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Deep Learning is powering new applications
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..but extremely compute intensive!

Total Compute Used During Training
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Figure from “Language Models are Few-Shot Learners”, Brown et al.



Research covered in this talk:
How can we train high-quality models fast using
optimizations across the software stack?




Model training in datacenters

| want to train my models with high
performance! This should be easy™
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Iterative, long-running, and compute-intensive



Overview of work covered in this talk
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Background: model training
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Optimization performed in iterations; each iteration can be parallelized
within an accelerator (GPU) and also across accelerators



Activations, gradients, and weights too large
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« Activations, gradients, weights can be much larger than memory

capacity of a single accelerator

* Need to either partition state across multiple accelerators or offload



Activations, gradients, and weights too large

ZeRO-Offload: Democratizing Billion-Scale Model Training

Jie Ren Samyam Rajbhandari Reza Yazdani Aminabadi Olatunji Ruwase
UC Merced Microsoft Microsoft Microsoft
Shuangyan Yang Minjia Zhang Dong Li Yuxiong He
UC Merced Microsoft UC Merced Microsoft
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Sit, Fido!: Training Machine Learning Algorithms



Preprocessing can be a computational bottleneck

« Preprocessing performed on CPU usually (as opposed to model
computation which is performed on accelerator)
« Can become a computational bottleneck (accelerator idle)



Preprocessing can be a computational bottleneck

Refurbish Your Training Data: Reusing Partially Augmented Samples
for Faster Deep Neural Network Training
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Sit, Fido!: Training Machine Learning Algorithms
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How do multiple jobs share the same accelerator?
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More intermediate state with concurrent jobs

Footprint increases in forward pass, decreases in backward pass
Peak memory footprint greatly increased if multiple training jobs are
collocated on the same accelerator with phases aligned
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How do multiple jobs share the same accelerator?

Zico: Efficient GPU Memory Sharing for Concurrent DNN Training

Gangmuk Lim Jeongseob Ahn Wencong Xiao Youngjin Kwon Myeongjae Jeon
UNIST Ajou University Alibaba Group KAIST UNIST
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How should we allocate resources?

O PyTorch

TensorFlow

Training jobs in
existing frameworks

l

Objective (e.g., fairness,
cost, makespan)

Scheduler
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Homogeneous
cluster

Scheduling is a well-studied problem in computer systems
in other contexts as well (e.g., big data clusters)



How do we incorporate elasticity into schedulers?

O PyTorch

TensorFlow
Training jobs in
existing frameworks
with elastic demands

« Scheduler determining scale based on demand can allow resources to
be better utilized
« Throughput and statistical efficiency affected by batch size and scale



How do we incorporate elasticity into schedulers?

Pollux: Co-adaptive Cluster Scheduling for Goodput-Optimized Deep Learning

Aurick Qiao'-? Sang Keun Choe? Suhas Jayaram Subramanya’ Willie Neiswanger!-?
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Optimizations and Scheduling for Machine Learning
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How about other kinds of objectives?

Objective (e.g., fairness,
cost, makespan, privacy)

|

« Most objectives functions of throughput or cost (e.g., fairness)
« But what about privacy? (data leakage occurs every time a ML model
is trained on a specific dataset)



How about other kinds of objectives?

Privacy Budget Scheduling

Tao Luo” Mingen Pan* Pierre Tholoniat™
Columbia University Columbia University Columbia University
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Columbia University Microsoft Research
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How do we pick between accelerator types?
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A100 GPU

Heterogeneous
resources

« Models have different operators: some compute-bound, some memory-
bound; optimal implementation hardware-specific
« Not easy to determine best accelerator type for a given objective



How do we pick between accelerator types?

Habitat: A Runtime-Based Computational Performance Predictor for
Deep Neural Network Training

Geoffrey X. Yu Yubo Gao Pavel Golikov Gennady Pekhimenko
University of Toronto University of Toronto University of Toronto University of Toronto
Vector Institute Vector Institute Vector Institute
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Training in the datacenter not always attractive!

 Privacy (don’t want to share sensitive data with the cloud)
« High latency (need to go to cloud and back)

» Hard to provide personalized models



Training on edge devices can be challenging!

 Limited computational capacity and memory

« Need to coordinate among multiple decentralized entities (to make sure
model is not overfit to single user)



Can we train directly on edge devices?

Octo: INTS8 Training with Loss-aware Compensation and Backward Quantization
for Tiny On-device Learning

Qihua Zhou", Song Guo', Zhihao Qui, Jingcai Guo', Zhenda Xu',
Jiewei Zhang', Tao Guo', Boyuan Luo", Jingren Zhou*
"Hong Kong Polytechnic University, *Hohai University, *Alibaba Group
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I'm Old but | Learned a New Trick: Machine Learning
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Can we train directly on edge devices?

Oort: Efficient Federated Learning via Guided Participant Selection

Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, Mosharat Chowdhury
University of Michigan
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Optimizations and Scheduling for Machine Learning
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ML Training @ OSDI and ATC 2021

« Zico
* Refurbish your Training Data
« ZeRO-Offload

* Pollux
* Privacy Budget Scheduling
« Habitat

e Oort
e QOcto

Efficient training in
the datacenter

Resource allocation
in the datacenter

Efficient training in
the edge
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