
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

The Secret Sharer: Evaluating and Testing
Unintended Memorization in Neural Networks

Nicholas Carlini, Google Brain; Chang Liu, University of California, Berkeley;
Úlfar Erlingsson, Google Brain; Jernej Kos, National University of Singapore;

Dawn Song, University of California, Berkeley

https://www.usenix.org/conference/usenixsecurity19/presentation/carlini

The Secret Sharer: Evaluating and Testing
Unintended Memorization in Neural Networks

Nicholas Carlini1,2 Chang Liu2 Úlfar Erlingsson1 Jernej Kos3 Dawn Song2

1Google Brain 2University of California, Berkeley 3National University of Singapore

Abstract
This paper describes a testing methodology for quantita-
tively assessing the risk that rare or unique training-data
sequences are unintentionally memorized by generative se-
quence models—a common type of machine-learning model.
Because such models are sometimes trained on sensitive data
(e.g., the text of users’ private messages), this methodology
can benefit privacy by allowing deep-learning practitioners to
select means of training that minimize such memorization.

In experiments, we show that unintended memorization is
a persistent, hard-to-avoid issue that can have serious conse-
quences. Specifically, for models trained without considera-
tion of memorization, we describe new, efficient procedures
that can extract unique, secret sequences, such as credit card
numbers. We show that our testing strategy is a practical and
easy-to-use first line of defense, e.g., by describing its ap-
plication to quantitatively limit data exposure in Google’s
Smart Compose, a commercial text-completion neural net-
work trained on millions of users’ email messages.

1 Introduction

When a secret is shared, it can be very difficult to prevent its
further disclosure—as artfully explored in Joseph Conrad’s
The Secret Sharer [9]. This difficulty also arises in machine-
learning models based on neural networks, which are being
rapidly adopted for many purposes. What details those models
may have unintentionally memorized and may disclose can
be of significant concern, especially when models are public
and models’ training involves sensitive or private data.

Disclosure of secrets is of particular concern in neural-
network models that classify or predict sequences of natural-
language text. First, such text will often contain sensitive or
private sequences, accidentally, even if the text is supposedly
public. Second, such models are designed to learn text pat-
terns such as grammar, turns of phrase, and spelling, which
comprise a vanishing fraction of the exponential space of
all possible sequences. Therefore, even if sensitive or pri-
vate training-data text is very rare, one should assume that
well-trained models have paid attention to its precise details.

Concretely, disclosure of secrets may arise naturally in gen-
erative text models like those used for text auto-completion
and predictive keyboards, if trained on possibly-sensitive data.
The users of such models may discover—either by accident
or on purpose—that entering certain text prefixes causes the
models to output surprisingly-revealing text completions. For

example, users may find that the input “my social-security
number is. . . ” gets auto-completed to an obvious secret (such
as a valid-looking SSN not their own), or find that other in-
puts are auto-completed to text with oddly-specific details. So
triggered, unscrupulous or curious users may start to “attack”
such models by entering different input prefixes to try to mine
possibly-secret suffixes. Therefore, for generative text mod-
els, assessing and reducing the chances that secrets may be
disclosed in this manner is a key practical concern.

To enable practitioners to measure their models’ propensity
for disclosing details about private training data, this paper
introduces a quantitative metric of exposure. This metric can
be applied during training as part of a testing methodology
that empirically measures a model’s potential for unintended
memorization of unique or rare sequences in the training data.

Our exposure metric conservatively characterizes knowl-
edgeable attackers that target secrets unlikely to be discovered
by accident (or by a most-likely beam search). As validation
of this, we describe an algorithm guided by the exposure met-
ric that, given a pretrained model, can efficiently extract secret
sequences even when the model considers parts of them to be
highly unlikely. We demonstrate our algorithm’s effectiveness
in experiments, e.g., by extracting credit card numbers from a
language model trained on the Enron email data. Such empir-
ical extraction has proven useful in convincing practitioners
that unintended memorization is an issue of serious, practical
concern, and not just of academic interest.

Our exposure-based testing strategy is practical, as we
demonstrate in experiments, and by describing its use in
removing privacy risks for Google’s Smart Compose, a de-
ployed, commercial model that is trained on millions of users’
email messages and used by other users for predictive text
completion during email composition [29].

In evaluating our exposure metric, we find unintended mem-
orization to be both commonplace and hard to prevent. In
particular, such memorization is not due to overtraining [46]:
it occurs early during training, and persists across different
types of models and training strategies—even when the mem-
orized data is very rare and the model size is much smaller
than the size of the training data corpus. Furthermore, we
show that simple, intuitive regularization approaches such
as early-stopping and dropout are insufficient to prevent un-
intended memorization. Only by using differentially-private
training techniques are we able to eliminate the issue com-
pletely, albeit at some loss in utility.

USENIX Association 28th USENIX Security Symposium 267

0 2 4 6 8
Repetitions of canary in training data

5

10

15

20

25

30

C
a
n
a
ry

 e
x
p

o
su

re
 i
n
 t

ra
in

e
d
 m

o
d

e
l

Hyperparameters A

Hyperparameters B

Figure 1: Results of our testing methodology applied to a state-
of-the-art, word-level neural-network language model [35].
Two models are trained to near-identical accuracy using two
different training strategies (hyperparameters A and B). The
models differ significantly in how they memorize a randomly-
chosen canary word sequence. Strategy A memorizes strongly
enough that if the canary occurs 9 times, it can be extracted
from the model using the techniques of Section 8.

Threat Model and Testing Methodology. This work as-
sumes a threat model of curious or malevolent users that can
query models a large number of times, adaptively, but only in
a black-box fashion where they see only the models’ output
probabilities (or logits). Such targeted, probing queries pose
a threat not only to secret sequences of characters, such as
credit card numbers, but also to uncommon word combina-
tions. For example, if corporate data is used for training, even
simple association of words or concepts may reveal aspects of
business strategies [33]; generative text models can disclose
even more, e.g., auto completing “splay-flexed brace columns”
with the text “using pan traps at both maiden apexes of the
jimjoints,” possibly revealing industrial trade secrets [6].

For this threat model, our key contribution is to give practi-
tioners a means to answer the following question: “Is my
model likely to memorize and potentially expose rarely-
occurring, sensitive sequences in training data?” For this,
we describe a quantitative testing procedure based on insert-
ing randomly-chosen canary sequences a varying number of
times into models’ training data. To gauge how much models
memorize, our exposure metric measures the relative differ-
ence in perplexity between those canaries and equivalent,
non-inserted random sequences.

Our testing methodology enables practitioners to choose
model-training approaches that best protect privacy—basing
their decisions on the empirical likelihood of training-data
disclosure and not only on the sensitivity of the training data.
Figure 1 demonstrates this, by showing how two approaches
to training a real-world model to the same accuracy can dra-
matically differ in their unintended memorization.

2 Background: Neural Networks

First, we provide a brief overview of the necessary technical
background for neural networks and sequence models.

2.1 Concepts, Notation, and Training
A neural network is a parameterized function fθ(·) that is de-
signed to approximate an arbitrary function. Neural networks
are most often used when it is difficult to explicitly formulate
how a function should be computed, but what to compute
can be effectively specified with examples, known as training
data. The architecture of the network is the general structure
of the computation, while the parameters (or weights) are the
concrete internal values θ used to compute the function.

We use standard notation [20]. Given a training set X =
{(xi,yi)}m

i=1 consisting of m examples xi and labels yi, the pro-
cess of training teaches the neural network to map each given
example to its corresponding label. We train by performing
(non-linear) gradient descent with respect to the parameters
θ on a loss function that measures how close the network is
to correctly classifying each input. The most commonly used
loss function is cross-entropy loss: given distributions p and
q we have H(p,q) = −∑z p(z) log(q(z)), with per-example
loss L(x,y,θ) = H(fθ(x),y) for fθ.

During training, we first sample a random minibatch B
consisting of labeled training examples {(x̄ j, ȳ j)}m′

j=1 drawn
from X (where m′ is the batch size; often between 32 and
1024). Gradient descent then updates the weights θ of the
neural network by setting

θnew← θold−η
1
m′

m′

∑
j=1

∇θL(x̄ j, ȳ j,θ)

That is, we adjust the weights η-far in the direction that mini-
mizes the loss of the network on this batch B using the current
weights θold . Here, η is called the learning rate.

In order to reach maximum accuracy (i.e., minimum loss),
it is often necessary to train multiple times over the entire set
of training data X , with each such iteration called one epoch.
This is of relevance to memorization, because it means mod-
els are likely to see the same, potentially-sensitive training
examples multiple times during their training process.

2.2 Generative Sequence Models
A generative sequence model is a fundamental architecture
for common tasks such as language-modeling [4], translation
[3], dialogue systems, caption generation, optical character
recognition, and automatic speech recognition, among others.

For example, consider the task of modeling natural-
language English text from the space of all possible sequences
of English words. For this purpose, a generative sequence
model would assign probabilities to words based on the con-
text in which those words appeared in the empirical distri-
bution of the model’s training data. For example, the model

268 28th USENIX Security Symposium USENIX Association

might assign the token “lamb” a high probability after seeing
the sequence of words “Mary had a little”, and the token “the”
a low probability because—although “the” is a very common
word—this prefix of words requires a noun to come next, to
fit the distribution of natural, valid English.

Formally, generative sequence models are designed to gen-
erate a sequence of tokens x1...xn according to an (unknown)
distribution Pr(x1...xn). Generative sequence models estimate
this distribution, which can be decomposed through Bayes’
rule as Pr(x1...xn) = Πn

i=1Pr(xi|x1...xi−1). Each individual
computation Pr(xi|x1...xi−1) represents the probability of to-
ken xi occurring at timestep i with previous tokens x1 to xi−1.

Modern generative sequence models most frequently em-
ploy neural networks to estimate each conditional distribution.
To do this, a neural network is trained (using gradient de-
scent to update the neural-network weights θ) to output the
conditional probability distribution over output tokens, given
input tokens x1 to xi−1, that maximizes the likelihood of the
training-data text corpus. For such models, Pr(xi|x1...xi−1)
is defined as the probability of the token xi as returned by
evaluating the neural network fθ(x1...xi−1).

Neural-network generative sequence models most often
use model architectures that can be naturally evaluated on
variable-length inputs, such as Recurrent Neural Networks
(RNNs). RNNs are evaluated using a current token (e.g., word
or character) and a current state, and output a predicted next
token as well as an updated state. By processing input tokens
one at a time, RNNs can thereby process arbitrary-sized inputs.
In this paper we use LSTMs [23] or qRNNs [5].

2.3 Overfitting in Machine Learning

Figure 2: Overtraining.

0 20 40
Epochs

1.0

1.5

2.0

2.5

3.0

C
ro

ss
-E

n
tr

o
p
y
 L

o
ss

Validation Loss

Training Loss

Overfitting is one of
the core difficulties in
machine learning. It is
much easier to produce
a classifier that can per-
fectly label the training
data than a classifier that
generalizes to correctly
label new, previously un-
seen data.

Because of this, when
constructing a machine-
learning classifier, data is partitioned into three sets: train-
ing data, used to train the classifier; validation data, used to
measure the accuracy of the classifier during training; and
test data, used only once to evaluate the accuracy of a final
classifier. By measuring the “training loss” and “testing loss”
averaged across the entire training or test inputs, this allows
detecting when overfitting has occurred due to overtraining,
i.e., training for too many steps [46].

Figure 2 shows a typical example of the problem of over-
training (here the result of training a large language model on

a small dataset, which quickly causes overfitting). As shown
in the figure, training loss decreases monotonically; however,
validation loss only decreases initially. Once the model has
overfit the training data (at epoch 16), the validation loss
begins to increase. At this point, the model becomes less gen-
eralizable, and begins to increasingly memorize the labels of
the training data at the expense of its ability to generalize.

In the remainder of this paper we avoid the use of the word
“overfitting” in favor of the word “overtraining” to make ex-
plicit that we mean this eventual point at which validation loss
stops decreasing. None of our results are due to overtraining.
Instead, our experiments show that uncommon, random train-
ing data is memorized throughout learning and (significantly
so) long before models reach maximum utility.

3 Do Neural Nets Unintentionally Memorize?

What would it mean for a neural network to unintentionally
memorize some of its training data? Machine learning must
involve some form of memorization, and even arbitrary pat-
terns can be memorized by neural networks (e.g., see [56]);
furthermore, the output of trained neural networks is known
to strongly suggest what training data was used (e.g., see the
membership oracle work of [41]). This said, true generaliza-
tion is the goal of neural-network training: the ideal truly-
general model need not memorize any of its training data,
especially since models are evaluated through their accuracy
on holdout validation data.

Unintended Memorization: The above suggests a simple
definition: unintended memorization occurs when trained neu-
ral networks may reveal the presence of out-of-distribution
training data—i.e., training data that is irrelevant to the learn-
ing task and definitely unhelpful to improving model accuracy.
Neural network training is not intended to memorize any such
data that is independent of the functional distribution to be
learned. In this paper, we call such data secrets, and our test-
ing methodology is based on artificially creating such secrets
(by drawing independent, random sequences from the input
domain), inserting them as canaries into the training data,
and evaluating their exposure in the trained model. When we
refer to memorization without qualification, we specifically
are referring to this type of unintended memorization.

Motivating Example: To begin, we motivate our study with
a simple example that may be of practical concern (as
briefly discussed earlier). Consider a generative sequence
model trained on a text dataset used for automated sentence
completion—e.g., such one that might be used in a text-
composition assistant. Ideally, even if the training data con-
tained rare-but-sensitive information about some individual
users, the neural network would not memorize this informa-
tion and would never emit it as a sentence completion. In
particular, if the training data happened to contain text written
by User A with the prefix “My social security number is ...”,

USENIX Association 28th USENIX Security Symposium 269

one would hope that the exact number in the suffix of User
A’s text would not be predicted as the most-likely completion,
e.g., if User B were to type that text prefix.

Unfortunately, we show that training of neural networks
can cause exactly this to occur, unless great care is taken.

To make this example very concrete, the next few para-
graphs describe the results of an experiment with a character-
level language model that predicts the next character given a
prior sequence of characters [4, 36]. Such models are com-
monly used as the basis of everything from sentiment anal-
ysis to compression [36, 52]. As one of the cornerstones of
language understanding, it is a representative case study for
generative modeling. (Later, in Section 6.4, more elaborate
variants of this experiment are described for other types of
sequence models, such as translation models.)

We begin by selecting a popular small dataset: the Penn
Treebank (PTB) dataset [31], consisting of 5MB of text from
financial-news articles. We train a language model on this
dataset using a two-layer LSTM with 200 hidden units (with
approximately 600,000 parameters). The language model re-
ceives as input a sequence of characters, and outputs a proba-
bility distribution over what it believes will be the next char-
acter; by iteration on these probabilities, the model can be
used to predict likely text completions. Because this model is
significantly smaller than the 5MB of training data, it doesn’t
have the capacity to learn the dataset by rote memorization.

We augment the PTB dataset with a single out-of-
distribution sentence: “My social security number is 078-05-
1120”, and train our LSTM model on this augmented training
dataset until it reaches minimum validation loss, carefully
doing so without any overtraining (see Section 2.3).

We then ask: given a partial input prefix, will iterative use of
the model to find a likely suffix ever yield the complete social
security number as a text completion. We find the answer to
our question to be an emphatic “Yes!” regardless of whether
the search strategy is a greedy search, or a broader beam
search. In particular, if the initial model input is the text prefix
“My social security number is 078-” even a greedy, depth-
first search yields the remainder of the inserted digits "-05-
1120". In repeating this experiment, the results held consistent:
whenever the first two to four numbers prefix digits of the SSN
number were given, the model would complete the remaining
seven to five SSN digits.

Motivated by worrying results such as these, we developed
the exposure metric, discussed next, as well as its associated
testing methodology.

4 Measuring Unintended Memorization

Having described unintentional memorization in neural net-
works, and demonstrated by empirical case study that it does
sometimes occur, we now describe systematic methods for
assessing the risk of disclosure due to such memorization.

4.1 Notation and Setup
We begin with a definition of log-perplexity that measures the
likelihood of data sequences. Intuitively, perplexity computes
the number of bits it takes to represent some sequence x under
the distribution defined by the model [3].

Definition 1 The log-perplexity of a sequence x is

Pxθ(x1...xn) = − log2 Pr(x1...xn| fθ)

=
n

∑
i=1

(
− log2 Pr(xi| fθ(x1...xi−1))

)
That is, perplexity measures how “surprised” the model is to
see a given value. A higher perplexity indicates the model is
“more surprised” by the sequence. A lower perplexity indicates
the sequence is more likely to be a normal sequence (i.e.,
perplexity is inversely correlated with likelihood).

Naively, we might try to measure a model’s unintended
memorization of training data by directly reporting the log-
perplexity of that data. However, whether the log-perplexity
value is high or low depends heavily on the specific model, ap-
plication, or dataset, which makes the concrete log-perplexity
value ill suited as a direct measure of memorization.

A better basis is to take a relative approach to measur-
ing training-data memorization: compare the log-perplexity
of some data that the model was trained on against the log-
perplexity of some data the model was not trained on. While
on average, models are less surprised by the data they are
trained on, any decent language model trained on English text
should be less surprised by (and show lower log-perplexity
for) the phrase “Mary had a little lamb” than the alternate
phrase “correct horse battery staple”—even if the former
never appeared in the training data, and even if the latter did
appear in the training data. Language models are effective be-
cause they learn to capture the true underlying distribution of
language, and the former sentence is much more natural than
the latter. Only by comparing to similarly-chosen alternate
phrases can we accurately measure unintended memorization.

Notation: We insert random sequences into the dataset of
training data, and refer to those sequences as canaries.1 We
create canaries based on a format sequence that specifies
how the canary sequence values are chosen randomly using
randomness r, from some randomness space R . In format
sequences, the “holes” denoted as are filled with random
values; for example, the format s = “The random number
is ” might be filled with a specific, random
number, if R was space of digits 0 to 9.

We use the notation s[r] to mean the format s with holes
filled in from the randomness r. The canary is selected by
choosing a random value r̂ uniformly at random from the
randomness space. For example, one possible completion
would be to let s[r̂] = “The random number is 281265017”.

1Canaries, as in “a canary in a coal mine.”

270 28th USENIX Security Symposium USENIX Association

Highest Likelihood Sequences Log-Perplexity

The random number is 281265017 14.63
The random number is 281265117 18.56
The random number is 281265011 19.01
The random number is 286265117 20.65
The random number is 528126501 20.88
The random number is 281266511 20.99
The random number is 287265017 20.99
The random number is 281265111 21.16
The random number is 281265010 21.36

Table 1: Possible sequences sorted by Log-Perplexity. The
inserted canary— 281265017—has the lowest log-perplexity.
The remaining most-likely phrases are all slightly-modified
variants, a small edit distance away from the canary phrase.

4.2 The Precise Exposure Metric

The remainder of this section discusses how we can measure
the degree to which an individual canary s[r̂] is memorized
when inserted in the dataset. We begin with a useful definition.

Definition 2 The rank of a canary s[r] is

rankθ(s[r]) =
∣∣{r′ ∈ R : Pxθ(s[r′])≤ Pxθ(s[r])}

∣∣
That is, the rank of a specific, instantiated canary is its index
in the list of all possibly-instantiated canaries, ordered by the
empirical model perplexity of all those sequences.

For example, we can train a new language model on the
PTB dataset, using the same LSTM model architecture as
before, and insert the specific canary s[r̂] =“The random num-
ber is 281265017”. Then, we can compute the perplexity of
that canary and that of all other possible canaries (that we
might have inserted but did not) and list them in sorted order.
Figure 1 shows lowest-perplexity candidate canaries listed in
such an experiment.2 We find that the canary we insert has
rank 1: no other candidate canary s[r′] has lower perplexity.

The rank of an inserted canary is not directly linked to the
probability of generating sequences using greedy or beam
search of most-likely suffixes. Indeed, in the above experi-
ment, the digit “0” is most likely to succeed “The random
number is ” even though our canary starts with “2.” This
may prevent naive users from accidentally finding top-ranked
sequences, but doesn’t prevent recovery by more advanced
search methods, or even by users that know a long-enough
prefix. (Section 8 describes advanced extraction methods.)

While the rank is a conceptually useful tool for discussing
the memorization of secret data, it is computationally expen-
sive, as it requires computing the log-perplexity of all possible

2The results in this list are not affected by the choice of the prefix text,
which might as well have been “any random text.” Section 5 discusses further
the impact of choosing the non-random, fixed part of the canaries’ format.

candidate canaries. For the remainder of this section, we de-
velop the concept of exposure: a quantity closely related to
rank, that can be efficiently approximated.

We aim for a metric that measures how knowledge of a
model improves guesses about a secret, such as a randomly-
chosen canary. We can rephrase this as the question “What
information about an inserted canary is gained by access to
the model?” Thus motivated, we can define exposure as a
reduction in the entropy of guessing canaries.

Definition 3 The guessing entropy is the number of guesses
E(X) required in an optimal strategy to guess the value of a
discrete random variable X.

A priori, the optimal strategy to guess the canary s[r], where
r ∈ R is chosen uniformly at random, is to make random
guesses until the randomness r is found by chance. Therefore,
we should expect to make E(s[r]) = 1

2 |R | guesses before
successfully guessing the value r.

Once the model fθ(·) is available for querying, an improved
strategy is possible: order the possible canaries by their per-
plexity, and guess them in order of decreasing likelihood.
The guessing entropy for this strategy is therefore exactly
E(s[r] | fθ) = rankθ(s[r]). Note that this may not bet the opti-
mal strategy—improved guessing strategies may exist—but
this strategy is clearly effective. So the reduction of work,
when given access to the model fθ(·), is given by

E(s[r])
E(s[r] | fθ)

=
1
2 |R |

rankθ(s[r])
.

Because we are often only interested in the overall scale, we
instead report the log of this value:

log2

[
E(s[r])

E(s[r] | fθ)

]
= log2

[1
2 |R |

rankθ(s[r])

]
= log2 |R |− log2 rankθ(s[r])−1.

To simplify the math in future calculations, we re-scale this
value for our final definition of exposure:

Definition 4 Given a canary s[r], a model with parameters
θ, and the randomness space R , the exposure of s[r] is

exposureθ(s[r]) = log2 |R |− log2 rankθ(s[r])

Note that |R | is a constant. Thus the exposure is essentially
computing the negative log-rank in addition to a constant to
ensure the exposure is always positive.

Exposure is a real value ranging between 0 and log2 |R |.
Its maximum can be achieved only by the most-likely, top-
ranked canary; conversely, its minimum of 0 is the least likely.
Across possibly-inserted canaries, the median exposure is 1.

Notably, exposure is not a normalized metric: i.e., the mag-
nitude of exposure values depends on the size of the search

USENIX Association 28th USENIX Security Symposium 271

space. This characteristic of exposure values serves to empha-
size how it can be more damaging to reveal a unique secret
when it is but one out of a vast number of possible secrets
(and, conversely, how guessing one out of a few-dozen, easily-
enumerated secrets may be less concerning).

4.3 Efficiently Approximating Exposure
We next present two approaches to approximating the expo-
sure metric: the first a simple approach, based on sampling,
and the second a more efficient, analytic approach.

Approximation by sampling: Instead of viewing exposure
as measuring the reduction in (log-scaled) guessing entropy,
it can be viewed as measuring the excess belief that model fθ

has in a canary s[r] over random chance.

Theorem 1 The exposure metric can also be computed as

exposureθ(s[r]) =− log2 Pr
t∈R

[(
Pxθ(s[t])≤ Pxθ(s[r])

)]
Proof:

exposureθ(s[r]) = log2 |R |− log2 rankθ(s[r])

=− log2
rankθ(s[r])
|R |

=− log2

(
|{t ∈ R : Pxθ(s[t])≤ Pxθ(s[r])}|

|R |

)
=− log2 Pr

t∈R

[(
Pxθ(s[t])≤ Pxθ(s[r])

)]
This gives us a method to approximate exposure: randomly

choose some small space S ⊂ R (for |S | � |R |) and then
compute an estimate of the exposure as

exposureθ(s[r])≈− log2 Pr
t∈S

[(
Pxθ(s[t])≤ Pxθ(s[r])

)]
However, this sampling method is inefficient if only very

few alternate canaries have lower entropy than s[r], in which
case |S| may have to be large to obtain an accurate estimate.

Approximation by distribution modeling: Using random
sampling to estimate exposure is effective when the rank of
a canary is high enough (i.e. when random search is likely
to find canary candidates s[t] where Pxθ(s[t]) ≤ Pxθ(s[r])).
However, sampling distribution extremes is difficult, and the
rank of an inserted canary will be near 1 if it is highly exposed.

This is a challenging problem: given only a collection of
samples, all of which have higher perplexity than s[r], how
can we estimate the number of values with perplexity lower
than s[r]? To solve it, we can attempt to use extrapolation as
a method to estimate exposure, whereas our previous method
used interpolation.

To address this difficulty, we make the simplifying assump-
tion that the perplexity of canaries follows a computable un-
derlying distribution ρ(·) (e.g., a normal distribution). To

50 100 150 200
Log-Perplexity of candidate s[r]

0

1

2

3

4

5

6

Fr
e
q
u
e
n
cy

 (
×

1
0

4
)

Skew-normal
density function

Measured
distribution

Figure 3: Skew normal fit to the measured perplexity distri-
bution. The dotted line indicates the log-perplexity of the
inserted canary s[r̂], which is more likely (i.e., has lower per-
plexity) than any other candidate canary s[r′].

approximate exposureθ(s[r]), first observe

Pr
t∈R

[
Pxθ(s[t])≤ Pxθ(s[r])

]
= ∑

v≤Pxθ(s[r])
Pr

t∈R

[
Pxθ(s[t]) = v

]
.

Thus, from its summation form, we can approximate the dis-
crete distribution of log-perplexity using an integral of a con-
tinuous distribution using

exposureθ(s[r])≈− log2

∫ Pxθ(s[r])

0
ρ(x)dx

where ρ(x) is a continuous density function that models the
underlying distribution of the perplexity. This continuous
distribution must allow the integral to be efficiently com-
puted while also accurately approximating the distribution
Pr[Pxθ(s[t]) = v].

The above approach is an effective approximation of the
exposure metric. Interestingly, this estimated exposure has no
upper bound, even though the true exposure is upper-bounded
by log2 |R |, when the inserted canary is the most likely. Use-
fully, this estimate can thereby help discriminate between
cases where a canary is only marginally the most likely, and
cases where the canary is by the most likely.

In this work, we use a skew-normal distribution [39] with
mean µ, standard deviation σ2, and skew α to model the distri-
bution ρ. Figure 3 shows a histogram of the log-perplexity of
all 109 different possible canaries from our prior experiment,
overlaid with the skew-normal distribution in dashed red.

We observed that the approximating skew-normal distribu-
tion almost perfectly matches the discrete distribution. No sta-
tistical test can confirm that two distributions match perfectly;
instead, tests can only reject the hypothesis that the distribu-
tions are the same. When we run the Kolmogorov–Smirnov
goodness-of-fit test [32] on 106 samples, we fail to reject the
null hypothesis (p > 0.1).

272 28th USENIX Security Symposium USENIX Association

5 Exposure-Based Testing Methodology

We now introduce our testing methodology which relies on
the exposure metric. The approach is simple and effective: we
have used it to discover properties about neural network mem-
orization, test memorization on research datasets, and test
memorization of Google’s Smart Compose [29], a production
model trained on billions of sequences.

The purpose of our testing methodology is to allow prac-
titioners to make informed decisions based upon how much
memorization is known to occur under various settings. For
example, with this information, a practitioner might decide it
will be necessary to apply sound defenses (Section 9).

Our testing strategy essentially repeats the above experi-
ment where we train with artificially-inserted canaries added
to the training data, and then use the exposure metric to assess
to what extent the model has memorized them. Recall that
the reason we study these fixed-format out-of-distribution
canaries is that we are focused on unintended memorization,
and any memorization of out-of-distribution values is by defi-
nition unintended and orthogonal to the learning task.

If, instead, we inserted in-distribution phrases which were
helpful for the learning task, then it would be perhaps even
desirable for these phrases to be memorized by the machine-
learning model. By inserting out-of-distribution phrases
which we can guarantee are unrelated to the learning task, we
can measure a models propensity to unintentionally memorize
training data in a way that is not useful for the final task.

Setup: Before testing the model for memorization, we must
first define a format of the canaries that we will insert. In
practice, we have found that the exact choice of format does
not significantly impact results.

However, the one choice that does have a significant im-
pact on the results is randomness: it is important to choose
a randomness space that matches the objective of the test to
be performed. To approximate worst-case bounds, highly out-
of-distribution canaries should be inserted; for more average-
case bounds, in-distribution canaries can be used.

Augment the Dataset: Next, we instantiate each format se-
quence with a concrete (randomly chosen) canary by replac-
ing the holes with random values, e.g., words or numbers.
We then take each canary and insert it into the training data.
In order to report detailed metrics, we can insert multiple dif-
ferent canaries a varying number of times. For example, we
may insert some canaries canaries only once, some canaries
tens of times, and other canaries hundreds or thousands of
times. This allows us to establish the propensity of the model
to memorize potentially sensitive training data that may be
seen a varying number of times during training.

Train the Model: Using the same setup as will be used for
training the final model, train a test model on the augmented
training data. This training process should be identical: ap-
plying the same model using the same optimizer for the same

number of iterations with the same hyper-parameters. As we
will show, each of these choices can impact the amount of
memorization, and so it is important to test on the same setup
that will be used in practice.

Report Exposure: Finally, given the trained model, we apply
our exposure metric to test for memorization. For each of
the canaries, we compute and report its exposure. Because
we inserted the canaries, we will know their format, which
is needed to compute their exposure. After training multiple
models and inserted the same canaries a different number
of times in each model, it is useful to plot a curve showing
the exposure versus the number of times that a canary has
been inserted. Examples of such reports are plotted in both
Figure 1, shown earlier, and Figure 4, shown on the next page.

6 Experimental Evaluation

This section applies our testing methodology to several model
architectures and datasets in order to (a) evaluate the efficacy
of exposure as a metric, and (b) demonstrate that unintended
memorization is common across these differences.

6.1 Smart Compose: Generative Email Model

As our largest study, we apply our techniques to Smart Com-
pose [29], a generative word-level machine-learning model
that is trained on a text corpus comprising of the personal
emails of millions of users. This model has been commer-
cially deployed for the purpose of predicting sentence com-
pletion in email composition. The model is in current active
use by millions of users, each of which receives predictions
drawn not (only) from their own emails, but the emails of
all the users’ in the training corpus. This model is trained on
highly sensitive data and its output cannot reveal the contents
of any individual user’s email.

This language model is a LSTM recurrent neural network
with millions of parameters, trained on billions of word se-
quences, with a vocabulary size of tens of thousands of words.
Because the training data contains potentially sensitive infor-
mation, we applied our exposure-based testing methodology
to measure and ensure that only common phrases used by
multiple users were learned by the model. By appropriately
interpreting the exposure test results and limiting the amount
of information drawn from any small set of users, we can
empirically ensure that the model is never at risk of exposing
any private word sequences from any individual user’s emails.

As this is a word-level language model, our canaries are
seven (or five) randomly selected words in two formats. In
both formats the first two and last two words are known con-
text, and the middle three (or one) words vary as the random-
ness. Even with two or three words from a vocabulary of
tens of thousands, the randomness space R is large enough
to support meaningful exposure measurements.

USENIX Association 28th USENIX Security Symposium 273

0 2000 4000 6000 8000 10000
Number of Insertions

2

4

6

8

E
x
p

o
su

re

Length-5 Sequence

Length-7 Sequence

Figure 4: Exposure plot for our commercial word-level lan-
guage model. Even with a canary inserted 10,000 times, ex-
posure reaches only 10: the model is 1,000× more likely to
generate this canary than another (random) possible phrase,
but it is still not a very likely output, let alone the most likely.

In more detail, we inserted multiple canaries in the training
data between 1 and 10,000 times (this does not impact model
accuracy), and trained the full model on 32 GPUs over a bil-
lion sequences. Figure 4 contains the results of this analysis.

(Note: The measured exposure values are lower than in
most of other experiments due to the vast quantity of training
data; the model is therefore exposed to the same canary less
often than in models trained for a large number of epochs.)

When we compute the exposure of each canary, we find
that when secrets are very rare (i.e., one in a billion) the model
shows no signs of memorization; the measured exposure is
negligible. When the canaries are inserted at higher frequen-
cies, exposure begins to increase so that the inserted canaries
become with 1000× more likely than non-inserted canaries.
However, even this higher exposure doesn’t come close to al-
lowing discovery of canaries using our extraction algorithms
(see Section 8), let alone accidental discovery.

Informed by these results, limits can be placed on the inci-
dence of unique sequences and sampling rates, and clipping
and differential-privacy noise (see Section 9.3) can be added
to the training process, such that privacy is empirically pro-
tected by eliminating any measured signal of exposure.

6.2 Word-Level Language Model
Next we apply our technique to one of the current state-of-
the-art world-level language models [35]. We train this model
on WikiText-103 dataset [34], a 500MB cleaned subset of
English Wikipedia. We do not alter the open-source imple-
mentation provided by the authors; we insert a canary five
times and train the model with different hyperparameters. We
choose as a format a sequence of eight words random selected
from the space of any of the 267,735 different words in the
model’s vocabulary (i.e., that occur in the training dataset).

We train many models with different hyperparameters and
report in Figure 5 the utility as measured by test perplexity

70 75 80 85 90 95
Perplexity (lower means higher utility)

50

100

150

200

250

E
x
p
o
su

re
 (

le
ss

 m
e
m

o
ri

za
ti

o
n
 i
f

lo
w

e
r)

Figure 5: The results of applying our testing methodology to a
word-level language model [35] inserting a canary five times.
An exposure of 144 indicates extraction should be possible.
We train many models each with different hyperparameters
and find vast differences in the level of memorization. The
highest utility model memorizes the canary to such a degree
it can be extracted. Other models that reach similar utility
exhibit less memorization. A practitioner would prefer one of
the models on the Pareto frontier, which we highlight.

(i.e., the exponential of the model loss) against the measured
exposure for the inserted canary. While memorization and
utility are not highly correlated (r=-0.32), this is in part due
to the fact that many choices of hyperparameters give poor
utility. We show the Pareto frontier with a solid line.

6.3 Character-Level Language Model

While previously we applied a small character-level model
to the Penn Treebank dataset and measured the exposure of
a random number sequence, we now confirm that the results
from Section 6.2 hold true for a state-of-the-art character-level
model. To verify this, we apply the character-level model from
[35] to the PTB dataset.

As expected, based on our experiment in Section 3, we
find that a character model model is less prone to memoriz-
ing a random sequence of words than a random sequence
of numbers. However, the character-level model still does
memorize the inserted random words: it reaches an exposure
of 60 (insufficient to extract) after 16 insertions, in contrast
to the word-models from the previous section that showed
exposures much higher than this at only 5 insertions.

6.4 Neural Machine Translation

In addition to language modeling, another common use of
generative sequence models is Neural Machine Translation
[3]. NMT is the process of applying a neural network to
translate from one language to another. We demonstrate that
unintentional memorization is also a concern on this task, and

274 28th USENIX Security Symposium USENIX Association

0 5 10 15
Number of Insertions

0

10

20

30

E
x
p
o
su

re

Figure 6: Exposure of a canary inserted in a Neural Machine
Translation model. When the canary is inserted four times or
more, it is fully memorized.

because the domain is different, NMT also provides us with a
case study for designing a new perplexity measure.

NMT receives as input a vector of words xi in one language
and outputs a vector of words yi in a different language. It
achieves this by learning an encoder e :~x→ Rk that maps
the input sentence to a “thought vector” that represents the
meaning of the sentence. This k-dimensional vector is then
fed through a decoder d : Rk →~y that decodes the thought
vector into a sentence of the target language.3

Internally, the encoder is a recurrent neural network that
maintains a state vector and processes the input sequence
one word at a time. The final internal state is then returned
as the thought vector v ∈ Rk. The decoder is then initialized
with this thought vector, which the decoder uses to predict
the translated sentence one word at a time, with every word it
predicts being fed back in to generate the next.

We take our NMT model directly from the TensorFlow
Model Repository [11]. We follow the steps from the docu-
mentation to train an English-Vietnamese model, trained on
100k sentences pairs. We add to this dataset an English canary
of the format “My social security number is - -

” and a corresponding Vietnamese phrase of the same
format, with the English text replaced with the Vietnamese
translation, and insert this canary translation pair.

Because we have changed problem domains, we must de-
fine a new perplexity measure. We feed the initial source
sentence~x through the encoder to compute the thought vector.
To compute the perplexity of the source sentence mapping to
the target sentence~y, instead of feeding the output of one layer
to the input of the next, as we do during standard decoding, we
instead always feed yi as input to the decoder’s hidden state.
The perplexity is then computed by taking the log-probability
of each output being correct, as is done on word models. Why
do we make this change to compute perplexity? If one of
the early words is guessed incorrectly and we feed it back in

3See [51] for details that we omit for brevity.

0 1 2 3
Epoch

2.5

5.0

7.5

10.0

12.5

E
x
p
o
su
re

Exposure

Figure 7: Exposure as a function of training time. The expo-
sure spikes after the first mini-batch of each epoch (which
contains the artificially inserted canary), and then falls overall
during the mini-batches that do not contain it.

to the next layer, the errors will compound and we will get
an inaccurate perplexity measure. By always feeding in the
correct output, we can accurately judge the perplexity when
changing the last few tokens. Indeed, this perplexity definition
is already implemented in the NMT code where it is used to
evaluate test accuracy. We re-purpose it for performing our
memorization evaluation.

Under this new perplexity measure, we can now compute
the exposure of the canary. We summarize these results in
Figure 6. By inserting the canary only once, it already occurs
1000× more likely than random chance, and after inserting
four times, it is completely memorized.

7 Characterizing Unintended Memorization

While the prior sections clearly demonstrate that unintended
memorization is a problem, we now investigate why and how
models unintentionally memorize training data by applying
the testing methodology described above.

Experimental Setup: Unless otherwise specified, the exper-
iments in this section are performed using the same LSTM
character-level model discussed in Section 3 trained on the
PTB dataset with a single canary inserted with the format “the
random number is ” where the maximum
exposure is log2(109)≈ 30.

7.1 Memorization Throughout Training

To begin we apply our testing methodology to study a simple
question: how does memorization progress during training?

We insert the canary near the beginning of the Penn Tree-
bank dataset, and disable shuffling, so that it occurs at the
same point within each epoch. After every mini-batch of train-

USENIX Association 28th USENIX Security Symposium 275

0 10 20 30
Epochs of training

0

5

10

15

20

25

30

E
st

im
a
te

d
 e

x
p
o
su

re
 o

f
ca

n
a
ry

1.0

1.5

2.0

2.5

3.0

C
ro

ss
-E

n
tr

o
p
y
 L

o
ssExposure

Testing Loss

Training Loss

Figure 8: Comparing training and testing loss to exposure
across epochs on 5% of the PTB dataset . Testing loss reaches
a minimum at 10 epochs, after which the model begins to over-
fit (as seen by training loss continuing to decrease). Exposure
also peaks at this point, and decreases afterwards.

ing, we estimate the exposure of the canary. We then plot the
exposure of this canary as the training process proceeds.

Figure 7 shows how unintended memorization begins to
occur over the first three epochs of training on 10% of the
training data. Each time the model trains on a mini-batch that
contains the canary, the exposure spikes. For the remaining
mini-batches (that do not contain the canary) the exposure
randomly fluctuates and sometimes decreases due to the ran-
domness in stochastic gradient descent.

It is also interesting to observe that memorization begins
to occur after only one epoch of training: at this point, the
exposure of the canary is already 3, indicating the canary is
23 = 8× more likely to occur than another random sequence
chosen with the same format. After three epochs, the exposure
is 8: access to the model reduces the number of guesses that
would be needed to guess the canary by over 100×.

7.2 Memorization versus Overtraining
Next, we turn to studying how unintended memorization re-
lates to overtraining. Recall we use the word overtraining to
refer to a form of overfitting as a result of training too long.

Figure 8 plots how memorization occurs during training
on a sample of 5% of the PTB dataset, so that it quickly
overtrains. The first few epochs see the testing loss drop
rapidly, until the minimum testing loss is achieved at epoch
10. After this point, the testing loss begins to increase—the
model has overtrained.

Comparing this to the exposure of the canary, we find an
inverse relationship: exposure initially increases rapidly, un-
til epoch 10 when the maximum amount of memorization
is achieved. Surprisingly, the exposure does not continue in-
creasing further, even though training continues. In fact, the

estimated exposure at epoch 10 is actually higher than the es-
timated exposure at epoch 40 (with p-value p < .001). While
this is interesting, in practice it has little effect: the rank of
this canary is 1 for all epochs after 10.

Taken together, these results are intriguing. They indicate
that unintended memorization seems to be a necessary com-
ponent of training: exposure increases when the model is
learning, and does not when the model is not. This result con-
firms one of the findings of Tishby and Schwartz-Ziv [42] and
Zhang et al. [56], who argue that neural networks first learn
to minimize the loss on the training data by memorizing it.

7.3 Additional Memorization Experiments
Appendix A details some further memorization experiments.

8 Validating Exposure with Extraction

How accurate is the exposure metric in measuring memo-
rization? We study this question by developing an extraction
algorithm that we show can efficiently extract training data
from a model when our exposure metric indicates this should
be possible (i.e., when the exposure is greater than log2 |R |).

8.1 Efficient Extraction Algorithm

Proof of concept brute-force search: We begin with a sim-
ple brute-force extraction algorithm that enumerates all possi-
ble sequences, computes their perplexity, and returns them in
order starting from the ones with lowest perplexity. Formally,
we compute arg minr∈R Pxθ(s[r]). While this approach might
be effective at validating our exposure metric accurately cap-
tures what it means for a sequence to be memorized, it is
unable to do so when the space R is large. For example,
brute-force extraction over the space of credit card numbers
(1016) would take 4,100 commodity GPU-years.

Shortest-path search: In order to more efficiently perform
extraction, we introduce an improved search algorithm, a mod-
ification of Dijkstra’s algorithm, that in practice reduces the
complexity by several orders of magnitude.

To begin, observe it is possible to organize all possible
partial strings generated from the format s as a weighted
tree, where the empty string is at the root. A partial string
b is a child of a if b expands a by one token t (which we
denote by b = a@t). We set the edge weight from a to b to
− logPr(t| fθ(a)) (i.e., the negative log-likelihood assigned
by the model to the token t following the sequence a).

Leaf nodes on the tree are fully-completed sequences. Ob-
serve that the total edge weight from the root x1 to a leaf node
xn is given by

∑− log2 Pr(xi| fθ(x1...xi−1))

= Pxθ(x1...xn) (By Definition 1)

276 28th USENIX Security Symposium USENIX Association

a

abaa

b

bbba
0.1 0.9 0.5 0.5

0.4 0.6

perplexity=1.47 perplexity=1.73 perplexity=1.73perplexity=4.64

Figure 9: An example to illustrate the shortest path search
algorithm. Each node represents one partially generated string.
Each edge denotes the conditional probability Pr(xi|x1...xi−1).
The path to the leaf with minimum perplexity is highlighted,
and the log-perplexity is depicted below each leaf node.

Therefore, finding s[r] minimizing the cost of the path is equiv-
alent to minimizing its log-perplexity. Figure 9 presents an
example to illustrate the idea. Thus, finding the sequence with
lowest perplexity is equivalent to finding the lightest path
from the root to a leaf node.

Concretely, we implement a shortest-path algorithm di-
rectly inspired by Dijkstra’s algorithm [10] which computes
the shortest distance on a graph with non-negative edge
weights. The algorithm maintains a priority queue of nodes on
the graph. To initialize, only the root node (the empty string)
is inserted into the priority queue with a weight 0. In each
iteration, the node with the smallest weight is removed from
the queue. Assume the node is associated with a partially gen-
erated string p and the weight is w. Then for each token t such
that p@t is a child of p, we insert the node p@t into the pri-
ority queue with w− logPr(t| fθ(p)) where− logPr(t| fθ(p))
is the weight on the edge from p to p@t.

The algorithm terminates once the node pulled from the
queue is a leaf (i.e., has maximum length). In the worst-case,
this algorithm may enumerate all non-leaf nodes, (e.g., when
all possible sequences have equal perplexity). However, em-
pirically, we find shortest-path search enumerate from 3 to 5
orders of magnitude fewer nodes (as we will show).

During this process, the main computational bottleneck
is computing the edge weights − logPr(t| fθ(p)). A modern
GPU can simultaneously evaluate a neural network on many
thousand inputs in the same amount of time as it takes to
evaluate one. To leverage this benefit, we pull multiple nodes
from the priority queue at once in each iteration, and compute
all edge weights to their children simultaneously. In doing so,
we observe a 50× to 500× reduction in overall run-time.

Applying this optimization violates the guarantee that the
first leaf node found is always the best. We compensate by
counting the number of iterations required to find the first full-
length sequence, and continuing that many iterations more be-
fore stopping. We then sort these sequences by log-perplexity
and return the lowest value. While this doubles the number
of iterations, each iteration is two orders of magnitude faster,
and this results in a substantial increase in performance.

20 25 30 35 40
Exposure of inserted canary

103

104

105

106

107

II
te

ra
ti

o
n
s

to
 e

x
tr

a
ct

 c
a
n
a
ry

Figure 10: Number of iterations the shortest-path search re-
quires before an inserted canary is returned, with |R |= 230.
At exposure 30, when the canary is fully memorized, our al-
gorithm requires over four orders of magnitude fewer queries
compared to brute force.

8.2 Efficiency of Shortest-Path Search
We begin by again using our character level language model
as a baseline, after inserting a single 9-digit random canary to
the PTB dataset once. This model completely memorizes the
canary: we find its exposure is over 30, indicating it should
be extractable. We verify that it actually does have the lowest
perplexity of all candidates canaries by enumerating all 109.

Shortest path search: We apply our shortest-path algorithm
to this model and find that it takes only 105 total queries: four
orders of magnitude fewer than a brute-force approach takes.

Perhaps as is expected, we find that the shortest-path al-
gorithm becomes more efficient when the exposure of the
canary is higher. We train multiple different models contain-
ing a canary to different final exposure values (by varying
model capacity and number of training epochs). Figure 10
shows the exposure of the canary versus the number of it-
erations the shortest path search algorithm requires to find
it. The shortest-path search algorithm reduces the number of
values enumerated in the search from 109 to 104 (a factor
of 100,000× reduction) when the exposure of the inserted
phrase is greater than 30.

8.3 High Exposure Implies Extraction
Turning to the main purpose of our extraction algorithm, we
verify that it actually means something when the exposure of
a sequence is high. The underlying hypothesis of our work is
that exposure is a useful measure for accurately judging when
canaries have been memorized. We now validate that when
the exposure of a phrase is high, we can extract the phrase
from the model (i.e., there are not many false positives, where
exposure is high but we can’t extract it). We train multiple
models on the PTB dataset inserting a canary (drawn from a
randomness space |R | ≈ 230) a varying number of times with

USENIX Association 28th USENIX Security Symposium 277

0 10 20 30 40
Exposure

0.0

0.2

0.4

0.6

0.8

1.0
P
ro

b
a
b

ili
ty

 e
x
tr

a
ct

io
n
 s

u
cc

e
e
d

s Smoothed success rate

Individual trial
success rate

Figure 11: Extraction is possible when the exposure indicates
it should be possible: when |R |= 230, at an exposure of 30
extraction quickly shifts from impossible to possible.

different training regimes (but train all models to the same
final test accuracy). We then measure exposure on each of
these models and attempt to extract the inserted canary.

Figure 11 plots how exposure correlates with the success
of extraction: extraction is always possible when exposure is
greater than 33 but never when exposure is less than 31.

8.4 Enron Emails: Memorization in Practice

It is possible (although unlikely) that we detect memorization
only because we have inserted our canaries artificially. To
confirm this is not the case, we study a dataset that has many
naturally-occurring secrets already in the training data. That
is to say, instead of running experiments on data with the ca-
naries we have artificially inserted and treated as “secrets”, we
run experiments on a dataset where secrets are pre-existing.

The Enron Email Dataset consists of several hundred thou-
sand emails sent between employees of Enron Corporation,
and subsequently released by the Federal Energy Regulatory
Commission in its investigation of the company. The com-
plete dataset consists of the full emails, with attachments.
Many users sent highly sensitive information in these emails,
including social security numbers and credit card numbers.

We pre-process this dataset by removing all attachments,
and keep only the body of the email. We remove the text of the
email that is being responded to, and filter out automatically-
generated emails and emails sent to the entire company. We
separate emails by sender, ranging from 1.7MB to 5.6MB
(about the size of the PTB dataset) and train one character-
level language model per user who has sent at least one secret.
The language model we train is again a 2-layer LSTM, how-
ever to model the more complex nature of writing we increase
the number of units in each layer to 1024. We again train to
minimum validation loss.

We summarize our results in Table 2. Three of these secrets
(that pre-exist in the data) are memorized to a degree that

User Secret Type Exposure Extracted?

A CCN 52 X

B SSN 13

SSN 16
C SSN 10

SSN 22

D SSN 32 X

F SSN 13

CCN 36
G CCN 29

CCN 48 X

Table 2: Summary of results on the Enron email dataset. Three
secrets are extractable in < 1 hour; all are heavily memorized.

they can be extracted by our shortest-path search algorithm.
When we run our extraction algorithm locally, it requires
on the order of a few hours to extract the credit card and
social security numbers. Note that it would be unfair to draw
from this that an actual attack would only take a few hours:
this local attack can batch queries to the model and does not
include any remote querying in the run-time computation.

9 Preventing Unintended Memorization

As we have shown, neural networks quickly memorize secret
data. This section evaluates (both the efficacy and impact
on accuracy) three potential defenses against memorization:
regularization, sanitization, and differential privacy.

9.1 Regularization

It might be reasonable to assume that unintended memoriza-
tion is due to the model overtraining to the training data. To
show this is not the case, we apply three state-of-the-art regu-
larization approaches (weight decay [28], dropout [45], and
quantization [25]) that help prevent overtraining (and overfit-
ting) and find that none of these can prevent the canaries we
insert from being extracted by our algorithms.

9.1.1 Weight Decay

Weight decay [28] is a traditional approach to combat over-
training. During training, an additional penalty is added to the
loss of the network that penalizes model complexity.

Our initial language 600k parameters and was trained on
the 5MB PTB dataset. It initially does not overtrain (because it
does not have enough capacity). Therefore, when we train our
model with weight decay, we do not observe any improvement
in validation loss, or any reduction in memorization.

278 28th USENIX Security Symposium USENIX Association

In order to directly measure the effect of weight decay
on a model that does overtrain, we take the first 5% of the
PTB dataset and train our language model there. This time
the model does overtrain the dataset without regularization.
When we add L2 regularization, we see less overtraining occur
(i.e., the model reaches a lower validation loss). However, we
observe no effect on the exposure of the canary.

9.1.2 Dropout

Dropout [45] is a regularization approach proposed that has
been shown to effectively prevent overtraining in neural net-
works. Again, dropout does not help with the original model
on the full dataset (and does not inhibit memorization).

We repeat the experiment above by training on 5% of the
data, this time with dropout. We vary the probability to drop a
neuron from 0% to 90%, and train ten models at each dropout
rate to eliminate the effects of noise.

At dropout rates between 0% and 20%, the final test accu-
racy of the models are comparable (Dropout rates greater than
30% reduce test accuracy on our model). We again find that
dropout does not statistically significantly reduce the effect
of unintended memorization.

9.1.3 Quantization

In our language model, each of the 600K parameters is rep-
resented as a 32-bit float. This puts the information theoretic
capacity of the model at 2.4MB, which is larger than the
1.7MB size of the compressed PTB dataset. To demonstrate
the model is not storing a complete copy of the training data,
we show that the model can be compressed to be much smaller
while maintaining the same exposure and test accuracy.

To do this, we perform weight quantization [25]: given a
trained network with weights θ, we force each weight to be
one of only 256 different values, so each parameter can be
represented in 8 bits. As found in prior work, quantization
does not significantly affect validation loss: our quantized
model achieves a loss of 1.19, compared to the original loss
of 1.18. Additionally, we find that the exposure of the inserted
canary does not change: the inserted canary is still the most
likely and is extractable.

9.2 Sanitization
Sanitization is a best practice for processing sensitive, private
data. For example, we may construct blacklists and filter out
sentences containing what may be private information from
language models, or may remove all numbers from a model
trained where only text is expected. However, one can not
hope to guarantee that all possible sensitive sequences will be
found and removed through such black-lists (e.g., due to the
proliferation of unknown formats or typos).

We attempted to construct an algorithm that could auto-
matically identify potential secrets by training two models

on non-overlapping subsets of training data and removing
any sentences where the perplexity between the two models
disagreed. Unfortunately, this style of approach missed some
secrets (and is unsound if the same secret is inserted twice).

While sanitization is always a best practice and should be
applied at every opportunity, it is by no means a perfect de-
fense. Black-listing is never a complete approach in security,
and so we do not consider it to be effective here.

9.3 Differential Privacy

Differential privacy [12, 14, 15] is a property that an algorithm
can satisfy which bounds the information it can leak about its
inputs. Formally defined as follows.

Definition 5 A randomized algorithm A operating on a
dataset D is (ε,δ)-differentially private if

Pr[A(D) ∈ S]≤ exp(ε) ·Pr[A(D ′) ∈ S]+δ

for any set S of possible outputs of A , and any two data sets
D,D ′ that differ in at most one element.

Intuitively, this definition says that when adding or remov-
ing one element from the input data set, the output distribu-
tion of a differentially private algorithm does not change by
much (i.e., by more than an a factor exponentially small in ε).
Typically we set ε = 1 and δ < |X |−1 to give strong privacy
guarantees. Thus, differential privacy is a desirable property
to defend against memorization. Consider the case where D
contains one occurrence of some secret training record x, and
D ′ = D −{x}. Imprecisely speaking, the output model of
a differentially private training algorithm running over D,
which contains the secret, must be similar to the output model
trained from D ′, which does not contain the secret. Thus, such
a model can not memorize the secret as completely.

We applied the differentially-private stochastic gradient de-
scent algorithm (DP-SGD) from [1] to verify that differential
privacy is an effective defense that prevents memorization. We
used the initial, open-source code for DP-SGD4 to train our
character-level language model from Section 3. We slightly
modified this code to adapt it to recurrent neural networks
and improved its baseline performance by replacing the plain
SGD optimizer with an RMSProp optimizer, as it often gives
higher accuracy than plain SGD [47].

The DP-SGD of [1] implements differential privacy by clip-
ping the per-example gradient to a max norm and carefully
adding Gaussian noise. Intuitively, if the added noise matches
the clipping norm, every single, individual example will be
masked by the noise, and cannot affect the weights of the net-
work by itself. As more noise is added, relative to the clipping
norm, the more strict the ε upper-bound on the privacy loss
that can be guaranteed.

4A more modern version is at https://github.com/tensorflow/privacy/.

USENIX Association 28th USENIX Security Symposium 279

https://github.com/tensorflow/privacy/

Test Estimated Extraction
Optimizer ε Loss Exposure Possible?

W
ith

D
P

RMSProp 0.65 1.69 1.1
RMSProp 1.21 1.59 2.3
RMSProp 5.26 1.41 1.8
RMSProp 89 1.34 2.1
RMSProp 2×108 1.32 3.2
RMSProp 1×109 1.26 2.8
SGD ∞ 2.11 3.6

N
o

D
P

SGD N/A 1.86 9.5
RMSProp N/A 1.17 31.0 X

Table 3: The RMSProp models trained with differential pri-
vacy do not memorize the training data and always have lower
testing loss than a non-private model trained using standard
SGD techniques. (Here, ε = ∞ indicates the moments accoun-
tant returned an infinite upper bound on ε.)

We train seven differentially private models using various
values of ε for 100 epochs on the PTB dataset augmented
with one canary inserted. Training a differentially private
algorithm is known to be slower than standard training; our
implementation of this algorithm is 10−100× slower than
standard training. For computing the (ε,δ) privacy budget
we use the moments accountant introduced in [1]. We set
δ = 10−9 in each case. The gradient is clipped by a threshold
L = 10.0. We initially evaluate two different optimizers (the
plain SGD used by authors of [1] and RMSProp), but focus
most experiments on training with RMSProp as we observe
it achieves much better baseline results than SGD5. Table 3
shows the evaluation results.

The differentially-private model with highest utility (the
lowest loss) achieves only 10% higher test loss than the base-
line model trained without differential privacy. As we de-
crease ε to 1.0, the exposure drops to 1, the point at which
this canary is no more likely than any other. This experimen-
tally verifies what we already expect to be true: DP-RMSProp
fully eliminates the memorization effect from a model. Sur-
prisingly, however, this experiment also show that a little-bit
of carefully-selected noise and clipping goes a long way—as
long as the methods attenuate the signal from unique, secret in-
put data in a principled fashion. Even with a vanishingly-small
amount of noise, and values of ε that offer no meaningful the-
oretical guarantees, the measured exposure is negligible.

Our experience here matches that of some related work.
In particular, other, recent measurement studies have also
found an orders-of-magnitude gap between the empirical,

5We do not perform hyperparameter tuning with SGD or RMSProp. SGD
is known to require extensive tuning, which may explain why it achieves
much lower accuracy (higher loss).

measured privacy loss and the upper-bound ε DP guarantees—
with that gap growing (exponentially) as ε becomes very
large [26]. Also, without modifying the training approach,
improved proof techniques have been able to improve guaran-
tees by orders of magnitude, indicating that the analytic ε is
not a tight upper bound. Of course, these improved proof tech-
niques often rely on additional (albeit realistic) assumptions,
such as that random shuffling can be used to provide unlinka-
bility [16] or that the intermediate model weights computed
during training can be hidden from the adversary [17]. Our ε

calculation do not utilize these improved analysis techniques.

10 Related Work and Conclusions

There has been a significant amount of related work in the
field of privacy and machine learning.

Membership Inference. Prior work has studied the privacy
implications of training on private data. Given a neural net-
work f (·) trained on training data X , and an instance x, it is
possible to construct a membership inference attack [41] that
answers the question “Is x a member of X ?”.

Exposure can be seen as an improvement that quantifies
how much memorization has occurred (and not just if it has).
We also show that given only access to f (·), we extract an
x so that x ∈ X (and not just infer if it is true that x ∈ X), at
least in the case of generative sequence models.

Membership inference attacks have seen further study, in-
cluding examining why membership inference is possible
[49], or mounting inference attacks on other forms of genera-
tive models [22]. Further work shows how to use membership
inference attacks to determine if a model was trained by us-
ing any individual user’s personal information [44]. These
research directions are highly important and orthogonal to
ours: this paper focuses on measuring unintended memoriza-
tion, and not on any specific attacks or membership inference
queries. Indeed, the fact that membership inference is possible
is also highly related to unintended memorization.

More closely related to our paper is work which produces
measurements for how likely it is that membership inference
attacks will be possible [30] by developing the Differential
Training Privacy metric for cases when differentially private
training will not be possible.

Generalization in Neural Networks. Zhang et al. [56]
demonstrate that standard models can be trained to perfectly
fit completely random data. Specifically, the authors show that
the same architecture that can classify MNIST digits correctly
with 99.5% test accuracy can also be trained on completely
random data to achieve 100% train data accuracy (but clearly
poor test accuracy). Since there is no way to learn to clas-
sify random data, the only explanation is that the model has
memorized all training data labels.

Recent work has shown that overtraining can directly lead
to membership inference attacks [53]. Our work indicates that

280 28th USENIX Security Symposium USENIX Association

even when we do not overtrain our models on the training
data, unintentional memorization remains a concern.

Training data leakages. Ateniese et al. [2] show that if an
adversary is given access to a remote machine learning model
(e.g., support vector machines, hidden Markov models, neural
networks, etc.) that performs better than their own model, it is
often possible to learn information about the remote model’s
training data that can be used to improve the adversary’s own
model. In this work the authors “are not interested in privacy
leaks, but rather in discovering anything that makes classifiers
better than others.” In contrast, we focus only on the problem
of private training data.

Backdoor (intentional) memorization. Song et al. [43]
also study training data extraction. The critical difference
between their work and ours is that in their threat model, the
adversary is allowed to influence the training process and
intentionally back-doors the model to leak training data. They
are able to achieve incredibly powerful attacks as a result of
this threat model. In contrast, in our paper, we show that mem-
orization can occur, and training data leaked, even when there
is not an attacker present intentionally causing a back-door.

Model stealing studies a related problem to training data
extraction: under a black-box threat model, model stealing
attempts to extract the parameters θ (or parameters similar
to them) from a remote model, so that the adversary can
have their own copy [48]. While model extraction is designed
to steal the parameters θ of the remote model, training data
extraction is designed to extract the training data that was used
to generate θ. That is, even if we were given direct access to
θ it is still difficult to perform training data extraction.

Later work extended model-stealing attacks to
hyperparameter-stealing attacks [50]. These attacks
are highly effective, but are orthogonal to the problems we
study in this paper. Related work [38] also makes a similar
argument that it can be useful to steal hyperparameters in
order to mount more powerful attacks on models.

Model inversion [18, 19] is an attack that learns aggregate
statistics of the training data, potentially revealing private
information. For example, consider a face recognition model:
given an image of a face, it returns the probability the input
image is of some specific person. Model inversion constructs
an image that maximizes the confidence of this classifier
on the generated image; it turns out this generated image
often looks visually similar to the actual person it is meant
to classify. No individual training instances are leaked in this
attack, only an aggregate statistic of the training data (e.g.,
what the average picture of a person looks like). In contrast,
our extraction algorithm reveals specific training examples.

Private Learning. Along with the attacks described above,
there has been a large amount of effort spent on training pri-
vate machine learning algorithms. The centerpiece of these
defenses is often differential privacy [1, 7, 12, 14, 15]. Our

analysis in Section 9.3 directly follows this line of work and
we confirm that it empirically prevents the exposure of se-
crets. Other related work [40] studies membership attacks
on differentially private training, although in the setting of a
distributed honest-but-curious server.

Other related work [37] studies how to apply adversarial
regularization to reduce the risk of black-box membership in-
ference attacks, although using different approach than taken
by prior work. We do not study this type of adversarial regu-
larization in this paper, but believe it would be worth future
analysis in follow-up work.

10.1 Limitations and Future Work
This work in this paper represents a practical step towards
measuring unintended memorization in neural networks.
There are several areas where our work is limited in scope:

• Our paper only considers generative models, as they
are models that are likely to be trained on sensitive in-
formation (credit card numbers, names, addresses, etc).
Although, our approach here will apply directly to any
type of model with a defined measure of perplexity, fur-
ther work is required to handle other types of machine-
learning models, such as image classifiers.

• Our extraction algorithm presented here was designed
to validate that canaries with a high exposure actually
correspond to some real notion of the potential to ex-
tract that canary, and by analogy other possible secrets
present in training data. However, this algorithm has as-
sumptions that make it ill-suited to real-world attacks.
To begin, real-world models usually only return the most
likely output, that is, the arg max output. Furthermore,
we assume knowledge of the surrounding context and
possible values of the canary, which may not hold true
in practice.

• Currently, we only make use of the input-output behav-
ior of the model to compute the exposure of sequences.
When performing our testing, we have full white-box ac-
cess including the actual weights and internal activations
of the neural network. This additional information might
be used to develop stronger measures of memorization.

We hope future work will build on ours to develop further met-
rics for testing unintended memorization of unique training
data details in machine-learning models.

10.2 Conclusions
The fact that deep learning models overfit and overtrain to
their training data has been extensively studied [56]. Because
neural network training should minimize loss across all exam-
ples, training must involve a form of memorization. Indeed,

USENIX Association 28th USENIX Security Symposium 281

significant machine learning research has been devoted to
developing techniques to counteract this phenomenon [45].

In this paper we consider the related phenomenon of what
we call unintended memorization: deep learning models (in
particular, generative models) appear to often memorize rare
details about the training data that are completely unrelated
to the intended task while the model is still learning the un-
derlying behavior (i.e., while the test loss is still decreasing).
As we show, traditional approaches to avoid overtraining do
not inhibit unintentional memorization.

Such unintended memorization of rare training details may
raise significant privacy concerns when sensitive data is used
to train deep learning models. Most worryingly, such memo-
rization can happen even for examples that are present only a
handful of times in the training data, especially when those
examples are outliers in the data distribution; this is true even
for language models that make use of state-of-the-art regular-
ization techniques to prevent traditional forms of overfitting
and overtraining.

To date, no good method exists for helping practitioners
measure the degree to which a model may have memorized
aspects of the training data. Towards this end, we develop ex-
posure: a metric which directly quantifies the degree to which
a model has unintentionally memorized training data. We
use exposure as the basis of a testing methodology whereby
we insert canaries (orthogonal to the learning task) into the
training data and measure their exposure. By design, exposure
is a simple metric to implement, often requiring only a few
dozen lines of code. Indeed, our metric has, with little effort,
been applied to construct regression tests for Google’s Smart
Compose [29]: a large industrial language model trained on a
privacy-sensitive text corpus.

In this way, we contribute a technique that can usefully be
applied to aid machine learning practitioners throughout the
training process, from curating the training data, to selecting
the model architecture and hyperparameters, all the way to
extracting meaning from the ε values given by applying the
provably private techniques of differentially private stochastic
gradient descent.

Acknowledgements

We are grateful to Martín Abadi, Ian Goodfellow, Ilya
Mironov, Ananth Raghunathan, Kunal Talwar, and David Wag-
ner for helpful discussion and to Gagan Bansal and the Gmail
Smart Compose team for their expertise. We also thank our
shepherd, Nikita Borisov, and the many reviewers for their
helpful suggestions. This work was supported by National
Science Foundation award CNS-1514457, DARPA award
FA8750-17-2-0091, Qualcomm, Berkeley Deep Drive, and
the Hewlett Foundation through the Center for Long-Term
Cybersecurity. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the Na-
tional Science Foundation.

References

[1] Martín Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential
privacy. In ACM CCS, 2016.

[2] Giuseppe Ateniese, Luigi V Mancini, Angelo Spognardi, Antonio Vil-
lani, Domenico Vitali, and Giovanni Felici. Hacking smart machines
with smarter ones: How to extract meaningful data from machine learn-
ing classifiers. International Journal of Security and Networks, 2015.

[3] D Bahdanau, K Cho, and Y Bengio. Neural machine translation by
jointly learning to align and translate. ICLR, 2015.

[4] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jau-
vin. A neural probabilistic language model. JMLR, 2003.

[5] James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher.
Quasi-recurrent neural networks. arXiv preprint arXiv:1611.01576,
2016.

[6] Lord Castleton. Review: Amazon’s ‘Patriot’ is the best show of the
year. 2017. Pajiba. http://www.pajiba.com/tv_reviews/review-
amazons-patriot-is-the-best-show-of-the-year.php.

[7] Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logis-
tic regression. In NIPS, 2009.

[8] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Ben-
gio. Empirical evaluation of gated recurrent neural networks on se-
quence modeling. NIPS Workshop, 2014.

[9] Joseph Conrad. The Secret Sharer. EBook #220. Project Gutenberg,
2009. Originally published in Harper’s Magazine, 1910.

[10] T Cormen, C Leiserson, R Rivest, and C Stein. Introduction to Algo-
rithms. MIT Press, 2009.

[11] TensorFlow Developers. Tensorflow neural machine translation tutorial.
https://github.com/tensorflow/nmt, 2017.

[12] Irit Dinur and Kobbi Nissim. Revealing information while preserving
privacy. In Proceedings of the twenty-second ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems. ACM, 2003.

[13] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. Journal of
Machine Learning Research, 12(Jul):2121–2159, 2011.

[14] C Dwork, F McSherry, K Nissim, and A Smith. Calibrating noise to
sensitivity in private data analysis. In TCC, volume 3876, 2006.

[15] Cynthia Dwork. Differential privacy: A survey of results. In Intl. Conf.
on Theory and Applications of Models of Computation, 2008.

[16] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan,
Kunal Talwar, and Abhradeep Thakurta. Amplification by shuffling:
From local to central differential privacy via anonymity. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2468–2479. SIAM, 2019.

[17] Vitaly Feldman, Ilya Mironov, Kunal Talwar, and Abhradeep Thakurta.
Privacy amplification by iteration. In IEEE FOCS, 2018.

[18] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion
attacks that exploit confidence information and basic countermeasures.
In ACM CCS, 2015.

[19] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page,
and Thomas Ristenpart. Privacy in pharmacogenetics: An end-to-end
case study of personalized Warfarin dosing. In USENIX Security
Symposium, pages 17–32, 2014.

[20] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
Deep learning, volume 1. MIT press Cambridge, 2016.

[21] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. Accurate, large minibatch SGD: Training ImageNet in 1 hour.
arXiv preprint arXiv:1706.02677, 2017.

[22] Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristo-
faro. LOGAN: Evaluating privacy leakage of generative models using
generative adversarial networks. PETS, 2018.

282 28th USENIX Security Symposium USENIX Association

http://www.pajiba.com/ tv_reviews/review- amazons-patriot-is-the-best-show-of- the-year.php
http://www.pajiba.com/ tv_reviews/review- amazons-patriot-is-the-best-show-of- the-year.php
https://github.com/tensorflow/nmt

[23] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[24] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize
better: Closing the generalization gap in large batch training of neural
networks. arXiv preprint arXiv:1705.08741, 2017.

[25] I Hubara, M Courbariaux, D Soudry, R El-Yaniv, and Y Bengio. Quan-
tized neural networks: Training neural networks with low precision
weights and activations. arXiv preprint arXiv:1609.07061, 2016.

[26] Bargav Jayaraman and David Evans. Evaluating differentially private
machine learning in practice. In USENIX Security Symposium, 2019.

[27] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. ICLR, 2015.

[28] Anders Krogh and John A Hertz. A simple weight decay can improve
generalization. In NIPS, pages 950–957, 1992.

[29] Paul Lambert. Write emails faster with SmartCompose in
Gmail. https://www.blog.google/products/gmail/subject-
write-emails-faster-smart-compose-gmail/.

[30] Yunhui Long, Vincent Bindschaedler, and Carl A Gunter. Towards
measuring membership privacy. arXiv preprint 1712.09136, 2017.

[31] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini.
Building a large annotated corpus of English: The Penn Treebank.
Computational linguistics, 19(2):313–330, 1993.

[32] Frank J Massey Jr. The Kolmogorov-Smirnov test for goodness of fit.
Journal of the American statistical Association, 46(253), 1951.

[33] Joseph Menn. Amazon posts a tell-all of buying lists. 1999. Los Ange-
les Times. https://www.latimes.com/archives/la-xpm-1999-
aug-26-fi-3760-story.html.

[34] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Reg-
ularizing and optimizing LSTM language models. arXiv preprint
arXiv:1708.02182, 2017.

[35] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. An anal-
ysis of neural language modeling at multiple scales. arXiv preprint
arXiv:1803.08240, 2018.

[36] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and
Sanjeev Khudanpur. Recurrent neural network based language model.
In Interspeech, volume 2, page 3, 2010.

[37] Milad Nasr, Reza Shokri, and Amir Houmansadr. Machine learning
with membership privacy using adversarial regularization. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 634–646. ACM, 2018.

[38] Seong Joon Oh, Max Augustin, Mario Fritz, and Bernt Schiele. Towards
reverse-engineering black-box neural networks. In ICLR, 2018.

[39] A O’hagan and Tom Leonard. Bayes estimation subject to uncertainty
about parameter constraints. Biometrika, 63(1), 1976.

[40] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and
Shiho Moriai. Privacy-preserving deep learning: Revisited and en-
hanced. In International Conference on Applications and Techniques
in Information Security, pages 100–110. Springer, 2017.

[41] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
Membership inference attacks against machine learning models. In
IEEE Symposium on Security and Privacy, 2017.

[42] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep
neural networks via information. arXiv preprint 1703.00810, 2017.

[43] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. Machine
learning models that remember too much. In ACM CCS, 2017.

[44] Congzheng Song and Vitaly Shmatikov. The natural auditor: How to
tell if someone used your words to train their model. arXiv preprint
arXiv:1811.00513, 2018.

[45] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. JMLR, 15(1):1929–1958, 2014.

[46] Igor V. Tetko, David J. Livingstone, and Alexander I. Luik. Neural
network studies. 1. Comparison of overfitting and overtraining. Journal
of Chemical Information and Computer Sciences, 35(5):826–833, 1995.

[47] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude. COURSERA:
Neural networks for machine learning, 4(2):26–31, 2012.

[48] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas
Ristenpart. Stealing machine learning models via prediction APIs. In
USENIX Security Symposium, pages 601–618, 2016.

[49] Stacey Truex, Ling Liu, Mehmet Emre Gursoy, Lei Yu, and Wenqi Wei.
Towards demystifying membership inference attacks. arXiv preprint
arXiv:1807.09173, 2018.

[50] Binghui Wang and Neil Zhenqiang Gong. Stealing hyperparameters in
machine learning. arXiv preprint arXiv:1802.05351, 2018.

[51] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, et al. Google’s neural machine translation system:
Bridging the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

[52] Yuanshun Yao, Bimal Viswanath, Jenna Cryan, Haitao Zheng, and
Ben Y Zhao. Automated crowdturfing attacks and defenses in online
review systems. ACM CCS, 2017.

[53] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Pri-
vacy risk in machine learning: Analyzing the connection to overfitting.
In 2018 IEEE 31st Computer Security Foundations Symposium (CSF),
pages 268–282. IEEE, 2018.

[54] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size
to 32k for ImageNet training. arXiv preprint arXiv:1708.03888, 2017.

[55] Matthew D Zeiler. ADADELTA: An adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

[56] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and
Oriol Vinyals. Understanding deep learning requires rethinking gener-
alization. ICLR, 2017.

A Additional Memorization Experiments

A.1 Across Different Architectures
We evaluate different neural network architectures in Table 4
again on the PTB dataset, and find that all of them uninten-
tionally memorize. We observe that the two recurrent neural
networks, i.e., LSTM [23] and GRU [8], demonstrate both
the highest accuracy (lowest loss) and the highest exposure.
Convolutional neural networks’ accuracy and exposure are
both lower. Therefore, through this experiment, we show that
the memorization is not only an issue to one particular archi-
tecture, but appears to be common to neural networks.

A.2 Across Training Strategies
There are various settings for training strategies and tech-
niques that are known to impact the accuracy of the final
model. We briefly evaluate the impact that each of these have
on the exposure of the inserted canary.

Batch Size. In stochastic gradient descent, we train on mini-
batches of multiple examples simultaneously, and average
their gradients to update the model parameters. This is usu-
ally done for computational efficiency—due to their parallel
nature, modern GPUs can evaluate a neural network on many
thousands of inputs simultaneously.

To evaluate the effect of the batch size on memorization,
we train our language model with different capacity (i.e., num-
ber of LSTM units) and batch size, ranging from 16 to 1024.
(At each batch size for each number of units, we train 10

USENIX Association 28th USENIX Security Symposium 283

https://www.blog.google/products/gmail/subject-write-emails-faster-smart-compose-gmail/
https://www.blog.google/products/gmail/subject-write-emails-faster-smart-compose-gmail/
https://www.latimes.com/archives/la-xpm-1999-aug-26-fi-3760-story.html
https://www.latimes.com/archives/la-xpm-1999-aug-26-fi-3760-story.html

Architecture Layers Units Test Loss Exposure

GRU 1 370 1.18 36
GRU 2 235 1.18 37
LSTM 1 320 1.17 38
LSTM 2 200 1.16 35
CNN 1 436 1.29 24
CNN 2 188 1.28 19
CNN 4 122 1.25 22
WaveNet 2 188 1.24 18
WaveNet 4 122 1.25 20

Table 4: Exposure of a canary for various model architec-
tures. All models have 620K (+/- 5K) parameters and so have
the same theoretical capacity. Convolutional neural networks
(CNN/WaveNet) perform less well at the language modeling
task, and memorize the canary to a lesser extent.

models and average the results.) All models with the same
number of units reach nearly identical final training loss and
testing loss. However, the models with larger batch size ex-
hibit significantly more memorization, as shown in Table 5.
This experiment provides additional evidence for prior work
which has argued that using a smaller batch size yields more
generalizable models [24]; however we ensure that all models
reach the same final accuracy.

While this does give a method of reducing memorization
for some models, it unfortunately comes at a significant cost:
training with a small batch can be prohibitively slow, as it
may prevent parallelizing training across GPUs (and servers,
in a decentralized fashion).6

Shuffling, Bagging, and Optimization Method. Given a
fixed batch-size, we examine how other choices impact mem-
orization. We train our model with different optimizers: SGD,
Momentum SGD, RMSprop [47], Adagrad [13], Adadelta
[55], and Adam [27]; and with either shuffling, or bagging
(where minibatches are sampled with replacement).

Not all models converge to the same final test accuracy.
However, when we control for the final test accuracy by taking
a checkpoint from an earlier epoch from those models that
perform better, we found no statistically significant difference
in the exposure of the canary with any of these settings; we
therefore do not include these results.

A.3 Across Formats and Context
We find that the context we are aware of affects our ability to
detect whether or not memorization has occurred.

In our earlier experiments we computed exposure with the
prefix “The random number is” and then placing the random-

6Recent work has begun using even larger batch sizes (e.g., 32K) to train
models orders of magnitude more quickly than previously possible [21, 54].

B
at

ch
Si

ze

Number of LSTM Units
50 100 150 200 250

16 1.7 4.3 6.9 9.0 6.4
32 4.0 6.2 14.4 14.1 14.6
64 4.8 11.7 19.2 18.9 21.3

128 9.9 14.0 25.9 32.5 35.4
256 12.3 21.0 26.4 28.8 31.2
512 14.2 21.8 30.8 26.0 26.0

1024 15.7 23.2 26.7 27.0 24.4

Table 5: Exposure of models trained with varying model sizes
and batch sizes. Models of the same size trained for the same
number of epochs and reached similar test loss. Larger batch
sizes, and larger models, both increase the amount of mem-
orization. The largest memorization in each column is high-
lighted in italics bold, the second largest in bold.

Format Exposure at Epoch
5 10

5.0 6.1
〈s〉 6.3 7.1

〈e〉 5.0 6.8
〈s〉 〈e〉 6.1 7.5

- - 5.1 9.5
- - - - - - - - 5.2 11.1

Table 6: Exposure of canaries when the we are aware of differ-
ent amounts of surrounding context (〈s〉 and 〈e〉 are in practice
unique context characters of five random characters). The ex-
posure is computed at epoch 5 and 10, before the models
completely memorize the inserted canary.

ness as a suffix. What if instead we knew a suffix, and the
randomness was a prefix? Alternatively, what if the random-
ness had a unique structure (e.g., SSNs have dashes)?

We find that the answer is yes: additional knowledge about
the format of the canary increases our ability to detect it was
memorized. To show this, we study different insertion formats,
along with the exposure of the given canary after 5 and 10
epochs of training in Table 6, averaged across ten models
trained with each of the formats.

For the first four rows of Table 6, we use the same model,
but compute the exposure using different levels of context.
This ensures that it is only our ability to detect exposure that
changes. For the remaining two rows, because the format has
changed, we train separate models. We find that increasing the
available context also increases the exposure, especially when
inner context is available; this additional context becomes
increasingly important as training proceeds.

284 28th USENIX Security Symposium USENIX Association

	Introduction
	Background: Neural Networks
	Concepts, Notation, and Training
	Generative Sequence Models
	Overfitting in Machine Learning

	Do Neural Nets Unintentionally Memorize?
	Measuring Unintended Memorization
	Notation and Setup
	The Precise Exposure Metric
	Efficiently Approximating Exposure

	Exposure-Based Testing Methodology
	Experimental Evaluation
	Smart Compose: Generative Email Model
	Word-Level Language Model
	Character-Level Language Model
	Neural Machine Translation

	Characterizing Unintended Memorization
	Memorization Throughout Training
	Memorization versus Overtraining
	Additional Memorization Experiments

	Validating Exposure with Extraction
	Efficient Extraction Algorithm
	Efficiency of Shortest-Path Search
	High Exposure Implies Extraction
	Enron Emails: Memorization in Practice

	Preventing Unintended Memorization
	Regularization
	Weight Decay
	Dropout
	Quantization

	Sanitization
	Differential Privacy

	Related Work and Conclusions
	Limitations and Future Work
	Conclusions

	Additional Memorization Experiments
	Across Different Architectures
	Across Training Strategies
	Across Formats and Context

