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Memory Scaling Challenges

=> Scaling application memory capacity without increasing management cost is

becoming critical

=> Scaling memory protection and isolation for large address space equally critical

2. Memory security is challenging

Requires extensive application knowledge

, , Hardware memory security non-scalable
and requires constant tuning



Beyond malloc efficiency to fleet efficiency: a hugepage-aware memory allocator
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Memory Allocator Challenges

-> Long history of memory allocators designed for specific application needs
e Concurrency and low fragmentation (e.g., Hoard, jemalloc, TCMalloc)
e Minimize L1 misses (e.g., Dice), increase locality (e.g., mimallloc)

-> However, allocators are not optimized for HugePages
e HugePages becoming increasingly ubiquitous in large scale applications
e Could substantially reduce TLB misses by increasing RAM coverage

—> Using existing allocators with HugePages could increase fragmentation and are
inefficient for warehouse scale systems running several applications



TEMERAIRE

-> Hugepage-aware user-level allocator using TCMALLOC
-> Aims at densely packing huge pages grouped into few, saturated bins

—> Balances memory usage and page allocation costs through adaptive huge page
release

HugeAllocator

Caches HugeCache Divide aIIocator’_s caches and serve
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-> Average 6% reduction TLB misses and 26% reduction in memory usage across
a fleet of applications
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Hardware Enclaves 101

- Hardware abstractions and support for trusted execution on untrusted

platforms
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—> Hardware enclaves: secure boot, on-chip program isolation, protected
external memory, execution integrity, and other capabillities



Hardware Enclaves Challenges

-> Non-scalable memory partition/isolation
e Current hardware supports only 256MB enclaves
e Some restrict the number of enclaves
e Require static partitioning

—> Non-scalable memory integrity protection
e Huge memory overhead to store memory integrity information (e.g., hash)
e Hardware (e.g., Intel SGX) only supports ~256MB, demands swapping

—> Non-scalable secure memory initialization
e High-cost secure memory initialization increases enclave setup cost
e |mpractical for serverless applications



PENGLAI Enclave

-> Scalable secure memory protection mechanisms for enclaves
-> Approach to Scaling: novel Guarded Page Table structure

-> Guarded Page Table Intuition: map secure and unsecure pages to separate
non-secure host page table and secure enclave page table
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- Scaling Integrity Protection: Mountable Merkle Tree (MMT), a SubTree
structure to reduce both on-die and in-memory storage overhead
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OS evolution over HW generations
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OS evolution over HW generations
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OS evolution over HW generations

user

- Single core

kernel
- Just protect critical sections from
Interrupts
- |/0 was also slow
- Multiple CPU cores cache
- Giant lock memory

- Fine-grained locks
- Reader-writer locks
- Multiple CPU packages (sockets)

- NUMA-aware memory allocation and
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OS evolution over HW generations
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- Interrupt mitigation and load-balancing
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OS evolution over HW generations
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- Use of shared last-level CPU cache

- POSIX app support

Operation logs shared by per-NUMA-node
replicas
- Synchronization batching
NetBSD LibOS

NrOS: Effective Replication and Sharing in an Operating System
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nanoPU
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The nanoPU: A Nanosecond Network Stack for Datacenters

- CO - d es I g N I N g N I C an d C P U Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen,

Muhammad Shahbaz*, Changhoon Kim, and Nick McKeown

- NIC places receiving data directly in a CPU register file Stanford University *Purdue University
Abstract from when a client issues an RPC request until it receives a
- Ultrafast small RPCs (nanoRequests) R i g i e B b o
. cations: those that utilize many small Remote Procedure Calls response time) for applications with large fanouts (e.g., map-
- High-rate small requests are hard to handle, because Rt S s e
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