
This paper is included in the Proceedings of the
18th USENIX Symposium on Operating Systems

Design and Implementation.
July 10–12, 2024 • Santa Clara, CA, USA

978-1-939133-40-3

Open access to the Proceedings of the
18th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

VeriSMo: A Verified Security Module
for Confidential VMs

Ziqiao Zhou, Microsoft Research; Anjali, University of Wisconsin-Madison;
Weiteng Chen, Microsoft Research; Sishuai Gong, Purdue University;

Chris Hawblitzel and Weidong Cui, Microsoft Research
https://www.usenix.org/conference/osdi24/presentation/zhou

VERISMO: A Verified Security Module for Confidential VMs

Ziqiao Zhou∗ Anjali† Weiteng Chen∗ Sishuai Gong‡ Chris Hawblitzel∗ Weidong Cui∗
∗Microsoft Research †University of Wisconsin-Madison ‡Purdue University

Abstract
Hardware vendors have introduced confidential VM archi-

tectures (e.g., AMD SEV-SNP, Intel TDX and Arm CCA) in

recent years. They eliminate the trust in the hypervisor and

lead to the need for security modules such as AMD Secure

VM Service Module (SVSM). These security modules aim

to provide a guest with security features that previously were

offered by the hypervisor. Since the security of such modules

is critical, Rust is used to implement them for its known mem-

ory safety features. However, using Rust for implementation

does not guarantee correctness, and the use of unsafe Rust

compromises the memory safety guarantee.

In this paper, we introduce VERISMO, the first verified

security module for confidential VMs on AMD SEV-SNP.

VERISMO is fully functional and provides security features

such as code integrity, runtime measurement, and secret man-

agement. More importantly, as a Rust-based implementation,

VERISMO is fully verified for functional correctness, secure

information flow, and VM confidentiality and integrity. The

key challenge in verifying VERISMO is that the untrusted

hypervisor can interrupt VERISMO’s execution and modify

the hardware state at any time. We address this challenge by

dividing verification into two layers. The upper layer handles

the concurrent hypervisor execution, while the lower layer

handles VERISMO’s own concurrent execution. When com-

pared with a C-based implementation, VERISMO achieves

similar performance. When verifying VERISMO, we identi-

fied a subtle requirement for VM confidentiality and found

that it was overlooked by AMD SVSM. This demonstrates

the necessity for formal verification.

1 Introduction

Confidential computing has been adopted by major cloud

providers with the aim of removing the cloud provider out

of the Trusted Computing Base (TCB). This is achieved by

leveraging hardware-based Trusted Execution Environments

(TEEs), which are encrypted and isolated from the rest of

Trusted Hardware/Firmware

VMPL1-3

VM-1
VM-0

VM-k

VMPL1-3

Hypervisor

VERISMO
(VMPL0)

VERISMO
(VMPL0)

CPU-0 CPU-1

Untrusted

Verified to be
secure and trusted

Trusted

Software-hardware
interaction

Figure 1: VERISMO in AMD SEV-SNP architecture

the software stack managed by the cloud provider. In recent

years, hardware vendors have introduced confidential VM

architectures (e.g., AMD SEV-SNP [1], Intel TDX [19], and

Arm CCA [6]) that can run a full VM inside a TEE.

While a confidential VM’s confidentiality and integrity are

protected from the untrusted hypervisor, it also means that a

confidential VM cannot use security features that previously

were offered by the hypervisor. To fill this gap, security mod-

ules such as AMD Secure VM Service Module (SVSM) were

introduced to provide the missing security features in a privi-

leged layer inside a confidential VM. Given the importance

of the security of such modules [4, 39], Rust is used to imple-

ment them for its known memory safety features. However,

using Rust for implementation does not guarantee correctness,

and the use of unsafe Rust compromises the memory safety

guarantee.

In this paper, we present VERISMO1, the first verified secu-

rity module for confidential VMs on AMD SEV-SNP. Similar

to other security modules like AMD SVSM [2], VERISMO

is a privileged software layer that runs inside a confidential

VM and provides security features such as code integrity,

runtime measurement, and secret management. The isola-

tion between the security module and the guest OS is based

on a new privilege dimension called Virtual Machine Privi-

1VERISMO is derived from realism in the arts, particularly late 19th-

century Italian opera. Its pronunciation reflects its small size.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 599

lege Levels (VMPLs) on AMD SEV-SNP. VERISMO runs at

the highest-privileged VMPL. Unlike other security modules,

VERISMO is fully verified for functional correctness, secure

information flow, and memory safety. Specifically, VERISMO

is implemented in Rust and verified using Verus [22], a pro-

gram verificaton tool designed for Rust.

AMD SEV-SNP provides confidential VMs with confiden-

tiality and integrity. The former is achieved by encrypting the

memory of a confidential VM and the latter is achieved by

tracking the ownership of memory pages based on a new

mechanism called the Reverse Map Table (RMP). While

VERISMO can directly control memory encryption, it has

to interact with the hypervisor to maintain the integrity of

memory pages. This is because the hypervisor controls the

nested page table and the owernship of memory pages in the

RMP, while VERISMO is responsible for updating the RMP

to validate memory pages assigned to a confidential VM.

The key challenge in verifying VERISMO is that the un-

trusted hypervisor can interrupt VERISMO’s execution and

modify the hardware state at any time. This concurrent in-

terference makes it unwieldy to use standard Floyd-Hoare

reasoning when verifying that VERISMO enforces the confi-

dentiality and integrity of the VMs. To address this challenge,

we divide verification into two layers. The upper layer handles

the concurrent hypervisor execution, while the lower layer

handles the VERISMO implementation, which is itself concur-

rent. This allows us to reason about these two different forms

of concurrency (hypervisor interference and VERISMO’s in-

ternal concurrency) using two different techniques:

1. For the upper layer, which we call the “machine-model

layer”, we define an abstract machine model that repre-

sents various physical hardware resources and hypervi-

sor operations. We then prove that steps taken by this ab-

stract machine preserve the confidentiality and integrity

of the VMs.

2. For the lower layer, which we call the “implementation

layer”, we use Rust’s ownership checking and Verus’s

permissions to reason about VERISMO’s internal re-

sources as the resources are accessed concurrently by

different CPUs.

The interaction between the two layers is managed by pre-

conditions that the VERISMO implementation must satisfy

when performing hardware operations and postconditions that

the VERISMO implementation can assume after hardware

operations. For example VERISMO must satisfy a particular

precondition when writing to a page table, and VERISMO can

assume a postcondition about a memory page after executing

the pvalidate instruction on the page. The upper layer can

assume that the preconditions are satisfied, so that we can

use these preconditions to verify that the abstract machine

preserves the confidentiality and integrity of the VMs.

To make the implementation layer’s verification scalable,

especially with concurrent CPU access, we adopt permission-

based reasoning, as suggested by previous research [8, 22, 31,

37]. This method combines ideas from Linear Logic [13] and

Separation Logic [36], using access permissions as abstract

capabilities for operations like reading and writing. Our ap-

proach applies these permissions to create type-safe interfaces

for hardware resources, ensuring consistent maintenance of

correct permissions during software interactions with these

resources. Moreover, these interfaces, verified at the machine

model level, guarantee memory safety and operational cor-

rectness in concurrent environments.

To enforce security information flow, we introduce a secu-

rity type that carries possible value sets and security labels for

each primitive type. The key concept here is to track a security

level to each variable at every privilege level and ensure the

proper relationship between the security level in value and

the proper access permission in memory.

We built VERISMO mostly from the ground up, with the

exception of integrating a verified cryptographic library [35],

which we trust completely to avoid unnecessary duplication of

verification efforts. We compared VERISMO with a C-based

implementation and observed similar performance. It takes

roughly 6 minutes to verify VERISMO on a 32-core machine,

which shows the efficient proof time achieved through our

optimized verification design and the use of Verus which is

highly optimized for SMT solving.

In summary, our work makes the following contributions:

• VERISMO is the first verified security module operating

within a confidential VM.

• We demonstrate how to verify VM integrity and confiden-

tiality in the presence of a potentially malicious concurrent

hypervisor, decomposing the verification into two layers to

handle two levels of concurrency.

• We utilize the state-of-the-art Rust-based verification frame-

work, showcasing the feasibility of constructing a verified

real-world system using permission-based reasoning in

Rust.

• We encode security flow policies using a type system

and define safe casting to ensure the confidentiality of se-

cret data while allowing all flexible accesses to secrets.

(Section 8.4.1).

2 Background

2.1 AMD Confidential VMs
AMD Secure Encrypted Virtualization (SEV) is a confidential

VM architecture. The latest version of AMD SEV, known

as SEV-SNP, offers enhanced integrity and confidentiality

protections for VMs.

Memory Encryption AMD SEV-SNP encrypts memory

using a VM-specific encryption key, and secures the virtual

600 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

CPU (vCPU) state by encrypting and storing it in a VM

Saving Area (VMSA) when the vCPU is trapped into the

hypervisor. To support communication with the outside world

(hypervisor or traditional IO devices), SEV allows VMs to

selectively control encryption for memory pages by either

setting an encryption bit in the guest page table or configuring

a special MSR called vTOM.

Reverse Map Table AMD SEV-SNP introduces the Re-

verse Map Table (RMP) for memory integrity. It is located

in the reserved system memory and is updated only with

special CPU instructions – rmpupdate by the hypervisor or

rmpadjust and pvalidate by the VM. The RMP is indexed

by System Physical Addresses (SPAs), and each entry in-

cludes a Guest Physical Address (GPA) (as the reverse map-

ping of the nested page table), the assigned security domain

(the hypervisor or a VM), as well as a validation bit to indi-

cate whether the VM has accepted the memory assignment

via pvalidate. To ensure the memory confidentiality and

integrity, a confidential VM must correctly manage its page

tables and the RMP.

VM Privilege Levels SEV-SNP introduces VM Privilege

Levels (VMPLs) to isolate software running within a confiden-

tial VM. VERISMO runs in highest-privilege level—VMPL0,

and we use VMPL3 to denote the level for running other soft-

wares inside the VM. A vCPU’s VMPL is stored in its VMSA.

Different VMPLs share the same guest physical memory but

have different permissions. By default, only VMPL0 has full

permissions enabled to all guest memory pages. A VMPL can

grant a subset of its permissions to a lower-privileged VMPL

via the rmpadjust instruction. Those permissions are stored

in the RMP and are part of the RMP check.

VM Platform Communication Key In AMD SEV-SNP,

confidential VMs rely on the hypervisor to forward their

messages to the Platform Security Processor (PSP) for tasks

such as deriving new keys and generating attestation reports.

To prevent attacks from a malicious hypervisor, The PSP

uses VM Platform Communication Keys (VMPCKs) to es-

tablish secure channels with a confidential VM. These keys

are passed to a confidential VM at launch time. VMPL0 has

access to all keys and can choose to release some keys to

other VMPLs.

VM Secure Interrupts A malicious hypervisor may inject

arbitrary interrupts to change the data/control flow of the VM.

Without secure interrupts, shared memory might be exploited

by the hypervisor to leak sensitive data. For example, a re-

cent research [38] demonstrates that #VC interrupts can leak

sensitive data via the shared guest-hypervisor communica-

tion block (GHCB). To prevent the hypervisor from injecting

arbitrary interrupts into a VM, AMD SEV-SNP introduces

two secure interrupt injection modes: restricted interrupts and

alternative interrupts. Each VMPL can have its own inter-

rupt mode specified in the VMSA. When restricted interrupts

are enabled, the hypervisor can only inject one interrupt type

introduced by AMD called #HV. When a #HV arrives at a

VMPL, the guest code at that VMPL can refer to a shared #HV

doorbell page to check the interrupt type instead of directly

jumping to an arbitrary interrupt handler. When alternative

interrupts are enabled, the hypervisor cannot inject any inter-

rupts into the VMPL, and the interrupts are always controlled

by a higher-privileged VMPL. Thus, VMPL0 must use the

restricted interrupt mode for security, while other VMPLs can

use either the restricted or alternative interrupt mode.

2.2 Rust and Verus
Rust is a modern programming language that offers high

performance and memory safety without requiring a garbage

collector. Rust’s ownership system enforces memory safety

in a way conceptually similar to linear logic or separation

logic. Rust is safe by default, meaning the compiler enforces

memory safety guarantees. However, for scenarios where

assembly code or direct control of memory is needed, Rust

provides ‘unsafe’ blocks, which can cause bugs and memory

safety issues [28].

Verus [22] is a verification tool designed for Rust. Verus

extends Rust with verification features such as preconditions,

postconditions, and loop invariants. For specifying and prov-

ing properties of Rust programs, Verus allows Rust devel-

opers to define three types of variables—executable, ghost,

and tracked variables as well as three types of functions—

executable, proof, and specification (spec) functions. The non-

executable functions and variables are used by Verus during

verification but are erased during compilation.

Ghost variables, which are used in proofs to represent math-

ematical abstractions such as sets or maps, are not checked by

Rust’s ownership checker. Tracked variables (referred to as

“proof variables” in earlier versions of Verus [22]), on the other

hand, are used to represent owned resources or permissions,

and are checked by Rust’s ownership checker. VERISMO uses

tracked variables to represent permissions to access hardware

resources such as memory and registers, in a style similar

to separation logic or linear logic, but checked with Rust’s

ownership checker rather than with a dedicated separation

logic or linear logic checker.

3 System Design

In this section, we present the system design of VERISMO.

3.1 Threat Model
VERISMO follows the threat model assumed by confidential

computing. It only trusts the CPU and assumes that every-

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 601

Validate memory

Initialize Allocator

Setup HV-shared

Create VMSA for APs
at VMPL0

Wake up CPU
at VMPL0

CreateVMSA for
BSP at VMPL3

Switch to VMPL3

Validate and Adjust
Register VMSA

at VMPL3

Security
Features

Rmpupdate

Create VMSA

APBSP

APBSP

APBSP

APBSP

APBSP

APBSP

APBSP

APBSP

APBSP

APBSP

APBSP

APBSP

Switch VMPLBy VMPL0
and hypervisor

By VMPL0 To next step

VMPL0

VMPL3

Running
vCPU

Idle
vCPU

SetPageState

Guest-VERISMO CallsBoot VMPL3Wake up VMPL0 APsInitialization
WakeUpAP

Figure 2: VERISMO work flow

thing outside of a confidential VM is entirely controlled by an

adversary, including the hypervisor. Although the hypervisor

can interrupt a VM at any time, it can only inject the #HV

interrupts because VERISMO uses the restricted interrupt

mode to prevent malicious interrupt injections. Furthermore,

VERISMO does not trust the guest OS running in the con-

fidential VM. Denial-of-service attacks are possible, as the

untrusted hypervisor manages the host and can either shut

down the physical machine or opt not to schedule a vCPU for

VERISMO to run. Physical attacks are out of scope, as they

are orthogonal to our work.

3.2 Architecture
VERISMO runs in VMPL0, while the guest operating system

runs in VMPL3 (VMPL1 or VMPL2 could also be used, but

we choose VMPL3 in this paper). Both VERISMO and the

guest run in the retricted interrupt mode 2, and are thus not

vulnerable to the interrupt injection attacks (e.g., [38]).

The work flow of VERISMO is shown in Figure 2. When

a confidential VM is launched, VERISMO executes first. It

reserves private memory for itself and then launches the guest

OS. Afterwards, VERISMO runs in a loop on each processor,

waiting for calls from the guest OS.

3.3 Guest-VERISMO Communication
VERISMO and the guest OS running on a processor can tran-

sition execution to each other by issuing a hypercall to the

hypervisor. Furthermore, a per-CPU memory page is shared

between VERISMO and the guest OS so that they can commu-

nicate with each other. The hypervisor does not have access

to this memory page.

3.4 VERISMO Guest APIs
The guest OS in VMPL3 must rely on VERISMO to wake

up its application processors (APs) and to validate memory

2The mainstream Linux (v6.8) does not support restricted interrupt in-

jection in either KVM or the guest. We used the Hyper-V hypervisor and

our modified guest Linux to enable restricted interrupts with #HV doorbell

implementation.

pages, as it lacks these capabilities. Additionally, the guest

OS can use VERISMO-provided security features.

Waking up APs. During the boot time, the guest OS on the

bootstrap processor (BSP) calls VERISMO to activate APs.

Upon receiving the request, VERISMO’s code running on

the BSP notifies code running on APs. Once receiving the

notification, VERISMO’s code running on an AP sets up a per-

CPU VMSA page for the guest OS and transitions execution

to the guest OS.

Guest Memory Management. While both VERISMO and

the guest OS are capable of sharing memory pages with the

hypervisor, only VERISMO can make memory pages pri-

vate by validating them in the RMP. To track the state of

memory pages (e.g., private/validated or shared/invalidated),

VERISMO requires the guest OS to use VERISMO-provided

APIs to share memory pages with the hypervisor. If the guest

OS chooses not to follow this requirement, these shared pages

will not be validated by VERISMO anymore.

Guest Kernel Code Integrity. To assist the guest OS in

preventing unauthorized code execution in kernel mode,

VERISMO offers the LockKernel API. The guest OS can

invoke this API with a list of memory ranges corresponding to

its kernel-mode code. VERISMO will then remove from the

guest OS the write permission to the kernel code pages and

the supervisor-execution permission to other memory pages.

VERISMO also ensures that this API can be called only once.

Runtime Measurement. To facilitate runtime measure-

ment for the guest OS, VERISMO provides two APIs,

ExtendPCR and Attest, based on a hash chain. The hash

chain’s initial value is set to the measurement of the guest

OS’s starting code and configuration. The guest OS can invoke

ExtendPCR to extend the hash chain and call Attest with a

nonce to request an attestation report. VERISMO assembles

the attestation report to include a hardware-attested report for

VERISMO’s identity and a VERISMO-attested report for the

hash chain.

602 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Secret Management. VERISMO provides three APIs to

support the guest OS for secret management: DeriveKey,

Encrypt, and Decrypt. DeriveKey generates an encryption

key derived from the current guest runtime measurement. This

key is kept in VERISMO and is never discloses to the guest

OS. The guest OS can invoke Encrypt or Decrypt to use

this derived key to encrypt or decrypt data.

4 Verification Overview

4.1 Motivation
Traditional software testing can only partially check correct-

ness for certain inputs and cannot formally ensure correctness.

Formal verification is the only solution that provides a formal

guarantee for the correctness. Below, we demonstrate the need

for formally verifying three properties: functional correctness,

secure information flow, and VM confidentiality and integrity.

Functional Correctness. Functional correctness defines

the desired outcome (i.e., the postcondition) of a function

when an input meets certain requirements (i.e., the precondi-

tion). In the following code, a key generation function con-

tains a bug that results in a violation of the desired specifica-

tion.

Listing 1: Incorrect functionality

1 fn GenPrivKey() -> (key: Key)
2 ensures key.is_random()
3 {
4 return 123; // a constant is not random
5 }

Secure Information Flow. Secure Information Flow de-

fines a safety problem by considering whether the information

flow in a system is managed in a way that prevents unautho-

rized access or leakage of sensitive data. A program is said

to be secure if and only if its memory trace and the values of

low-security variables are independent of the initial values

of its high-security variables. For example, the codes below

show the security violation via data flow (left) and control

flow (right).

low = high % 2 if high % 2 == 1 {a()} else {b()}

VM Confidentiality and Integrity. When a program P
operating at a certain privilege level accesses memory M on a

CPU, it is possible that M is concurrently accessed by P on a

different CPU, or by another program at a different privilege

level (e.g., the hypervisor). It is important to note that con-

fidentiality and integrity violations within a program P can

be eliminated through verification of P itself. However, the

unexpected memory value due to concurrent updates from un-

trusted programs cannot be prevented. Thus, strict correctness

cannot be verified against a specification relying on values

from mutable shared memory, which is concurrently accessi-

ble by the hypervisor or other VMPLs.

RmpOp

MemOp
HW model

Mem DB

RMP Table

Reg DB

TLB

System Map

CPUs

LockOp

PTOp

RegOp

CPU perm

Reg perm

Lock perm

Verified Safe exec codes

Unsafe exec codes

Verified SW-based precondition

Verified HW-based precondition

Mem perm

Impl Layer

SW-tracked

Confidentiality
&Integrity

Model Layer

Functional
correctness

Secure
information Flow

Figure 3: Two layer verification

Listing 2 illustrates an example where an incorrect modi-

fication of the page table can lead to the leakage of secrets

to the untrusted hypervisor (confidentiality violation) and

leave unintended effect in the software (integrity violation).

Listing 3 shows a similar violation due to an incorrect RMP

change.

Listing 2: Integrity/confidentiality violation via page table

change

1 page_table_set_encryption(a_addr, false);
2 *a = ret_sensitive(); // Leaked result;
3 do_critical(&a); // Unintended result;

Listing 3: Integrity/confidentiality violation via RMP change

1 rmp_adjust(a_addr, READ, VMPL3);
2 *a = ret_sensitive(); // Leaked result;
3 rmp_adjust(a_addr, WRITE, VMPL3);
4 do_critical(&a); // Unintended result;

4.2 Verification Design
While we can adapt existing verification techniques to verify

functional correctness and secure information flow, verifying

VM confidentiality and integrity has its own challenge. The

challenge comes from the fact that the untrusted hypervisor

can interrupt VERISMO’s execution and modify the hardware

state at any time. This concurrent interference makes it hard

to verify that VERISMO enforces VM confidentiality and

integrity. Furthermore, there is another source of concurrency:

VERISMO itself is a concurrent program. To handle these

two different forms of concurrency separately, we divide ver-

ification into two layers: the machine-model layer and the

implementation layer (see Figure 3).

In the machine-model layer, we define an abstract ma-

chine model that represents various hardware resources. Then

we prove that steps taken by this abstract machine preserve

VERISMO’s confidentiality and integrity. In the implemen-

tation layer, we use Rust’s ownership checking and Verus’s

permissions to reason about VERISMO’s internal resources

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 603

as the resources are accessed concurrently by different CPUs.

The interaction between the two layers is managed by precon-

ditions that the VERISMO implementation must satisfy when

performing hardware operations and postconditions that it

can assume after hardware operations.

5 Machine-Model Layer

In this section, we describe the verification process at the

machine-model layer. The goal of this layer is to prove that

steps taken by an abstract machine ensures VERISMO’s con-

fidentiality and integrity. Specifically, we need to ensure the

following security properties required by VERISMO.

(1) Ensuring the integrity and confidentiality of VM data

in private memory. The hypervisor is unable to alter

or explicitly read VM-private memory in the hardware

through any sequence of operations by the hypervisor

entity.

(2) Maintaining VMPL isolation. VMPL3 is unable to ex-

plicitly read VMPL0-private data, and whenever VMPL0

reads its own private data, it obtains the correct data, not

data tampered with by VMPL3.

5.1 Abstract Machine Model
Our abstract machine model, Ψ, represents the contents and at-

tributes of hardware resources such as registers, memory, page

tables, and the RMP. This model is updated through some

transition operations initiated by different entities. Since the

model defines the interactions between these entities, we can

formally check the preconditions for each operation required

for ensuring the desired security properties.

5.1.1 Entities

Our abstract machine model has three entities.

E0 represents VERISMO executing at VMPL0.

E3 represents the guest OS running at VMPL3. E0 and E3
share the same memory encryption key.

Ehv represents the hypervisor running in the hypervisor mode.

Ehv does not have access to the memory encryption key

of a confidential VM. Sibling guest VMs are ignored

because the hypervisor’s capabilities are their super set.

Both Ehv and E3 are untrusted and can execute arbitrary

code. Therefore, the value read out of the memory shared

with Ehv or E3 is treated as unconstrained.

5.1.2 Primitive Operations

Our abstract machine model defines a set of primitive opera-

tions (see Figure 3) that can be initiated by different entities to

read or modify hardware resources. Each operation represents

a single machine instruction, and its behavior is formally de-

fined based on the AMD manual [3]. For instance, we define

how the hardware model returns a memory value after nested

page table walks and RMP checks.

For each operation, we define a trusted exec function with

a single line of unsafe assembly in Rust with its pre- and

post-condition. The postcondition reflects the operations’s

effect and are fully trusted. For instance, the postcondition

for pvalidate is that the RMP entry is marked as validated.

The preconditions of trusted functions are checked in the veri-

fication process to prove that, by enforcing the preconditions,

the abstract machine state ensures the security properties

when E0’s operation is constrained by the preconditions. The

completeness of the operation model is important to our veri-

fication. Since VERISMO is not as large as a guest OS, we

currently only model critical memory and cache operations

under some assumptions. For example, VERISMO directly

uses the guest-hypervisor communication to replace code that

may trigger #VC, and always forces a VM termination when

a #VC or other unexpected interrupt is triggered. Thus, we do

not need to model the potential #VC events when accessing a

memory.

5.2 Top-level Security Property Specifications
When proving the security properties (1) and (2), we prove

both the confidentiality and integrity theorem outlined in

Listing 4 and Listing 5.

Listing 4: VMPL0 confidentiality

1 proof fn proof_confidentiality(Ψ: Machine, e0: Entity,
e: Entity, va1: Addr, va2: Addr)

2 requires
3 E0.contains(e0), e0 �= e,
4 m_inv(Ψ),
5 m_read(Ψ, va1, e0).is_Ok(),
6 m_read_ret(Ψ, va1, e0).is_Secret(),
7 m_to_spa(Ψ, va1, e0) ≡ m_to_spa(Ψ, va2, e),
8 m_read(Ψ, va2, e).is_Ok(),
9 ensures

10 m_read_ret(Ψ, va2, e).is_Encrypted();

Listing 5: VMPL0 integrity

1 proof fn proof_integrity(Ψ: Machine, Ψ′: Machine, e0:
Entity, va: Addr)

2 requires
3 E0.contains(e0),
4 m_inv(Ψ, e0),
5 attack_model(Ψ, Ψ′),
6 m_read(Ψ, va, E0).is_Ok(),
7 m_read(Ψ′, va, E0).is_Ok(),
8 ensures
9 m_read_ret(Ψ, va, e0) ≡ m_read_ret(Ψ′, va, e0);

To prove confidentiality, a critical specification is the SNP

machine invariant (m_inv) representing whether a machine

state is valid. For the integrity proof, we additionally rely on a

604 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

specification (model_attack) that determines whether a state

Ψ′ is reachable from Ψ under attack. Thus, it is necessary to

prove the correctness of both the machine invariant specifica-

tion (Listing 6) and the attack model specification (Listing 7).

This entails consideration of machine model modifications

stemming from all possible operations, where only E0’s oper-

ation is constrained by preconditions (Op::sw_requires).

Listing 6: Correctness of machine state invariant

1 proof fn proof_machine_inv(Ψ: Machine, Ψ′: Machine, op:
Op, e0: Entity, e: Entity)

2 requires
3 E0.contains(e0),
4 (e0 ≡ e) =⇒ Op::sw_requires(e, op),
5 Ψ′ ≡ m_op(Ψ, e, op),
6 m_inv(Ψ, e0),
7 ensures
8 m_inv(Ψ′, e0);

Listing 7: Correctness of attack model

1 proof fn proof_attack_model(Ψ: Machine, Ψ′: Machine,
Ψ′′: Machine, op: Op, e0: Entity, e: Entity)

2 requires
3 E0.contains(e0), e �= e0,
4 m_inv(Ψ, e0),
5 ensures
6 Ψ′ ≡ Machine:op(Ψ, e, op) =⇒ attack_model(e0, Ψ,

Ψ′),
7 (attack_model(e0, Ψ, Ψ′) && Ψ′′ ≡ m_op(Ψ′, e, op))

=⇒ attack_model(e0, Ψ, Ψ′′);

5.3 Security Property Proof Sketches
In this section, we describe five critical lemmas and provide a

sketch of their proofs, in order to prove the two top theorems

and the correctness of critical specifications. It is worth noting

that they are fully proved with Verus.

In VERISMO, we classify the guest memory into three sets:

VMPL0-Private , VMPL3-Private, and Hypervisor-Shared.

The divided memory sets allow us define the security proper-

ties for different memory types.

5.3.1 VM-Private Memory

Lemma 1. Let Ψ represent a machine state in which M is a
guest physical memory block that stores value D. Suppose Ψ′
is a future state reachable through modifications made by Ehv.
Then, if M is VM-private in Ψ, VM’s read operation on M in
Ψ′ either fails or returns the original value D.

A key invariant property of the RMP is that, once a RMP

entry is validated by a VM for a VM-private memory page,

the guest physical address (GPA) of this memory page will

be either bound to the system physical address (SPA) of the

RMP entry or nothing at all, regardless of any operations

by Ehv, as long as E0 does not validate the GPA again. It

is straightforward to prove this property. If Ehv makes any

changes to the RMP entry, the entry will become invalidated,

thus the GPA is not bound to any SPA. If Ehv does not change

the RMP entry, then the GPA remains bound to the same SPA

as long as E0 does not validate the GPA again.

With this property, we can prove the Lemma 1. If M is

VM-private and validated in Ψ, then the GPA of M is bound

to an SPA. This implies that the read operation on M by either

E0 or E3 in Ψ′ either returns the original value D or fails.

This lemma essentially requires that a valid state of Ψ will

always ensure the VM-private M has unique bound from a

GPA to an SPA no matter how the hypervisor changes the

nested page mapping, as we discussed in Section 2.1. Such

invariant property requires that E0 does not validate a GPA

when it is validated and bound to an SPA in the RMP.

Lemma 2. Given a machine state Ψ, if a guest physical
memory block in VM-private is mapped to a system phys-
ical memory M that stores a VM’s secret S, then in any future
hypervisor-reachable machine state Ψ′, Ehv’s read operation
on M will return an encrypted version of S.

At first glance, one may assume that the VM-private mem-

ory page requires both the encryption bit in the guest page

table and the validation bit in the RMP. However, our verifi-

cation indicates that the validation bit in the RMP cannot be

reliably guaranteed. When proving the lemma, we confirmed

that holding the validation bit in the hardware state is not

necessary. This implies that a requirement for a ‘C’ bit in the

page table suffices to prove the lemma.

5.3.2 VMPL0-Private Memory

Lemma 3. Let Ψ represent a machine state in which M is
a VMPL0-private guest physical memory block that stores
value D. Suppose Ψ′ is a future reachable state through mod-
ifications made by Ehv and E3. Then the E0’s read operation
on M in Ψ′ either fails or returns the original value D, and
M cannot be read by E3.

Since VMPL0-private memory is a subset of VM-private

memory, Lemma 1 and Lemma 2 implies that Ehv cannot

read it or tamper its value. Here we focus on E3. An RMP

entry contains access permissions for each VMPL. These

permissions control whether a VMPL can read, write, and

execute on the memory. Furthermore, the hardware restricts

E3 from modifying access permissions for its own VMPL.

To ensure that E3 cannot access VMPL0-private memory, the

verification process requires a precondition to rmpadjust that

E0 cannot grant access permission to VMPL3 if the memory

is in VMPL0-private.

5.3.3 Correct Guest Address Translation

In addition to RMP updates, updating the page table is also

critical for safe memory translation. We must ensure the in-

tegrity of the memory translation by considering all possible

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 605

changes from all entities. We verify it by proving the follow-

ing lemma. The correctness of our guest address translation

helps to prove the top theorem when considering accesses via

guest virtual addresses instead of guest physical addresses.

Lemma 4. Let Ψ represent a machine state in which a guest
virtual address GVA is successfully translated to a system
physical address SPA by a VMPL0’s memory access. Suppose
Ψ′ is a future state reachable through modifications made by
Ehv and E3. Then, in Ψ′, VMPL0’s access to the GVA succeeds
with the same translation to SPA or fails.

Lemma 3 establishes that a GPA for VMPL0-private mem-

ory is either bound to a specific SPA or not bound to any

SPA. When a GVA is successfully translated to a SPA in Ψ,

it implies that the GPA that the GVA is mapped to is bound

to the SPA. Therefore, in Ψ′, the GPA is either still bound

to the same SPA or not bound to any SPA. Since Ehv and E3
cannot change E0’s page table, the translation from the GVA

to the GPA remains the same. This guarantees that the GVA

is either translated to the same SPA or fails.

To simply the implementation layer verification, we also

prove the following lemma to ensure the mapping from GVAs

to SPAs is one-to-one.

Lemma 5. For each reachable Ψ, the mapping from a guest
virtual address to a system physical address is a one-to-one
mapping.

Since Lemma 3 implies that the mapping from GPAs to

SPAs for VM-private memory is one-to-one, we only need

to ensure that the mapping from GVAs to GPAs is one-to-

one. We prove it by separating memory writes into two cat-

egories: normal memory (mem_write) and page table mem-

ory (pt_write). To simplify the proof, we set aside a set

of guest physical pages for E0’s page table (referred to as

the PT memory), and enforce that the PT memory is always

VMPL0-Private (by updating the precondition to rmpadjust).

This allows us to define a precondition for mem_write and

pt_write to check that a memory write falls into their re-

spective categories.

A trusted initial assumption we make is that the initial page

table for E0 at launch time is correct in the sense that the page

table pages are in the PT memory and the page table enforces

a one-to-one mapping from GVAs to GPAs. Then to prove

it is true for any reachable Ψ, we prove that any pt_write
operation preserves this property by adding a precondition to

check that the memory write would keep the page table pages

in the PT memory and the one-to-one mapping from GVAs to

GPAs.

5.3.4 Connecting Machine Model to Implementation

The confidentiality and integrity of the VM-private and

VMPL0-private memory, together with the correct page table

translation, ensure that the memory content accessed by E0

through a guest virtual address remains consistent with the

content stored in the hardware state. This consistency allows

the implementation layer verification to focus on the software-

tracked state, eliminating the complexity of having to worry

about the actual hardware state. To convert preconditions for

primitive operations from hardware-based to software-based

in implementation verification, we prove that if an operation

succeeds and the operation’s software-based constraint is true,

the corresponding hardware-based one must be true.

6 Implementation Verification

In this section, we describe the verification at the implementa-

tion layer. For simplicity, software in this section refers to the

implementation of VERISMO. We first describe how we use

permission-based verification to handle concurrency and scale

verification to a large codebase. We then describe how we use

information-flow verification to prevent secret leakage.

6.1 Permission-based Verification
In VERISMO, we incorporate the software constraints de-

rived from the machine model verification into “tracked” per-

missions defined by Verus[22]. Each resource permission in-

cludes an identifier and multiple fields that represent the value

or attributes of the resource. To ease the proof process across

various memory access scenarios, we opt for implementing

fine-grained memory permissions. This approach helps avoid

the complexities tied to a single large-size global state (e.g.,

the hardware abstract model used in Section 5), and simplify

the concurrency reasoning using ownership. Moreover, to aid

in safe memory sharing, we introduce a lock permission for

shared memory. To ensure safe register access, we establish

register permissions in accordance with their definitions.

6.1.1 Memory Access Permission

Object-based Memory Permission. We extend the defi-

nition of a basic memory permission described in Verus to

make all memory access safe in the context of AMD SEV-

SNP VMs. A memory permission is defined as a tracked
variable (SnpPointsTo) without the ability to be copied or

constructed. By incorporating an appropriate initial assump-

tion to ensure the initial uniqueness of all memory permis-

sions, we can guarantee the uniqueness of each permission

throughout the program.

As shown in Listing 8, our extended SNP memory per-

mission consists of three elements: the guest virtual address

(addr) as the permission identifier, the value stored at that

address by the software, and the memory attributes (swattr
and hwattr) as seen by both software and hardware. These

memory attributes include RMP (rmp) and page table (pte)

values tied to the memory. Furthermore, considering the spe-

cific use of page tables, we have added an attribute (is_pt) to

606 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

denote whether the memory serves as a page table. These im-

provements facilitate efficient management and enforcement

of memory safety within the SEV-SNP VM context.

Listing 8: SNP object-based memory permission definition

1 pub ghost struct SnpMemAttr
2 { rmp: RmpEntry, pte: PTAttr, is_pt: bool}
3

4 pub ghost struct SnpPointsToData<T> {
5 addr: int, value: Option<T>,
6 swattr: SnpMemAttr, hwattr: SnpMemAttr,
7 }
8

9 pub tracked struct SnpPointsTo<V>
10 { _p: marker::PhantomData<V>, _ncopy: NoCopy }
11

12 impl<T> SnpPointsTo<T>
13 { pub spec fn view(&self) -> SnpPointsToData<T>; }

Raw Memory Permission While object-based access per-

missions provide a user-friendly approach to object-oriented

programming, VERISMO operates as a low-level security

module, involving a significant number of raw memory oper-

ations.

To effectively support raw memory, it is necessary to es-

tablish additional foundational information concerning size,

value casting, memory splitting, and merging. This essen-

tial ground-truth information is not provided by Verus and is

defined by VERISMO as trusted specifications or axioms:

Object Size Specification. We assume that an object’s size

is equivalent to its actual memory usage. The precise

size value should only matter when an operation has a

specific size requirement (e.g., pvalidate requires page-

sized) or when size comparisons are necessary (e.g.,

memory splitting or joining).

Casting between Objects and Bytes. Our trusted proof for

casting aims to enforce unique bindings and ensure con-

sistent sizing between objects and their corresponding

byte representations.

Raw Memory Split and Merging. During memory split-

ting and merging operations, byte values and memory

ranges are divided or combined, respectively, while mem-

ory attributes remain consistent with the original state.

Examples to Convert Unsafe Rust to Safe Verus. To il-

lustrate how to use memory permission to convert Rust’s

unsafe memory access into Verus’s safe memory access oper-

ation, we provide two dummy examples using memory primi-

tive functions defined in Listing 9. The examples demonstrate

how unsafe accesses can be identified through either verifica-

tion (�) or Rust’s borrow checker (
⊗

).

The first example (in Listing 10) takes a memory per-

mission reference pointing to a VMPL0-private memory at

0x1000, and thus it can borrow a value at address 0x1000.

However, Line 8 cannot change content, since the permission

is borrowed as immutable; Line 9 cannot access raw memory

at 0x2000 due to the mismatched memory identifier.

Another example provided in Listing 11 demonstrates how

the verification process detects unsafe RMP updates, ensuring

the valid memory state. It initializes an non-validated mem-

ory permission and then assign it to VMPL1 at the end to

render the memory accessible to VMPL0. After pvalidate,

the memory permission remains not ready for other RMP

memory operations until the operation is confirmed and the

memory content is cleared. The strict requirement leads to

a failed assertion at Line 6. Additionally, Line 11 fails since

the pvalidate primitive function requires no double validation.

Listing 9: A selective primitive memory-related functions

1 fn borrow<’a>(vaddr: usize, Tracked(mperm): Tracked<&’a
SnpPointsTo<V>>) -> (v: &’a V)

2 requires
3 mperm@.wf_borrow(vaddr as int),
4 ensures
5 mperm@.spec_read_rel(*v),
6 {...}
7 fn replace(vaddr: usize, in_v: V, Tracked(mperm):

Tracked<&mut SnpPointsTo<V>>)
8 requires
9 old(mperm)@.wf_replace(vaddr as int, in_v),

10 ensures
11 mperm@.spec_write_rel(old(mperm)@, Some(in_v)),
12 {...}
13 fn pvalidate(vaddr: u64, psize: u64, val: bool, rflags:

&mut u64, Tracked(mperm): Tracked<&mut
SnpPointsToRaw>) -> (ret: u64)

14 requires
15 spec_pval_requires(vaddr as int, psize, val, old(

mperm)@),
16 ensures
17 spec_arch_pval(vaddr as int, psize, val, old(mperm)@,

mperm@, *old(rflags), *rflags, ret),
18 {...}
19 fn rmpadjust(vaddr: u64, psize: u64, attr: RmpAttr,

Tracked(mperm): Tracked<&mut SnpPointsToRaw>) -> (
ret: u64)

20 requires
21 spec_rmpadjust_requires(vaddr as int, psize as int,

attr, old(mperm)@),
22 ensures
23 spec_arch_rmpadjust(old(mperm)@, mperm@, vaddr as int

, psize as int, attr),
24 {...}

Listing 10: Secure access to memory

1 fn access_private(Tracked(mperm): Tracked<&SnpPointsTo<
u64>>)

2 requires
3 mperm@.wf_not_null_at(0x1000),
4 mperm@.is_vmpl0_private() {
5 �let val1 = *borrow(0x1000, Tracked(mperm));
6 �let val2 = *borrow(0x1000, Tracked(mperm));
7 �assert(val2 == val1);
8

⊗
replace(0x1000, 0x1234, Tracked(mperm));

9 � let _val3 = *borrow(0x2000, Tracked(mperm));
10 }

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 607

Listing 11: Safe RMP table updates

1 pub fn init_page(Tracked(mperm): Tracked<SnpPointsToRaw
>)

2 requires
3 mperm@.wf_range((0x1000, PAGE_SIZE)) && mperm@.

is_init() {
4 let mut u64 rflags = 0;
5 �let ret = pvalidate(0x1000, 0, 1, &mut rflags,

Tracked(&mut mperm));
6 � assert(mperm@.wf());
7 if ret == 0 && rflags != 0 { return false; }
8 �mem_set(0x1000, PAGE_SIZE, 0, Tracked(&mut mperm));
9 �assert(mperm@.wf());

10 � pvalidate(0x1000, 0, 1, &mut rflags, Tracked(&mut
mperm));

11 let rmpattr = RmpAttr::empty().set_vmpl(1).set_read
(1).set_write(1);

12 �rmpadjust(0x1000, 0, rmpattr, Tracked(&mut mperm));
13 if ret != 0 { return false; }
14 �assert(!mperm@.is_vmpl0_private());
15 return true;
16 }

6.1.2 Lock Access Permission

The memory permission we previously described does not

entirely address the issue of concurrency reasoning. This chal-

lenge emerges because memory permissions, in their current

form, do not inherently facilitate the shared write permission

for concurrent access. For example, when CPU-A moves a

memory permission to CPU-B, CPU-A subsequently loses

access to that memory. How to retrieve the memory permis-

sion back is unclear without introducing locking or atomic

permission mechanisms.

To enable safe concurrent memory access in a relaxed

memory model, we choose to implement locking permissions

since much of our code relies on locks to protect shared re-

sources without directly using atomic operations. Each shared

resource starts with a lock permission which stores a memory

permission. When the software acquires a lock, the lock per-

mission is converted to a locked state and returns the stored

memory permission so the software can use the memory

permission to access the shared resource. When the lock is

released, the memory permission is returned back to the lock

permission whose state is converted back to an unlock state.

Shared objects typically require an invariant to constrain

their values. Without proving the invariant, for all verifications

necessitating such a constraint, programmers may incur extra

execution costs to check if the value meets the requirements.

To maintain the invariant for values read after acquiring a

lock, we have introduced a precondition in the release API.

This precondition mandates that the object associated with

the memory permission upholds the invariant whenever the

release method is invoked. As a result, the value of the global

variable read by a CPU is always in compliance with the in-

variant. The lock mechanism in VERISMO extends beyond

shared memory (see Section 7.2). Listing 12 shows an exam-

ple to use lock to protect a global variable gvar while keeping

Share via
PT/RMP updates

Proper PT/ RMP updates

Write

Copy to
Private

Memory-Safe Exec codes

Lock

Unlock

Locked VMPL0-privateUnlocked VMPL0-private

Locked VMPL0-private
Unknown content

Locked non-privateUnlocked non-private

?

?

Lock

Unlock

Figure 4: Safe memory access under concurrency

its invariant (spec_gvar_inv). The verified code guarantees

that the data borrowed satisfies invariant (Line 12) after ac-

quiring the lock, although the data could be different in two

lock transactions (Line 13). Our trusted lock APIs can detect

the violation of invariant for gvar since it fails the invariant

at Line 15.

Listing 12: Lock protection

1 spec fn spec_gvar_inv() -> spec_fn(u64) -> bool
2 { |v: u64| 0 <= v <= 0xff_ffff}
3

4 fn access_global(Tracked(core): Tracked(SnpCore),
Tracked(lperm): Tracked(LockPerm<u64>))

5 requires
6 lperm.is_unlocked(spec_gvar) {
7 �let (vaddr, Tracked(pt_mperm)) = gvar().acquire(

Tracked(&mut lperm), Tracked(&core));
8 �let val1 = borrow(vaddr, Tracked(&pt_mperm));
9 �gvar().release(Tracked(&mut lperm), Tracked(&core),

Tracked(pt_mperm));
10 �let (_, Tracked(pt_mperm)) = gvar().acquire(Tracked(&

mut lperm), Tracked(&core));
11 �let val2 = borrow(vaddr, Tracked(&pt_mperm));
12 �assert(spec_gvar_inv()(val1) && spec_gvar_inv()(val2)

);
13 � assert(val1 == val2);
14 �replace(vaddr, 0x1000_0000, Tracked(&pt_mperm));
15 � gvar().release(Tracked(&mut lperm), Tracked(&core),

Tracked(pt_mperm));
16 }

6.1.3 VMPL0’s Memory Safety

By utilizing the memory permission and the lock permis-

sion reasoning, we ensure that our implementation always

has safe memory access. Here we describe ownership for

VERISMO at a high level utilizing the permissions we de-

scribed in Section 6.1.1 and Section 6.1.2.

Figure 4 illustrates safe operations for handling memory

and lock permissions. When VMPL0-private memory is

locked by the software on a CPU, no other entity can concur-

rently modify it. Therefore, the memory can be considered

as private to VMPL0, and the acquire operation will safely

grant a memory permission for unrestricted memory access.

For memory shared with either the hypervisor or the guest

OS, the memory permission obtained upon locking only per-

mits copying and writing, but not borrowing references. For

unrestricted operations, developers must either copy the mem-

608 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ory to VMPL0-private memory or use rmpadjust/pvalidate

operations to transition it to VMPL0-private memory.

6.1.4 Register Access Permission

Similar to memory permissions, we define register permis-

sions for registers. Most registers are privately controlled by

the software and thus we usually can maintain a stable invari-

ant property after proper booting steps. Since a CPU has a

fixed number of registers, each CPU uses a single permission

representing all the CPU’s registers together. Some registers

need special permission designs.

In the SEV-SNP VM environment, the GHCB MSR differs

from other registers. While all other registers are owned by

the VM, the GHCB can be read and written by the hypervisor.

To handle this difference, we introduce a "share" attribute

for such registers, treating the values read from these shared

registers as unconstrained.

For registers like IDTR and GDTR, which hold pointers to

memory segments, we guarantee that memory ownership is

transferred to the hardware upon writing to these registers.

Certain registers, such as the instruction pointer (RIP) and

stack pointer (SP), pose a risk of inadvertently influencing

software behavior in dangerous ways. We prevent explicit use

of these registers by removing permissions to access them.

CR3 points to the top-level page table. A write operation

to CR3 is required to have tracked mutable permissions for

both the page table and all usable virtual memory addresses.

This safeguards against incorrect modifications to CR3, as

consolidating all memory permissions used by the CPU is

complex. VERISMO does not have a user mode, and has a

single page table for its kernel mode code. Therefore its CR3

register is only updated once at the boot time.

6.2 Information-Flow Verification
In addition to guaranteeing safe memory access, it is im-

portant to prevent secret leakage through explicit or implicit

information flows. In VERISMO, we define a precise tracking

policy to maintain secure information flow by monitoring

potential secret guessing spaces for variables.

Types carrying secret guessing space. We define security

types to match Rust’s primitive types. Each security type

includes a value and a set of possible values (valset) that

an entity can guess from. If the set is complete, the variable

is considered a secret to the entity; if the set is singleton, the

variable is public to the entity.

VERISMO only takes three kinds of secrets: the VM com-

munication keys generated by the hardware (Section 2.1),

VERISMO’s own private/public key pair (Section 3.4), and

symmetric encryption keys for the guest OS (Section 3.4).

Since these secrets are exclusively used by trusted crypto-

graphic functions in VERISMO, we only encounter a lim-

ited number of proofs about the set size when invoking cryp-

tograhic functions. With a trusted and formally verified crypto

library, our security checking is highly simplified to check

whether a variable is fully public or confidential to an entity,

similar to taint tracking without over/under-tainting concerns.

We define a security trait that assigns security levels to

different data types based on the size of their possible value

sets. Primitive types in Rust have security levels equivalent

to constants. To use security types like primitive types, we

implement standard operator traits and ensure the correct

propagation of the guessing space by applying the relevant

set operations to the possible value sets. For example, each

binary operation ‘op’ performed between variables a and b
ensures the following constraints for the returned result.

(a op b).valset ≡
{

val|∃(v,u) :
v ∈ valseta ∧

u ∈ valsetb ∧val ≡ a op b

}

∧(a op b).val ≡ (a.val op b.val)

A comparison operation may lead to secret leakage via

control flow. Therefore, the comparison operator includes a

precondition that requires both variables to be public to all

entities. We support the secret downgrade through a trusted

function when needed. After a downgrade, a variable’s pos-

sible value set becomes a singleton and thus can no longer

be used as a secret. For instance, if a downgrade operation is

applied to a secret key, the key no longer meets a precondition

for trusted cryptographic functions, which requires crypto-

graphic key to be a high-security variable, i.e., the possible

value set if full.

Re-visit the memory permission for confidentiality. To

maintain the confidentiality of secret variables, we impose

a requirement that the software must not share them with

other entities. To enforce this property, we ensure that every

valid memory permission maintains a consistent relationship

between the memory’s confidentiality attribute (defined by

the page table and the RMP) and the security level of the

value it carries, as shown below:

∀ entity ¬memperm.swattr.is_confidential_to(entity)

=⇒ memperm.val.is_constant_to(entity)

In addition, we cannot use secret data as address for mem-

ory access; otherwise, the hypervisor can use control flow to

infer the secret. We enforce this precondition for all trusted

functions related to memory access.

7 Implementation

We implemented VERISMO in Rust and verified it with Verus,

ensuring that the trusted functions are always used safely,

and our implementation is correct. Our implementation is

available at https://github.com/microsoft/verismo.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 609

7.1 TCB in VERISMO

VERISMO fully trusts a small number of primitive functions,

ground-truth axioms, the hardware model specification, the

model-based specification defining the safety properties, as

well as the specification for functional correctness. These

trusted functions wrap unsafe code for interacting with the

hardware for calling trusted external libraries (e.g., Rust core,

HACL[35]). The size of the trusted code will be reported in

the evaluation section. Additionally, VERISMO places trust

in Verus and the Rust compiler.

7.2 An example with simplified verification

The permission-based verification not only guarantees mem-

ory confidentiality and integrity but also ensures correctness

for certain functionalities without introducing additional spec-

ifications. Here, we use an example in VERISMO to explain

how a lock can automatically protect associated resources and

how memory permissions automate functional correctness for

a Guest-VERISMO call to update a memory page’s attributes.

VERISMO assigns certain memory ranges to VMPL3

and stores their ranges (for execution) along with a zero-

sized tracked permission map (for proof) in a global variable

(OSMEM). The OSMEM is shared by multiple cores and is pro-

tected by a lock that guards an invariant, ensuring that a mem-

ory page has its tracked permission inside the map if and only

if the page is within the memory ranges.

Extended lock protection. When VMPL3 sends a re-

quest to VERISMO to grant or revoke permission for a page,

VERISMO needs to acquire the lock to access the tracked

permission from OSMEM. This automatically prevents concur-

rent changes to the RMP table for VMPL3’s memory without

introducing new locks. Here, a single lock protects both the

OSMEM variable and the memory assigned to VMPL3.

Extended Functional Correctness. Additionally, since

the tracked map only stores page permissions from the OSMEM-

defined ranges, VERISMO must check whether the requested

page is within the range to obtain the page permission re-

quired for updating the memory’s attributes. This automati-

cally ensures that a correct handler will conduct the necessary

checks before any update happens.

8 Evaluation

Our performance evaluation is based on the Hyper-V hyper-

visor. Our experimental machine has an AMD EPYC 7543P

32-Core Processor, which supports SEV-SNP features. We

allocated 8 dedicated cores to the host domain using minroot

Hyper-V, allowing the hypervisor to assign the remaining 24

CPUs to VMs. This setup prevents unpredictable competition

for CPU resources between different domains.

0

2000

4000

6000

8000

10000

12000

Dhrystone

Whetstone

Execl
File-mid

File-small

File-large
Pipe Context-switch

Process
Scripts-1

Scripts-8
Syscall

B
en

ch
m

ar
k

In
d

ex

VeriSMo Linux-sm C-sm Linux

Figure 5: Unix benchmark results

8.1 Performance
To measure the performance of guest-VERISMO APIs, we

created a kernel driver that sends these requests to VERISMO.

We ran each call 100 times and recorded the average cost per

call in Table 1.

Table 1: Microbenchmarking guest-VERISMO APIs

Request Cycle (*1k) Time (ms) STD (ms)

Switch 34 0.012 0.002

ExtendPCR 37 0.013 0.002

SetPageShared 77 0.027 0.002

SetPagePrivate 82 0.029 0.002

AttestPCR 17633 6.298 4.270

LockKernel(8GiB) 4260969 1522 151

LockKernel(4GiB) 2201565 786 58

The Switch call serves as a test to complete a switch

(VMPL3 → hypervisor → VMPL0 → hypervisor →
VMPL3), and its cost prevails over some less expensive

GVCA calls. The operation to extend a measurement

(ExtendPCR) is quick, as it only involves adding a value

from VMPL3 to the previous one and updating it with a

cryptographic hash. SetPageShared is relatively more ex-

pensive since VERISMO needs to invalidate it and call the

hypervisor to make a page shared which triggers additional

context switch. SetPagePrivate is marginally more expen-

sive than SetPageShared, as the former requires an addi-

tional rmp change via rmpadjust. Attestation is much more

resource-intensive than others due to the need for hardware-

based cryptograhic signing. Kernel code integrity protec-

tion (LockKernel), operating on all guest memory, is costly,

but it is performed only once per VM session.

8.2 Performance Impact on Guest OS
We used UnixBench to measure the performance of a Linux

kernel running with the VERISMO security module at

VMPL3. The benchmarking results are presented in Figure 5.

The security module introduces almost zero overhead. In con-

trast, Hecate [12], a compatibility-oriented L1 hypervisor in

610 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 2: Lines of code.

Exec Spec Proof Axiom Trusted

Verus 906 1361 2388 803 101

Model 0 2194 3188 67 0

HACL 107 7 0 0 90

Macro 2093 - - - -

Common 606 603 2101 55 10

RawMem 640 635 324 105 11

Reg 341 162 22 0 12

Lock 183 145 105 0 7

PageTable 354 261 330 0 1

Alloc 386 164 1003 24 30

Core 3205 1013 3884 14 0

VMPL0, can incur up to a 40% slowdown. This is because our

security module does not trap any guest OS’s #VC Exception.

In some case, formal verification can be simplified in a

less-efficient implementation or with extra runtime checks.

Here, we compared VERISMO with two additional proto-

types that we implemented, demonstrating no performance

trade-off introduced by verification. While those prototypes—

‘linux-sm’ (a modified Linux kernel as security module) and

‘c-sm’ (C-based security module)—only supports WakeUpAP,

SetPageShared, and SetPagePrivate APIs, they serve as

baselines for the fully-featured VERISMO. The comparable

performance of VERISMO demonstrates that we did not sac-

rifice performance for the sake of verification.

8.3 Verification Size and Performance

Table 2 shows the number of lines of codes for all used li-

braries and modules in our code. ‘Verus’ represents modules

VERISMO used from Verus’s basic library, ‘HACL’ wraps

3 functions for encryption and hashing from an external

formally verified HACL crate written in C and assembly.

‘Core’ represents code for VERISMO’s core functionalities.

The trusted executable code (majorly unsafe code) are from

three categories. We only used 31 LOC unsafe Rust for hard-

ware primitive operations. ‘RawMem’, ‘Reg’, ‘Lock’ and

‘PageTable’ include the trusted primitive operations for mem-

ory and registers. ‘HACL’, ‘Common’ includes external safe

functions with a trusted postcondition. ‘Alloc’ includes 1 un-

safe block to trust the global allocator interface. Although

this allocator interface must be trusted, as the Rust compiler

depends on it, we have verified the correctness of the im-

plementation of our global allocator. On average, the proof

and specification annotations are approximately twice the

size of the executable code for the implementation layer. The

machine-model layer is reusable if we do not change primi-

tive functions. Verification of both model and implementation

layers takes around 6 minutes with a multi-threaded Verus

backed by Z3-4.11.2 as the solver running on our test machine

with 32 cores. The verification efficiency is due to Verus’s

optmization for Z3 solver, Rust’s ownership checking for au-

tomated memory reasoning, and the modularity of our proof

code with Verus.

8.4 Security Improvement
Concurrently with our project, AMD SVSM [4] which is

now replaced by COCONUT SVSM [39], is an ongoing Rust

project to provide a security module in VMPL0 for AMD

SEV-SNP VMs. However, they do not apply formal verifica-

tion and heavily use unsafe Rust features. COCONUT uses

235 unsafe blocks, and AMD SVSM uses 150 unsafe blocks.

In contrast, VERISMO uses only 32 unsafe blocks. We did not

compare our performance with them since VERISMO runs

on a different hypervisor. Since they share the same hardware

model as VERISMO, our verification design can potentially

be applied to their code.

8.4.1 An Example Bug Detected in VERISMO

Here, we showcase the importance of formal verification, us-

ing an unsafe memory update in Listing 13 that we detected

via verification. This code handles the SetPageShared re-

quest from VMPL3. Before modifying the RMP entry for a

memory page used by VMPL3, a traditional approach is to

check the security of the change by examining whether the

content carried in the guest physical page can be released ex-

ternally. It uses a lock to protect VMPL3’s memory to prevent

concurrent updates. However, these measures are not suffi-

cient for ensuring VERISMO’s confidentiality when taking

into account a malicious hypervisor.

Listing 13: Handling a memory state change request

1 fn SetPagePrivate(gpn: u64, attr: RmpAttr, lperm:
Tracked<LockPerm>) -> Tracked<LockPerm> {

2 let gpn = vn_to_pn(gvn);
3 let tracked mut lperm = lperm;
4 �let osmem = OSMEM.acquire(Tracked(&mut lperm));
5 �match osmem_check(osmem, gpn, attr) {
6 Ok(i) => {
7 let Tracked(mut pperms) = osmem[i].pperms;
8 �let tracked mut pperm = pperms.tracked_remove(gvn);
9 �pvalidate(gvn, true, Tracked(&mut pperm), ..);

10 � rmpadjust(gvn, 1, attr, Tracked(&mut pperm), ..);

Consider two system physical memory pages: SPN0 and

SPN3. SPN0 is mapped to GPN0, while SPN3 is mapped

to GPN3. The memory at SPN0 holds VMPL0’s secret key,

which must remain confidential to VMPL3 and the hypervisor.

Meanwhile, the memory at GPN3 is allocated to VMPL3, and

thus its access permissions can be adjusted upon VMPL3’s

requests. VMPL3 could gain access to the secret key at SPN0

using the following steps (with the hypervisor’s help):

1. VMPL3 requests VERISMO to transition GPN3 to a

shared status. VERISMO fulfills the request by invalidat-

ing the target memory and recording that GPN3 is now

invalidated since it is assigned to VMPL3.

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 611

2. To perform the attack, a malicious hypervisor binds

SPN0 with GPN3 by executing rmpupdate and updating

the nested page table to map GPN3 to SPN0.

3. When VMPL3 asks VERISMO to revert GPN3 back to

private, VERISMO validates the memory page at GPN3

and adjusts permissions to permit VMPL3 access to the

memory. This occurs because VERISMO incorrectly

assumes that GPN3 was shared and does not contain

VMPL0’s secret.

As a result of the attack, VMPL3 obtains access to SPN0

via GPN3, which violates VERISMO’s confidentiality. The

hardware’s failed-to-be-secure design only detects the attack

when there is an attempt to access the memory at GPN0, as

the memory binding for GPN0 becomes invalid.

Without verification, detecting such a security vulnerability

can be challenging. Its solution is straightforward: simply

clear a memory page after validating it but before assigning it

to VMPL3.

We reported this vulnerability to AMD in early May 2023,

which resulted in a security fix [5]. However, COCONUT

SVSM [39], which reuses a significant amount of code from

AMD SVSM, still had the old buggy code at its early stage.

9 Related Work

Trusted execution environments. Traditional hypervisor-

enforced VM isolation no longer meets the minimal trust

requirements. This has led to a recent trend of adding an ex-

tra software layer as a trusted security monitor to deal with

hypervisor-based attacks. Examples include Keystone [23],

Komodo [11], and the Intel TDX module [18], which enforce

enclave isolation and provide security features. Arm CCA [6]

goes a step further by relying on two external layers for VMs:

a Realm Management Monitor (RMM) for managing realms

and a separate monitor for facilitating interactions between

the RMM and the hypervisor. However, the issue of sepa-

rating security domains within an enclave remains largely

unaddressed. Different from these solutions, the security mod-

ule [2, 4, 39] for AMD SEV VM [1] is isolated from both

hypervisor and other in-TEE softwares in a VM.

Model checking. Formal methods can be applied to both

model-level (i.e., model checking) and implementation-

level verification. Model checking tools (e.g., SPIN[17],

Tamarin[30]) formally checks some properties based on an

abstract model of a system design (e.g., [15, 20]) to prove the

correctness. Consequently, the correctness is proved without

directly connecting to the implementation itself.

Software verification. Software projects (e.g., [11, 16, 29,

35, 40]) can be implemented in verification-friendly lan-

guages, such as Dafny [25] and F*[34], to enable end-to-end

verification for both model and implementation. Many OS

projects (such as [7, 10, 14, 21, 24, 26, 32]), based on un-

safe assembly or C , are verified in proof languages. The

implementation-level verification is made possible through a

trusted language transformer from unsafe C. Due to the na-

ture of unsafe C, however, their memory safety proofs require

more effort than proofs about Rust. A recent study [9] uses

verification to check secure information flow for confidential

computing but assumes memory safety by requiring no unsafe

Rust in code, which is not applicable to OS-level code.

Security model for verified OS. OS-level verification ef-

forts ([7, 11, 14, 21, 26, 33]) typically focus on the traditional

security model, either with a trusted hypervisor or without

one. Some recent efforts, such as [27], have verified the secu-

rity of the Arm CCA, ensuring the proper implementation of

the RMM firmware for isolating multiple enclaves or VMs.

Different from those works, We use the permission-based

method to verify proper memory access, encoding both the

state of the memory and the security level of its content. This

approach simplifies our proof and streamlines our verification

process, eliminating the need for additional abstract layers for

proving concurrency and information flow. In addition, we

verify memory accesses without extra proof efforts for the

safe portion of the Rust code.

10 Conclusion

We developed and implemented VERISMO, the first verified

security module for confidential VMs enabled by AMD SEV-

SNP. Operating at the highest privilege level, the security

module provides protection to the guest while maintaining

its own confidentiality and integrity, even in the presence of

an untrusted concurrent hypervisor. Our verification process

validated the security and correctness of the security module

software, building upon our specifications of the AMD hard-

ware primitives. Utilizing Rust’s ownership and borrowing,

the verification showcased the application of concepts from

Verus’s permission model on a large scale, encompassing

thousands of lines of verified concurrent executable code. Our

evaluation demonstrated that our security module is efficient

and our verification is scalable.

Acknowledgments

We thank Verus team for sharing their insights into permission-

based reasoning and providing desired features for verifying

VERISMO. The detailed reviews we received from OSDI’24

and the feedback from our shepherd Nickolai Zeldovich

helped us greatly improve the paper.

612 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] AMD. Strengthening VM isolation with in-

tegrity protection and more, 2020. https:
//www.amd.com/system/files/TechDocs/SEV-
SNP-strengthening-vm-isolation-with-
integrity-protection-and-more.pdf.

[2] AMD. Secure VM service module for SEV-SNP

guests. White Paper, August, 2022. https://www.
amd.com/content/dam/amd/en/documents/epyc-
technical-docs/specifications/58019.pdf.

[3] AMD. AMD64 Architecture Programmer’s Manual
(v4.07). Volume 3: General-purpose and system

instructions edition, 2023. https://www.amd.com/
en/support/tech-docs/amd64-architecture-
programmers-manual-volumes-1-5.

[4] AMD. Secure VM service module for SEV-SNP guests.

2023. https://github.com/AMDESE/linux-svsm.

[5] AMD. Linux secure VM service module security

fix for hypervisor-based attacks, 2023. https:
//github.com/AMDESE/linux-svsm/commit/
0de111e9b85a340203759a3ab217a3e2f2be4b0b.

[6] Arm. Arm confidential compute architecture

(Arm CCA), 2021. https://www.arm.com/
products/security/arm-confidential-compute-
architecture.

[7] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M.

Leino, J. R. Lorch, B. Parno, A. Rane, S. T. Setty,

and L. Thompson. Vale: Verifying high-performance

cryptographic assembly code. In 26thUSENIX Security
Symposium, volume 152, 2017. https://www.usenix.
org/conference/usenixsecurity17/technical-
sessions/presentation/bond.

[8] J. Boyland. Checking interference with frac-

tional permissions. In International Static Analy-
sis Symposium, pages 55–72. Springer, 2003. doi:

10.5555/1760267.1760273.

[9] H. Chen, H. H. Chen, M. Sun, K. Li, Z. Chen, and

X. Wang. A verified confidential computing as

a service framework for privacy preservation. In

32ndUSENIX Security Symposium, pages 4733–4750,

2023. https://www.usenix.org/conference/
usenixsecurity23/presentation/chen-hongbo.

[10] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinen-

bach, M. Moskal, T. Santen, W. Schulte, and S. To-

bies. VCC: A practical system for verifying concur-

rent C. In Theorem Proving in Higher Order Logics:
22ndInternational Conference, pages 23–42. Springer,

2009. doi: 10.1007/978-3-642-03359-9_2.

[11] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno.

Komodo: Using verification to disentangle secure-

enclave hardware from software. In 26thACM Sympo-
sium on Operating Systems Principles, pages 287–305,

2017. doi: 10.1145/3132747.3132782.

[12] X. Ge, H.-C. Kuo, and W. Cui. Hecate: Lifting and shift-

ing on-premises workloads to an untrusted cloud. In 29th

ACM Conference on Computer and Communications Se-
curity, pages 1231—-1242, New York, NY, USA, 2022.

ISBN 9781450394505. doi: 10.1145/3548606.3560592.

[13] J.-Y. Girard. Linear logic. Theoretical computer science,

50(1):1–101, 1987. doi: 10.1016/0304-3975(87)90045-

4.

[14] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg,

and D. Costanzo. CertiKOS: An extensible archi-

tecture for building certified concurrent os kernels.

In 12thUSENIX Symposium on Operating Systems
Design and Implementation, volume 16, pages 653–

669, 2016. https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/gu.

[15] R. Guanciale, M. Balliu, and M. Dam. Inspectre: Break-

ing and fixing microarchitectural vulnerabilities by for-

mal analysis. In 27th ACM Conference on Computer
and Communications Security, pages 1853–1869, 2020.

doi: 10.1145/3372297.3417246.

[16] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch,

B. Parno, M. L. Roberts, S. Setty, and B. Zill. Iron-

Fleet: proving practical distributed systems correct. In

25thACM Symposium on Operating Systems Principles,

pages 1–17, 2015. doi: 10.1145/2815400.2815428.

[17] G. J. Holzmann. The model checker SPIN. IEEE Trans-
actions on Software Engineering, 23(5):279–295, 1997.

doi: 10.1109/32.588521.

[18] Intel. Intel TDX module v1.5 base architecture speci-

fication, 2023. https://cdrdv2.intel.com/v1/dl/
getContent/733575.

[19] Intel. Intel trust domain extensions (Intel TDX) module

TD partitioning architecture specification, 2023. https:
//cdrdv2.intel.com/v1/dl/getContent/773039.

[20] M. K. Jangid, G. Chen, Y. Zhang, and Z. Lin. Towards

formal verification of state continuity for enclave pro-

grams. In 30thUSENIX Security Symposium, pages 573–

590, 2021. https://www.usenix.org/conference/
usenixsecurity21/presentation/jangid.

[21] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,

D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,

R. Kolanski, M. Norrish, et al. seL4: Formal verification

USENIX Association 18th USENIX Symposium on Operating Systems Design and Implementation 613

of an OS kernel. In 22ndACM Symposium on Oper-
ating Systems Principles, pages 207–220, 2009. doi:

10.1145/1629575.1629596.

[22] A. Lattuada, T. Hance, C. Cho, M. Brun, I. Subasinghe,

Y. Zhou, J. Howell, B. Parno, and C. Hawblitzel. Verus:

Verifying Rust programs using linear ghost types. In

38thACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, 2023.

[23] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and

D. Song. Keystone: An open framework for architecting

trusted execution environments. In 15thEuropean Con-
ference on Computer Systems, pages 1–16, 2020. doi:

10.1145/3342195.3387532.

[24] D. Leinenbach and T. Santen. Verifying the Microsoft

Hyper-V hypervisor with VCC. In Formal Methods:
Second World Congress, pages 806–809. Springer, 2009.

doi: 10.1007/978-3-642-05089-3_51.

[25] K. R. M. Leino. Dafny: An automatic program verifier

for functional correctness. In Logic for Programming,
Artificial Intelligence, and Reasoning: In 16th Interna-
tional Conference, LPAR-16, Dakar, Senegal, April 25–
May 1, 2010, Revised Selected Papers 16, pages 348–

370. Springer, 2010. doi: 10.1007/978-3-642-17511-

4_20.

[26] S.-W. Li, X. Li, R. Gu, J. Nieh, and J. Z. Hui.

A secure and formally verified linux kvm hyper-

visor. In 42ndIEEE Symposium on Security and
Privacy, pages 1782–1799. IEEE, 2021. doi:

10.1109/SP40001.2021.00049.

[27] X. Li, X. Li, C. Dall, R. Gu, J. Nieh, Y. Sait, and

G. Stockwell. Design and verification of the Arm con-

fidential compute architecture. In 16thUSENIX Sym-
posium on Operating Systems Design and Implemen-
tation, pages 465–484, 2022. https://www.usenix.
org/conference/osdi22/presentation/li.

[28] Z. Li, J. Wang, M. Sun, and J. C. Lui. MirChecker: De-

tecting bugs in Rust programs via static analysis. In 2021
ACM Conference on Computer and Communications
Security, page 2183–2196, New York, NY, USA, 2021.

ISBN 9781450384544. doi: 10.1145/3460120.3484541.

[29] H. Mai, E. Pek, H. Xue, S. T. King, and P. Madhusu-

dan. Verifying security invariants in ExpressOS. In

18thInternational Conference on Architectural Support
for Programming Languages and Operating Systems,

pages 293–304, 2013. doi: 10.1145/2451116.2451148.

[30] S. Meier, B. Schmidt, C. Cremers, and D. Basin. The

TAMARIN prover for the symbolic analysis of security

protocols. In 25thInternational Conference on Computer

Aided Verification, pages 696–701. Springer, 2013. doi:

10.1007/978-3-642-39799-8_48.

[31] P. Müller, M. Schwerhoff, and A. J. Summers. Viper:

A verification infrastructure for permission-based rea-

soning. In 17thInternational Conference on Verification,
Model Checking, and Abstract Interpretation, pages 41–

62. Springer, 2016. doi: 10.1007/978-3-662-49122-5_2.

[32] T. Murray, D. Matichuk, M. Brassil, P. Gammie,

T. Bourke, S. Seefried, C. Lewis, X. Gao, and G. Klein.

seL4: From general purpose to a proof of informa-

tion flow enforcement. In 34thIEEE Symposium on
Security and Privacy, pages 415–429, 2013. doi:

10.1109/SP.2013.35.

[33] S. Peters, A. Danis, K. Elphinstone, and G. Heiser. For

a microkernel, a big lock is fine. In Proceedings of the
6th Asia-Pacific Workshop on Systems, pages 1–7, 2015.

doi: 10.1145/2797022.2797042.

[34] J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ra-

mananandro, P. Wang, S. Zanella-Béguelin, A. Delignat-

Lavaud, C. Hriţcu, K. Bhargavan, C. Fournet, and

N. Swamy. Verified low-level programming embed-

ded in F*. Proc. ACM Program. Lang., 1(ICFP), 2017.

doi: 10.1145/3110261.

[35] J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel,

M. Polubelova, K. Bhargavan, B. Beurdouche, J. Choi,

A. Delignat-Lavaud, C. Fournet, et al. Evercrypt: A

fast, verified, cross-platform cryptographic provider. In

41stIEEE Symposium on Security and Privacy, pages

983–1002, 2020. doi: 10.1109/SP40000.2020.00114.

[36] J. C. Reynolds. Separation logic: A logic for shared

mutable data structures. In Proceedings 17th Annual
IEEE Symposium on Logic in Computer Science, pages

55–74, 2002. doi: 10.1109/LICS.2002.1029817.

[37] A. Sadiq, Y.-F. Li, and S. Ling. A survey on the use of

access permission-based specifications for program ver-

ification. Journal of Systems and Software, 159:110450,

2020. doi: 10.1016/j.jss.2019.110450.

[38] B. Schlüter, S. Sridhara, A. Bertschi, and S. Shinde. We-

See: Using malicious #VC interrupts to break AMD

SEV-SNP. In 45thIEEE Symposium on Security and
Privacy, 2024. https://ahoi-attacks.github.io/
wesee.

[39] SUSE. COCONUT-SVSM, 2023. https://github.
com/coconut-svsm/svsm.

[40] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and

B. Beurdouche. HACL*: A verified modern crypto-

graphic library. In 24th ACM Conference on Computer
and Communications Security, pages 1789–1806, 2017.

doi: 10.1145/3133956.3134043.

614 18th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

