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➔ Scaling application memory capacity without increasing management cost is 

becoming critical

1. Memory tuning is tedious 

Requires extensive application knowledge 
and requires constant tuning

2. Memory security is challenging

Hardware memory security non-scalable

➔ Scaling memory protection and isolation for large address space equally critical

Memory Scaling Challenges
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➔ Long history of memory allocators designed for specific application needs
● Concurrency and low fragmentation (e.g., Hoard, jemalloc, TCMalloc)
● Minimize L1 misses (e.g., Dice), increase locality (e.g., mimallloc)

➔ However, allocators are not optimized for HugePages
● HugePages becoming increasingly ubiquitous in large scale applications
● Could substantially reduce TLB misses by increasing RAM coverage

➔ Using existing allocators with HugePages could increase fragmentation and are 
inefficient for warehouse scale systems running several applications

Memory Allocator Challenges
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➔ Hugepage-aware user-level allocator using TCMALLOC

➔ Aims at densely packing huge pages grouped into few, saturated bins

➔ Balances memory usage and page allocation costs through adaptive huge page 
release

TEMERAIRE

Divide allocator’s caches and serve 
requests from different caches

Medium 
requests

HugeAllocator

HugeCache

HugeFiller Huge Region

Small 
requests

Large 
requests

Caches

➔ Average 6% reduction TLB misses and 26% reduction in memory usage across 
a fleet of applications
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➔ Hardware abstractions and support for trusted execution on untrusted 
platforms

Hardware Enclaves 101

➔ Hardware enclaves: secure boot, on-chip program isolation, protected 
external memory, execution integrity, and other capabilities
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➔ Non-scalable memory partition/isolation
● Current hardware supports only 256MB enclaves
● Some restrict the number of enclaves
● Require static partitioning 

➔ Non-scalable memory integrity protection
● Huge memory overhead to store memory integrity information (e.g., hash)
● Hardware (e.g., Intel SGX) only supports ~256MB, demands swapping

➔ Non-scalable secure memory initialization
● High-cost secure memory initialization increases enclave setup cost
● Impractical for serverless applications

Hardware Enclaves Challenges
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➔ Scalable secure memory protection mechanisms for enclaves

➔ Approach to Scaling: novel Guarded Page Table structure

➔ Guarded Page Table Intuition: map secure and unsecure pages to separate 
non-secure host page table and secure enclave page table

PENGLAI Enclave 

➔ Scaling Integrity Protection:  Mountable Merkle Tree (MMT), a SubTree 
structure to reduce both on-die and in-memory storage overhead 



(NrOS and nanoPU)
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Lock socket 
(non-sleepable)

Check another socket lock 
(sleepable one)

socket is also ref-counted

user
kernel

All of these make kernel code complex and 
error-prone, but such a kernel is still not 
scalable!



NrOS

- Design highlights
- Per-NUMA-node kernel replicas

- Use of shared last-level CPU cache
- Operation logs shared by per-NUMA-node 

replicas
- Synchronization batching

- NetBSD LibOS
- POSIX app support

CC
CC

memory

cache

CC
CC

User
Kernel 

LibOS

Apps

Ops.
Log

Per-NUMA-node
kernel replica

Design Synchronizati
on

Kernel 
programming

Scalabilit
y

Monolithic Shared states Hard Low

Multikerne
l

Message 
passing

Easy Low

NrOS Operation 
logs

Easy High



nanoPU

- Co-designing NIC and CPU
- NIC places receiving data directly in a CPU register file

- Ultrafast small RPCs (nanoRequests)
- High-rate small requests are hard to handle, because 

most overheads are per-packet or per-request, NOT 
per bytes

- nanoPU reduces both average and tail latency
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Tail latency matters in data 
centers

- Design highlights
- Avoid the two latency sources:

- Host stack
- Bypass the stack and 

memory hierarchy
- Queues in networks

- Transport protocol in HW
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