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Abstract
Most deployed authorization systems rely on a central
trusted service whose compromise can lead to the breach
of millions of user accounts and permissions. We present
WAVE, an authorization framework offering decentralized
trust: no central services can modify or see permissions and
any participant can delegate a portion of their permissions
autonomously. To achieve this goal, WAVE adopts an ex-
pressive authorization model, enforces it cryptographically,
protects permissions via a novel encryption protocol while
enabling discovery of permissions, and stores them in an un-
trusted scalable storage solution. WAVE provides competi-
tive performance to traditional authorization systems relying
on central trust. It is an open-source artifact and has been
used for two years for controlling 800 IoT devices.

1 Introduction
Authorization and authentication are fundamental compo-
nents of many systems. Most authorization systems today
rely on centralized services such as centralized credential
stores (e.g., [15, 19, 56]), Access Control Lists (ACLs), Ac-
tive Directory, and OAuth [4]. For example, in a calendar
application, a central service stores which users have access
to what calendars, and users authenticate to it, e.g. via user-
name and password. In these systems, delegation is critical:
for instance, allowing an assistant to edit your calendar, and
letting the assistant further delegate restrictive view access to
an event organizer. These forms of delegation are typically
implemented as changes to a centralized ACL.

However, this approach presents two fundamental prob-
lems. First, a centralized service is a central point of attack:
a single attack can simultaneously compromise many user
accounts and permissions. There have been numerous such
breaches [39], and attackers even managed to log in as the
victim users. Second, the operator of the central server has
a complete view of the private permission data for all users
(thus seeing users’ social relationships [54]), and can modify
permissions [2].

Responding to the weaknesses of centralized systems, re-
cent security systems are increasingly avoiding a trusted
central service. This approach has been adopted by end-
to-end encryption systems [25], such as WhatsApp and
Signal, blockchains (e.g., Bitcoin, Ethereum, Zcash), or
ledgers (e.g., IBM’s Hyperledger [17], Certificate Trans-
parency [41], Key Transparency [32]). Our goal is to build a
scalable decentralized authorization system, permitting del-
egation under a similar threat model.

We propose a decentralized authorization system that
does not rely on a trusted service, WAVE (“WAVE is an
Authorization Verification Engine”). WAVE offers de-
centralized trust: each user’s WAVE client manages the
permissions of that user and can delegate access to other
users. WAVE enforces delegation cryptographically, not via
a trusted service. It aims to capture a wide range of autho-
rization policies and to provide an alternative to traditional
systems, such as OAuth [4] and Active Directory.

Importantly, in providing decentralized transitive delega-
tion, WAVE facilitates applications that span multiple trust
domains. For example, IoT orchestration applications like
If This Then That (IFTTT) [3] tie together multiple ven-
dors and users, but IFTTT’s design relies on several central
points of attack: the vendor OAuth servers and the IFTTT
token storage servers. The compromise of any one of these
servers may affect hundreds of thousands of users. Us-
ing WAVE, greater cross-administrative-domain orchestra-
tion can be achieved with no central authorization servers,
reducing the trust that each domain must place in the others.

1.1 Usage Scenarios
While authorization plays a key role in the security of al-
most any system today, the benefits of decentralized au-
thorization are most pronounced in systems that are inher-
ently distributed, where the prevailing centralized authoriza-
tion schemes undermine what would otherwise be a resilient
system. Our deployment of WAVE over the past two years
has focused on securing distributed IoT devices and services
used to monitor and control over twenty small to medium-
sized commercial and residential buildings; hence, we will
use smart buildings as a running example.

Consider a set of campuses, each owned by a property
manager. Each campus is composed of multiple buildings,
with portions of each building leased out to tenants by the
property manager. The property manager within each cam-
pus is the authority for the cyberphysical resources associ-
ated with the buildings in the campus, but they must delegate
permission to the individual building managers who must
further delegate permissions to the tenants, allowing them
to control the portions of the buildings that they rent. Any of
these principals may then further delegate permissions to IoT
devices, long-running analytics or control services operating
on their behalf, perhaps provided by the utility. The building
manager and/or tenant will also grant ephemeral permissions
on subsets of the building infrastructure to contractors (like
HVAC commissioning teams) and, especially in our case, to
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researchers.
A similar structure occurs in small residential buildings

where a homeowner installs smart devices such as lights and
thermostats and needs to delegate permission on those de-
vices to their partner, guest, nanny, or children.

Cross-administrative-domain delegation is present in both
examples. In larger buildings, we see the boundary between
the property owner and the tenants. In residential build-
ings, this is most evident when using orchestration tools like
IFTTT, where an organization, distinct from the owner of the
devices, runs the controller service and needs to obtain per-
mission from the owner.

WAVE is not limited to IoT. It provides general purpose
delegable authorization and can, for example, be used in
place of OAuth to remove the risk of the centralized token-
issuing server and allow for richer delegation semantics.

1.2 High-Level Security Goal & Threat Model
At a high level, our objective is to design a system where the
compromise of an authorization server does not compromise
all the users’ permissions. Namely, even if an adversary has
compromised any authorization servers and users, it should
not be able to:
1. Grant permissions on behalf of uncompromised users.
2. See permissions granted in the system, beyond those po-

tentially relevant to the compromised users. See §4 and
§B for our definition of relevant.

3. Undetectably modify the permissions received/grant-
ed/revoked by uncompromised users from uncom-
promised users, or undetectably prevent uncompro-
mised users from granting/receiving/revoking permis-
sions to/from uncompromised users.

1.3 Failure Of Existing Systems
Existing authorization systems fall short in two general ar-
eas: they do not meet our Security Goals or they do not pro-
vide the features required for IoT usage scenarios. More con-
cretely, we summarize the following six requirements that
are not simultaneously met by any existing system (as illus-
trated in Table 4):
No reliance on central trust. For example, in the smart
buildings scenario, the status quo has certain devices (e.g
LiFx light bulbs) perform their authorization on the vendor’s
server in the cloud. If that server is compromised, all of those
devices in all of the customer buildings are compromised. In
this case, the adversary can violate all three Security Goals.
Transitive delegation. The smart building scenario illus-
trates the necessity for transitive delegation and revocation
where, for example, a tenant can further delegate their per-
missions to a control service or guest and have those permis-
sions predicated on the tenant’s permissions. If the tenant
moves out, all of the permissions they granted should be au-
tomatically revoked, even if the building manager is unaware
of the grants the tenant has made. This form of transitive del-
egation is not found in widely-deployed systems like LDAP

or OAuth: where delegation exists, it does not have this tran-
sitive predication property. In contrast, this property is well
developed in academic work [49, 13, 43, 45, 29, 14, 51, 11].

Protected permissions. Parties should be able to see only
the permissions that are potentially relevant to them. Even
though the property manager is the authority for all the build-
ings, they must not be able to see the permissions that the
tenants grant (Security Goal #2). Existing systems do not
offer a solution to this requirement: in many centralized sys-
tems, for example, whoever operates the server can see all
the permissions. We elaborate further in §9.

Decentralized verification. Some existing decentralized
systems (e.g. SDSI/SPKI [49] and Macaroons [12]) allow
only the authority to verify that an action is authorized. This
is adequate in the centralized service case where the author-
ity is the service provider, but it does not work in the IoT case
where the root authority (the property manager) has nothing
to do with the devices needing to verify an action is autho-
rized (for example a thermostat). Any participant must be
able to verify that an action is authorized.

No ordering constraints. Delegations must be able to be
instantiated in any chronological order. For example, a par-
ticipant can delegate permissions in anticipation of being
granted sufficient ones for the delegation to be useful. We
have found this to be critical in our deployments. As a fur-
ther example, when the building manager’s key needed to be
replaced (e.g. it expired or was compromised), they created a
new key and the property manager had to grant replacement
permissions to this new key. In many existing systems (e.g.
Macaroons [12]), this necessitates every tenant re-creating
their entire permission trees, as all grants must happen in se-
quence, following the grants to the replacement key. This
is not tractable in practice as it requires the coordination of
many people and hundreds of devices, leading to extended
downtime. Furthermore, when we had such ordering con-
straints in our prior deployments we observed users choos-
ing insecure long expiry times or broad permissions to avoid
this re-issue. As a result, we require that the system enables
permission grants to occur out of order, so that permissions
grants can be modified (revoked / re-issued) or any key can
be “replaced” without re-issuing subsequent delegations. We
have also found that this capability leads to safer user prac-
tices as “mistakes” like overly narrow permissions and short
expiry times are easy to correct.

Offline participants. Not all participants have a persistent
online presence. A device may be offline at the time that
it is granted permissions (e.g. during installation) and it
must be able to discover that it received permissions when
it comes online. This is trivial to solve with a centralized
authorization system, but is not solved in existing decen-
tralized systems (e.g SDSI/SPKI [49], Macaroons [12] and
[13, 43, 45, 29, 27, 44, 59, 18, 57, 50]).

While many existing systems meet some of these require-
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ments, no existing work meets all of the requirements con-
currently, as shown in §9.

1.4 Challenges and Approach
Compatible authorization model. The first challenge is
identifying a model for authorization that is compatible with
these requirements. We examined many authorization mod-
els [12, 49, 24, 13, 43, 45, 29, 27, 58, 37, 30, 48, 19, 15,
56, 44, 59, 18, 57, 50], but most of them cannot be en-
forced without a centralized authority or are incompatible
with the other requirements. Nevertheless, we found that
representing the authorization model as a graph, such as in
SDSI/SPKI [49, 24] where a proof of authorization is a path
through a graph, is compatible with our requirements, even
though the existing systems implementing it fall short.

Consequently, WAVE maintains a global graph of delega-
tions between entities (Fig. 1a), which are associated with
participants. An entity is a collection of public and private
key pairs and can correspond to a user, service, or group. An
edge indicates that an entity grants another entity access ac-
cording to a policy, which is one or more permissions along
with a description of the resources for which the permissions
are granted, and the expiry of the grant. This enables fine-
grained transitive delegation with revocation and expiry.

To enforce the policy cryptographically, each edge, from
issuer to subject entity, is a signed certificate recording the
delegation of permissions, which we call an attestation. A
path from an entity to another entity grants access equal to
the intersection of the policies on that path. The graph en-
ables entities to prove they have some permission P by re-
vealing a path through the graph from an authority entity to
themselves where all the edges of the path grant a superset of
P. This path is called a proof. The graph construction allows
permissions to be granted in any order, including delegation
of permissions one does not yet possess but expects to re-
ceive in the future.

While WAVE’s authorization graph and proofs are struc-
turally similar to SDSI/SPKI, WAVE differs in three impor-
tant aspects: (1) while in SDSI/SPKI only a central authority
(holding an ACL) can verify a proof, in WAVE anyone can
independently (with no communication) verify a proof yield-
ing an authorization policy. (2) WAVE provides a trustwor-
thy, scalable storage solution for attestations that enables dis-
coverability with offline participants and out of order grants,
which is out of scope for SDSI/SPKI. (3) Attestations are
encrypted in WAVE whereas they are visible in SDSI/SPKI.
These differences enable meeting the requirements in §1.3.

Scalable untrusted storage. To support granting permis-
sions to offline participants, we use a storage system that
enables participants to discover attestations when they later
come online. To meet the requirements above, the storage
must be able to prove its integrity cryptographically, so as
not to compromise Security Goal #3.

Our first design of WAVE [9] was built on Ethereum,

which has these properties. Unfortunately, our experiments
showed that a blockchain-based system will not scale to a
global size, even though changing permissions is far less
common than accessing data.

We present a new type of transparency log, the Unequiv-
ocable Log Derived Map (ULDM). Unlike Certificate Trans-
parency [41], which cannot form a proof of nonexistance
needed for revocations, or Key Transparency [32], which re-
quires users to audit every object at every epoch, a ULDM
is both capable of handling revocations and is efficiently
auditable. The ULDM forms the foundation of a horizon-
tally scalable storage tier with cryptographically proven in-
tegrity, which could also be useful outside of WAVE. Our
current design, described in §5, allows for a shared-nothing
architecture of storage servers with independent auditors that
need only communicate periodically (e.g., once a day) with
clients to verify the correct operation of the storage. The re-
sulting architecture is arbitrarily horizontally scalable with
each node having a higher capacity and lower latency than a
blockchain, as we show in §8.
Confidentiality of permissions. To meet the requirement of
protected permissions and Security Goal #2 despite the pub-
lic ULDM storage tier, there must be a mechanism to prevent
the storage servers or the general public from seeing the per-
missions, while ensuring that parties forming and verifying
proofs can see the necessary permissions. The challenge lies
in preserving confidentiality while enabling out of order del-
egation and offline participants. We overcome this challenge
with a novel technique called reverse-discoverable encryp-
tion (RDE, §4) used to encrypt attestations. RDE allows en-
tities to efficiently discover and decrypt the attestations that
they can use in a valid proof while using policy-aware en-
cryption to hide most other attestations. Importantly, RDE
does not introduce additional constraints on the ordering of
delegations or liveness of participants.

Our implementation of WAVE is a real-world open-source
artifact [7]. We have deployed and operated various versions
of WAVE over the past two years. During this time, WAVE
has been used to control more than 20 buildings containing
more than 800 IoT devices. We discuss lessons from our de-
ployment in §8.4; in particular, this has allowed us to confirm
that the authorization and delegation model presented here is
useful in practice. Further, WAVE has offered performance
comparable to traditional authorization systems, validating
real proofs in 1–4 ms, depending on the depth of delegation.

2 WAVE Overview
WAVE runs as a service that can be logically divided into
three layers (Fig. 1a) each providing an API (Fig. 1b).

2.1 Global Authorization Graph
Recall that the global authorization graph consists of enti-
ties, which are bundles of public and private keys, and at-
testations, which are the permission grants between them.
The client (representing a user, device, or service) inter-

USENIX Association 28th USENIX Security Symposium    1377



WAVE overview - Untitled(1)

Root

Global authorization graph (§2)

Proof path

Prover

Reverse-discoverable encryption (§4)

Decrypt
Grant

Scalable untrusted storage (§5)

lo
g

m
ap lo
g

lo
g

m
ap lo
g

lo
g

m
ap lo
g

Applications

Application API

Encryption API

Storage API

(a) The WAVE stack

Subsystem API

Application

CreateEntity() =⇒ (privEnt, pubEnt)
Delegate(issuer:privEnt, subject:pubEnt, policy) =⇒ attestation
CreateProof(subject:privEnt, policy) =⇒ (proof)
VerifyProof(proof) =⇒ (subject:pubEnt, policy)
NewName(issuer: privEnt, subject:pubEnt, name) =⇒ (nameDecl)
ResolveName(resolver: privEnt, name) =⇒ (nameDecl)
Revoke(issuer:privEnt, object:attestation/pubEnt)

Encryption EncryptAttest(attestation, partition) =⇒ attCiphertext
DecryptAttest(perspective:privEnt, attCiphertext) =⇒ attestation

Storage

Put(object, server) =⇒ hash
Get(hash, server) =⇒ object
Enqueue(list:hash, entry:hash, server)
IterQueue(list:hash, cursor) =⇒ (entry:hash, newCursor)

(b) The API provided by WAVE’s stack.

Figure 1: An overview of WAVE

acts through the WAVE service with the global authorization
graph. Clients can create new entities (e.g., for a service they
are deploying).

To grant permissions to other entities, clients use the
WAVE service to construct an attestation signed by the grant-
ing entity containing a policy describing the permissions. An
attestation A consists of:
• A.issuer: the entity that wishes to grant permissions to

another entity,
• A.subject: the entity receiving the permissions,
• A.policy: an expression of permissions, for example,

RTree described in §2.4, and
• a revocation commitment described in §6.1
• signature(s) from the issuer.
When accessing a service or controlling a device, clients

request a proof from the WAVE service; the WAVE service
will search for a path through the global authorization graph
from the authority for the service or device in question to the
client’s entity, where each edge grants a superset of the re-
quired permissions. The representation of this path is a self-
standing proof of authorization that can be verified without
communication with the proving entity. The receiving ser-
vice or device can use the WAVE service to validate a proof,
yielding the authorization policy it permits.

The WAVE service also allows for mapping human read-
able names to entity public keys to make the system more
usable, as we elaborate in §6.2.

2.2 Reverse-Discoverable Encryption (RDE)
To ensure the privacy of permissions, the WAVE service uses
our protocol, Reverse-Discoverable Encryption (described in
§4) to encrypt the attestations. The encryption layer is trans-
parent to clients: the WAVE service will discover and de-
crypt the portion of the global graph that concerns the client
automatically. The only time a client interacts with the en-
cryption layer is when they use RDE to encrypt messages for

application-level end-to-end encryption, which is beyond the
scope of this paper.

2.3 Scalable Untrusted Storage
When the client instructs the WAVE service to create an en-
tity or an attestation, the WAVE service will place the public
keys (for entities) or RDE ciphertext (for attestations) into
the scalable untrusted storage (§5). As with RDE, the place-
ment into storage is transparent to clients: clients operate
only at the level of granting permissions, creating proofs
and verifying proofs. The WAVE client will interact with
the storage to discover and decrypt the portion of the global
graph necessary for performing those actions without the
client manually publishing or retrieving objects.

2.4 Resource Tree Authorization Policy
Although WAVE’s design is agnostic to the specific mecha-
nism used for expressing the authorization policy (i.e., it is
compatible with existing policy languages such as [10, 12]),
in our IoT deployments we use a simple yet widely appli-
cable model: a resource tree (RTree) modelled roughly after
SPKI’s pkpfs tags [24].

An RTree policy manages permissions on a hierarchically
organized set of resources. A resource is denoted by a URI
pattern such as company-entity/building/device or
user-entity/albums/holiday/*. The first element of
a URI (e.g. company-entity) is called the namespace au-
thority or just namespace, which specifies the entity who is
the root of authorization for that resource (the entity who has
permission on that policy without having received permis-
sion from someone else). The global authorization graph has
many different RTrees with namespace authorities, ideally
with one per intrinsic authority, e.g. homeowner or company.
This lets the system be as decentralized as the naturally oc-
curring authority structure, unlike the single-authority-per-
vendor model, used in most systems today, which forces cen-
tralization. Depending on the structure of a given resource
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hierarchy, there may be a minimum length for the resource
URI. This often occurs where the first few elements are used
to capture boundaries that exist naturally, such as a depart-
ment, building or project. These elements that can be relied
upon to exist, if present for a given RTree, are called the re-
source prefix. An RTree policy consists of:
• A set of permissions (strings such as “schema::read”)
• A URI pattern describing a set of resources
• A time range describing when the grant is valid
• An indirections field, which limits re-delegation
For example, a building manager entity might grant hvac::
actuate on bldgnamespace/floor4/* over a time range
corresponding with the lease terms, allowing further delega-
tion, to a tenant entity.

2.5 How WAVE Meets the Requirements
WAVE’s global authorization graph, RDE, and storage layer
allow it to achieve the requirements established in §1.3:
No reliance on central trust. WAVE achieves decentral-
ization via three design features. First, the permission dele-
gations are cryptographically enforced without a verifying
authority. Secondly, any participant can create an RTree
namespace, mimicking the natural ownership of resources.
Finally, our Unequivocable Log Derived Map §5 allows par-
ticipants to detect if the untrusted storage servers violate in-
tegrity. Although the storage server is centralized for avail-
ability, it is not a point of central trust as its behavior is cryp-
tographically enforced.
Transitive Delegation. The graph-based authorization
model efficiently captures transitive delegation. To delegate
permissions, any entity can create an attestation that cap-
tures which subset of their permissions they wish to delegate.
Since a proof is represented by a path through the graph, if
an entity higher up in the delegation tree is revoked, all en-
tities beneath it will no longer be able to prove they have
permissions, even though the party revoking the entity may
have been unaware of the delegations lower in the tree. This
gives us the transitive delegation property.
Protected permissions. Through the Reverse-Discoverable
Encryption scheme in §4, no party can decrypt attestations
that are not potentially relevant to them. In our example, the
property manager cannot decrypt attestations that the tenant
makes, and the party running the storage servers cannot read
any of the attestations.
Decentralized verification. WAVE proofs can be verified
by anyone, unlike in SDSI/SPKI [49] or Macaroons [12].
This enables an IoT device to verify all messages it receives
without communicating with an external service (with the
exception of revocation checks, as detailed in §6.1).
No ordering constraints. An entity can grant any permis-
sions at any time, including those that it has not yet received
(although the recipient won’t be able to form a proof yet).
Consequently, attestations can be replaced anywhere in the
hierarchy without requiring re-issue of subsequent delega-

tions. Furthermore, our privacy mechanism preserves this
property because an attestation can be encrypted under a
policy-specific key before the issuer has been granted the
permissions corresponding to the policy.
Offline participants. Attestations are disseminated through
the ULDM storage tier (§5) which allows for entities to dis-
cover permissions they have been granted while they were
offline and removes the need for any out-of-band online com-
munication between entities.

3 Security Guarantees and Roadmap
WAVE must fulfill three security goals (§1.2). Regarding
Security Goal #1, WAVE guarantees the following:
Guarantee 1. An attacker Adv can form a proof of autho-
rization on a policy if and only if the authority for that pol-
icy is compromised or has delegated access, directly or indi-
rectly, to a compromised entity.

This guarantee follows directly from the fact that each
attestation is signed by its issuer. A WAVE proof can be
thought of as a certificate chain. Given that existing systems
like SDSI/SPKI [49] use a similar construction, we do not
explore this further.

To achieve the other two security goals, WAVE introduces
two new techniques: Reverse-Discoverable Encryption (§4)
to satisfy Security Goal #2, and Unequivocable Log-Derived
Maps (§5) to satisfy Security Goal #3. The following sec-
tions introduce these techniques and state formal security
guarantees.

4 Encrypting Attestations
We encrypt attestations such that entities can decrypt attes-
tations they can use in a valid proof. Entities cannot learn
the policy (i.e., what permissions are granted) or the issuer
(i.e., who created the attestation) of most other attestations.
Our technique, reverse-discoverable encryption (RDE), does
not require out-of-band communication between entities and
works even if attestations are created out of order.

We present our solution incrementally: §4.1 formalizes the
problem that RDE solves. §4.2 presents a simplified design
of RDE, based on traditional public-key encryption, that pro-
vides a weak but useful security guarantee called “structural
security.” §4.3 augments the simplified RDE with policy-
aware encryption to provide a significantly stronger notion
of security, at the expense of making discoverability of at-
testations inefficient. §4.4 presents our final protocol, which
provides both efficient discovery of attestations and a signif-
icantly stronger guarantee than structural security.

For all the security guarantees stated in this section, we as-
sume that the attacker Adv is computationally-bounded, and
that standard cryptographic assumptions hold.

4.1 Graph-based Formalization
We formalize the problem in terms of the global authoriza-
tion graph; an example is shown in Fig. 2. For correctness,
we require that each entity can decrypt all attestations that
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#1:file1
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#4:file1

#5:file2

#3:file1

Figure 2: The number to the left of each colon indicates
when the attestation was created. The string to the right de-
notes the resource on which it grants permission.

it can use to form a valid proof where it is the subject. In
Fig. 2, entity D should be able to see attestations #1, #4, and
#3. Correctness does not require D to be able to see attes-
tation #2, as there is no path from B to D granting access to
file1. Similarly, correctness does not require D to be able
to see attestation #5, as there is no path from C to D granting
access to file2. For security, we would like each entity to
see as few additional attestations as possible.

4.2 Structural RDE
This section explains a simplified (yet weaker) version of
RDE that is helpful to understand the main idea behind our
technique. For this version alone, assume there are no re-
voked/expired attestations.

Each entity has an additional public-private keypair used
only for encrypting/decrypting attestations, separate from
the keys used to sign attestations. This keypair is governed
by two rules: when an entity grants an attestation, it (1) at-
taches its private key to the attestation, and (2) encrypts the
attestation, including the attached private key, using the pub-
lic key of the attestation’s subject (recipient). For example,
in Fig. 2, #3 contains skC and is encrypted under pkD (i.e.,
Enc(pkD;#3||skC)).

This meets the correctness goal; D can decrypt #3 as #3 is
encrypted under pkD. In decrypting #3, it obtains skC, which
it can use to decrypt #4. This works even though attestation
#4 was issued after #3. In decrypting #4, it obtains skA,
which it can use to decrypt #1. Essentially, each entity can
see the attestations it can use in a proof by decrypting them
in the reverse order as they would appear in a proof.

This achieves a simple security guarantee called struc-
tural security, which allows an entity e to see any attestation
A for which there exists a path from A.subject to e. We call it
“structural” security because only the structure of the graph,
not the policies in attestations, affects whether A is visible to
e. While structural RDE uses traditional public-key encryp-
tion, it differs from systems like PGP in that entities include
their long-lived private keys in the attestations they encrypt.

4.3 Policy-Aware RDE
Structural security only takes into account the structure of the
graph, not the policy of each attestation (i.e., the resources
and the expiry). For example, structural RDE allows D to
decrypt #5, though this is not necessary to meet the correct-
ness goal; D cannot form a valid proof containing #5 because

its policy differs from #4’s (they delegate access to different
files). With policy-aware RDE, we achieve a stronger notion
of security that prevents D from decrypting #5 by making
two high-level changes to structural RDE.

First, whereas structural RDE encrypts each attestation
A according to only A.subject, policy-aware RDE encrypts
each attestation A according to both A.subject and A.policy.
Second, whereas structural RDE includes a key in A that can
decrypt all attestations immediately upstream of A, policy-
aware RDE includes a key in A that can only decrypt up-
stream attestations with policies compatible with A.policy.
Choosing a suitable encryption scheme. Because the pol-
icy of an attestation determines how it is encrypted, the en-
cryption scheme must be policy-aware. In particular, tradi-
tional public-key encryption is insufficient for policy-aware
encryption (except for a boolean policy). We use the RTree
policy type to explain our policy-aware RDE, although the
technique applies to other policy types.

We identify Wildcard Identity-Based Encryption
(WIBE) [5] as a suitable policy-aware encryption scheme
to implement RDE for the RTree policy type. Typically,
IBE [16] (or an IBE variant such as WIBE) is instantiated
with a single centralized Private Key Generator (PKG) that
issues private keys to all participants. This does not meet
the goals of WAVE, because the PKG is a central trusted
party. In RDE, however, our insight is to instantiate a WIBE
system for every entity, so there is no central PKG.

A WIBE system consists of a master secret and pub-
lic key pair (WIBE.msk,WIBE.mpk). A message m
is encrypted using the master public key WIBE.mpk
and a fixed-length vector of strings, called an ID:
WIBE.Enc(WIBE.mpk, ID;m). Using msk, one can gener-
ate a secret key for a set of IDs. This set is expressed as an
ID with some components replaced by wildcards, denoted
ID∗. The secret key skID∗ can decrypt an encrypted mes-
sage, WIBE.Enc(WIBE.mpk, ID;m), if ID∗ and ID match in
all non-wildcard components.

Every policy p has an associated WIBE ID called a
partition. The partition corresponding to policy p is de-
noted P(p). When issuing an attestation A, an entity
encrypts it using P(A.policy), in the WIBE system of
A.subject: WIBE.Enc(WIBE.mpkA.subject,P(A.policy);A).
Furthermore, the issuing entity generates secret keys in
its own WIBE system, suitable to decrypt messages en-
crypted under P(A.policy), and includes them in the at-
testation. Let Q(A.policy) = {ID∗i}i represent the set of
IDs suitable for decrypting attestations encrypted under
P(p) for p compatible with A.policy, then A includes W =
{WIBE.KeyGen(WIBE.mskIssuer; ID∗i)}ID∗i∈Q(A.policy). Be-
low, we develop the partition map for RTree, which derives
a partition from an RTree policy (i.e., functions P and Q).
Partition map for RTree. To define P, consider that an
RTree policy consists of a resource prefix as defined in §2.4
(matching multiple resources) and a time range during which
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the permission is valid. To express the start and end of this
range as a WIBE ID, we define a time-partitioning tree of
depth k over the entire supported time range; now any time
in the supported time range can be represented as a vector
representing a path in the tree from root to leaf. A WIBE ID
is a length-n vector: to represent attestations with a certain
time range, we choose k of those n components to encode
the valid-after time, and another k components to encode
the valid-before time. The remaining n−2k components are
used for the resource prefix. When granting an attestation for
an RTree policy, the issuer encrypts the attestation contents
under the resulting WIBE ID = P(A.policy). Note that for a
time tree of depth k, and a resource prefix of length `, WIBE
must be instantiated with at least n = 2k+ `.

The issuer must also include the policy-specific WIBE
keys from their own system in the attestations, generated
with ID∗s Q(A.policy), so that upstream attestations with
compatible policies can be discovered. We define Q for
RTree as: let E be a set of subtrees, each represented as a pre-
fix of a time vector (i.e., a vector where unused components
are wildcards), that covers the time range from the earliest
possible encryption start time to the end of the time range of
the attestation’s validity. Let S be a set of subtrees that covers
the time range from the start of the attestation’s time range to
the latest possible encryption time. Attestations have a max-
imum validity of three years so this limits how long the start
and end ranges need to be. Q returns ID∗s corresponding
to the Cartesian product S×E with each ID∗ also contain-
ing the policy’s resource prefix. This allows any upstream
attestation with an overlapping time range and compatible
resource prefix to be decrypted by one of the secret keys in
this attestation.

4.4 Efficient Discoverability
In the scheme above, attestations are encrypted under the
partition in the subject’s WIBE system. Unfortunately, it is
subject to two major shortcomings. First, a WIBE ciphertext
hides the message that was encrypted, but not the ID used to
encrypt it; an attacker who guesses the ID of a ciphertext can
efficiently verify that guess. Thus, every encrypted attesta-
tion leaks its partition. The second and more serious problem
is that attestations are not efficiently discoverable. To un-
derstand this, suppose that Bob has issued many attestations
A1, . . . ,An for Alice, with different policies. After this, an
attestation B is granted to Bob. Alice might be able to form
a proof using B and one of the Ai, but she does not know
which of the Ai has a policy that intersects with B.policy. As
a result, she does not know which private key to use to de-
crypt B, and has to try all of the private keys conveyed by the
Ai. This is infeasible if n is large, and becomes a vector for
denial of service attacks.

If Alice knows B’s partition, then the problem is solved—
Alice can locally index the private keys she has from Bob’s
system, and efficiently look up a key that can decrypt B.

However, B cannot include its own partition in plaintext, be-
cause it may leak part of B.policy.

We solve this by encrypting the partition and storing it
in the attestation. For this outer layer of encryption we
use a more standard identity-based encryption (denoted IBE)
that does not permit extracting the identity from the cipher-
text [46, 42] because we do not need wildcards. As with the
WIBE scheme, every entity has its own system, removing
the centralized PKG. The ID used to encrypt the partition is
called the partition label, and is denoted L(A.policy). For
the RTree policy type, it is the RTree namespace of A.policy.
We expect users to have far fewer unique keys for this outer
layer, so they can feasibly try all the keys they have.

We also move the WIBE ciphertext under this IBE encryp-
tion so that the partition cannot be extracted. Finally, we in-
clude IBE keys from the issuer’s IBE system, to allow the
subject to discover the partition of upstream attestations. We
denote the ID∗s corresponding to these keys as M(A.policy).
Because the partition label is simpler in structure than the
partition, defining M(A.policy)= {L(A.policy)} is sufficient.
So far, what gets stored in the attestation is:

IBE.Enc(IBE.mpkA.subject,L(A.policy);P(A.policy)||
WIBE.Enc(WIBE.mpkA.subject,P(A.policy);W ||I))

(1)

where W is defined as above, and

I = IBE.KeyGen(IBE.mskIssuer;L(A.policy))

denotes the IBE secret key from the issuer’s system.

4.5 Security Guarantees
We explain here at a high level how the policy-aware RDE
restricts the visibility of attestations when used with RTree.
Formal guarantees are given in Appendix B. In summary, for
each attestation A granting permission on a namespace: en-
tities who have not been granted permissions in that names-
pace in a path from A.subject can only see the subject and re-
vocation commitment. Entities who have been granted some
permissions in the namespace in a path from A.subject can
see the partition (in essence the identifier of the key required
to decrypt it). An entity e can decrypt an attestation A and
use it in a proof if there exists a path, from A.subject to e
where adjacent attestations (including A) have intersecting
partitions. Issuers can encrypt under IDs before the corre-
sponding private keys exist, so we introduce no ordering re-
quirements and no interactivity requirements.

Thus, even though policy-aware RDE permits some enti-
ties to see more attestations than strictly needed to create a
proof of authorization, it still provides a significant reduc-
tion in visibility when compared to structural security. We
formalize the security guarantees of RDE in Appendix B.

A number of potential side channels are out of scope for
WAVE, and can be addressed via complementary methods.
Our storage layer does not provide any additional confiden-
tiality, so compromised storage servers can see the time of
each operation (e.g., when encrypted attestations are stored),
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which encrypted attestations are fetched, as well as network-
ing information of the packets arriving at the storage servers
(which could be protected via Tor [1], a proxy, or other
anonymous/secure messaging methods [21]).
Revocation. Although revoked attestations cannot be used in
a proof due to the commitment revocation scheme described
in §6.1, they still confer the ability to decrypt upstream attes-
tations. Therefore we consider them part of the graph in the
formal guarantees (Appendix B). This can be mitigated by
keeping expiry times short and reissuing the attestations. As
there are no ordering or interactivity requirements, short ex-
piries are easy to implement. For example, if attestation #1
in Fig. 2 were to expire and be reissued, it would not require
the reissue of any other attestation.
Integrity. Finally, to maintain integrity, the issuer signs
the attestation with a single-use ephemeral key (pke,ske):
s1 = Sign(ske;A \ s1), where A \ s1 denotes the entire attes-
tation except for s1. Then, the issuer includes s1 in the at-
testation in plaintext. The use of an ephemeral key ensures
the signature does not reveal the issuer’s public key. The is-
suer includes the outer signature in the plaintext header of
the attestation. The issuer signs the ephemeral key pke with
their entity private key, s2 = Sign(skIssuer;pke)), creating a
short signature chain that ensures the attestation cannot be
modified or forged. The issuer includes s2 in the attestation
encrypted, to avoid revealing the issuer’s public key. In form-
ing a proof, the verifier is allowed to decrypt s2, allowing the
verifier to verify s2 and then s1.

4.6 Reducing Leakage in Proofs
The methods discussed above ensure that a prover is able
to decrypt all the attestations that it requires to build a proof.
However, if a participant simply assembles a list of decrypted
attestations into a proof and gives those attestations to a ver-
ifier, the verifier learns not only the attestations in that proof,
but also the WIBE keys in those attestations, which it can
use to decrypt other attestations not in the proof. To solve
this, we split the attestation information into two compart-
ments, one for the prover (that includes keys it needs to de-
crypt other attestations) and one for both the prover and the
verifier (that includes the policy, issuer, expiry, etc.). We en-
crypt the prover compartment with kprover and the prover/ver-
ifier compartment with kverifier, both symmetric keys freshly
sampled for each attestation. kprover and kverifier are encrypted
with WIBE. This allows the prover to reveal to the verifier
the necessary parts of an attestation by sending it the AES
verifier key, without allowing the verifier to decrypt other at-
testations. The final structure of the attestation is in Fig. 3.

4.7 Discovering an Attestation
Each user’s WAVE client maintains a perspective subgraph
with respect to the user’s entity, which is the portion of the
global authorization graph visible to it. For each vertex (en-
tity) in the perspective subgraph, the client “listens” for new
attestations whose subject is that vertex (entity), using the

Prover and 
Verifier information

Policy, Issuer, Expiry
Signed EphemeralKey     

Prover information Delegated keys

     IBE: Partition Label

Prover Keys:
AES_{PROVER,VERIFIER}      WIBE: Partition

Plaintext Header
Subject, revocation commitment
Signature by EphemeralKey
Public EphemeralKey

Partition

WAVE Attestation:

Outer layer

AES_VERIFIER

    AES_PROVER

Figure 3: Encrypted WAVE attestation structure. The locks
indicate the key used to encrypt the content.

Get and IterQueue API calls to the storage layer. For every
attestation A received, the WAVE client does the following:
1. The client adds edge A to the perspective subgraph.
2. The client searches its local index for IBE keys received

via attestations from A.subject, and tries to decrypt A’s
outer layer using each key. If none of the keys work, it
marks A as interesting and stops processing it.

3. Having decrypted the outer layer in the previous step,
the client can see A.partition. It searches its index for
a WIBE key received via attestations from A.subject that
are at least as general as A.partition. Unlike the previous
step, this lookup is indexed. If the client does not have
a suitable key, it marks A as partition-known and stops
processing A.

4. Having completed the previous step, the client marks A
as useful and can now see all fields in A. The client adds
WIBE and IBE keys delegated via A to its index, as keys
in the systems of A.issuer.

5. If the vertex A.issuer is not part of the perspective sub-
graph, then the client adds it and requests the storage layer
for all attestations whose subject is A.issuer. They are
processed by recursively invoking this algorithm, starting
at Step 1 above.

6. If A.issuer is already in the perspective subgraph:
• For each IBE key included in A, the client searches its

local index for interesting attestations whose subject is
A.issuer, and processes them starting at Step 2 above.

• For each WIBE key, the client searches its local index
for matching partition-known attestations whose sub-
ject is A.issuer, and processes them starting at Step 3.

This constitutes a depth-first traversal to discover newly vis-
ible parts of the authorization graph revealed by A.

4.8 Extensions
Our RDE construction for RTree is performant but allows
an entity to see attestations not required for correctness
(i.e. partition-compatible attestations that are not usable in
a proof, as defined in Appendix B). This can be marginally
improved by including an additional set of WIBE keys in the
attestations to allow for the full resource (not just the pre-
fix) to be captured by P and Q but this increases the number
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of included keys by a factor of `. Additionally, using KP-
ABE [35] instead of WIBE would result in smaller attesta-
tions, but higher decryption times.

Aside from different encryption schemes, the RDE tech-
nique also generalizes beyond the RTree policy described
above. Careful selection of P and Q, coupled with the use of
a more expressive encryption scheme such as KP-ABE [35]
allows for the realization of a more expressive policy (e.g.
those discussed in §9) at the cost of decreased performance.
While we have not found this trade-off warranted in our set-
ting, this extension is straightforward and still meets our se-
curity goals. The formalism in Appendix B largely general-
izes to other policy types, but the semantics of compatibility
(Note 1) will change depending on the encryption schemes
used and on the choice of P, Q, L, and M.

5 Scalable Untrusted Storage
To avoid centralized trust when storing attestations, we con-
tribute a storage tier that enforces integrity cryptographically.
This tier is physically decentralized: it is spread over multi-
ple servers owned by different parties. Importantly, these
individual servers are trusted to maintain availability, but not
integrity (in the spirit of Certificate Transparency [41]) or
privacy (achieved by RDE, §4). Thus, users and services can
interact with storage servers that anybody operates, without
trusting the servers’ operators, except for availability.

The storage API (Fig. 1b) consists of four functions: Get
and Put are used for placing/retrieving entities, attestations,
name declarations (§6.2) and revocation secrets (§6.1) in
storage; Enqueue places an object hash at the end of a named
queue, and IterQueue allows retrieval from a queue. The
queue functions facilitate discovery, allowing an entity to no-
tify another entity that a new attestation has been granted to
them or a new name declaration has been published.

A blockchain is a natural candidate for such a storage
tier. Multiple servers are responsible for maintaining a
blockchain, and, due to the underlying Merkle tree data
structure, any one server can prove the integrity of its re-
sponses to state queries according to a specific Merkle tree
root hash, meeting the requirements.

Prior versions of WAVE used an Ethereum blockchain, but
extended use and experimentation revealed this solution to
be inadequate for three reasons: (1) A blockchain introduces
significant latency when adding objects to storage (up to a
minute for a confirmed addition in Ethereum). (2) Participat-
ing in a blockchain requires constant network bandwidth and
CPU time. (3) The blockchain does not scale past a few tens
of transactions per second [22], so it could not store attesta-
tions for a global authorization system permitting thousands
of delegations per second.

Although this problem appears solvable with existing
transparency logs such as Certificate Transparency (CT) [41]
or Key Transparency (KT) [32], neither of those is appropri-
ate. CT cannot efficiently prove an object does not exist,
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Figure 4: An Unequivocable Log Derived Map (ULDM)
built from two Merkle tree logs and a Merkle tree map

needed for revocations, and KT is not efficiently auditable in
our context (§9).

Instead, we propose an Unequivocable Log Derived Map
(ULDM), a transparency log based on the Verifiable Log
Backed Map (VLBM) [23]. A VLBM allows the storage
server to form proofs of integrity. The VLBM whitepaper
is brief and incomplete: it does not discuss auditing, such
as which proofs are exchanged or how they are published,
so it is unclear how the VLBM prevents equivocation (i.e.,
presenting different internally consistent views to different
clients). To our knowledge, there is no complete open-source
VLBM implementation (the code in the repository [34] only
implements a subset of the paper, omitting the log of map
roots), so we could not build upon the VLBM or infer its
scheme from the code. The ULDM is our approach to filling
in the missing pieces, such as an auditing scheme to prevent
equivocation and secure batching to increase performance.

A ULDM is constructed using three Merkle trees, each
serving a different purpose, as shown in Fig. 4. The first tree
is the Operation Log, which stores every Put and Enqueue
operation and can prove the log is append-only. These oper-
ations are then processed in batches into the second tree, the
Object Map. This is used to satisfy queries and prove that
objects exist or do not exist within the map. The ULDM Ob-
ject Map is different from [23] as it only stores the hashes of
the objects. Finally, every map root created when a batch is
processed is inserted into the third Merkle tree, the Map Root
Log. This makes the data structure efficiently auditable, as
we discuss in §5.4.

In what follows, for every reply that the storage server pro-
vides, the storage server provides a signature on the reply
along with the relevant version of the Map Root Log.

5.1 Inserting Values
To insert a value, the ULDM server: (1) Inserts the value
into the Operation Log. (2) Creates a new version of the
Object Map that includes the hashes of the new entries. (3)
Inserts the new map root into the Map Root Log. Step 1 is
batched (multiple values are inserted into the Operation Log
together) as is Step 2 (multiple values are inserted into the
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Object Map together). Step 3 is synchronous with Step 2.

5.2 Merge Promises
Inserts would ideally be performed synchronously, allowing
the server to return inclusion proofs for all three trees in re-
sponse to the insert. Unfortunately, this results in a severe
performance penalty as the ratio of new data to overhead (in-
ternal nodes in the trees) is poor. This is the same conclusion
that Certificate Transparency reaches, and we use a similar
solution: batching with promises. When inserting a value,
a client receives a merge promise (called Signed Certificate
Timestamp in CT) which states that the inserted value will be
present by a certain point in time. In addition to the absolute
timestamp used in CT, ULDM merge promises include the
version of the root log as this allows a proof of misbehav-
ior without a trusted source of time. Uncompromised clients
must check the value has been merged later. To prove mis-
behavior when a value is not inserted on time, a client can
present a merge promise along with a signed Map Root Log
head where the corresponding Object Map does not contain
the value and where the version of the head is greater than
that in the promise; i.e., a server would need to stop operat-
ing completely if it wishes to both avoid merging an object
and revealing it is compromised.

5.3 Retrieving Values
To retrieve a value, the client sends the storage server the
Map Root Log version that it received in a previous request,
along with the object identifier it is retrieving (e.g., the hash
of an attestation or revocation commitment). If the object
exists but has not yet been merged, the merge promise will
be returned. There is no guarantee that the storage server
will return a value before its merge promise deadline. If the
object has been merged or doesn’t exist, the server responds
with: (1) the object or nil, (2) a proof that the object existed
or did not exist in the Object Map at the latest map root, (3)
a proof that the latest map root exists in the Map Root Log at
the current Map Root Log head, and (4) a consistency proof
that the current Map Root Log head is an append-only ex-
tension of the version the client passed in its request. This
mechanism allows the client to verify that every map satisfy-
ing their queries is contained in the Map Root Log, and that
the Map Root Log is consistent. Notably, it does not allow
the client to verify that the map was correctly derived from
the Operation Log. This task is performed by the auditors.

5.4 Auditing
An auditor is a party that connects to a storage server and
replays the Operation Log to construct replicas of the Object
Map and check the Map Root Log. Each client reports the
latest Map Root Log head it obtains from the server (signed
by the server along with a version number) to the auditors
with some frequency. As the entries in the ULDM object
map are the hashes of the objects, not the objects themselves,
the map constructed by the auditor is several orders of mag-

nitude smaller than the sum of stored objects. For every entry
in the Map Root Log, the auditor will read the incremental
additions to the map from the Operation Log and apply them
to its own copy. It then ensures the hash of the replica Ob-
ject Map root matches the hash stored in the Map Root Log,
proving that the map is correctly derived from the operation
log (no objects were modified or removed).

The strength of the ULDM auditing scheme is that a client
can report a single value to an auditor (the client’s Map Root
Log head) and this is sufficient to catch any dishonesty that
might have occurred at any point in the client’s history. With-
out the Map Root Log (such as in [34]), any auditing scheme
would need to make the client report every Object Map root
to the auditor or take the risk that some dishonesty might re-
main undiscovered. To see how this might occur, imagine
that a storage server removes a revocation from the map, an-
swers a query and then re-adds the revocation. Without the
Map Root Log, if the client only reports the final map root to
an auditor, it would conclude it is valid. In the ULDM case,
the client would report the Map Root Log head which covers
all prior map versions, enabling the auditor to discover that
the previous query was satisfied from an invalid map.

Detecting dishonesty with a single infrequently-reported
value has important scalability implications: as we expect
there to be many clients, it is important that the load placed
on auditors is much less than the query load generated by the
clients, otherwise, only large companies could afford to be
auditors. In the ULDM model, it is sufficient for a client to
contact an auditor rarely (perhaps once a day) to ensure any
prior equivocation is discovered.

We expect clients to periodically check in with a random
auditor from a public list of auditors. This ensures that the
storage server cannot maintain different states for different
auditors as it will be discovered when auditor receives a Map
Root Log head from a client that is inconsistent with the one
received from the storage server directly.

5.5 Security Guarantee
We formalize the security guarantee of a ULDM, as follows.
By honest client, we denote a client that is neither faulty nor
compromised.
Guarantee 2 (ULDM). Let C be a set of honest clients and
S be a ULDM server. Observe that the Merge Promises fol-
lowing insert requests by these clients and Map Root Log
heads sent with retrieval requests by these clients define a
partial ordering L over all requests received by S. Suppose
that there exists a nonempty set R of requests made by clients
in C, such that there exists no possible history of requests
made to S that is consistent with both L and all of S’s re-
sponses to requests in R. If there exists an auditor A such
that each client in C has sent A a Map Root Log head it re-
ceived from S at least as recent as the one it received for its
latest request in R, then one of the following holds:

1. One or more clients in C will be able to detect the in-
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consistency by inspecting the responses it received to
requests that it made to S.

2. The auditor A will be able to detect the inconsistency
by inspecting the Map Root Log heads it received from
clients in C and from S.

We provide a proof sketch in Appendix A.

6 Revocation and Naming
With the functionality of RDE and ULDM’s, we can eas-
ily construct a revocation scheme and a PKI-replacing entity
naming scheme.

6.1 Commitment-Based Revocation
When a user creates an attestation, it derives a random re-
vocation secret s from a seed stored with the entity private
keys and includes a cryptographic hash of s, hash(s), called
the revocation commitment, in the attestation. The user then
inserts the attestation into ULDM storage. Later on, the user
can revoke the attestation by publishing the revocation secret
s to the same storage. Revocation of entities works similarly.
An entity must have their private key to perform revocation;
mechanisms such as [53] can be used to ensure this.

When verifying a proof, the WAVE service ensures that
no attestations in the proof have been revoked. To do so, it
queries the storage tier for an object matching the revocation
commitment hash(s) in the attestation. If such an object ex-
ists, the verifier knows that the attestation has been revoked.
If such an object does not exist, the verifier receives a proof
of nonexistence for that hash from the storage tier. WAVE
ensures revocation only after the Merge promise deadline.
The security of this procedure relies on the guarantees of our
ULDM transparency log (§5). Alternatively, the entity form-
ing the proof can include proofs of nonexistence, signed by
the storage tier with a timestamp, with the attestations, so
that the verifier does not have to perform this lookup.

6.2 Secure Lookup of Public Keys
To facilitate looking up entity public keys (to be used as
the subject in an attestation, and for RDE), without relying
on an external PKI, WAVE implements a naming scheme
that extends the proposal in SDSI [49]. The base func-
tionality (shared by WAVE and SDSI) allows an entity to
name another entity by creating a signed name declaration.
These name declarations form a web-of-trust global graph,
similar to that formed by attestations. By traversing this
graph, an entity can resolve hierarchical names. For exam-
ple, consider when an entity representing a company ACME
names an entity representing a department Marketing,
which in turn names an entity held by an employee Alice.
Then, by verifying the identity of a single entity out of
band (the company), an entity can resolve the names of
all employees within the company’s departments, such as
Alice.Marketing.ACME, without having to manually
establish the validity of individual employee entities.

The functionality above, proposed by SDSI, does not
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Figure 5: Overview of WAVE’s implementation.

provide a distribution mechanism for entities to discover
the name declarations required to perform resolution, nor
a mechanism to ensure the privacy of declarations so that
only authorized parties may read them. WAVE solves both
of these problems. Firstly, WAVE stores name declara-
tions in the ULDM storage tier (§5) to ensure name decla-
rations are discoverable without compromising on the goals
of the system (especially without requiring on-line partic-
ipants). Secondly, WAVE uses a variation of the encryp-
tion scheme described in §4 to encrypt the name declara-
tions in storage. When creating a name declaration, it is
associated with a resource in a namespace (for example,
acme/directory/marketing) and an entity must be
explicitly granted permission on that resource in order to
gain the keys required to decrypt the name declaration. In
other words, the same attestations that are used to form a
proof of authorization are also used to govern which enti-
ties can read name declarations, without relying on a central
directory server. Resolution of names is done from each en-
tity’s cache of decrypted name declarations, stored alongside
decrypted attestations.

7 Implementation
WAVE is implemented in Go and released as open source [7].
It runs as a background service and applications connect via
IPC. The service is composed of four logical parts (Fig. 5).
The storage abstraction permits multiple distinct storage
providers operating in parallel. As long as the provider im-
plements the API discussed in §5, WAVE can use it. Each
storage driver is responsible for ensuring the storage is trust-
worthy, e.g. for a ULDM-based storage it must verify the
proofs given by the remote storage server. Attestations can
span storage media, i.e., an entity residing on one server can
grant permissions to an entity on a different server. We im-
plemented the ULDMs using Merkle trees in Trillian [33]
backed by MySQL.
The perspective storage keeps track of the decrypted attes-
tations that form the perspective graph. This is the portion
of the global graph visible from the perspective of the prov-
ing entity. WAVE indexes it to allow efficient key retrieval
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Operation AMD64 ARMv8
Create attestation1 43.7 445
Create entity 8.9 88.5
Decrypt attestation as verifier 0.48 4.44
Decrypt attestation as subject 3.87 44.0
Decrypt delegated attestation 6.22 67.9

Table 1: Object operation times [ms].

based on a new attestation and efficient attestation retrieval
based on a new key. The index also allows for efficient proof
building: finding attestations granted from a given issuer that
match specific permissions.
The state machine is responsible for transitioning the attes-
tation through the states of decryption following the discov-
ery process described in §4.7.
The external API is a GRPC [31] API that listens for con-
nections from applications and allows them to use the appli-
cation API functions given in Fig. 1b. GRPC can generate
bindings for multiple languages, so we expect that applica-
tions can be written in any language.
The proof builder, when asked to build a proof, begins at
the namespace authority (the entity that created the RTree
namespace) for the resource that permissions are being
proved on, and then performs a shortest path discovery
through the perspective graph terminating at the proving en-
tity. Note that this is the opposite direction that attestations
are traversed during discovery. Only edges granting a super-
set of the required permissions are traversed and the maxi-
mum depth of traversal is limited by the indirections parame-
ter in the traversed attestations. These two filters make proof
building fast for common cases (see §8.1).

8 Evaluation
Despite relying on cryptography for its security guarantees,
WAVE remains performant, competitive to traditional au-
thentication and authorization systems.

8.1 Microbenchmarks
WAVE’s performance is dominated by the cost of the core
cryptographic operations, shown in Table 1. These are the
times measured by a client using the GRPC application API.
The measurement is on an Intel i7-8650U AMD64 CPU rep-
resentative of a standard modern laptop, and on a Raspberry
Pi 3, indicative of a low-cost IoT-class ARMv8 platform.

The verifier does not perform any WIBE decryption, as it
has the AES verifier key. The subject entity (the direct re-
cipient of the attestation) can skip the IBE decryption of the
partition, but must still perform WIBE decryption. Any other
entity that is interested in the attestation because it lies fur-
ther up the delegation chain must perform IBE decryption,
WIBE decryption, and then AES decryption. These decryp-
tion operations take place only once—when an attestation is
added to the perspective graph—so are a one-off cost of re-

1Create attestation uses multiple cores
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Figure 6: Single core timings for proof operations. Vertical
line in Fig. 6b is the expected maximum proof length for
common applications.

System Authentication Authorization
LDAP+MySQL 6.3ms 0.8ms
OAuth2 JWT 0.3ms
WAVE 1 attest. 1.2ms
WAVE 3 attest. 3.6ms

Table 2: Latency of LDAP+MySQL, OAuth2 vs. WAVE.

ceiving permissions. The verifier decryption happens once
per unique proof; after that, it is cached so that subsequent
verifications complete in negligible time.

When decrypting attestations and building the perspective
graph, we also need to index all the obtained keys and store
them on disk. We can see the cost of decryption combined
with indexing by measuring the time taken to update a per-
spective graph, for different sizes of changes to the graph,
as shown in Fig. 6a. This includes the time taken to retrieve
the encrypted ciphertexts from ULDM-based storage. The
dashed vertical line is likely the maximum number of attes-
tations that will be found in a proof as more than five dele-
gations, although supported, is rare in all our deployments.

8.2 Traditional Authorization Flow
To compare WAVE against a traditional authorization sys-
tem, we benchmark the time taken by a representative back-
end to turn a username and password into an authorization
policy using an OpenLDAP server (which authenticates the
user and yields the groups they are part of) and a MySQL
database (which turns the groups into policy). We also add
the time taken to verify an OAuth2 JWT token containing the
authorization policy in the form of scopes.

The results are shown in Table 2. For a WAVE proof
mirroring the single-delegation structure present in the
LDAP/OAuth2 case, the proof verifies in a sixth of the time
taken by the traditional LDAP flow. For a case where transi-
tive delegation has been used three times and the proof con-
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PUT
2KB

GET
2KB

En-
Queue

Iter-
Queue

Latency [ms] 10.7 10.4 10.1 10.0
Table 3: Average storage operation time (ms/op) under 4 uni-
form loads (≈ 100 requests per second), measured over 30
seconds (≈ 3k requests per type).

sists of three attestations, the WAVE verification is about half
the time of the single-delegation LDAP flow.

As in WAVE, OAuth2 offers a bearer token that can be val-
idated without communicating with the server. In this case,
validating a JSON Web Token with a 2048-bit RSA signature
takes 0.3ms. WAVE is roughly 4x slower, but completely re-
moves the centralized token-issuing server, leaving the user
as the only authority in the system. In OAuth a compro-
mised token issuing server can generate valid tokens without
the user’s knowledge.

Note that although OAuth2 has added a form of delega-
tion [36], it requires the OAuth2 server to issue a new token,
so is identical to the single-delegation scenario tested here.

This example shows that using WAVE as a replacement for
common authorization flows will likely not reduce perfor-
mance, despite providing transitive delegation and removing
all central authorities.

8.3 Storage Evaluation
Since an entity in WAVE does not communicate with any
other entity, except via the storage, WAVE’s scalability de-
pends on the performance of the global storage. As men-
tioned in §5, a blockchain is a natural solution, but not scal-
able enough.

In contrast, the ULDM-based system is shared-nothing
and horizontally scalable: the performance of one node does
not limit the performance of the overall system. For com-
pleteness, we include single-system performance metrics
here. Table 3 shows the average latency of the ULDM stor-
age performing single operations at a time (i.e. just GETs or
just PUTs). The times for the ULDM-based storage include
both the generation of the proofs server-side and the verifi-
cation of the proofs client-side. Every operation concerns a
unique object, so there is no caching.

This ULDM storage was constructed using Trillian backed
by MySQL. Fig. 7 shows the limits of a single node, where
performance for PUTs degrades at approximately 110 re-
quests per second and performance for GETs degrades at ap-
proximately 200 requests per second. We expect that perfor-
mance could be increased if Trillian were deployed on Span-
ner [20] as the designers intended, but defer this to future
work. Note that in this evaluation, every operation concerns
a unique object, so as to benchmark the underlying cost of
forming proofs, rather than the cache. Real workloads would
likely have more cache hits.

Although our storage implementation is unoptimized and
built using an off-the-shelf Merkle tree database, single
nodes handle insert loads an order of magnitude higher than
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Figure 7: Latencies for ULDM PUT/GET as the throughput
is ramped up to the single-node maximum.

possible on a blockchain system [22]. In addition, every
added node scales the capacity of the system linearly. We
envision that multiple storage providers, potentially operated
by distinct parties, would operate in parallel, similar to Cer-
tificate Transparency [41].

8.4 Deployment Experiences
WAVE is a real-world artifact and is open source [7]. We
operated various versions of WAVE for roughly two years in
over 20 buildings, controlling more than 800 devices (ther-
mostats, control processes, motion sensors, and others with
little to no existing authorization capabilities) comprising
363 entities, 27 namespaces and 529 attestations (both valid
and expired). The global authorization graph in our deploy-
ment is visualized in Fig. 8. The median number of delega-
tions in a path is 4 (the maximum is 9). This deployment
has given us the opportunity to refine and validate the per-
formance, usability, and expressiveness of WAVE’s autho-
rization model in practice. Applying WAVE to legacy de-
vices whose firmware cannot be modified is done by using
an adaptation layer microservice and ensuring all communi-
cation with the legacy device flows through that service [8].
Performance. In the deployment, most proofs build in un-
der 20ms and validate in under 10ms (as in Fig. 6b). The
performance impact of WAVE is imperceptible during nor-
mal operation: proofs are cached after processing, accelerat-
ing subsequent generation and validation. As mentioned, we
built an earlier version of WAVE on top of a blockchain in-
stead of our current ULDM. We conducted extensive bench-
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Work
Transitive
delegation

Discov-
erability

No order
constraints

Offline
participants

No trusted
central storage

Protected
permissions

Auth. languages
[12, 49, 13, 43, 45, 29, 27] Yes No Unknown: no mechanism given

Hidden credentials
[58, 37, 30, 48] Yes No Unknown: no mechanism given

Centralized authorization
[19, 15, 56, 28] Yes Yes Yes Yes No No

Distributed authorization
[44, 59, 18, 57, 50] Yes Yes Yes No Yes No

WAVE Yes Yes Yes Yes Yes Yes
Table 4: Related work on decentralized authorization compared to WAVE. We elaborate on these categories in §9.

marks of that version and concluded that it cannot scale past
a load roughly equivalent to a city (≈ 1 million buildings). It
also incurs significant CPU and bandwidth costs, even when
only storing permissions (not data).
Usability. In addition to our experience with the deploy-
ment, we have also held multiple tutorials with 200+ users.
User feedback indicated that WAVE improved most aspects
of management (especially administrators having autonomy
to grant and revoke permissions). Some aspects of WAVE are
harder to manage: no user can enumerate all delegations in
the system, which reduces auditability. We were able to mit-
igate unfamiliarity with WAVE’s authorization model with
careful user interface design (which provides secure defaults
such as short expiry times) and with teaching users through
familiar analogies (e.g., comparing RTree to file paths).
Expressiveness. We found that WAVE was able to capture
exactly the authorization patterns required in typical cyber-
physical usage scenarios. The transitive delegation capabil-
ity was invaluable in lowering the administrative overhead of
deployments. Rather than requiring the building manager to
be a part of every commissioning workflow (to create cre-
dentials for each new device), permission is granted to the
person heading the deployment effort, who then acts with au-
tonomy. For permanent installations, the installing entity can
be removed from the permission flow afterwards by granting
“around” them directly from the building manager to the de-
vices. For temporary installations, keeping the installing en-
tity in the flow simplifies revocation when the study is over.

9 Related Work
Table 4, compares prior authorization and trust management
systems with WAVE. Here, we provide additional details.

9.1 Trust Management and Authorization
Trust Management (TM) literature over the past two decades
has thoroughly researched techniques for transitively dele-
gable authorization. Overviews of TM systems are provided
in [14, 51, 11, 6].

Languages used to express authorization policies are sum-
marized in the first row of Table 4 [12, 49, 13, 43, 10, 27].
For example Macaroons [12] provides a mechanism for ex-

Figure 8: The permission graph for the multi-building de-
ployment. “Bolded” nodes are namespace authorities. Most
nodes with a high degree are entities that administer a set of
namespaces. Leaf nodes correspond to devices and services
that do not perform any delegation.

pressing authorization policy with delegation and context-
specific third-party caveats. The goals are quite different,
e.g. the authorization is verifiable by the authority only and
permissions can only be granted in-order. The system does
not specify how cookies are stored and discovered or how
it would work with offline participants. In general, autho-
rization language work is complementary to WAVE, as we
focus on the layers of the system that lie below the language
(how the pieces of policy are stored, disseminated, and dis-
covered). In our deployments we use RTree, based on SPKI’s
pkpfs [24], but mechanisms like third-party caveats could be
introduced with no changes to the underlying layers.

Hidden credentials (row 2 in Table 4) [58, 37, 30, 48] ad-
dress a different privacy problem: allowing a prover and ver-
ifier to hide their credentials from each other. WAVE solves
an orthogonal problem: the privacy of credentials in storage
and during discovery.

The remaining literature can be categorized as relying on
a centralized credential store for discovery [19, 15, 56], or a
distributed credential store [44, 59, 18, 57, 50]. Centralized
discovery mechanisms put all credentials in one place which
makes discovery simple but, as constructed in work thus
far, requires this central storage to be trusted. Blockchain
work [55, 26] avoids this problem but does not scale, and
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thus far has focused on identity, not authorization. Work
such as [28] decreases centralization by reducing the trust
in cross-administrative-domain applications, such as IFTTT,
but still places trust in the central authorization servers be-
longing to each vendor. In contrast, distributed discovery
mechanisms store each credential with its issuer and/or sub-
ject, avoiding the need to trust a central storage system. The
resulting discovery mechanisms are more complex and can-
not operate if any credential holder is offline. Both the cen-
tralized and decentralized credential discovery work thus far
have overlooked the privacy of credentials at rest (in the cen-
tralized case) or during discovery (in the distributed case); in
both cases, there are parties who can read credentials that do
not grant them permissions even indirectly.

A concurrent work, Droplet [52], presents a distributed au-
thorization system, but it does not meet the requirements of a
general purpose authorization system in §1: Droplet does not
provide transitive delegation, it only handles authorization
for time series data streams as opposed to the more general
policies of WAVE, and it induces a blockchain transaction
for every change to an ACL, which scales poorly.

WAVEs attestations and RDE can be used as the key ex-
change protocol for an end-to-end encryption scheme such
as JEDI [38]. JEDI provides resource-oriented message en-
cryption on a tree of resources, which interfaces well with
WAVEs RTree authorization policy.

9.2 Storage
WAVE’s Map Log Root is similar to the approach used by
CONIKS [47] and Key Transparency (KT) [32]. There are
several differences between a ULDM and the CONIKS/KT
data structures. As a ULDM does not need to prevent it-
eration of the contents, it can be log derived, allowing an
efficient verification that it is append-only. In contrast,
CONIKS/KT requires every user to check every epoch of
the map to ensure the values stored match expectations. This
approach would not work for our use case as we expect every
user to create hundreds or thousands of objects, and requir-
ing every user to check each of these objects at every map
epoch is intractable. The ULDM approach 1) reduces the
amount of work as it scales with the number of additions to
the map rather than the size of the map, as in CONIKS, and
2) places the majority of the burden on auditors, rather than
users who may be offline.

Revocation Transparency [40] is also similar to a ULDM.
It was posted as an informal short note, and to our knowl-
edge, it was never fully developed. It lacks the Operation
Log, which requires the client/auditor to request a consis-
tency proof between two versions of the map without know-
ing the contents (as it cannot construct a replica). We are
not aware of any Merkle tree map databases that support this
operation. A ULDM is built on simpler operations and can
be constructed using an off-the-shelf database, such as Tril-
lian [33], with full auditability.

10 Conclusion
WAVE is a decentralized authorization framework leverag-
ing an improved graph-based authorization model. It intro-
duces an encryption technique, RDE, for hiding attestation
contents, while still allowing efficient discovery of permis-
sions granted out of order to offline participants. WAVE
introduces a storage mechanism, the ULDM, that is effi-
ciently auditable. This enables untrusted, horizontally scal-
able, servers to store the attestations without compromising
on the security of the system as a whole.

We used WAVE to manage IoT deployments in 20 build-
ings for two years, during which we identified six require-
ments that are critical for IoT deployments. In meeting these
requirements, WAVE (1) has no reliance on central trust,
(2) provides transitive fine-grained delegation and revoca-
tion, (3) protects permissions during discovery and at rest,
(4) allows for any party to verify a proof of authorization,
(5) allows delegations to occur in any order with no commu-
nication between granter and receiver, and finally (6) allows
for granting permissions to offline participants. No existing
work meets these requirements simultaneously. Our open-
source implementation of WAVE offers similar performance
to traditional centralized systems while providing stronger
security guarantees.
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A Proof of ULDM Security Guarantee
We provide a proof sketch for Guarantee 2.
Proof Sketch for Guarantee 2. We show that if neither
clients in C nor the auditor A detect an attack, then there ex-
ists a possible history H of requests consistent with L and all
responses to requests in R. Concretely, we show that the Op-
eration Log that the storage server tells the auditor A is such
a valid history H. Because A did not detect an inconsistency,
we know that, for each client c ∈ C, (1) its Map Root Log
head, at some point after its last request in R, is consistent
with H. Because c did not detect an inconsistency, we know
that (2) c’s sequence of Map Root Log heads is append-only,
(3) for each request, the returned object did (or did not, if
no object was returned) exist in the Object Map, and (4) for
each request, the Map Root Log at the time of the request
contains the object map used in (3).

Together, (1) and (2) indicate that (5) the client’s entire
sequence of Map Root Log heads is consistent with H. To-
gether, (3) and (4) indicate that (6) the response received for
each request in R is consistent with the current Map Root Log
head at the time of the request. Putting together (5) and (6),
we can conclude that the response that each client receives to

each request in R is consistent with H. Putting together (2)
and (6), we can conclude that H is consistent with the partial
ordering imposed by Map Root Log heads for each client c.
Because clients make requests to the server to validate ev-
ery Merge Promise, this also guarantees that H is consistent
with the partial ordering imposed by Merge Promises. Thus,
H fulfills all desired properties.

B RDE Security Guarantee
Below, we develop definitions to precisely describe the
global authorization graph, and then we use them to formal-
ize RDE’s security guarantee.
Definition 1 (Path). Let x and y be entities. (A1, . . . ,An)
is a path from x to y if either n > 0 and A1.issuer = x,
An.subject = y, and Ai.subject = Ai+1.issuer for all i ∈
{1, . . .n−1}, or n = 0 and x = y.
Definition 2 (Compatibility). Let A and B be attestations
such that A.subject = B.issuer. We write A  B and say
“A is partition-compatible with B” if a key corresponding to
one of the ID∗s in Q(A.policy) can decrypt a WIBE cipher-
text with the ID P(B.policy). We analogously write A� B
and say “A is partition-label-compatible with B” if a key
corresponding to one of the ID∗s in M(A.policy) can decrypt
an IBE ciphertext with the ID L(B.policy). We extend this to
paths as follows. A path (A1, . . . ,An) is partition-compatible
if either n = 0, or Ai Ai+1 for all i ∈ {1, . . . ,n−1}. A path
(A1, . . . ,An) is partition-label-compatible if either n = 0, or
A1� A2 and (A2, . . . ,An) is partition-compatible.

Based on our definitions of P, Q, L, and M in §4.3 and
§4.4, we can attach semantic meaning to compatibility:
Note 1 (Compatibility Semantics for RTree). A B means
that A.policy and B.policy have overlapping time ranges,
URIs with the same namespace, and the same permission
string. A� B means that A.policy and B.policy have URIs
with the same namespace.

Now, we formally define the states attached to an attes-
tations during the discovery process (§4.7) so we can later
express the leakage of an attestation in each state.
Definition 3 (Attestation State Machine). Let A be an at-
testation. If there exists a partition-compatible path p =
(A,P1, . . . ,Pn) to an entity compromised by Adv, then we say
that A is useful with respect to Adv.

Otherwise, if there exists a partition-label-compatible
path p = (A,P1, . . . ,Pn) to an entity compromised by Adv,
then we say that A is partition-known with respect to Adv.

Otherwise, if there exists a partition-compatible path from
A.subject to an entity compromised by Adv, then we say that
A is interesting with respect to Adv.

Otherwise, we say that A is unknown with respect to Adv.
From D’s perspective in Fig. 2, for example, #1, #4, and

#3 are useful, #5 is partition-known, and #2 is unknown.
The components of an RTree policy are described in §2.4.
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Based on Definition 3, we can now informally state the
security guarantee of RDE. Let A be an attestation such
that there does not exist a partition-compatible path from
A.subject to a partition-compatible cycle in the global autho-
rization graph. If A is unknown or interesting with respect
to Adv, then Adv learns nothing about A except A.subject
and A’s revocation commitment. If A is partition-known
with respect to Adv, then Adv learns nothing about A except
(1) A.subject, and (2) P(A.policy). If A is useful with respect
to Adv, then Adv can decrypt A and see all of its fields.

We now formalize the security guarantee of RDE as a
game played by a challenger Chl and an adversary Adv.
Guarantee 3 (RDE). Let λ denote the security parameter.
Consider any list of entities in the system, represented as
names in {0,1}∗, any subset of these entities compromised
by Adv, and any two authorization graphs G0 and G1 each
described as a list of attestations in terms of the entity names,
subject to the constraints below:
1. |G0|= |G1| and attestations at position i in the lists of G0

and G1 must have the same length. We say that these two
attestations correspond.

2. Corresponding attestations must have the same state
unknown/interesting/partition-known/useful w.r.t. Adv.

3. If corresponding attestations are useful to Adv, or if ei-
ther has a partition-compatible path from its subject to a
partition-compatible cycle, then they must be identical.

4. If corresponding attestations A0 and A1 are partition-
known to Adv, or if there exists a partition-label-
compatible path from A0.subject (or A1.subject) to a
partition-compatible cycle in G0 (or G1), they must have
the same subject and revocation commitment and satisfy
P(A0) = P(A1), but may otherwise differ arbitrarily.

5. If corresponding attestations are unknown or interesting
to Adv (and if there is no partition-label-compatible path
from the subject to a partition-compatible cycle) then they
must have the same subject and revocation commitment,
but may otherwise differ arbitrarily.

Each attestation in the graph is described in terms of the
information in §2.1, not RDE ciphertexts. RDE guarantees
that Adv’s advantage in the following game is negligible in
the security parameter λ :
Initialization. Chl generates each entity’s keypairs. It sends
to Adv the public keys (verification key and WIBE/IBE public
parameters) corresponding to each entity. For entities cor-
responding to malicious users, Chl also provides the secret
keys (signing key and WIBE/IBE master keys). Furthermore,
Chl chooses a random bit b ∈ {0,1}, computes the RDE ci-
phertext for each attestation in Gb, and gives them to Adv.
Guess. Adv outputs a bit b′ ∈ {0,1}. The adversary’s ad-
vantage in the game is defined as

∣∣Pr[b = b′]− 1
2

∣∣.
The constraints on cycles in Conditions #3, #4, and #5

are due to the lack of KDM-security for the WIBE and IBE
used. It may be possible to remove these constraints with
KDM-secure variants.

Proof Sketch for Guarantee 3. We define a new game in
which Adv has no advantage and prove via a hybrid argu-
ment that Adv’s advantage in the real game differs from its
advantage in this new game by at most a negligible amount.

In the hybrid argument, each hybrid represents a game. In
the sequence of hybrids, the encrypted graph provided by the
challenger if b = 0 is identical to the encrypted graph in the
previous hybrid, except that either (1) one of the WIBE or
IBE ciphertexts generated by Chl in the Challenge phase is
replaced with an encryption of a different string of correct
length, or (2) the ID used for IBE encryption is changed to
a different ID. Adv cannot distinguish between adjacent hy-
brids due to CPA-security of WIBE and IBE in case (1), and
due to the anonymity of IBE in case (2). Because adjacent
hybrids are indistinguishable to Adv, the difference in its ad-
vantage in adjacent hybrids is negligible. The first game is
the real game (Guarantee 3). In the final game, Adv’s ad-
vantage is 0. By the hybrid argument, we can conclude that
Adv’s advantage in the real game is negligible.

The order in which ciphertexts are replaced must be cho-
sen carefully. This is because a ciphertext cannot be replaced
with an encryption of zero if a secret key to decrypt the ci-
phertext exists in the graph. We now describe the hybrids.

We identify attestations in the graph in Conditions #4
and #5. Observe that the “partition-compatible” relation de-
fines a directed graph over these attestations in each G0 and
G1, where each attestation is a vertex and edges indicate
partition-compatibility. We denote these new graphs S0 and
S1. Both S0 and S1 are directed acyclic graphs, due to the
stipulations in Conditions #4 and #5 regarding cycles. Thus,
S0 and S1 can be linearized. Via a sequence of hybrids, we
first replace ciphertexts provided by Chl when it chooses
b = 0 with encryptions of a dummy “zero string,” follow-
ing the reverse order of S0’s linearization. For attestations
in Condition #4, we replace the WIBE ciphertexts in the at-
testations with encryptions of zero, in a single hybrid game
for each attestation. For each attestation in Condition #5, we
make two hybrid games; the first replaces its IBE ciphertext
with an encryption of zeros, and the second replaces the ID
used to encrypt with IBE for that ciphertext with a dummy
ID. At the end of this hybrid sequence, the challenger pro-
vides a graph containing encryptions of zero in non-useful
attestations if b = 0, and a proper encryption of G1 if b = 1.

This is followed by another sequence of hybrids where we
similarly transform the encryptions of zero provided by the
challenger if b= 0 to proper encryptions of the attestations in
G1. This is done by transforming attestations in the forward
order of S1’s linearization. In the final game, the challenger
provides a graph containing a proper encryption of G1, re-
gardless of the chosen bit b, so Adv’s advantage is 0. This
completes the proof sketch.
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