and output the public part of the key. Our
implementation of simTPM creates the key on average
in 257± 8.03ms, comparable to the piTPM performance
(253±1.25ms), but slower than the embTPM (172±0.61ms).

Create hash: We measured the time it takes for the TPM
to hash 256 bits of input data with SHA-256 and output the
digest. piTPM (50± 0.76ms) and embTPM (21± 0.16ms)
outperform the simTPM (72±10.13ms) by a factor of 1.44
and 3.42, respectively.

Extending and reading a PCR: We evaluated the PCR ex-
tend and read commands. The former allows to extend the

PCR with a new value, while the latter command is used
to read the current value of a PCR. We use SHA-256 as
hash algorithm and a 128 bit string as input value. For PCR
extension, simTPM (24± 2.66ms) is on par with embTPM
(21± 0.11ms), however, exhibits a higher instability of the
performance. For reading PCRs, simTPM (15±0.15ms) is the
fastest implementation, followed by embTPM (21±0.13ms).
piTPM is the slowest implementation in both cases (41±
1.22ms and 57± 2.58ms) and exhibits an unstable perfor-
mance, too.

Sealing and unsealing data: The TPM seal command
takes a byte array, attaches a policy, encrypts it with a TPM
storage key, and returns a blob to the caller. When unseal-
ing, the TPM takes an encrypted blob, checks the policy, and
decrypts the blob if the policy is satisfied by the TPM state.
For our performance measurement we used 128 bits input
data, a 256-bit ECC sealing key with ECIES, and an empty
policy. The embTPM is the fatest solution for sealing and
unsealing (130±0.27ms and 89±0.46ms) and outperforms
our simTPM (588±18.55ms and 376±22.30ms) by a factor
of 4.52 and 4.22, respectively.

Random number generation: We use the TPM to gen-
erate a 64 bit random number. Our simTPM is the fastest
solution (15±0.14ms), followed by embTPM (21±0.17ms)
and then piTPM (63±1.63ms).

5.2 Discussion of performance
Our test results show that there is no clear winner among
our test systems. simTPM as well as embTPM excel for
some commands and we would argue that our simTPM pro-
totype shows a competitive performance. Unfortunately, the
implementation of Infineon SLB 9670 TPM is not publicly
available, thus commenting on the exact reasons for those
differences would result in speculations. If we would ven-
ture to speculate, potential reasons for the differences could
be the different communication buses. embTPM has a ded-
icated bus communication with the onboard processor and
a faster processor, while piTPM is running on a Raspberry
Pi and is connected over GPIO with lower bandwidth. On
the other hand, simTPM is connected through the USB bus.
Moreover, our simTPM implementation uses only the pub-
licly available APIs of the smart card OS, which provide only
an indirect access to hardware level commands. Hence, a
vendor-supported implementation with direct access to the
microprocessor would improve in efficiency.

The fTPM is unfortunately not available, precluding a di-
rect comparison in our test suite; however, our observations
for the embTPM speed are comparable to those reported by
Raj et al. [54], although it is unclear which hardware TPM
they evaluated. An fTPM, unsurprisingly, outperforms any
other tested implementation here—e.g., slowest fTPM in [54]

USENIX Association 28th USENIX Security Symposium 543

simTPM embTPM piTPM

200

250

300

350

400

Ti
m

e(
m

s)

ECC KeyGen (256bit, NISTP256)

simTPM embTPM piTPM

50

100

150

200

250

300

Hash (256 bit with SHA-256)

simTPM embTPM piTPM

20

30

40

50

PCR Extend (SHA-256, 128 bit data)

simTPM embTPM piTPM

20

30

40

50

60

70

PCR Read

simTPM embTPM piTPM
100

200

300

400

500

600

700

800

900

Ti
m

e(
m

s)

TPM Seal (128 bit data, 256 bit ECC key)

simTPM embTPM piTPM

100

200

300

400

500

600

700

800
TPM Unseal (128 bit data)

simTPM embTPM piTPM

20

30

40

50

60

70

80
RNG (64 bit number)

Figure 4: Performance comparison (in ms) of different TPM commands for simTPM and an Infineon SLB 9670 TPM2.0 on a
Raspberry-Pi and Lenovo laptop.

was between 2.4–15.12 times faster than the fastest hard-
ware TPM—since it is executed on the ARM Cortex main
application processor, whereas discrete TPMs use slower mi-
croprocessors, as does our simTPM.

6 Use Cases

We discuss briefly how simTPM fits into the trusted com-
puting landscape and explain scenarios that are of particular
interest when simTPM and fTPM co-exist.

6.1 Multiple stakeholder model
The TPM specifications [64] as well as the obsolete Mobile
Trusted Module (MTM) specifications [61] acknowledged
the fact that a trusted platform might have multiple stake-
holders. In particular, mobile platforms are not considered
under the full management of the user, but critical mobile net-
work management is the domain of the mobile carrier/network
operator and the device vendor has high interest in keeping
highest privileged operations (e.g., TEE and OS) under their
control. The old and new TCG specifications define recom-
mended capabilities and various implementation alternatives
to allow multiple stakeholders to safely coexist. For instance,
the MTM specification clearly differentiates between remote
stakeholders and local stakeholders, each with their own TPM
under their control. This concept is reflected in the recom-

mended capabilities for a mobile TPM2.0 [63], which advise
the isolation between stakeholders and their resources and
policy-based authorization of stakeholder sensitive data. To
realize this multiple stakeholder model, the reference archi-
tecture outlines different implementation alternatives. For
instance, multiple TPMs within a protected environment like
TEE, or virtual TPMs supported by a hypervisor [9], where
stakeholders are isolated from each other based on the com-
partmentalization provided by the TEE’s trusted OS or the
hypervisor, respectively.

Our particular setting also fits well into the defined mul-
tiple stakeholder model: two distinct TPMs co-exist, each
with a distinct affinity to a different stakeholder. The fTPM is
by design designated to the platform stakeholder (i.e., device
manufacturer) and it is bound to the device through the device-
specific credentials within the TEE (e.g., eFuses) from which
fTPM derives its endorsement key and to which it anchors
its key/storage hierarchies. For instance, the fTPM described
in [54] is designated entirely to the platform and its services.
In contrast, the simTPM is designated to the end-user. This
intuition is based on the observation that users use the SIM
to authenticate themselves to the mobile network and rather
stick to one SIM (i.e., phone number) while changing more
frequently the device. Moreover, users have to explicitly au-
thenticate themselves to the SIM card, i.e., their mobile carrier
issued PIN. In this setting we are going beyond the initial
proposals by the TCG reference architecture by actually as-

544 28th USENIX Security Symposium USENIX Association

Table 2: Migrating user data when switching SIM card or
device

Data bound to device Data not bound to
device

New SIM card Key duplication Key duplication
New device TPM_Authorize key

policy
—

signing two distinct stakeholders to two physically separated
TPM instances, SIM card versus TEE.

6.2 Switching SIM card or device
Since the SIM card is removable and exchangeable, two sce-
narios have to be considered: the user switches devices but
keeps the SIM card, or the user keeps the device and switches
to a new SIM card. How this affects migration of the user
data protected with the simTPM is summarized in Table 2
and explained in the following.

Switching device: When switching the mobile device and
migrating the user data to a new device, the complexity of
the operation is dependent on whether the user bound any
data to the device. For instance, during secure boot, BL1 has
access to device-specific information like the board_id (or po-
tentially values derived from the device-specific vendor key)
that uniquely identifies the current platform. This board_id
(like derived values) can be included in the measurements
collected during secure boot (see Section 4.3) and allow the
simTPM to bind data or keys to this particular platform.2 If
the user did not bind any data/keys to the platform, no further
action is required beyond moving the SIM card to the new
phone. The entire simTPM state including the key hierarchy
is inherently migrated to the new device and can be used to
decrypt the user data—i.e., a form of portable sealed storage.
If the data is bound to the board_id, a new feature of TPM2.0
called TPM_Authorize has to be used to avoid the problem of
"brittle policies." Without TPM_Authorize, the user data would
be bound to one particular board_id and could never be de-
crypted on another device. With TPM_Authorize different possi-
ble board_id values can be signed off as valid for a successful
verification of the platform state and, hence, decryption of
data migrated with the SIM card. The valid board_id values
can be signed off by the user to endorse a new phone to which
data should be migrated, or by another entity, like the mobile
carrier or the employer in BYOD settings.

Switching SIM card: If the user switches the SIM card
and hence moves to another simTPM, all user data has to be
migrated to the new SIM card, i.e., the necessary simTPM

2Assuming a bond between the RTM and simTPM was established.

keys have to be moved to the new simTPM. Independent of
whether the user data is bound to the device or not, switching
the SIM card requires the simTPM keys used for securing the
data to be duplicated to the new simTPM. This is an example
scenario for TPM2.0 key duplication to migrate keys and
associated data to another TPM and is supported by simTPM.

The bottom line of those two scenarios is that a user that wants
to keep the option to migrate data secured with the simTPM
to both new SIM cards and new devices should use duplicable
keys with TPM_Authorize.

7 Discussion

The fTPM [54] is the incumbent deployment for a TPM on
mobile devices and was part of the Windows Phone platform.
However, it was designed primarily for vendor services and
did not specifically target the end-user. In this work, we add to
the landscape of mobile trusted computing and advocate using
the dormant hardware capabilities of SIM cards to provide
(additional) TPM support on mobile devices. Our system-
atization of related works shows that a simTPM can take a
niche among the existing works and, in particular, inherently
avoids problems of TEE-based deployments (e.g., protected
state or secure clock) that currently require compromises and
modifications to the TPM specification (e.g., "dark period"
or cooperative checkpointing of fTPM) or that make addi-
tional hardware requirements (e.g., replay-protected memory
blocks). On the other hand, a movable TPM raises the chal-
lenge of how to bind the TPM and the platform RTM. In
this work, we proposed using the unique features of mobile
devices—secure boot and TEE with device-specific, certified
keys—to address this challenge. However, we find that this
problem also affects prior solutions, like a vTPM based on
a PCI-attached secure co-processor, and our solution might
give insights into how to establish the TPM-RTM binding in
those prior works.

Our simTPM implementation is based on a physical SIM
card, thus it is currently not suitable for phones using eSIM
(e.g., Apple iPhone). However, eSIM solutions are supported
by separate hardware modules (such as JEDEC SON-8) and
it might be worthwhile to investigate how those modules can
be extended to implement a full TCG compliant TPM2.0.

Recently, Google introduced their Titan chip [67] as part
of their Nexus 3 phones, which shows the need for hardware-
backed security features in addition to TEE-based implemen-
tations on mobile end-user devices. Similar to the simTPM,
Titan chip also provides hardware-backed security for sys-
tem operations like verified booting as well as a hardware-
implemented keystore for apps and users. But Titan is ex-
clusive for Google devices, whereas our simTPM is portable
between mobile devices and provides TPM2.0 compliant fea-
tures. Since implementation details are yet unknown, we ex-
cluded the Titan chip from our systematization in Section 3.

USENIX Association 28th USENIX Security Symposium 545

8 Conclusion

In this paper we proposed simTPM, a hardware-based TPM
implementation for mobile devices using the SIM card. Perfor-
mance evaluation of our prototype shows that our implementa-
tion is comparable with an existing discrete TPM chip. Thus,
we think simTPM is a practical solution to add user-centric
trusted computing technology to mobile devices without the
need to add hardware. A particular challenge of a movable
TPM is the binding between TPM and the device RTM, which
we addressed through a TEE-proxy or a distance bounding
protocol. Future work includes a more detailed and formal
write-up of the custom DAA scheme we used in our proto-
type, since it is particularly fitting for implementation on a
smart card. Also future implementations of simTPM in indus-
trial IoT or automotive settings for hardware based attestation
could be worthwhile to pursue.

9 Acknowledgment

We are grateful to N. Asokan for his insightful suggestions.
We are also thankful to the anonymous reviewers for their
valuable comments.

This work is supported by the German Federal Min-
istry of Education and Research(BMBF) through funding
for the Center for IT-Security, Privacy and Accountability
(CISPA)(AutSec/FKZ: 16KIS0753) and the CISPA-Stanford
Center for Cybersecurity (FKZ: 16KIS0762).

References

[1] Hikey960 android development board. https://
www.96boards.org/product/hikey960/. Accessed:
02.08.2018.

[2] IBM’s TPM 2.0 TSS. https://sourceforge.net/
projects/ibmtpm20tss/. Accessed: 06.08.2018.

[3] Trustzone downgrade attack opens android de-
vices to old vulnerabilities. http://bits-
please.blogspot.com/2015/03/getting-
arbitrary-code-execution-in.html, March
2015. Accessed: 02.08.2018.

[4] Fritz Alder, N. Asokan, Arseny Kurnikov, Andrew
Paverd, and Michael Steiner. S-FaaS: Trustworthy and
Accountable Function-as-a-Service using Intel SGX.
CoRR, abs/1810.06080, 2018.

[5] Arm Limited. Trusted board boot design guide.
https://github.com/ARM-software/arm-
trusted-firmware/blob/master/docs/trusted-
board-boot.rst, March 2018. Accessed: 04.08.2018.

[6] N. Asokan. On secure resource accounting for out-
sourced computation, 2018. Invited keynote at 3rd Work-
shop on System Software for Trusted Execution (Sys-
TEX 2018).

[7] Samy Bengio, Gilles Brassard, Yvo G Desmedt, Claude
Goutier, and Jean-Jacques Quisquater. Secure implemen-
tation of identification systems. Journal of Cryptology,
4(3):175–183, 1991.

[8] Gal Beniamini. Getting arbitrary code execu-
tion in trustzone’s kernel from any context.
https://googleprojectzero.blogspot.com/
2017/07/trust-issues-exploiting-trustzone-
tees.html, July 2017. Accessed: 02.08.2018.

[9] Stefan Berger, Ramón Cáceres, Kenneth A. Goldman,
Ronald Perez, Reiner Sailer, and Leendert van Doorn.
vTPM: Virtualizing the Trusted Platform Module. In
Proc. 15th USENIX Security Symposium (SEC ’06).
USENIX Association, 2006.

[10] Thomas Beth and Yvo Desmedt. Identification to-
kens—or: Solving the chess grandmaster problem. In
Conference on the Theory and Application of Cryptog-
raphy, pages 169–176. Springer, 1990.

[11] Dan Boneh and Xavier Boyen. Short signatures without
random oracles. In Advances in Cryptology - EURO-
CRYPT 2004: International Conference on the Theory
and Applications of Cryptographic Techniques. Springer,
2004.

[12] Jeremy Boone. Tpm genie: Attacking the hardware root
of trust for less than $50, 2018. Accessed: 02/13/2019.

[13] Stefan Brands and David Chaum. Distance-bounding
protocols. In Workshop on the Theory and Application
of Cryptographic Techniques on Advances in Cryptology
(EUROCRYPT ’93). Springer, 1994.

[14] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct
anonymous attestation. In Proc. 11th ACM Conference
on Computer and Communication Security (CCS ’04).
ACM, 2004.

[15] Broadchip. BCT4303 Dual Sim card controller.
www.chinesechip.com/files/2015-03/912ed043-
de27-4e8a-95f7-c009ad22dd92.pdf. Last accessed:
22/01/19.

[16] Dhiman Chakraborty, Lucjan Hanzlik, and Sven Bugiel.
simTPM: User-centric tpm for mobile devices (technical
report). CoRR, abs/1905.08164, 2019.

[17] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter,
and Yinqian Zhang. Detecting privileged side-channel
attacks in shielded execution with déjà vu. In Proc.

546 28th USENIX Security Symposium USENIX Association

https://www.96boards.org/product/hikey960/
https://www.96boards.org/product/hikey960/
https://sourceforge.net/projects/ibmtpm20tss/
https://sourceforge.net/projects/ibmtpm20tss/
http://bits-please.blogspot.com/2015/03/getting-arbitrary-code-execution-in.html
http://bits-please.blogspot.com/2015/03/getting-arbitrary-code-execution-in.html
http://bits-please.blogspot.com/2015/03/getting-arbitrary-code-execution-in.html
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/trusted-board-boot.rst
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/trusted-board-boot.rst
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/trusted-board-boot.rst
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
www.chinesechip.com/files/2015-03/912ed043-de27-4e8a-95f7-c009ad22dd92.pdf
www.chinesechip.com/files/2015-03/912ed043-de27-4e8a-95f7-c009ad22dd92.pdf

12th ACM Symposium on Information, Computer and
Communication Security (ASIACCS ’17). ACM, 2017.

[18] Catalin Cimpanu. Trust Issues: Exploiting TrustZone
TEEs. https://www.bleepingcomputer.com/news/
security/trustzone-downgrade-attack-opens-
android-devices-to-old-vulnerabilities/,
September 2017. Accessed: 02.08.2018.

[19] Victor Costan and Srinivas Devadas. Intel sgx ex-
plained. IACR Cryptology ePrint Archive, 2016(086):1–
118, 2016.

[20] Cas Cremers, Kasper B Rasmussen, Benedikt Schmidt,
and Srdjan Capkun. Distance hijacking attacks on dis-
tance bounding protocols. In Proc. 33rd IEEE Sympo-
sium on Security and Privacy (SP ’12). IEEE Computer
Society, 2012.

[21] Kurt Dietrich and Johannes Winter. Towards customiz-
able, application specific mobile trusted modules. In
Proc. 5th ACM workshop on Scalable trusted computing
(STC ’10). ACM, 2010.

[22] Saar Drimer, Steven J Murdoch, et al. Keep your ene-
mies close: Distance bounding against smartcard relay
attacks. In Proc. 16th USENIX Security Symposium
(SEC ’07). USENIX Association, 2007.

[23] J. Ekberg, K. Kostiainen, and N. Asokan. The untapped
potential of trusted execution environments on mobile
devices. IEEE Security Privacy, 12(4):29–37, July 2014.

[24] Jan-Erik Ekberg. Securing Software Architectures for
Trusted Processor Environments. PhD thesis, Aalto Uni-
versity, Helsinki, Finland, 2013.

[25] Jan-Erik Ekberg and Sven Bugiel. Trust in a small pack-
age: Minimized MRTM software implementation for
mobile secure environments. In Proc. 4th ACM work-
shop on Scalable trusted computing (STC ’09). ACM,
2009.

[26] Paul England and Talha Tariq. Towards a programmable
TPM. In Proc. 2nd International Conference on Trust
and Trustworthy Computing (TRUST ’09). Springer,
2009.

[27] ETSI. TS 151 011 V4.15.0 (2005-06) Technical Spec-
ification Digital cellular telecommunications system
(Phase 2+); Specification of the Subscriber Identity
Module - Mobile Equipment (SIM-ME) interface
(3GPP TS 51.011 version 4.15.0 Release 4). https://
www.etsi.org/deliver/etsi_ts/151000_151099/
151011/04.15.00_60/ts_151011v041500p.pdf. Last
accessed: 22/01/19.

[28] Amos Fiat and Adi Shamir. How to prove yourself:
Practical solutions to identification and signature prob-
lems. In Proc. on Advances in cryptology (CRYPTO

’86). Springer, 1987.

[29] Seunghun Han, Wook Shin, Jun-Hyeok Park, and Hy-
oungChun Kim. A bad dream: Subverting trusted plat-
form module while you are sleeping. In Proc. 27th
USENIX Security Symposium (SEC’ 18). USENIX As-
sociation, 2018.

[30] Intel. Software guard extensions sdk:
sgx_create_monotonic_counter. https:
//software.intel.com/en-us/sgx-sdk-dev-
reference-sgx-create-monotonic-counter, May
2018.

[31] Intel Developer Zone. Platform Service Enclave and ME
for Intel Xeon Server. https://software.intel.com/
en-us/forums/intel-software-guard-
extensions-intel-sgx/topic/806502. Last
accessed: 20/05/19.

[32] Jin Soo Jang, Sunjune Kong, Minsu Kim, Daegyeong
Kim, and Brent Byunghoon Kang. SeCReT: Secure
channel between rich execution environment and trusted
execution environment. In Proc. 22nd Annual Network
and Distributed System Security Symposium (NDSS ’15).
The Internet Society, 2015.

[33] Timo Kasper, David Oswald, and Christof Paar. Infor-
mation security applications. chapter EM Side-Channel
Attacks on Commercial Contactless Smartcards Using
Low-Cost Equipment, pages 79–93. Springer, 2009.

[34] Bernhard Kauer. Oslo: Improving the security of trusted
computing. In Proc. 16th USENIX Security Symposium
(SEC ’07). USENIX Association, 2007.

[35] Oliver Kömmerling and Markus G. Kuhn. Design prin-
ciples for tamper-resistant smartcard processors. In
Proc. 1st Workshop on Smartcard Technology (Smart-
card 1999), 1999.

[36] Nate Lawson. Tpm hardware attacks. https:
//rdist.root.org/2007/07/16/tpm-hardware-
attacks/, July 2007. Accessed: 06.08.2018.

[37] Hongliang Liang and Mingyu Li. Bring the Miss-
ing Jigsaw Back: TrustedClock for SGX Enclaves. In
Proc. 11th European Workshop on Systems Security (Eu-
roSec’18). ACM, 2018.

[38] Linear Technology. LTC4558 - Dual SIM/S-
mart Card Power Supply and Interface.
https://www.analog.com/media/en/technical-
documentation/data-sheets/4558fa.pdf. Last
accessed: 22/01/19.

USENIX Association 28th USENIX Security Symposium 547

https://www.bleepingcomputer.com/news/security/trustzone-downgrade-attack-opens-android-devices-to-old-vulnerabilities/
https://www.bleepingcomputer.com/news/security/trustzone-downgrade-attack-opens-android-devices-to-old-vulnerabilities/
https://www.bleepingcomputer.com/news/security/trustzone-downgrade-attack-opens-android-devices-to-old-vulnerabilities/
https://www.etsi.org/deliver/etsi_ts/151000_151099/151011/04.15.00_60/ts_151011v041500p.pdf
https://www.etsi.org/deliver/etsi_ts/151000_151099/151011/04.15.00_60/ts_151011v041500p.pdf
https://www.etsi.org/deliver/etsi_ts/151000_151099/151011/04.15.00_60/ts_151011v041500p.pdf
https://software.intel.com/en-us/sgx-sdk-dev-reference-sgx-create-monotonic-counter
https://software.intel.com/en-us/sgx-sdk-dev-reference-sgx-create-monotonic-counter
https://software.intel.com/en-us/sgx-sdk-dev-reference-sgx-create-monotonic-counter
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/806502
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/806502
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/806502
https://rdist.root.org/2007/07/16/tpm-hardware-attacks/
https://rdist.root.org/2007/07/16/tpm-hardware-attacks/
https://rdist.root.org/2007/07/16/tpm-hardware-attacks/
https://www.analog.com/media/en/technical-documentation/data-sheets/4558fa.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/4558fa.pdf

[39] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémen-
tine Maurice, and Stefan Mangard. Armageddon: Cache
attacks on mobile devices. In Proc. 25th USENIX Secu-
rity Symposium (SEC’ 16). USENIX Association, 2016.

[40] Junrong Liu, Yu Yu, François-Xavier Standaert, Zheng
Guo, Dawu Gu, Wei Sun, Yijie Ge, and Xinjun Xie.
Small tweaks do not help: Differential power analysis of
milenage implementations in 3g/4g usim cards. In Proc.
20th European Symposium on Research in Computer
Security (ESORICS 2015). Springer, 2015.

[41] Aravind Machiry, Eric Gustafson, Chad Spensky,
Christopher Salls, Nick Stephens, Ruoyu Wang, Antonio
Bianchi, Yung Ryn Choe, Christopher Kruegel, and Gio-
vanni Vigna. Boomerang: Exploiting the semantic gap
in trusted execution environments. In Proc. 24th Annual
Network and Distributed System Security Symposium
(NDSS ’17). The Internet Society, 2017.

[42] MAOSCO Limited. Multos standard c-api. https://
www.multos.com/uploads/CAPI.pdf, 2016. Accessed:
02.08.2018.

[43] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra
Dhar, David Sommer, Arthur Gervais, Ari Juels, and
Srdjan Capkun. ROTE: Rollback protection for trusted
execution. In Proc. 26th USENIX Security Symposium
(SEC’ 17). USENIX Association, 2017.

[44] Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and
Rolando Trujillo-Rasua. Distance-bounding protocols:
Verification without time and location. In Proc. 39th
IEEE Symposium on Security and Privacy (SP ’18).
IEEE Computer Society, 2018.

[45] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig,
Michael K. Reiter, and Hiroshi Isozaki. Flicker: An
execution infrastructure for tcb minimization. In Proc.
3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems (Eurosys ’08). ACM, 2008.

[46] Brian McGillion, Tanel Dettenborn, Thomas Nyman,
and N. Asokan. Open-tee – an open virtual trusted
execution environment. In Proc. IEEE Trustcom/Big-
DataSE/ISPA - Volume 01 (TRUSTCOM ’15). IEEE
Computer Society, 2015.

[47] Thomas S. Messerges and Ezzy A. Dabbish. Investi-
gations of power analysis attacks on smartcards. In
Proc. 1st Workshop on Smartcard Technology (Smart-
card 1999), 1999.

[48] Thomas S. Messerges, Ezzy A. Dabbish, and Robert H.
Sloan. Power analysis attacks of modular exponentiation
in smartcards. In Proc. First International Workshop
on Cryptographic Hardware and Embedded Systems
(CHES’99), 1999.

[49] Microsoft. Secure the windows 10 boot process.
https://docs.microsoft.com/en-us/windows/
security/information-protection/secure-the-
windows-10-boot-process, October 2017. Last
accessed: 08/06/18.

[50] Wojciech Mostowski and Erik Poll. Malicious code on
java card smartcards: Attacks and countermeasures. In
Proc. 8th IFIP WG 8.8/11.2 International Conference
on Smart Card Research and Advanced Applications
(CARDIS ’08), 2008.

[51] Zhenyu Ning and Fengwei Zhang. Understanding the
security of arm debugging features. In Proc. 40th IEEE
Symposium on Security and Privacy (SP ’19). IEEE
Computer Society, 2019.

[52] Karsten Nohl. Rooting sim cards. https:
//media.blackhat.com/us-13/us-13-Nohl-
Rooting-SIM-cards-Slides.pdf, 2013. Black-
hat USA 2013.

[53] Bryan Parno. Bootstrapping trust in a "trusted" plat-
form. In Proc. 3rd Conference on Hot Topics in Security
(HOTSEC’08). USENIX Association, 2008.

[54] Himanshu Raj, Stefan Saroiu, Alec Wolman, Ronald
Aigner, Jeremiah Cox, Paul England, Chris Fenner,
Kinshuman Kinshumann, Jork Löser, Dennis Mattoon,
Magnus Nyström, David Robinson, Rob Spiger, Stefan
Thom, and David Wooten. fTPM: A Software-Only
Implementation of a TPM Chip. In Proc. 25th USENIX
Security Symposium (SEC’ 16). USENIX Association,
2016.

[55] Nilo Redini, Aravind Machiry, Dipanjan Das, Yan-
ick Fratantonio, Antonio Bianchi, Eric Gustafson, Yan
Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-
gna. Bootstomp: on the security of bootloaders in mo-
bile devices. In Proc. 26th USENIX Security Symposium
(SEC’ 17). USENIX Association, 2017.

[56] Dan Rosenberg. Reflections on trusting trust-
zone. https://www.blackhat.com/docs/us-14/
materials/us-14-Rosenberg-Reflections-
on-Trusting-TrustZone.pdf, 2014. Accessed:
02.08.2018.

[57] Di Shen. Exploiting trustzone on android. https:
//www.blackhat.com/docs/us-15/materials/
us-15-Shen-Attacking-Your-Trusted-Core-
Exploiting-Trustzone-On-Android-wp.pdf, 2015.
Accessed: 02.08.2018.

[58] Adrian Tang, Simha Sethumadhavan, and Salvatore
Stolfo. CLKSCREW: Exposing the perils of security-
oblivious energy management. In Proc. 26th USENIX

548 28th USENIX Security Symposium USENIX Association

https://www.multos.com/uploads/CAPI.pdf
https://www.multos.com/uploads/CAPI.pdf
https://docs.microsoft.com/en-us/windows/security/information-protection/secure-the-windows-10-boot-process
https://docs.microsoft.com/en-us/windows/security/information-protection/secure-the-windows-10-boot-process
https://docs.microsoft.com/en-us/windows/security/information-protection/secure-the-windows-10-boot-process
https://media.blackhat.com/us-13/us-13-Nohl-Rooting-SIM-cards-Slides.pdf
https://media.blackhat.com/us-13/us-13-Nohl-Rooting-SIM-cards-Slides.pdf
https://media.blackhat.com/us-13/us-13-Nohl-Rooting-SIM-cards-Slides.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-on-Trusting-TrustZone.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-on-Trusting-TrustZone.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-on-Trusting-TrustZone.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf

Security Symposium (SEC’ 17). USENIX Association,
2017.

[59] Christopher Tarnovsky. Deconstructing a ’secure’ pro-
cessor, 2010. BlackHat DC.

[60] The Chromium Projects. TPM Usage.
https://www.chromium.org/developers/design-
documents/tpm-usage. Last accessed: 08/06/18.

[61] Trusted Computing Group. Mobile phone
work group mobile trusted module specification.
https://trustedcomputinggroup.org/resource/
mobile-phone-work-group-mobile-trusted-
module-specification/, 2010.

[62] Trusted Computing Group. Tpm main part 1 design
principles. https://trustedcomputinggroup.org/
wp-content/uploads/TPM-Main-Part-1-Design-
Principles_v1.2_rev116_01032011.pdf, 2011.

[63] Trusted Computing Group. Tpm 2.0 mobile
reference architecture specification. https:
//trustedcomputinggroup.org/resource/
tpm-2-0-mobile-reference-architecture-
specification/, 2014.

[64] Trusted Computing Group. Tpm 2.0 library spec-
ification. https://trustedcomputinggroup.org/
resource/tpm-library-specification/, 2016.

[65] David Wagner. Gsm cloning. http:
//www.isaac.cs.berkeley.edu/isaac/gsm.html.
Last accessed: 02/13/19.

[66] Johannes Winter. Trusted computing building blocks for
embedded linux-based arm trustzone platforms. In Proc.
3rd ACM workshop on Scalable trusted computing (STC
’08). ACM, 2008.

[67] Xiaowen Xin. Titan M makes Pixel 3 our most secure
phone yet. https://blog.google/products/pixel/
titan-m-makes-pixel-3-our-most-secure-
phone-yet/, October 2018. Accessed: 13.11.2018.

A Binding RTM with distance bounding

In Section 4.3 we discussed using the TEE as proxy in order
to assert the authenticity of the RTM and mitigate the risks of
a relay attack. Another way to bind the simTPM with its RTM
is by using a distance bounding (DB) protocol [7, 10, 13].
Distance bounding is widely used for card-based payment
systems. When a credit card is punched to the card reader,
the reader runs a distance bounding protocol to check the
proximity of the card to prevent a possible relay attack. We
are facing the opposite scenario, in which the card is trying to

RTM (BL1) simTPM

init_extend(pk)
IF pk NOT certified:
FAIL, untrusted certificate

nonce← random()
T1 = now()

nonce

m= signsk(nonce)
MBL2 = H(BL2) PCR_SIG_Extend(m, MBL2)

T2 = now()
IF (T2−T1)< δ:
IF veri f ypk(m):
Extend PCR, etc.

ELSE:
ERROR, not local RTM

OK|FAIL

Figure 5: Prototypical distance bounding protocol for binding
local RTM (BL1) and simTPM

assert the proximity of the device where the communication
partner, here the RTM, resides.

Prototypical distance bounding: We assume the device ven-
dors equipped the simTPM with certificates for their device-
specific keys, which allows a verifier to distinguish trusted
code with access to such secrets (e.g., early bootstages, like
BL1 or the TEE) from untrusted code, like the host OS or
apps. To assert the proximity of the RTM, only the very first
measurement provided to the simTPM, i.e., the measurement
by BL1 (RTM) of BL2, has to be checked for proximity. After
that, the chain of trust of an authenticated boot will transi-
tively extend this trust into the proximity of the RTM. Figure 5
illustrates a prototypical protocol for our scenario. We con-
sider a two-step PCR extension by the RTM for verifying
the proximity: (1) the RTM provides the public key pk of its
device-specific key (or a key derived from it) to the TPM,
which then can verify the authenticity of the RTM using the
vendor-supplied certificate; (2) as in other distance bounding
protocols, the simTPM (verifier) challenges the RTM (prover)
with a nonce to which the RTM replies with the signed nonce
value (using the authenticated private key) as well as the PCR
extension arguments. If this reply of the signed nonce is re-
ceived within a time threshold T and the signature verifies,
simTPM assumes the RTM to be local and extends the PCR
with the supplied measurement value MBL2; if either condition
fails, the simTPM aborts. For robustness of the protocol, the
challenge-response can be repeated N times to decrease the
chances of a legitimate, local RTM failing the threshold.

Prototypical setup: In general, calculating the threshold for
distance bounding is difficult, because various factors can in-
fluence the response time. For instance, jitters of the network
over which the verifier and prover communicate, interrupts
of the prover’s computation, cache and memory delays, etc.
might introduce a high uncertainty of the expectable response
time. At first glance, our particular scenario seems very favor-
able for a distance bounding protocol, since the prover (RTM)
is the BL1 that has exclusively control of the CPU without
interrupts or interference of an OS; and the RTM is connected

USENIX Association 28th USENIX Security Symposium 549

https://www.chromium.org/developers/design-documents/tpm-usage
https://www.chromium.org/developers/design-documents/tpm-usage
https://trustedcomputinggroup.org/resource/mobile-phone-work-group-mobile-trusted-module-specification/
https://trustedcomputinggroup.org/resource/mobile-phone-work-group-mobile-trusted-module-specification/
https://trustedcomputinggroup.org/resource/mobile-phone-work-group-mobile-trusted-module-specification/
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://trustedcomputinggroup.org/resource/tpm-2-0-mobile-reference-architecture-specification/
https://trustedcomputinggroup.org/resource/tpm-2-0-mobile-reference-architecture-specification/
https://trustedcomputinggroup.org/resource/tpm-2-0-mobile-reference-architecture-specification/
https://trustedcomputinggroup.org/resource/tpm-2-0-mobile-reference-architecture-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
http://www.isaac.cs.berkeley.edu/isaac/gsm.html
http://www.isaac.cs.berkeley.edu/isaac/gsm.html
https://blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/
https://blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/
https://blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/

550 600 650 700 750 800 850
Response time (μs)

0.0

0.2

0.4

0.6

0.8

1.0

721

0.83

CFD of RTM response time

Figure 6: Cumulative frequency distribution of the RTM re-
sponse time in our measurements (N = 30)

to the SIM card over a 480 mbps USB 2.0 bus, in modern de-
vices even via a 5 gbps USB 3.0 bus, with no parallel transfers,
providing favorable circumstances for a challenge-response
protocol and small error-margin in which an attacker has to
fall for a successful, undetected relay attack [20, 22, 44].
The SIM card is connected to the phone through a reader,
which is directly connected to the baseband processor. The
reader powers the smart card and provides it with the base-
band’s clock. The clock duty cycle shall be between 40% and
60% of the period during stable operation [27]. Modern smart
cards support clock stop to allow preservation of power, which
an attacker could use to tamper with the verifier’s perception
of time. However, this feature can be disabled by initializing
the card as clock stop not allowed by setting the VERIFY
CHV command to 0. Disabling this feature will increase the
phone’s battery consumption, but not in a significant amount,
since the maximum current consumption of an idle SIM card
should not exceed 200µA.
The SIM card and the reader connection are in a contact
connection and generally interfaces within 20ns [15, 38]. The
reader connects to the baseband processor through Non-Level-
Shifted bidirectional I/O. The connection in our test setup
goes through an USB 2.0 bus with 480 mbps. Communi-
cation between SIM card and the CPU via this bus ranges
between 35ns to 72ns.

Measurements and threshold: We conducted measurements
on our test device to evaluate the feasibility of distance bound-
ing to bind the RTM and simTPM. We measured 30 times3

the speed of the prover (RTM) for calculating the response
to the challenge (64 bits nonce) using ECC with the NIST
P-256 curve. In our test, the responses took 563–894µs, and
the average response time was 669.759±49.804µs for a con-
fidence level of 99%. Figure 6 shows the CFD of the RTM
response time, where 83% of all responses were ≤ 721µs and
93% of all responses were≤ 812µs. The success chance of the
distance bounding protocol PDB for a single round is the cu-
mulative probability sampled over the frequency distribution
in Figure 6. If we were to set the threshold T for successful
distance bounding to 721 µs:

3A single measurement requires ≈5min, since only a single measurement
per power-cycle is possible on our test device.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
f

0.99

1.00
n

10
20
30

40
50
100

Figure 7: Success probability of local RTM for distance
bounding depending on f and n for T = 721µs (p = 0.83)

PDB = Pr[x ≤ 721] = ∑
721
i=563 Pr[x = i] ≈ 0.83

where 563 µs is the lowest latency in our dataset. Going below
721 µs reduces the probability of a successful bounding proto-
col for legitimate devices, i.e., to 0.52 for a threshold of 649µs.
To increase the chances for local RTM to pass the distance
bounding check, a successful verification usually requires that
the response is below T for a sufficient fraction f of the re-
sponses, means at-least f ×n out of n responses should arrive
within T . When modeling the challenge-response game as bi-
nomial distribution and requiring f ×n responses within 721
µs out of n responses (i.e., success probability PDB = 0.83),
the cumulative probability distribution is:

Pr[x≥ f n] = ∑
n
i= f n

(
n
i

)
(p)i(1− p)n−i where p ∈ {PDB}

Figure 7 shows the success probabilities for different choices
of f and n. An optimal choice minimizes n (lower overall
runtime overhead for the protocol) while maximizing Pr[x≥
f n] and minimizing the chance of the attacker to successfully
relay. We have observed from our dataset that setting f =
0.47 for n = 30 (i.e., 14 out of 30 runs) offers a success rate
Pr[x≥ f n]=0.99999724049 for local RTM.

Attacker chances: The APDU package for the challenge is
112 bits and for the response 304 bits, which are transferred
virtually instantly between verifier and prover (≤ 1µs). Thus,
the response time measured in Figure 6 consists virtually only
of the processing time of the RTM, which an attacker cannot
speed up (see Figure 3). As a consequence, if an attacker
requires more than 721−563 = 158µs to relay the challenge
and the response, the relay attack has no chance of winning,
since the RTM in our tests required at least 563µs to compute
the response. Assuming a packet size of 55 bytes (minimal
Ethernet frame size, IP header, and UDP package with 1 byte
payload for the nonce/response), the attacker needs at least a
relay bandwith of≈ 5.87 mbps to have any chance of winning,
which is a very reasonable assumption. Hence, attacks against
this distance bounding are feasible. From our measurements
it is hard to concretely model the attacker, however, the attack
chance is already 0.1% when relaying via Ethernet and an IP
network (55 bytes datasize) with a bandwith of ≈ 49 mbps,
or when relaying only the APDU data of 14 bytes (e.g., via a
custom build connection) with ≈ 10 mbps.

550 28th USENIX Security Symposium USENIX Association

	Introduction
	Background
	ARM Trusted Firmware (ATF)
	Trusted Platform Module (TPM)
	Subscriber Identification Module (SIM)

	Requirement Analysis & Systematization of Existing Solutions
	Objectives
	Security of TPM
	Applicability
	Deploy-ability

	fTPM
	vTPM
	Intel SGX
	Java-card based MTM

	System Design and Security Analysis
	SIM TPM
	API Limitations of Smart Cards
	Smart Cards and TPM Command Parsing
	TPM Commands
	PCR and NV storage
	Trustworthy endorsement & Clock
	Movability & Stakeholders

	ATF boot-loader changes
	Bootstrapping trust for movable simTPM
	Security analysis

	Performance Evaluation
	Test cases and results
	Discussion of performance

	Use Cases
	Multiple stakeholder model
	Switching SIM card or device

	Discussion
	Conclusion
	Acknowledgment
	Binding RTM with distance bounding

