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Abstract

FPGAs are increasingly prevalent in cloud deployments, serv-
ing as Smart-NICs or network-attached accelerators. To facil-
itate the development of distributed applications with FPGAs,
in this paper we propose ACCL+, an open-source, FPGA-
based collective communication library. Portable across dif-
ferent platforms and supporting UDP, TCP, as well as RDMA,
ACCL+ empowers FPGA applications to initiate direct FPGA-
to-FPGA collective communication. Additionally, it can serve
as a collective offload engine for CPU applications, freeing
the CPU from networking tasks. It is user-extensible, allow-
ing new collectives to be implemented and deployed with-
out having to re-synthesize the entire design. We evaluated
ACCL+ on an FPGA cluster with 100 Gb/s networking, com-
paring its performance against software MPI over RDMA.
The results demonstrate ACCL+’s significant advantages for
FPGA-based distributed applications and its competitive per-
formance for CPU applications. We showcase ACCL+’s dual
role with two use cases: as a collective offload engine to
distribute CPU-based vector-matrix multiplication, and as a
component in designing fully FPGA-based distributed deep-
learning recommendation inference.

1 Introduction

FPGAs are increasingly being deployed in data centers [16,
81] as Smart-NICs [29, 35, 64, 67, 103], streaming proces-
sors [31,32,55,68], and disaggregated accelerators [15,41,
61,65,86,93,115]. In scenarios where FPGAs are directly
connected to the network, efficient distributed systems can
be built using direct FPGA-to-FPGA communication. How-
ever, designing distributed applications with FPGAs is dif-
ficult. It requires both a network stack on the FPGA com-
patible with the data center infrastructure, and a higher level
abstraction, e.g., collective communication, for more com-
plex interaction patterns. Unlike in the software ecosystem
where many such libraries exist [38, 76], there is a lack of

*Work done during internship at AMD Research

Yu Zhu
Systems Group, ETH Zurich

Lucian Petrica Michaela Blott

AMD Research AMD Research
CPU CcPU
e cPU NIC = = NIC

| Shared

v FPGA | Vel Collective  FPGA
FPGA APP Invocation
Mem > Kernel ccL > > ccL Ik

(a) For distributed accelerator (b) For Smart-NIC

Figure 1: Collective communication library (CCL) in differ-
ent FPGA-accelerated systems, where the blue line indicates
application data flow and the red line indicates collective in-
vocation commands.

similar resources for FPGAs. While new development plat-
forms [53,59] are improving FPGA programmability, and
other recent efforts [10, 18,60, 70,72, 100] focus on virtualiz-
ing FPGA resources for abstracting data movement, they lack
support for networking. This forces distributed applications
on FPGAs to rely on the CPU for communication [22,92,116],
thereby increasing the latency of data transfers between FP-
GAs. It has not been until recently that native networking
support [14,45,56,87,95] has become available for FPGAs.
But these systems lack collective communication, limiting
their applicability in larger distributed use cases.

Implementing high-performance and versatile collective
abstractions for FPGAs poses several challenges:

Challenge 1: Support of Diverse Transport Protocols. This
requirement stems from the need for application-specific so-
lutions and to ensure interoperability in mixed environments
where FPGAs coexist with CPUs and accelerators. The ability
to adapt to various communication protocols is crucial for
integrating FPGA-based components seamlessly with other
parts of a system. Existing work [25,26,36,44,73,84,85,101,
104, 112] is often tailored to scenarios where FPGAs are di-
rectly connected to each other rather than connected through
a data center packet-switched network. In these approaches,
communication is through low-level link-layer protocols, lead-
ing to scalability and integration challenges at a data-center
scale.
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Challenge 2: Flexibility for Collective Implementation. A
key challenge is to provide a flexible design in hardware al-
lowing the selection of different collectives and algorithms at
runtime. Current solutions [26,45] often integrate all possible
collective modules directly into FPGA hardware, resulting in
static primitives that necessitate hours-long recompilations
for any changes. Alternative approaches, e.g., collectives us-
ing embedded micro-controllers (uC) [89] on FPGAs, offer
more flexibility at the expense of performance.

Challenge 3: Portability Across Applications and Plat-
forms. Portability stands out as a key challenge, as FPGAs
are used in a wide variety of configurations. Figure 1a shows
the FPGA collective communication library (CCL) as en-
abler for direct networking between FPGAs accelerators. It
also demonstrates a partitioned memory model [54,59, 60]
for FPGA-centric applications, where an explicit memory
copy is required if the data originates from CPU memory
(dashed line). Figure 1b illustrates CCL’s role as an collec-
tive offload engine for a CPU application with shared virtual
memory [62,70,75,106]. This portability also raises questions
about which communication models should be provided to the
application. Should interfaces support message passing, i.e.,
MPI, where communication occurs between memory buffers,
or streaming, where communication flows through continuous
data streams?

In summary, the key question to address is how to effec-
tively design a portable, flexible, high-level collective abstrac-
tion on FPGAs that can support various memory models (e.g.,
partitioned and shared virtual memory model), communica-
tion models (e.g., message passing and streaming), and trans-
port protocols (e.g., TCP and RDMA), while accommodating
a broad spectrum of applications. Achieving this objective is
complex, given the significant impact of these configurations
on runtime, interfaces, and data movement. Moreover, given
FPGAs’ extended compilation times and lengthy hardware de-
bugging cycles, we need a parameterized approach that allows
a FPGA-resident CCL to be modified without recompilation,
in order for the CCL to be practical in real-world use. Table |
summarizes existing FPGA-based solutions, and all existing
solutions have their own limitations.

Our Contributions. To address these challenges, we in-
troduce ACCL+, an Adaptive Collective Communication
Library on FPGAs. ACCL+ can be used to enable direct
communication between FPGAs and can function as a collec-
tive offload engine for the CPU. ACCL+ provides MPI-like
collective APIs with explicit buffer allocation and streaming
collective APIs with direct channels to the communication
layer. To achieve portability, we employ a modular system
architecture which decouples platform-specific IO manage-
ment and runtime from the collective implementation, incor-
porating platform and network protocol-specific adapters and
drivers. For flexibility, we have developed a platform and
protocol-independent collective offload engine that supports
modifying the collective implementation without hardware re-

Table 1: Comparison of ACCL+ with FPGA-based solutions
in terms of bandwidth, flexibility in implementing different
collectives, target application scenarios, and supported trans-
port protocols.

Solution BW (Gb) Flex. Application Protocol
Easynet [45] 100 Low FPGA TCP
SMI [26] 40 Low FPGA Serial Link
Galapagos [97] 10 Low FPGA TCP
ZRLMPI [85] 10 Low FPGA UDP
TMD-MPI [89] <10 High FPGA Serial Link

ACCL+ (Ours) 100 High CPU/FPGA UDP/TCP/RDMA

compilation. We test ACCL+ on two platforms, a commodity,
partitioned memory platform (AMD Vitis [59]) and a shared
virtual memory platform (Coyote [62]). We choose AMD
Vitis for its recent integration of high-performance 100 Gb/s
UDP [107] and TCP [45] hardware stacks, aligning with our
goal of leveraging cutting-edge networking capabilities for
optimal communication performance. Coyote is used due to
its unique provisioning of unified and virtualized memory
across CPU-FPGA boundaries [62], coupled with compre-
hensive network services, including RDMA. ACCL+ is also
designed to minimize control overheads, improve scalability,
and facilitate simulation.

Key Results. We first evaluate ACCL+ using micro bench-
marks. ACCL+ achieves a peak send/recv throughput of 95
Gbps, almost saturating the 100 Gb/s network bandwidth. We
evaluate collective operations under two scenarios: FPGA-to-
FPGA distributed applications with FPGA kernels directly in-
teracting with ACCL+ (F2F), and CPU-to-CPU distributed ap-
plications with ACCL+ as a collective offload engine (H2H).
ACCL+ exhibits significantly lower latency in F2F scenarios
compared to software RDMA MPI for FPGA-generated data.
In H2H scenarios, ACCL+ has comparable performance to
software RDMA MPI for CPU-generated data while freeing
up CPU cycles and reducing pressure on CPU caches. Then,
we examine ACCL+ with two use-case scenarios. First, dis-
tributed vector-matrix multiplication with CPU computation
and ACCL+-based reduction, where ACCL+ improves per-
formance compared to software MPI. Secondly, we show that
ACCL+ enables the distribution of an industrial recommen-
dation model across a cluster of 10 FPGAs, achieving more
than two orders of magnitude lower inference latency and
more than an order of magnitude higher throughput than CPU
solutions. The use case study not only highlights ACCL+’s
effectiveness in different scenarios but also paves the way
for future research opportunities in investigating hybrid CPU-
FPGA co-design for distributed applications.

2 Background

FPGA Programming. In the past, hardware description lan-
guage (HDL - Verilog, VHDL) was the sole method to pro-
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gram FPGAs. With High-Level-Synthesis (HLS) [21], the
programmability of FPGAs is enhanced by allowing the de-
velopers to program in C-like code with hints (pragmas) to
infer parallel hardware blocks. Unfortunately, existing HLS-
based libraries lack networking and collective abstractions.

Communication Models. Message passing, e.g., MPL, is a
communication model for distributed programming on CPUs,
whereby communicating agents exchange messages, i.e., user
buffers, typically resulting from previous computation. This
model can be applied to FPGAs [46, 84,85], but a more com-
mon communication model for FPGAs is the streaming model.
FPGA kernels support direct streaming interfaces, into which
data can be pushed in a pipelined fashion during process-
ing. Kernels executing on the same FPGA can stream data
to each-other through low-level latency-insensitive channels,
such as AXI-Stream [9]. The streaming model can be applied
for communication across FPGAs, however, existing stream-
ing communication framework [26, 33, 34] often do not have
transport protocols or collective abstractions.

FPGA Development Platforms. Modern FPGA platforms
adopt various virtualization methodologies [13, 83, 99] for
FPGA resources. Most simplify development with a static
shell for resource management and data movement, with some
offering additional services like transport layer networking,
and the host-device interaction relies on runtime libraries.
This approach allows developers to concentrate on designing
the application kernel. Many commodity platforms [54, 59]
implement a partitioned memory model, which permits data
movement from FPGA applications to FPGA memory while
restricting direct access to host CPU memory. In contrast,
shared virtual memory platforms, such as Coyote [62] and
Optimus [70], offer a virtualized and unified memory space
between CPU and FPGA.

Network-Attached FPGAs. FPGAs today feature 100 Gb/s
transceivers, enabling direct processing of network data [81,
105]. FPGA-based Smart-NICs [2, 14,28, 35,66,67,98, 103,
119] perform programmable packet filtering but often leave
the network stack to the CPU software, limiting their appli-
cability to FPGA applications. Distributed machine learn-
ing [3,12,19,77,118], and data processing [24, 61, 65] ap-
plications capitalize on network-attached FPGAs. Follow-
ing this trend, there is an increasing effort to develop hard-
ware network stacks on FPGAs, such as UDP [47, 107],
TCP [4,27,56,87,94], and RDMA [65,69,91,95]. With the
growing demands and the increasingly distributed nature of
these applications, their communication patterns have become
more complex, motivating the need for high-level collective
abstractions on FPGAs. Therefore, simply offloading the net-
work stack is often insufficient for complex applications in
distributed settings.

3 Related Work

Collective for Accelerators. MPI implementation of collec-
tive communication are becoming more accelerator-aware,
e.g., GPU-aware MPI [80,102,111] or FPGA-aware MPI [22].
In GPU-Direct RDMA collective libraries, e.g., NCCL [74]
and RCCL [5], the network data can be directly forwarded to
the GPU memory from the commodity RNIC via the shared
PCle switch, bypassing the CPU memory. However, FPGAs
can connect directly to the network, and as such, the RDMA
stack in ACCL+ resides completely in FPGA, eliminating
the need for an external NIC. ACCL+ can provide stream-
ing interfaces directly to FPGA kernels, in addition to the
standard READs/WRITEs to memory used by commodity
RNICs, therefore reducing latency by bypassing the memory
hierarchy. Finally, the commodity RNICs typically lack of-
fload capabilities, with collectives implemented on GPU cores,
leading to computation and communication contention on the
GPU which affects performance [51,79]. Thus, ACCL+ could
serve as a collective offload engine for GPUs in the future.
FPGA-based Collectives. Projects such as Galapagos [30,97]
and EasyNet [45] provide in-FPGA communication stacks
for data exchange within a cluster, serving as a foundation
for collectives without an external NIC. TMD-MPI [88, 89]
orchestrates in-FPGA collectives using embedded processors,
yet its bottleneck lies in control due to sequential execution
in low-frequency FPGA microprocessors. Collective offload
with NetFPGA [6-8] has been explored, but static collective
offload engines limit flexibility and often rely on software-
defined network switches for orchestration. SMI [26] pro-
poses a streaming message-passing model, exposing stream-
ing collective interfaces to FPGA kernels. While SMI en-
ables kernels to initiate collectives directly, it employs dedi-
cated FPGA logic for collective control, limiting flexibility
for post-synthesis reconfiguration. In an earlier prototype,
ACCL [46], we focused primarily on message-passing col-
lectives for FPGA applications. However, the coordination of
collectives required CPU involvement, it lacked significant
streaming support, and was not tested at scale.

Collective Offload for CPUs. BluesMPI [11, 96] offloads
collective operations to a BlueField DPU, demonstrating com-
parable communication latency to host-based collectives, but
it does not target accelerator applications. The latency of
ACCL+ targeting host data matches BluesMPI, even with
BluesMPI ARM cores working at ten times the frequency.
Multi-FPGA Frameworks. Frameworks like VITAL and
its successors [112—-114] propose FPGA resource virtual-
ization and compilation flows for mapping large designs
onto multiple FPGAs through latency-insensitive channels.
OmpSs@cloudFPGA [25] introduces a multi-FPGA program-
ming framework that partitions large OpenMP programs with
domain-specific programs into smaller distributed parts for ex-
ecution on FPGA clusters, providing communication through
static, compile-time-defined send/recv and collective opera-
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Figure 2: System overview of the FPGA-based collective
communication library.

tions supporting only the unreliable UDP protocol. Elastic-
DF [3] and FCsN [40] present domain-specific frameworks
for automatically distributing large neural network model in-
ference across FPGAs with hardware UDP/TCP send/recv for
FPGA-to-FPGA data movement. These projects are comple-
mentary to our work, and integrating ACCL+ will enhance
their flexibility and performance.

4 ACCL+: An FPGA Collective Engine

ACCL+ is an FPGA-based collective abstraction designed for
both FPGA and CPU applications, focusing on versatility and
adaptability. Its primary goals include:

G1: Offering a standard collective API that abstracts different
platforms and protocols from the application layer.

G2: Providing flexibility to dynamically select collectives
and their algorithms at runtime, and to modify them
without major architectural changes.

G3: Ensuring portability across various FPGA platforms and
communication models for a wide range of applications.

G4: Supporting multiple transport protocols under a high-
level collective abstraction.

G5: Providing high-throughput and low-latency performance
for various collectives.

To achieve these goals, ACCL+ features a modular design
that separates platform-specific and transport layer compo-
nents from the core collective design. Its architecture includes
layers of abstraction in both software and hardware, as shown
in Figure 2, enabling a central CCL offload engine (CCLO)

to adapt to diverse platforms and communication protocols.
In this section we will describe each layer.

4.1 Application Interface

To satisfy G1, ACCL+ provides standard APIs for both CPU
and FPGA applications. ACCL+ implements two drivers that
offer similar, platform- and protocol-agnostic collective APIs
for these scenarios. The ACCL+ drivers expose an MPI-like
API, catering to the message-passing paradigm and facilitat-
ing the porting of existing MPI-based applications to ACCL+
collectives, and a streaming collectives API to overlap com-
munication and computation in hardware.

ACCL+ Drivers. The host-side CCL driver allows initializa-
tion and runtime management of platform and ACCL+ data
structures and hardware, as well as protocol offload engine
(POE) initialization, i.e., setting up sessions for TCP or queue-
pairs for RDMA. The CCL HLS driver is not capable of such
initialization, and therefore the application must perform host-
side initialization before any FPGA application kernels are
started. We provide a more detailed description of ACCL+
initialization in Appendix A.

Listing 1: Reduce collective API in C++.

CCLRequest xreduce(BaseBuffer &buf, unsigned int
count, unsigned int root, reduceFunction func,
communicatorld comm_id, flagType flags );

MPI-like Collective API. This API require the application
to store data in memory before invoking collectives. Listing |
shows the MPI-like collective API, including arguments like
datatype, buffer pointer, and element count, along with flags
indicating buffer location (host or FPGA memory) and the
option for synchronous calls. To facilitate portability, message
passing collectives operate on an ACCL+ specific buffer class
which can wrap normal C++ arrays with additional platform-
specific information. Common collectives, such as reduce,
broadcast, and barrier, are supported. Each MPI-like collective
call in the host CCL driver has a corresponding HLS API call
with a similar syntax for direct invocation from FPGA kernels.
Streaming Collective API. This API allows data to originate
and terminate at the stream interfaces between the FPGA
application kernels and the ACCL+ hardware, instead of in
memory buffers.

Listing 2: Example kernel using streaming send in HLS.

/l set up command and data interfaces
cclo_hls :: Command cclo(cmd, sts, communicator);
cclo_hls :: Data data( data_to_cclo, data_from_cclo);

/] issue streaming send command without buffer argument
cclo.send(type, count, dst_rank);

¢ /I push data in streams to network without buffering
for (int i =0; i <N; i++) {

8 data.push(/+ generate data =/); }

o cclo. finalize (); // wait for send completion
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Listing 2 demonstrates an example FPGA kernel issuing
a streaming send command to the CCLO engine (line 5) and
subsequent pushes to the CCLO streaming data interface,
64B per cycle (line 8), followed by a wait for CCLO comple-
tion. The HLS-based streaming APIs are tailored for FPGA
applications running in a streaming fashion and this code
is synthesizable with HLS tools. HDL-based FPGA kernels
can interact with the collective engine directly, through the
same interfaces. Additionally, the host can also call streaming
collectives via the host-side CCL driver.

4.2 CCLO Engine

Our approach to satisfying G2, i.e., achieving flexible collec-
tive implementation in hardware, differs from related work.
One method deploys all collective modules in FPGA fab-
ric simultaneously [26,45], consuming extensive resources
and not allowing modifications to the collective algorithms
without recompiling the entire design. Another method pur-
sues flexibility by implementing the collectives in embedded
micro-controllers (uC) on FPGAs [89], which are often lim-
ited by a low clocking frequency, e.g., 200 MHz, and the
sequential execution nature, thus sacrificing performance.

Our Approach. We utilize a hybrid approach that leverages
the strengths of both methods. To ensure flexibility, low la-
tency, and high throughput, the key design principle is to
decouple the CCLO logic into the flexible control plane and
the parallel data processing plane. The CCLO control plane
is flexible, centered around an embedded uC [108], which
enables the implementation of different collective algorithms
through firmware updates without needing to refactorize the
entire design and re-synthesize. The CCLO data plane con-
tains independent latency-optimized hardware modules with
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Figure 4: Architecture of the Data Movement Processor.

wide data path for concurrent execution. Moreover, to further
reduce the load on the uC, we minimize its code footprint by of-
floading tasks such as packet assembling and tag matching to
hardware. Additionally, interactions with memory controllers
are offloaded to dedicated hardware, preventing the uC from
stalling during memory accesses. As a result, the uC handles
a set of high-level data movement primitives that facilitate the
implementation of the actual collective algorithms.

Figure 3 shows the overall architecture of the CCLO en-
gine, which orchestrates the collective data movement through
a set of standardized CCLO interfaces to interact with the
application, the memory and the network. The CCLO ac-
cepts communication requests from the host or application
kernels, communicates with the protocol offload engine, man-
ages buffers in FPGA memory (HBM, DDR, BRAM), and
manage data streams from other kernels.

4.2.1 Flexible Control Plane

The CCLO control plane contains a uC that issues high-level
data movement commands to a hardware-accelerated data
movement processor (DMP). The CCLO control plane also
contains a RxBuf Manager (RBM), which manages temporary
Rx buffers. The uC, DMP, and RBM store states in a small
configuration memory implemented as FPGA BRAM. The
configuration memory is also accessible by the CPU through
MMIO and includes information about the communicator,
e.g., session or queue pair IDs, pool of allocated Rx buffers.
Besides, FIFO queues are incorporated into all command
paths, allowing multiple in-flight instructions. Currently, these
FIFO queues are set to a depth of 32, which can be further
increased at compile time.

Collective Programming with Primitives in uC. The uC
firmware implements various collective algorithms and syn-
chronization protocols, such as eager and rendezvous, using
high-level primitives. Each primitive instruction consists of
three slots: two for operands (data entering CCLO) and one
for the result (data exiting CCLO). This design aligns with
common collective operations, e.g., reduce, which processes
two inputs to produce one output. Unary operations like send
can disregard one operand slot. Operand slots include opcodes
and flags that define the data movement specifics, dictating
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when and where data should move. For instance, data can be
moved immediately or upon arrival, sourced from a memory
buffer when using the MPI-like API, or from the data interface
of the FPGA kernel when using the streaming API. Addition-
ally, the data can either be sent to a remote node through the
network or remain local as intermediate results. These ele-
ments can be combined to cover nearly all data movement
needs in collective operations.

Data Movement Processor. The primary purpose of the DMP
is to conceal memory access latency from the uC, ensuring
that the uC does not stall for memory accesses or wait for
data streams, as shown in Figure 4. Upon the receipt of the
microcode generated by the uC @, the DMP first decodes
the microcode and dispatch the code to different compute
units (CUs). The DMP primarily consists of three CUs, align-
ing with the structure of the primitive, each responsible for
controlling one or more components in the datapath. If the
microcode indicates to fetch data from memory and forward
it to the network, the CU issues memory requests to the target
address and then issues the Tx control @ to the data plane,
ensuring the data plane waits for incoming memory streams
to forward to the network. If the operand is expected to come
over network and buffered in temporary buffers, the DMP also
sends out requests periodically to the RBM to check if the mes-
sage has arrived €. The DMP operates in a pipelined fashion,
and each operand slot independently interprets its instruction
fields, emitting commands for corresponding datapath blocks.
Upon receiving acknowledgements from datapath blocks, the
DMP signals instruction completion to the uC.

RxBuf Manager. The RBM alleviates uC load by au-
tonomously managing temporary Rx buffers and reassem-
bling messages from network packets, especially under the
eager protocol. It uses a state table in FPGA on-chip mem-
ory and a set of finite-state machines (FSMs) to handle Rx
buffers. Upon notification of incoming messages @, RBM
checks the state table using the message ID. If the message
is new, it identifies a free Rx buffer from the configuration
memory and issues requests to store the message there. Since
messages are often split into packets that may arrive inter-
leaved, RBM uses the state table to piece together packets
into complete messages in the appropriate Rx buffer. When a
full message is assembled, RBM updates the exchange mem-
ory’s buffer list @, marking it ready for retrieval, and stores
essential metadata (source ID, tag, Rx buffer address) for tag
matching, facilitating buffer identification by the DMP.

4.2.2 Parallel Data Plane

Rx and Tx System. In ACCL+, we implement a message
protocol that includes a signature for each message. This sig-
nature contains metadata such as message type, destination
rank, length, tag, and a sequence number to track the order
of messages. The Tx and Rx systems feature a 512-bit wide
data path and are responsible for packetizing and depacke-

Sender Receiver Sender Receiver
APP  CCLO CCLO  APP  APP  CCLO CcCLo  APP

EAGER_MSG VD

RNDZ_MSG

RDMA_WRITE
RNDZ_DONE

RDMA_SEND

RDMA_SEND

or TCP/UDP Rx Buf

to Dest
DONE

DONE

(a) Eager protocol (b) Rendezvous protocol

Figure 5: CCLO eager and rendezvous with send/recv.

tizing the signature along with the user payload. They also
issue commands to interact with the POEs. The processes of
issuing commands, inserting signatures, and parsing can vary
across different synchronization protocols. Both the Rx and
Tx systems incorporate a finite state machine to manage these
variations appropriately.

Network On Chip. All the data streams internal to the CCLO
can be routed in the granularity of packets based on the dest
field that comes along with the data.

Streaming Plugins. The plug-ins are utilized for applying
unary and binary operations to in-flight data and can be en-
abled at compile time. Binary operations are typically utilized
to implement reductions - sum, max, etc. Unary operators may
implement compression or encryption. Each of the plug-ins
is a streaming kernel and may implement more than one func-
tion, in which case the control plane will specify the desired
function by setting its dest field of the plugin input stream.

4.2.3 Message Synchronization Protocol

The CCLO supports two distinct message synchronization
protocols: eager and rendezvous. Thanks to its flexible design,
both protocols can be tuned dynamically at runtime.

The eager protocol allows the sender CCLO to immedi-
ately send data upon receiving a command, and the receiver
buffers the data in the CCLO Rx buffer before moving it to
its destination (either in memory or in FPGA kernel streams
depends on runtime configuration), as shown in Figure 5a.
This protocol is preferred for small messages to minimize
latency since there is no handshake phase and small message
sizes incur little overhead. We implement the eager protocol
using UDP/TCP or two-sided RDMA verb.

In contrast, the rendezvous protocol requires resolving the
result buffer address before transmission, as shown in Fig-
ure 5b. Once resolved, data is directly placed into the des-
tination, eliminating the need for temporary buffering. We
use two-sided RDMA SEND for rendezvous handshake mes-
sages, and we use one-sided RDMA WRITE for actual message
transmission bypassing the intervention from the receiver uC.
Given that one-sided RDMA operations are transparent to
the receiver uC, a key design decision is how the uC should
detect message arrival. One approach is to make the uC pe-
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Table 2: Algorithms used for example collectives.

Collective Eager Rendezvous
Bcast One-to-all | One-to-all;Recursive doubling
Reduce Ring All-to-one;Binary tree
Gather Ring All-to-one;Binary tree
All-to-all Linear Linear

riodically poll the destination buffers in memory. However,
this approach increases uC overhead and latency, especially
since buffers may be located in various memory systems like
CPU or FPGA memory. Additionally, if the destination is a
streaming interface rather than a buffer, polling is not feasible.
Therefore, we choose an alternative method: the sender uC
dispatches a small control message using two-sided RDMA
SEND immediately after the one-sided RDMA WRITE. This
control message is processed by the receiver uC to confirm
the completion of the data transfer. Though not depicted in
Figure 3, the uC contains specific ports that directly interact
with the data plane for rendezvous handshake and control
messages, bypassing the RBM and DMP. These command
paths also incorporate FIFO queues.

4.2.4 Collective Algorithms

We provide different implementations for various collectives,
and users can define their own. Collectives are realized by
specifying a communication pattern as a C function in uC
firmware, and then executing this pattern through instructions
in DMP and Tx/Rx System on each FPGA in the communica-
tor. Table 2 summarizes the algorithms and communication
patterns used to implement collectives. For eager protocols
with unreliable transmission (e.g., UDP), we currently use
simple algorithms like ring and one-to-all to minimize the
chances of packet loss. Future firmware improvements can
enhance POE awareness for finer-grained algorithm selec-
tion. In contrast, when using RDMA, the rendezvous protocol
employs more advanced algorithms like tree or recursive dou-
bling. The token-based flow control in RDMA makes it well-
suited for these sophisticated algorithms in the rendezvous
protocol. For broadcast, we implement a simple one-to-all
algorithm with small rank size, while with large rank size, we
adopt more advanced recursive doubling such that the data
transmission is not bottlenecked at the root rank. For gather
and reduce, we apply a similar strategy. With small message
size, we adopt an all-to-one approach to reduce the number
of intermediate hops needed. On the other hand, with larger
message sizes, to avoid a potential in-cast problem with the
all-to-one approach, we adopt a tree-based algorithm. Tuning
of the algorithms for specific collectives can be done at run-
time through configuration parameters to the CCLO engine.
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Figure 6: CCL driver for different memory managements.

4.3 ACCL+ Platform Support

A platform is defined by a software interface specification,
defining how FPGA memory is allocated and manipulated,
and how FPGA kernels are called, and a hardware interface
specification, i.e., how FPGA kernels, including the CCLO,
plug into hardware services in the FPGA. To facilitate porta-
bility between platforms and to satisfy G3, the ACCL+ host
CCL driver layers the APIs on top of generic class types, such
as BaseBuffer for memory allocation and data movement be-
tween host and FPGA, and BaseDevice for CCLO invocation.
These are specialized to individual platforms through class
inheritance, as illustrated in Figure 6. Each specific CCL class
interfaces with platform-native drivers and employs distinct
processes for handling data movement. ACCL+ supports both
the commercial AMD Vitis platforms and the open-source
Coyote platform [62], as well as a virtual simulation platform.
New platforms can be added easily.

Integration with Coyote. Coyote utilizes a shared-memory
model with a central memory management logic governed by
a software-populated translation lookaside buffer (TLB). This
TLB records allocated pages and facilitates virtual-physical
address translation. The FPGA kernel issues memory requests
through a descriptor interface, using virtual addresses directed
to either host or device memory. The TLB interprets these
requests, interacting with host DMA or device DMA based on
the physical location of the memory page, forwarding the data
to FPGA applications in a streaming manner. If a memory
page is not registered during TLB lookup, it triggers an inter-
ruption to the CPU, resulting in a page fault and introducing a
performance penalty. Therefore, the CCL driver, specifically
the CoyoteBuffer class, eagerly maps pages to the Coyote
TLBs when instantiating buffers. We modified Coyote, during
integration, to increase the associativity of the TLB cache
and expand the number of streaming interfaces Coyote pro-
vided to a single application region, from a single interface to
three interfaces which is required by the CCLO engine. We
also implemented a Coyote-specific adapter to convert from
CCLO (R)DMA request syntax to Coyote-specific syntax, as
indicated in Figure 7.

USENIX Association

18th USENIX Symposium on Operating Systems Design and Implementation 217



Integration with Vitis. Vitis platforms implement a parti-
tioned memory model and the Xilinx Runtime (XRT) [59] is
utilized by the CCL driver for low-level interaction with the
platform. A XRT-controlled XDMA IP core [110] moves data
between host and FPGA memory, while FPGA memory is
accessed by FPGA kernels through Data Movers [109]. The
CCLO memory interfaces align with the Data Mover inter-
faces, eliminating the need for dedicated memory interface
adapters for the Vitis platform. As a result of the partitioned
memory, the CCL driver explicitly migrates buffers between
host and FPGA memory prior to or after the collective execu-
tion if the data originally resides in host memory - a process
denoted staging. Staging creates performance penalty when
ACCL+ collectives target host memory, as observed by re-
lated work on collective offload on DPUs [96]. Therefore,
Vitis platforms favor distributed FPGA applications where
data is streamed or resides in FPGA memory.

Simulation Platform We implemented an additional sim-
ulation platform for debugging and performance optimiza-
tion. This simulation platform roughly models a Vitis plat-
form, whereby FPGA chip interfaces (XDMA, Ethernet) are
replaced by ZMQ [48] interfaces. A stand-alone simulated
FPGA node is compiled to include memory and one ACCL+
CCLO Engine. The ACCL+ host driver includes dedicated
buffer and device abstractions capable of connecting to the
simulated node via ZMQ. ACCL+ provides convenient launch
scripts to set up a simulated cluster of such simulation nodes.

The simulated nodes connect to each other through ZMQ
rather than real Ethernet. While the simulated ZMQ network
may lack realistic features like packet loss and reordering, it
serves as a valuable functional simulation.

ACCL+ provides two simulation levels of the CCLO en-
gine: functional simulation using compiled ACCL+ HLS
source code and C firmware, and cycle-accurate (but slow)
simulation using Verilog HDL generated from compiling the
CCLO HLS code and firmware. For FPGA applications re-
quiring streaming data exchange between FPGA kernels and
the CCLO, we provide a bus functional model of the CCLO
that connects via ZMQ to the simulated node.

4.4 Protocol Offload Engine

To satisfy G4, ACCL+ supports several 100 Gb/s protocol
offload engines (POE) in hardware: UDP [107] and TCP [45]
on Vitis platforms, and all the network services provided by
Coyote. Notably, ACCL+ supports collectives with RDMA by
leveraging the unified and virtualized memory space across
the FPGA and the CPU provided by Coyote. All the POEs
expose streaming control and data interfaces to other modules
and some POEs (e.g., TCP) require direct memory access
for packet buffering for re-transmission. For portability, the
CCLO Engine has a set of POE-independent internal inter-
faces - two pairs of meta and data streaming interfaces (one
for Tx and one for Rx). The meta interfaces contains various

1 Coyote Mem Interface
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Figure 7: ACCL+ with Coyote-RDMA data path with corre-
sponding POE and memory adapters.

sub fields to indicate the op code, data length, communication
session IDs, etc. The meta interfaces are then adapted to the
POE interfaces with dedicated FPGA components as exem-
plified in Figure 7. The selection of the POE and its adapters
is a compile time parameter of the CCLO Engine.

Coyote RDMA POE. It supports standard RDMA verbs,
including one-sided operations like WRITE and two-sided op-
erations like SEND. The RDMA POE incorporates various
streaming interfaces for RDMA commands, memory com-
mands, and data. Default Configuration: On the initiating
side of a WRITE operation, the RDMA POE issues memory
requests directly to the Coyote memory management logic,
fetching data from either host or device memory and stream-
ing it through the network. On the passive side of WRITE, the
data is directly written to virtualized memory. ACCL+ Integra-
tion: In the ACCL+-enabled configuration, the CCLO engine
acts as a "bump-in-the-wire" engine between the memory
management unit and the RDMA POE, as shown in Figure 7.
On the initiating side of a WRITE, the CCLO engine issues
RDMA commands and is responsible for data preparation,
either fetching from memory or obtaining it from the applica-
tion kernel in the form of streams. On the passive side, data
bypasses the CCLO and is directly forwarded to the memory
management unit. For single-sided WRITE, streaming into the
application kernel is also possible by configuring the datapath
at compile time. The CCLO engine consistently manages data
and metadata streams from two-sided SEND. For CCL driver
with RDMA, a queue pair needs to be exchanged between
each node and needs to be registered to the RDMA POE.

TCP POE. The TCP POE supports up to 1,000 connections
and can be configured to support window scaling and out-of-
order packet processing. As a reliable transmission protocol,
the TCP POE also needs to access protocol-internal buffers
for re-transmission. The CCLO engine prepares and accepts
all the data streams with the TCP POE. For CCL driver with
TCP POE, a TCP session needs to be established between
each node to construct the communicator.
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Figure 8: Send/Recv throughput comparison.
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Figure 9: CCLO invocation latency from different parts.

5 Microbenchmark Evaluation

We evaluate ACCL+ on a heterogeneous cluster with 10 AMD
EPYC CPUs and 10 attached FPGA cards (Alveo-U55C).
Each CPU is equipped with a 100 Gb/s Mellanox NIC, while
each FPGA features a 100 Gb/s Ethernet interface. All de-
vices are connected to Cisco Nexus 9336C-FX2 switches.
Evaluation scenarios consider data residing on the FPGA for
distributed FPGA application (suffix F2F) and on the CPU
for distributed CPU applications (suffix H2H). For F2F, the
FPGA application data traverses the network directly through
ACCL+. As a baseline, the FPGA data initially is moved to
the CPU memory and then is transmitted via a commodity
NIC. In H2H, the CPU application data is transferred to the
FPGA and then transmitted with ACCL+. This is compared
to transmitting the CPU data directly with a commodity NIC.
We use the notion of cclo with different suffixes to indicate
different configurations of ACCL+. The focus of these ex-
periments is evaluating RDMA running with Coyote (suffix
cyt) due to space limitations. We nevertheless present some
results with ACCL+ running TCP on top of the Vitis XRT
(suffix xrt) platform to compare it to ACCL [16], which uti-
lizes an embedded micro-controller to orchestrate collective
operations. Experiments configure both MPI-like collectives
with memory pointers and streaming collectives. For the H2H
experiments, MPI-like collectives are mandatory, while the
F2F experiments are configured to run with streaming col-
lectives. ACCL+ operates at 250 MHz in micro-benchmarks,
with varying frequency in the use-case study due to the design
complexity. The comparisons involve MPICH 4.0.2 with TCP
and OpenMPI 4.1.3 compiled with RDMA using OpenUCX
1.13.1 on the cluster CPUs and Mellanox 100 Gb/s NICs.
MPI libraries self-configure for collective algorithms and syn-
chronization protocols. Each micro benchmark experiment is
averaged over 250 runs.
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Figure 10: Latency breakdown of broadcasting FPGA pro-
duced data using software MPI with eight ranks with Coyote.

Send/Recv Throughput. We first evaluate pure throughput
using send/recv. Figure 8 shows the throughput compari-
son of ACCL+ with Coyote RDMA and software MPI with
RoCE backend. Notably, ACCL+ with RDMA achieves a
peak throughput of 95 Gb/s, nearly saturating the network
bandwidth. Compared to software MPI variants, ACCL+ ex-
hibits comparable and slightly higher peak throughput. This
is attributed to the FPGA network stack’s ability to process
network packets at line-rate in a pipelined fashion. More-
over, there is minimal distinction between F2F and H2H for
ACCLH, thanks to the unified memory space provided by Coy-
ote and both host memory access through PCle and FPGA
memory access offer higher bandwidth than the network.

Invocation Latency. Figure 9 shows the invocation latency of
the CCLO engine to execute a dummy NOP operation, which
includes the time from receiving request untill the acknowl-
edgement. For FPGA kernels that can directly interact with
the CCLO engine, the invocation latency is minimal compared
to software invocation from the host, showing a clear bene-
fit of bypassing host control with FPGA-based applications.
Coyote software driver contains a thin and optimized layer for
invocation and scheduling and the resulting CCLO invocation
time mainly consists of a PCle write and a PCle read latency.
In contrast, the XRT invocation latency is significantly higher
as it is not intended for fine-grained data movement.

FPGA-to-FPGA with Software MPI. To enable a more
direct ACCL+ vs. software MPI comparison for executing
collectives between kernels on FPGA, we model the execu-
tion time for MPICH- and OpenMPI-based device-to-device
data movement, which includes: (1) moving data from FPGA
HBM/kernel to host DDR through the PCle, (2) executing
the collective using software MPI, (3) moving data from host
DDR to FPGA HBM/kernel, and (4) invoking the next com-
putation kernel. We use the CCLO host invocation time as an
approximation of the invocation time of other computation
kernels. We measure the duration of each of the above steps
and present a break-down of execution time of the collec-
tive with Coyote platform in Figure 10. We could observe
that the PCle transfer time is dominant for small messages
while the collective time is dominant for large messages. Such
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Figure 12: Collective latency comparison between ACCL+ RDMA and software MPI RDMA with eight ranks and host data

breakdown for XRT platform can be derived by changing the
Coyote invocation latency to XRT invocation latency.

F2F Collective Latency RDMA. Figure 11 illustrates the
latency of ACCL+ RDMA collectives with various mes-
sage sizes on eight Alveo-U55C boards. This is compared
to FPGA-to-FPGA data movement with software MPI over
RDMA. For clarity, we present experiments showcasing bet-
ter performance between eager and rendezvous collectives.
The algorithms for each collective in ACCL+ are detailed in
Table 2. Notably, ACCL+ exhibits significant performance
benefits compared to its software counterpart. This advantage
stems from the hardware’s efficient execution of collectives
and the direct network access within the FPGA device, elimi-
nating the need for data copying to CPU memory.

H2H Collective Latency RDMA. Figure 12 illustrates a
latency comparison between ACCL+ and software MPI tar-
geting host data. The performance gains with ACCL+ vary
across different collectives. Notably, for operations like broad-
cast and gather, ACCL+ consistently outperforms software
MPI across a range of message sizes. However, for other col-
lectives such as reduce and all-to-all, ACCL+ shows only
marginal benefits and, in some cases, falls short of software
MPI performance. One reason is that software MPI adapts its
algorithms more finely to different configurations, whereas
ACCL+ currently supports only a limited set of options. How-
ever, by offloading collective to hardware, CPU cycles could
be freed for other computation tasks. Besides, by comparing
ACCL+ F2F and H2H performance, we could observe that
the ACCL+ collective latency has minimal difference because
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Figure 13: Latency vs. rank sizes (Reduce).

Coyote with unified memory allows direct memory access to
both host and FPGA memory.

Effect of Synchronization Protocol. Despite the simpler
algorithms used by most eager collectives, such as one-to-
all or ring, we observe that eager collectives can sometimes
outperform rendezvous collectives with small message sizes,
as seen in broadcast. This is because eager collectives do not
require a handshake to resolve addresses.

Collective Algorithm and Scalability. Figure 13 illustrates
the impact of algorithm selection and scalability on both
ACCL+ and software MPI during collective executions. For
an 8 KB message size, ACCL+’s reduce operation adopts an
all-to-one algorithm, resulting in minimal latency increase
across nodes. However, recognizing potential bottlenecks at
the root node with this approach, ACCL+ switches to a bi-
nary tree algorithm for larger message sizes, such as 128
KB. In this case, an increase in latency is observed after
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Figure 14: Comparison of collective performance between
ACCL+ TCP with XRT, software MPI TCP and ACCL TCP.

four nodes, stabilizing until eight nodes due to a consistent
tree depth. On the other hand, software MPI exhibits a more
fine-grained approach to algorithm selection based on the
scale of the message size and the number of nodes. For in-
stance, it deploys three distinct algorithms within the 8§ KB
range: an all-to-one algorithm for fewer than four nodes, a
ring protocol for four to eight nodes, and an optimized bino-
mial algorithm for 8 nodes. Additionally, for larger messages,
software MPI switches between an all-to-one algorithm be-
low three nodes and a binomial tree algorithm between four
and eight nodes. This fine-grained algorithmic tuning con-
tributes to its superior performance in certain H2H scenarios.
While software MPI’s approach involves detailed algorithmic
tuning, ACCL+’s flexible design allows for potential future en-
hancements through additional fine-grained tuning to further
optimize performance.

XRT Platform and TCP. In Figure 14, we evaluate ACCL+
TCP with the XRT platform and compare it against software
MPI with TCP. We also include a comparison with ACCL [46]
collectives, which employs a similar embedded processor to
orchestrate collectives and supports TCP on the XRT plat-
form. Notably, ACCL+ TCP consistently outperforms its soft-
ware counterpart across all configurations, benefiting from the
line-rate processing capabilities of a hardware TCP POE. Fur-
thermore, ACCL+ demonstrates superior performance com-
pared to ACCL. While both ACCL+ and ACCL utilize embed-
ded microprocessors for collective orchestration in hardware,
ACCL+ distinguishes itself by offloading more tasks to the
hardware data plane, such as utilizing the RxBuf Manager for
packet assembling. In contrast, ACCL relies more on the mi-
croprocessor, leading to lower performance. When comparing
ACCL+ TCP for serving host applications and device applica-
tions, a significant overhead is observed for host applications.
This is attributed to the limitation of XRT platform, which
prohibits direct data movement from the FPGA kernel to host
buffers, resulting in a memory-copy overhead. Additionally,
the XRT software invocation latency is notably higher, as
indicated in Figure 9.

Table 3: Parameters of the target recommendation model.
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Figure 15: Checkerboard block decomposition.

6 Case Study: Deep Learning Recommenda-
tion Model

Deep Learning Recommendation Models (DLRM) are widely
used in personalized recommendation systems for various
scenarios [23, 37, 117]. The structure of a DLRM includes
two major components: memory-bound embedding layers
and computation-bound fully-connected (FC) layers. These
models handle both dense and sparse features, with the latter
stored as embedding vectors in tables. In inference, these
vectors are accessed via indexes, resulting in multiple random
memory accesses. The retrieved embedding vectors are then
concatenated with dense features and passed through several
FC layers to predict the click-through rate, incurring heavy
computational loads due to vector-matrix multiplication.
DLRM has been a focal point for acceleration on GPUs and
FPGA:s, given that CPU solutions are generally constrained
by both random memory access and computation [43,49, 63].
GPU-based solutions [42,49, 52, 58] mostly accelerate the
computation-bound FC layers to gain high throughput. How-
ever, the large batch sizes required for efficient GPU com-
putation, coupled with random memory access, often lead to
increased latency (tens of milliseconds). FPGA-based tech-
niques [57,71] overcome the embedding lookup bottleneck by
distributing tables across memory banks and enabling paral-
lel accesses, leveraging high-bandwidth-memory (HBM) and
on-chip memory (BRAM/URAM). However, this approach
is constrained by the requirement for embedding tables to fit
within a single FPGA’s memory (e.g., 16 GB HBM on AMD
Alveo-U55C), limiting the size of embedding layer. Addition-
ally, the finite computational resources on a single node pose
restrictions on overall throughput for all FC layers.

6.1 Distributed DLRM Inference

We aim to demonstrate that ACCL+ can facilitate distribut-
ing DLRM inference across FPGAs to accommodate larger
embedding layers, as in many large-scale industrial settings,
while at the same time achieving low latency and high through-
put. Table 3 shows the detailed configuration of such an
industrial-level recommendation model [58]. In such a use
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Figure 16: Conceptual design of partitioned DLRM, with FC1
decomposed and FC2, FC3 pipelined across nodes.

case, the embedding table does not fit into a single FPGA
HBM and therefore both the embedding lookup and the com-
putation are distributed across the network. This poses signifi-
cant challenges for performance, scalability, and networking.
Vector-Matrix Multiplications Decomposition for DLRM.
The computation pattern in DLRM inference involves a chain
of three vector-matrix multiplications, with the inference out-
put vector computed as a sequence of operations involving
three matrices of FC layers (FC1, FC2, FC3) and a concate-
nated embedding vector. The concept of distributed vector-
matrix multiplication has been extensively studied in litera-
ture [90] across CPUs and the same principle can be applied
to an FPGA cluster. One common approach is checkerboard
block decomposition of matrix, as shown in Figure 15. This
method involves partitioning the matrix in terms of both rows
and columns, while partitioning the vector ensures that pro-
cesses associated with the same matrix row partition share the
same sub-embedding vector. Each process can then perform
partial computations, and the results belonging to the same
row partition are concatenated and subsequently aggregated.
Decomposed and Pipelined Distributed DLRM. The parti-
tioning strategy for the DLRM considers the need for balanced
resource utilization, ensuring that the overall throughput is not
limited by any process among all nodes. Typically, the compu-
tation load of the FC1 is significantly larger than subsequent
layers like FC2 and F'C3. To accommodate this, resource dis-
tribution should reflect the varying computation requirements.
Additionally, for modern FPGAs with HBM, the capacity re-
quires a minimum number of FPGAs to effectively store the
embedding layer. A conceptual partitioned DLRM is illus-
trated in Figure 16. In this scenario, FC1 is decomposed and
distributed across multiple FPGAs using the checkerboard
block decomposition, and FC2 and FC3 are assigned to one
FPGA each. The embedding tables are evenly distributed
across nodes 1-4, with partial vectors transmitted to nodes
5-8, leveraging the network’s low latency. Similarly, partial
results computed on nodes 1-4 are forwarded to correspond-
ing nodes 5-8, where an overall reduction of all partial FC1
results is conducted. The aggregated F'C1 results are then for-
warded to node 9 for FC2 computation, followed by node 10
for FC3 computation and final processing. Scaling resources
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Figure 17: Speedup comparison and latency breakdown of
distributed vector-matrix multiplication.

according to the computation distribution requirements of
each layer could lead to improved performance. For exam-
ple, increasing the allocation of FPGAs for different layers
based on their computational load. Such partitioning method
requires diverse communication patterns by each node, such
as send-only, send/recv, and reduction and ACCL+ provides a
unified design supporting all the communication requirements
of the DLRM through a standard interface. Additionally, for
nodes that do not require reduction, the streaming reduction
plugins of ACCL+ can be removed with a compilation flag,
reducing resource consumption and improving routing and
timing. Furthermore, the cross-node simulation provided by
ACCL+ can facilitate the development process, reducing hard-
ware debugging cycles.

6.2 Use Case Evaluation

Distributed FC Layer Execution on CPU. We use an illus-
trative example to demonstrate how ACCL+ can be utilized
to improve the efficiency of distributed work executing on
CPU. In this use case, we distribute an FC layer workload
(matrix-vector multiplication) by partitioning the weight ma-
trix column-wise, with each rank receiving part of the input
vector and a subset of the weight matrix columns. The matrix-
vector product is obtained by summing the partial rank prod-
ucts using the reduce collective. For the implementation, we
use the highly optimized Eigen library [39], distributing it
with both ACCL+ RDMA and MPI RDMA. In this experi-
ment we do not overlap computation and communication.
The overall execution time of the distributed FC layer is
compared to its single-node execution, as depicted in Fig-
ure |7, where top-of-bar numbers indicate the speed-up com-
pared to single-node execution. We observe that utilizing
ACCL+ instead of MPI for the reduction generally results
in lower matrix-vector computation time. This performance
increase is most likely due to reduced pressure on the CPU
cache, as ACCL+ utilizes FPGA memory for all intermediate
reduction data structures. The figure indicates two instances
of super-linear scaling, attributed to the weight matrix parti-
tions fitting into either L2 (8 MB) or L3 (128 MB) caches
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Figure 18: ACCL+ DLRM performance comparison.

on the CPU after partitioning, whereas the entire matrix did
not fit in caches during single-node execution. The reduction
time itself is higher in most cases due to an additional copy re-
quired to move data between Eigen result buffers and ACCL+
buffers, which can be eliminated with further optimization.
Overall, distributing work with ACCL+ achieves lower la-
tency, especially for specific configurations of FC size and
number of ranks.

Distributed FPGA-based DLRM. We distribute an indus-
trial DLRM model, as in Table 3, with ACCL+ on 10 U55C
FPGAs following the same design principle as shown in Fig-
ure 16. The communication between the embedding node
and the reduce slave node during each inference requires the
transmission of a 3.2 KB partial embedding vector and a 4
KB partial result. Additionally, the reduction process span-
ning nodes 5 to 9 operates with a message size of 8 KB per
inference. The achieved operating frequency is 115 MHz. We
utilize 32-bit fixed-point precision for computation. All the
application kernels utilize streaming collective APIs to inter-
act with ACCL+. ACCL+ DLRM is configured with the TCP
backend from XRT. Though the communication latency could
be further optimized with ACCL+ RDMA, it is not on the criti-
cal path of overall latency as it is overlapped with computation.
We also compare with CPU implementation [58], where the
DLRM inference is run on an Intel Xeon Platinum 8259CL
CPU @ 2.50 GHz (32 vCPU, Cascade Lake, SIMD supported)
and 256 GB DRAM with TensorFlow Serving enabled. Fig-
ure 18(a) shows the latency comparison between ACCL+
and the CPU baseline. We evaluate various batch sizes on
the CPU. On the other hand, ACCL+ works with streaming
data without batching. The hardware implementation demon-
strates two orders of magnitude lower latency compared to
the CPU. This substantial latency reduction in the hardware
implementation is attributed to the parallel arithmetic units
in hardware and the significant latency introduced by random
memory accesses. Figure 18(b) shows the throughput compar-
ison. ACCL+ shows more than an order of magnitude higher
throughput compared to CPU baseline.

Table 4: Resource utilization.

Component  CLB kLUT DSP BRAM URAM
US55C(100%) 1303 9024 2016 960
CCLO 12.1% 1.6% 5.7% 0
TCP POE 19.8% 0 10.6% 0
RDMA POE 13.0% 0 5.3% 0
DLRM FC1 278.1% 580.1% 186.3% 798.3%
DLRM FC2 29.6% 85.1% 34.2% 97.9%
DLRM FC3 6.2% 16.1% 2.2% 20.8%

6.3 Resource Consumption

The resource utilization of ACCL+ components and the over-
all utilization of DLRM across nodes are summarized in Ta-
ble 4. In the ACCL+ subsystem, the majority of resources
are allocated to POEs, with the TCP POE being the most
resource-intensive, while the CCLO engine utilizes compara-
tively fewer LUT and memory resources. DLRM utilization
is categorized by different layers, and the presented utilization
values represent the sum across multiple FPGAs after decom-
position. Note that DLRM FC1 utilization exceeds 100%,
reflecting the decomposition across 8 FPGAs (max 800%).
The primary resource bottlenecks for DLRM are URAM,
serving as fast on-chip memory for storing small embedding
tables, and DSP, essential for matrix computations.

7 Discussion

In this paper we have explored the design of ACCL+ target-
ing efficient and high-speed offload of MPI-like collective
operations. However, due to its flexible and portable design,
ACCL+ can be utilized in various applications and scenarios
beyond the demonstrated use cases. This section explores
how ACCL+ can be extended for a broader range of users
applications.

Integrating ACCL+ with Machine Learning Frameworks.
While in HPC it is commonplace to develop distributed ap-
plications utilizing MPI collectives explicitly, in the field of
Machine Learning, codes are often written by Data Scien-
tists who reason about distributed execution in high-level
terms such as data, model, or expert parallelism [20]. Integrat-
ing ACCL+ into popular machine learning frameworks like
TensorFlow [1] and PyTorch [78] is therefore essential to en-
able its use in ML. Our ongoing work focuses on integrating
ACCL+ into PyTorch’s Distributed Data Parallel (DDP) [82]
module. DDP supports various communication backends for
collective operations, which are invoked automatically by the
PyTorch execution orchestrator to distribute work to a cluster.
We aim to add ACCL+ as a new communication backend to
PyTorch DDP, enabling the use of FPGA-based smartNICs
to enhance collective operations in Al training and inference.
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Additionally, we plan to extend ACCL+ support to other ma-
chine learning frameworks.

ACCL+ for Streaming Applications. ACCL+ can also be
used for distributed applications that do not require bulk syn-
chronous parallel collective communications, such as stream-
ing applications. In such a scenario, one could use ACCL+
as a transport layer for model-parallel, multi-FPGA stream-
ing accelerators, e.g., Elastic-DF [3]. ACCL+ has existing
streaming primitives and collectives which could be utilized
for this purpose, as demonstrated in the implementation of
the DLRM in Section 6. A more flexible transport based
on ACCL+ would, for example, enable higher flexibility in
partitioning DNN5s to multiple FPGAs.

Implementing Other Distributed Programming Models
with ACCL+. The shared memory (SHMEM) programming
model [17] is gaining in popularity as it becomes evident
that it enables finer-grained overlap between compute and
communication on GPU-accelerated systems [50]. SHMEM
libraries include MPI-like collectives but add asynchronous
one-sided operations (put/get) and signals. These additional
operations could be implemented easily into ACCL+ with
minimal firmware modifications and no hardware recompi-
lation. Utilizing ACCL+ could reduce the latency of one-
sided SHMEM operations, especially where these are used to
implement complex communication sequences such as halo
exchanges in stencil computations.

8 Conclusion

In this paper, we introduce ACCL+, an open-source FPGA-
based collective library designed for portability across diverse
platforms and communication protocols. ACCL+ offers flexi-
bility in implementing collectives without the need for FPGA
re-synthesis and demonstrates high performance as collective
abstractions for FPGA-distributed applications and as a collec-
tive offload engine for CPU applications. With ACCL+, there
is potential for exploring new possibilities by extending col-
lectives across CPU and FPGA boundaries and orchestrating
them for a unified application.
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Appendices

A ACCL+ Initialization

ACCL-+ is specifically designed to deliver a high-speed col-
lective communication solution tailored for FPGAs, or to
function as a specialized NIC for CPUs. To simplify the ini-
tialization process, we choose not to generalize the network
stack in the hardware for general-purpose communication. In-
stead, we utilize the conventional NIC in the CPU system for
launching ACCL+ applications in a distributed environment,
such as through mpirun, or for establishing RDMA queue
pairs for ACCL+ communicators. This NIC only involves a
lower-speed connection to other ranks.

Other than the collective API, the CCL driver also exposes
a housekeeping API which enables CCLO configuration and
monitoring, and a primitive API consisting of simple data
movement operations (send, receive, copy). Listing 3 illus-
trates the three APIs - the code initializes ACCL+, invokes
the ACCL+ send/receive primitives to exchange data between
ranks O and 1, and executes an reduce collective on all ranks.

In this example, we utilize the MPI library to determine
the local rank ID (lines 6-8) when the application has been
launched with mpirun. Then ACCL+ is initialized by calling
the constructor function and passing the Coyote device object
(line 11). Similar approach is applied for Vitis device object.
Within the constructor, it also allocates and configures a set
of CCLO-managed Rx buffers for collective operations in the

FPGA memory, e.g., for the eager protocol. The code then
constructs the communicator according to rank information
and protocol type (line 15). If the protocol is TCP, the code
will issue commands to open connections between each rank
in the communicator via the protocol offload engine. If the
protocol is RDMA, the code utilizes the commodity NIC to
change queue pair information. The TCP connections and
the RDMA queue pairs are generalized to session IDs in the
communicator. All configuration information is offloaded to
the FPGA so that the CCLO can rapidly access them. Just like
MPI, ACCL+ can be configured with multiple communicators
of different sizes. While not pictured here for brevity, each
ACCL+ collective can specify the communicator it operates
on, with COMM_WORLD being the default.

Lines 21-25 implement data movement from the buffer
of rank 1 to the buffer of rank 0 utilizing the primitives APL
Lines 27 execute collectives on the entire communicator using
the collectives APIL

#include "accl.hpp"
2> #include <mpi.h>
using namespace ACCL;

int main(int argc, char **argv) ({
6 int mpi_rank;
MPI_Init (&argc, &argv);
8 MPI_Comm_rank (MPI_COMM_WORLD, é&mpi_rank);

10 CoyoteDevice* device = new CoyoteDevice();
11 ACCL* accl = new ACCL(device);

13 std::map<int, std::string> ranks_dict = /*
Populate rank vector*/;

14 Protocol protocol = TCP; // or RDMA

15 accl->configure_communicator (ranks_dict, mpi_rank,
protocol);

17 const int bufsize = 64;
18 auto opbuf = accl->create_buffer<int> (bufsize);
19 auto resbuf = accl->create_buffer<int>(bufsize);

21 if (mpi_rank == 0) {
accl->send(opbuf, bufsize, 1); // Send to rank 1
} else if (mpi_rank == 1) {
24 accl->receive (opbuf, bufsize, 0); // Receive
from rank 0

}

accl->reduce (opbuf, resbuf, bufsize, 0); // Root
rank 0

29 opbuf->free_buffer();
30 resbuf->free_buffer () ;
31 delete accl;

delete device;
33 MPI_Finalize();
34 }

Listing 3: Initialization and invocation of collectives from
CPU.
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