
Preview of Operating Systems and Hardware Session

Michio Honda

 University of Edinburgh

 Sudarsun Kannan

 Rutgers University

https://scholar.google.com/citations?view_op=view_org&hl=en&org=4408345423101314415

2

➔ Scaling application memory capacity without increasing management cost is

becoming critical

1. Memory tuning is tedious

Requires extensive application knowledge
and requires constant tuning

2. Memory security is challenging

Hardware memory security non-scalable

➔ Scaling memory protection and isolation for large address space equally critical

Memory Scaling Challenges

3

4

➔ Long history of memory allocators designed for specific application needs
● Concurrency and low fragmentation (e.g., Hoard, jemalloc, TCMalloc)
● Minimize L1 misses (e.g., Dice), increase locality (e.g., mimallloc)

➔ However, allocators are not optimized for HugePages
● HugePages becoming increasingly ubiquitous in large scale applications
● Could substantially reduce TLB misses by increasing RAM coverage

➔ Using existing allocators with HugePages could increase fragmentation and are
inefficient for warehouse scale systems running several applications

Memory Allocator Challenges

5

➔ Hugepage-aware user-level allocator using TCMALLOC

➔ Aims at densely packing huge pages grouped into few, saturated bins

➔ Balances memory usage and page allocation costs through adaptive huge page
release

TEMERAIRE

Divide allocator’s caches and serve
requests from different caches

Medium
requests

HugeAllocator

HugeCache

HugeFiller Huge Region

Small
requests

Large
requests

Caches

➔ Average 6% reduction TLB misses and 26% reduction in memory usage across
a fleet of applications

6

7

➔ Hardware abstractions and support for trusted execution on untrusted
platforms

Hardware Enclaves 101

➔ Hardware enclaves: secure boot, on-chip program isolation, protected
external memory, execution integrity, and other capabilities

8

➔ Non-scalable memory partition/isolation
● Current hardware supports only 256MB enclaves
● Some restrict the number of enclaves
● Require static partitioning

➔ Non-scalable memory integrity protection
● Huge memory overhead to store memory integrity information (e.g., hash)
● Hardware (e.g., Intel SGX) only supports ~256MB, demands swapping

➔ Non-scalable secure memory initialization
● High-cost secure memory initialization increases enclave setup cost
● Impractical for serverless applications

Hardware Enclaves Challenges

9

➔ Scalable secure memory protection mechanisms for enclaves

➔ Approach to Scaling: novel Guarded Page Table structure

➔ Guarded Page Table Intuition: map secure and unsecure pages to separate
non-secure host page table and secure enclave page table

PENGLAI Enclave

➔ Scaling Integrity Protection: Mountable Merkle Tree (MMT), a SubTree
structure to reduce both on-die and in-memory storage overhead

(NrOS and nanoPU)

OS evolution over HW generations

- Single core
- Just protect critical sections from

interrupts
- I/O was also slow C

memory

cache

user
kernel

OS evolution over HW generations

- Single core
- Just protect critical sections from

interrupts
- I/O was also slow

- Multiple CPU cores
- Giant lock
- Fine-grained locks
- Reader-writer locks

C

memory

cache

C
C C

user
kernel

OS evolution over HW generations

- Single core
- Just protect critical sections from

interrupts
- I/O was also slow

- Multiple CPU cores
- Giant lock
- Fine-grained locks
- Reader-writer locks

C

memory

cache

C
C C

user
kernel

OS evolution over HW generations

- Single core
- Just protect critical sections from

interrupts
- I/O was also slow

- Multiple CPU cores
- Giant lock
- Fine-grained locks
- Reader-writer locks

C

memory

cache

C
C C

user
kernel

readers writer

OS evolution over HW generations

- Single core
- Just protect critical sections from

interrupts
- I/O was also slow

- Multiple CPU cores
- Giant lock
- Fine-grained locks
- Reader-writer locks

- Multiple CPU packages (sockets)
- NUMA-aware memory allocation and

scheduling

CC
CC

memory

cache

CC
CC

m
alloc

m
al

lo
c

slow

user
kernel

OS evolution over HW generations

- Single core
- Just protect critical sections from

interrupts
- I/O was also slow

- Multiple CPU cores
- Giant lock
- Fine-grained locks
- Reader-writer locks

- Multiple CPU packages (sockets)
- NUMA-aware memory allocation and

scheduling

- Fast I/O
- Interrupt mitigation and load-balancing
- New APIs

(kqueue/epoll/netmap/io_uring)

CC
CC

memory

cache

CC
CC

NIC

user
kernel Batching, zero copy,

request scalability

OS evolution over HW generations

- Single core
- Just protect critical sections from

interrupts
- I/O was also slow

- Multiple CPU cores
- Giant lock
- Fine-grained locks
- Reader-writer locks

- Multiple CPU packages (sockets)
- NUMA-aware memory allocation and

scheduling

- Fast I/O
- Interrupt mitigation and load-balancing
- New APIs

(kqueue/epoll/netmap/io_uring)

CC
CC

memory

cache

CC
CC

NIC

Lock socket
(non-sleepable)

Check another socket lock
(sleepable one)

socket is also ref-counted

user
kernel

All of these make kernel code complex and
error-prone, but such a kernel is still not
scalable!

NrOS

- Design highlights
- Per-NUMA-node kernel replicas

- Use of shared last-level CPU cache
- Operation logs shared by per-NUMA-node

replicas
- Synchronization batching

- NetBSD LibOS
- POSIX app support

CC
CC

memory

cache

CC
CC

User
Kernel

LibOS

Apps

Ops.
Log

Per-NUMA-node
kernel replica

Design Synchronizati
on

Kernel
programming

Scalabilit
y

Monolithic Shared states Hard Low

Multikerne
l

Message
passing

Easy Low

NrOS Operation
logs

Easy High

nanoPU

- Co-designing NIC and CPU
- NIC places receiving data directly in a CPU register file

- Ultrafast small RPCs (nanoRequests)
- High-rate small requests are hard to handle, because

most overheads are per-packet or per-request, NOT
per bytes

- nanoPU reduces both average and tail latency

C

memory

cache

C
C C

user
kernel

NIC

DMA DCA/
DDIO

nanoPU

Request

Response

2

3

4
5

1

Tail latency matters in data
centers

- Design highlights
- Avoid the two latency sources:

- Host stack
- Bypass the stack and

memory hierarchy
- Queues in networks

- Transport protocol in HW

Operating Systems and Hardware
Session

Thursday, July 15

7:00 am–8:15 am (PDT)

