@fDI*

15th USENIX Symposium on Operating Systems
Design and Implementation

Preview of Operating Systems and Hardware Session

iy , :
Michio Honda Sudarsun Kannan

University of Edinburgh Rutgers University

https://scholar.google.com/citations?view_op=view_org&hl=en&org=4408345423101314415

Memory Scaling Challenges

=> Scaling application memory capacity without increasing management cost is

becoming critical

=> Scaling memory protection and isolation for large address space equally critical

2. Memory security is challenging

Requires extensive application knowledge

, , Hardware memory security non-scalable
and requires constant tuning

Beyond malloc efficiency to fleet efficiency: a hugepage-aware memory allocator

A.H. Hunter Chris Kennelly Paul Turner Darryl Gove Tipp Moseley
Jane Street Capital Google Google Google Google

Parthasarathy Ranganathan
Google

Memory Allocator Challenges

-> Long history of memory allocators designed for specific application needs
e Concurrency and low fragmentation (e.g., Hoard, jemalloc, TCMalloc)
e Minimize L1 misses (e.g., Dice), increase locality (e.g., mimallloc)

-> However, allocators are not optimized for HugePages
e HugePages becoming increasingly ubiquitous in large scale applications
e Could substantially reduce TLB misses by increasing RAM coverage

—> Using existing allocators with HugePages could increase fragmentation and are
inefficient for warehouse scale systems running several applications

TEMERAIRE

-> Hugepage-aware user-level allocator using TCMALLOC
-> Aims at densely packing huge pages grouped into few, saturated bins

—> Balances memory usage and page allocation costs through adaptive huge page
release

HugeAllocator

Caches HugeCache Divide aIIocator’_s caches and serve
; $ - requests from different caches

HugeFiller Huge Region
Small Large T
requests requests Medium

requests

-> Average 6% reduction TLB misses and 26% reduction in memory usage across
a fleet of applications

Scalable Memory Protection in the PENGLAI Enclave

Erhu Feng"™, Xu Lu"'*, Dong Du'*, Bicheng Yangﬁ, Xueqgiang .Iiang*i, Yubin Xia™,
Binyu Zang'®*, Haibo Chen'>*
"Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University
SShanghai Al Laboratory
*Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

Hardware Enclaves 101

- Hardware abstractions and support for trusted execution on untrusted

platforms
Instructions
_ _ EEXIT
Application EGETKEY
Environment EREPORT
EENTER
SGX User SGX User ERESUME

Runtime Runtime

Instructions
ECREATE ETRACK

o EADD EWB

Privileged > SGX EEXTEND ELD

Environment age EINIT EPA
tables Module EBLOCK EREMOVE

P Iatfor m Hdw Data Structure
Exposed
Hardware EPC ey |
—OS Data structure

—> Hardware enclaves: secure boot, on-chip program isolation, protected
external memory, execution integrity, and other capabillities

Hardware Enclaves Challenges

-> Non-scalable memory partition/isolation
e Current hardware supports only 256MB enclaves
e Some restrict the number of enclaves
e Require static partitioning

—> Non-scalable memory integrity protection
e Huge memory overhead to store memory integrity information (e.g., hash)
e Hardware (e.g., Intel SGX) only supports ~256MB, demands swapping

—> Non-scalable secure memory initialization
e High-cost secure memory initialization increases enclave setup cost
e |mpractical for serverless applications

PENGLAI Enclave

-> Scalable secure memory protection mechanisms for enclaves
-> Approach to Scaling: novel Guarded Page Table structure

-> Guarded Page Table Intuition: map secure and unsecure pages to separate
non-secure host page table and secure enclave page table

HostApp . EnclaveApp
Host OS
read-only,lwn’te-trap l ‘
ro mw A w w € w ro
[ESTE - I B el S
o, . o o = s D 2
€| (D|[D] bl T Tl BD/D D .\D
B] o e e i
Q \ ‘] 1 %
= ‘ DD N — T D D \‘\D .J' D D E
t HPTArea {
5 i
E non-secure | __| host page . enclave page secure
data page table page table page data page

- Scaling Integrity Protection: Mountable Merkle Tree (MMT), a SubTree
structure to reduce both on-die and in-memory storage overhead

DI

15th USENIX Symposium on Operating Systems
Design and Implementation

(NrOS and nanoPU)

OS evolution over HW generations

. user ([\)
- Single core cornal | % -----
Just protect critical sections from
Interrupts —
/0 was also slow
cache|
memory

OS evolution over HW generations

- Single core cormal ?
- Just protect critical sections from
Interrupts
- 1/0 was also slow
- Multiple CPU cores cache) []
- Giant lock memory
- Fine-grained locks —

- Reader-writer locks

OS evolution over HW generations

- Single core s
- Just protect critical sections from
Interrupts —
- 1/0O was also slow
- Multiple CPU cores cache) []
- Giant lock memory
- Fine-grained locks —

- Reader-writer locks

OS evolution over HW generations

readers writer

user

- Single core

kernel | / /
- Just protect critical sections from
Interrupts
- 1/0 was also slow
- Multiple CPU cores cache) []
- Giant lock memory
- Fine-grained locks —

- Reader-writer locks

OS evolution over HW generations

user

- Single core

kernel
- Just protect critical sections from
Interrupts
- |/0 was also slow
- Multiple CPU cores cache
- Giant lock memory

- Fine-grained locks
- Reader-writer locks
- Multiple CPU packages (sockets)

- NUMA-aware memory allocation and
scheduling

2

/ n = u\
ll \Z
47\\\
O@\‘

4

OS evolution over HW generations

: |. user [\\ V)
- Slng e core kernel "_[Batchirtlg,zir%_cl_c;py,
- Just protect critical sections from S
_ W\ W)
Interrupts V7 B
- 1/0O was also slow
- Multiple CPU cores cache/ [] [
- Giant lock memory
- Fine-grained locks 2
- Reader-writer locks NIC

- Multiple CPU packages (sockets)

- NUMA-aware memory allocation and
scheduling

- Fast1/0

- Interrupt mitigation and load-balancing
- New APIs
(kqueue/epoll/netmap/io_uring)

OS evolution over HW generations

- // \\ bh_lock_sock_nested(sk);
- Single core ernal [g2 ep_ (k). 20
if (!'sock _owned by user(sk)) {
- Just protect critical sections from e
ret = tcp_v4_do_rcv(sk, skb);
Interrupts \ e e e,
- 1/0 was also slow == .. Sl R
= MUltlple CPU cores cache ._(Skb_t_aixzziskb(skb_to_free>;
- G|ant l_OCk memory - : (rei‘counied)t("
- Fine-grained locks 2 _
- Reader-writer locks NIC o) ot lock
: Check another socket loc
- Multiple CPU packages (sockets) (sleepable one)
- NL:]MC,lA—?ware memory allocation and Lock socket
schedulin _ .
Fast 1/0 5 (non-sleepablg} et is also ref-counted
- as
- Interrupt mitigation and load-balancing[All of these make kernel code complex and h
- New APIs error-prone, but such a kernel is still not
scalable!

(kqueue/epoll/netmap/io_uring) Y,

NrOS

Design

Monolithic

Multikerne
|

NrOS

Synchronizati
on

Shared states

Message
passing

Operation
logs

Kernel
programming

Hard

Easy

Easy

Scalabilit
y

Low

Low

High

- Use of shared last-level CPU cache

- POSIX app support

Operation logs shared by per-NUMA-node
replicas
- Synchronization batching
NetBSD LibOS

NrOS: Effective Replication and Sharing in an Operating System

Ankit Bhardwaj', Chinmay Kulkarni!, Reto Achermann?, Irina Calciu,
Sanidhya Kashyap*, Ryan Stutsman!, Amy Tai*, and Gerd Zellweger®

lUniversity of Utah, 2University of British Columbia, *VMware Research, *EPFL

Abstract

Writing a correct operating system kernel is notoriously

custom-

tailored concurrent data str

ructures with fine-grained

a
locking or techniques like read-copy-update (RCU) to achieve
good performance. For monol

ithic kernels, this slows devel-

cache

memory

—_—
—_—
o
©
wn

Per-NUMA-node
kernel replica

nanoPU

ARTIFACT ARTIFACT [ArmiFact
EVALUATED EVALUATED EVALUATED

The nanoPU: A Nanosecond Network Stack for Datacenters

- CO - d es I g N I N g N I C an d C P U Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen,

Muhammad Shahbaz*, Changhoon Kim, and Nick McKeown

- NIC places receiving data directly in a CPU register file Stanford University *Purdue University
Abstract from when a client issues an RPC request until it receives a
- Ultrafast small RPCs (nanoRequests) R i g i e B b o
. cations: those that utilize many small Remote Procedure Calls response time) for applications with large fanouts (e.g., map-
- High-rate small requests are hard to handle, because Rt S s e
most overheads are per-packet or per-request, NOT
per bytes

- nanoPU reduces both average and tail latency

v N)
user % %
_ _ _ kernel |
- Design highlights N 1 Request
- Avoid the two latency sources: [
| k y 5 Response
] ost stac cache [nanoPU Tail latency matters in data
- Bypass the stack and centers
_ memaory DCA/
memory hierarchy DMA 1 5610
. \ |/
- Queuesin networks
NIC

- Transport protocol in HW

DI

15th USENIX Symposium on Operating Systems
Design and Implementation

Operating Systems and Hardware
Session

Thursday, July 15
7:00 am-8:15 am (PDT)

