é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

ACCL+: an FPGA-Based Collective Engine
for Distributed Applications

Zhenhao He, Dario Korolija, Yu Zhu, and Benjamin Ramhorst, Systems Group,
ETH Zurich; Tristan Laan, University of Amsterdam; Lucian Petrica and
Michaela Blott, AMD Research; Gustavo Alonso, Systems Group, ETH Zurich

https://www.usenix.org/conference/osdi24/presentation/he

This paper is included in the Proceedings of the
18th USENIX Symposium on Operating Systems
Design and Implementation.

July 10-12, 2024 - Santa Clara, CA, USA
978-1-939133-40-3

Open access to the Proceedings of the
18th USENIX Symposium on Operating
Systems Design and Implementation
is sponsored by

alllasc Ellall aeala

‘))), ..“.....”9 A 1
% King Abdullah University of

Science and Technology

+ g ;EE,- . =y :,, e

ARTIFACT
EVALUATED
susenix

»

AVAILABLE

ACCL+: an FPGA-Based Collective Engine for Distributed Applications

Zhenhao He
Systems Group, ETH Zurich

Benjamin Ramhorst
Systems Group, ETH Zurich

Dario Korolija
Systems Group, ETH Zurich

Tristan Laan”
University of Amsterdam

Gustavo Alonso
Systems Group, ETH Zurich

Abstract

FPGAs are increasingly prevalent in cloud deployments, serv-
ing as Smart-NICs or network-attached accelerators. To facil-
itate the development of distributed applications with FPGAs,
in this paper we propose ACCL+, an open-source, FPGA-
based collective communication library. Portable across dif-
ferent platforms and supporting UDP, TCP, as well as RDMA,
ACCL+ empowers FPGA applications to initiate direct FPGA-
to-FPGA collective communication. Additionally, it can serve
as a collective offload engine for CPU applications, freeing
the CPU from networking tasks. It is user-extensible, allow-
ing new collectives to be implemented and deployed with-
out having to re-synthesize the entire design. We evaluated
ACCL+ on an FPGA cluster with 100 Gb/s networking, com-
paring its performance against software MPI over RDMA.
The results demonstrate ACCL+’s significant advantages for
FPGA-based distributed applications and its competitive per-
formance for CPU applications. We showcase ACCL+’s dual
role with two use cases: as a collective offload engine to
distribute CPU-based vector-matrix multiplication, and as a
component in designing fully FPGA-based distributed deep-
learning recommendation inference.

1 Introduction

FPGAs are increasingly being deployed in data centers [16,
81] as Smart-NICs [29, 35, 64, 67, 103], streaming proces-
sors [31,32,55,68], and disaggregated accelerators [15,41,
61,65,86,93,115]. In scenarios where FPGAs are directly
connected to the network, efficient distributed systems can
be built using direct FPGA-to-FPGA communication. How-
ever, designing distributed applications with FPGAs is dif-
ficult. It requires both a network stack on the FPGA com-
patible with the data center infrastructure, and a higher level
abstraction, e.g., collective communication, for more com-
plex interaction patterns. Unlike in the software ecosystem
where many such libraries exist [38, 76], there is a lack of

*Work done during internship at AMD Research

Yu Zhu
Systems Group, ETH Zurich

Lucian Petrica Michaela Blott

AMD Research AMD Research
CPU CcPU
e cPU NIC = = NIC

| Shared

v FPGA | Vel Collective FPGA
FPGA APP Invocation
Mem > Kernel ccL > > ccL Ik

(a) For distributed accelerator (b) For Smart-NIC

Figure 1: Collective communication library (CCL) in differ-
ent FPGA-accelerated systems, where the blue line indicates
application data flow and the red line indicates collective in-
vocation commands.

similar resources for FPGAs. While new development plat-
forms [53,59] are improving FPGA programmability, and
other recent efforts [10, 18,60, 70,72, 100] focus on virtualiz-
ing FPGA resources for abstracting data movement, they lack
support for networking. This forces distributed applications
on FPGAs to rely on the CPU for communication [22,92,116],
thereby increasing the latency of data transfers between FP-
GAs. It has not been until recently that native networking
support [14,45,56,87,95] has become available for FPGAs.
But these systems lack collective communication, limiting
their applicability in larger distributed use cases.

Implementing high-performance and versatile collective
abstractions for FPGAs poses several challenges:

Challenge 1: Support of Diverse Transport Protocols. This
requirement stems from the need for application-specific so-
lutions and to ensure interoperability in mixed environments
where FPGAs coexist with CPUs and accelerators. The ability
to adapt to various communication protocols is crucial for
integrating FPGA-based components seamlessly with other
parts of a system. Existing work [25,26,36,44,73,84,85,101,
104, 112] is often tailored to scenarios where FPGAs are di-
rectly connected to each other rather than connected through
a data center packet-switched network. In these approaches,
communication is through low-level link-layer protocols, lead-
ing to scalability and integration challenges at a data-center
scale.

USENIX Association

18th USENIX Symposium on Operating Systems Design and Implementation 211

Challenge 2: Flexibility for Collective Implementation. A
key challenge is to provide a flexible design in hardware al-
lowing the selection of different collectives and algorithms at
runtime. Current solutions [26,45] often integrate all possible
collective modules directly into FPGA hardware, resulting in
static primitives that necessitate hours-long recompilations
for any changes. Alternative approaches, e.g., collectives us-
ing embedded micro-controllers (uC) [89] on FPGAs, offer
more flexibility at the expense of performance.

Challenge 3: Portability Across Applications and Plat-
forms. Portability stands out as a key challenge, as FPGAs
are used in a wide variety of configurations. Figure 1a shows
the FPGA collective communication library (CCL) as en-
abler for direct networking between FPGAs accelerators. It
also demonstrates a partitioned memory model [54,59, 60]
for FPGA-centric applications, where an explicit memory
copy is required if the data originates from CPU memory
(dashed line). Figure 1b illustrates CCL’s role as an collec-
tive offload engine for a CPU application with shared virtual
memory [62,70,75,106]. This portability also raises questions
about which communication models should be provided to the
application. Should interfaces support message passing, i.e.,
MPI, where communication occurs between memory buffers,
or streaming, where communication flows through continuous
data streams?

In summary, the key question to address is how to effec-
tively design a portable, flexible, high-level collective abstrac-
tion on FPGAs that can support various memory models (e.g.,
partitioned and shared virtual memory model), communica-
tion models (e.g., message passing and streaming), and trans-
port protocols (e.g., TCP and RDMA), while accommodating
a broad spectrum of applications. Achieving this objective is
complex, given the significant impact of these configurations
on runtime, interfaces, and data movement. Moreover, given
FPGAs’ extended compilation times and lengthy hardware de-
bugging cycles, we need a parameterized approach that allows
a FPGA-resident CCL to be modified without recompilation,
in order for the CCL to be practical in real-world use. Table |
summarizes existing FPGA-based solutions, and all existing
solutions have their own limitations.

Our Contributions. To address these challenges, we in-
troduce ACCL+, an Adaptive Collective Communication
Library on FPGAs. ACCL+ can be used to enable direct
communication between FPGAs and can function as a collec-
tive offload engine for the CPU. ACCL+ provides MPI-like
collective APIs with explicit buffer allocation and streaming
collective APIs with direct channels to the communication
layer. To achieve portability, we employ a modular system
architecture which decouples platform-specific IO manage-
ment and runtime from the collective implementation, incor-
porating platform and network protocol-specific adapters and
drivers. For flexibility, we have developed a platform and
protocol-independent collective offload engine that supports
modifying the collective implementation without hardware re-

Table 1: Comparison of ACCL+ with FPGA-based solutions
in terms of bandwidth, flexibility in implementing different
collectives, target application scenarios, and supported trans-
port protocols.

Solution BW (Gb) Flex. Application Protocol
Easynet [45] 100 Low FPGA TCP
SMI [26] 40 Low FPGA Serial Link
Galapagos [97] 10 Low FPGA TCP
ZRLMPI [85] 10 Low FPGA UDP
TMD-MPI [89] <10 High FPGA Serial Link

ACCL+ (Ours) 100 High CPU/FPGA UDP/TCP/RDMA

compilation. We test ACCL+ on two platforms, a commodity,
partitioned memory platform (AMD Vitis [59]) and a shared
virtual memory platform (Coyote [62]). We choose AMD
Vitis for its recent integration of high-performance 100 Gb/s
UDP [107] and TCP [45] hardware stacks, aligning with our
goal of leveraging cutting-edge networking capabilities for
optimal communication performance. Coyote is used due to
its unique provisioning of unified and virtualized memory
across CPU-FPGA boundaries [62], coupled with compre-
hensive network services, including RDMA. ACCL+ is also
designed to minimize control overheads, improve scalability,
and facilitate simulation.

Key Results. We first evaluate ACCL+ using micro bench-
marks. ACCL+ achieves a peak send/recv throughput of 95
Gbps, almost saturating the 100 Gb/s network bandwidth. We
evaluate collective operations under two scenarios: FPGA-to-
FPGA distributed applications with FPGA kernels directly in-
teracting with ACCL+ (F2F), and CPU-to-CPU distributed ap-
plications with ACCL+ as a collective offload engine (H2H).
ACCL+ exhibits significantly lower latency in F2F scenarios
compared to software RDMA MPI for FPGA-generated data.
In H2H scenarios, ACCL+ has comparable performance to
software RDMA MPI for CPU-generated data while freeing
up CPU cycles and reducing pressure on CPU caches. Then,
we examine ACCL+ with two use-case scenarios. First, dis-
tributed vector-matrix multiplication with CPU computation
and ACCL+-based reduction, where ACCL+ improves per-
formance compared to software MPI. Secondly, we show that
ACCL+ enables the distribution of an industrial recommen-
dation model across a cluster of 10 FPGAs, achieving more
than two orders of magnitude lower inference latency and
more than an order of magnitude higher throughput than CPU
solutions. The use case study not only highlights ACCL+’s
effectiveness in different scenarios but also paves the way
for future research opportunities in investigating hybrid CPU-
FPGA co-design for distributed applications.

2 Background

FPGA Programming. In the past, hardware description lan-
guage (HDL - Verilog, VHDL) was the sole method to pro-

212 18th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

gram FPGAs. With High-Level-Synthesis (HLS) [21], the
programmability of FPGAs is enhanced by allowing the de-
velopers to program in C-like code with hints (pragmas) to
infer parallel hardware blocks. Unfortunately, existing HLS-
based libraries lack networking and collective abstractions.

Communication Models. Message passing, e.g., MPL, is a
communication model for distributed programming on CPUs,
whereby communicating agents exchange messages, i.e., user
buffers, typically resulting from previous computation. This
model can be applied to FPGAs [46, 84,85], but a more com-
mon communication model for FPGAs is the streaming model.
FPGA kernels support direct streaming interfaces, into which
data can be pushed in a pipelined fashion during process-
ing. Kernels executing on the same FPGA can stream data
to each-other through low-level latency-insensitive channels,
such as AXI-Stream [9]. The streaming model can be applied
for communication across FPGAs, however, existing stream-
ing communication framework [26, 33, 34] often do not have
transport protocols or collective abstractions.

FPGA Development Platforms. Modern FPGA platforms
adopt various virtualization methodologies [13, 83, 99] for
FPGA resources. Most simplify development with a static
shell for resource management and data movement, with some
offering additional services like transport layer networking,
and the host-device interaction relies on runtime libraries.
This approach allows developers to concentrate on designing
the application kernel. Many commodity platforms [54, 59]
implement a partitioned memory model, which permits data
movement from FPGA applications to FPGA memory while
restricting direct access to host CPU memory. In contrast,
shared virtual memory platforms, such as Coyote [62] and
Optimus [70], offer a virtualized and unified memory space
between CPU and FPGA.

Network-Attached FPGAs. FPGAs today feature 100 Gb/s
transceivers, enabling direct processing of network data [81,
105]. FPGA-based Smart-NICs [2, 14,28, 35,66,67,98, 103,
119] perform programmable packet filtering but often leave
the network stack to the CPU software, limiting their appli-
cability to FPGA applications. Distributed machine learn-
ing [3,12,19,77,118], and data processing [24, 61, 65] ap-
plications capitalize on network-attached FPGAs. Follow-
ing this trend, there is an increasing effort to develop hard-
ware network stacks on FPGAs, such as UDP [47, 107],
TCP [4,27,56,87,94], and RDMA [65,69,91,95]. With the
growing demands and the increasingly distributed nature of
these applications, their communication patterns have become
more complex, motivating the need for high-level collective
abstractions on FPGAs. Therefore, simply offloading the net-
work stack is often insufficient for complex applications in
distributed settings.

3 Related Work

Collective for Accelerators. MPI implementation of collec-
tive communication are becoming more accelerator-aware,
e.g., GPU-aware MPI [80,102,111] or FPGA-aware MPI [22].
In GPU-Direct RDMA collective libraries, e.g., NCCL [74]
and RCCL [5], the network data can be directly forwarded to
the GPU memory from the commodity RNIC via the shared
PCle switch, bypassing the CPU memory. However, FPGAs
can connect directly to the network, and as such, the RDMA
stack in ACCL+ resides completely in FPGA, eliminating
the need for an external NIC. ACCL+ can provide stream-
ing interfaces directly to FPGA kernels, in addition to the
standard READs/WRITEs to memory used by commodity
RNICs, therefore reducing latency by bypassing the memory
hierarchy. Finally, the commodity RNICs typically lack of-
fload capabilities, with collectives implemented on GPU cores,
leading to computation and communication contention on the
GPU which affects performance [51,79]. Thus, ACCL+ could
serve as a collective offload engine for GPUs in the future.
FPGA-based Collectives. Projects such as Galapagos [30,97]
and EasyNet [45] provide in-FPGA communication stacks
for data exchange within a cluster, serving as a foundation
for collectives without an external NIC. TMD-MPI [88, 89]
orchestrates in-FPGA collectives using embedded processors,
yet its bottleneck lies in control due to sequential execution
in low-frequency FPGA microprocessors. Collective offload
with NetFPGA [6-8] has been explored, but static collective
offload engines limit flexibility and often rely on software-
defined network switches for orchestration. SMI [26] pro-
poses a streaming message-passing model, exposing stream-
ing collective interfaces to FPGA kernels. While SMI en-
ables kernels to initiate collectives directly, it employs dedi-
cated FPGA logic for collective control, limiting flexibility
for post-synthesis reconfiguration. In an earlier prototype,
ACCL [46], we focused primarily on message-passing col-
lectives for FPGA applications. However, the coordination of
collectives required CPU involvement, it lacked significant
streaming support, and was not tested at scale.

Collective Offload for CPUs. BluesMPI [11, 96] offloads
collective operations to a BlueField DPU, demonstrating com-
parable communication latency to host-based collectives, but
it does not target accelerator applications. The latency of
ACCL+ targeting host data matches BluesMPI, even with
BluesMPI ARM cores working at ten times the frequency.
Multi-FPGA Frameworks. Frameworks like VITAL and
its successors [112—-114] propose FPGA resource virtual-
ization and compilation flows for mapping large designs
onto multiple FPGAs through latency-insensitive channels.
OmpSs@cloudFPGA [25] introduces a multi-FPGA program-
ming framework that partitions large OpenMP programs with
domain-specific programs into smaller distributed parts for ex-
ecution on FPGA clusters, providing communication through
static, compile-time-defined send/recv and collective opera-

USENIX Association

18th USENIX Symposium on Operating Systems Design and Implementation 213

T Host
| Application | System
cPu 1| CCL Driver | | nC s
Mem Net
| Shell Specific Driver |
»a
PCle
v
FPGA
Shell Specific Memory Management Logic [€
POE Mem
t 3 i \Waccess
APP Kernel
FPGA CCL HLS Driver Protocol |
Mem Offload | Net
Shell & POE adapters Engine

CCLO Engine

Static Shell & Service Region

Figure 2: System overview of the FPGA-based collective
communication library.

tions supporting only the unreliable UDP protocol. Elastic-
DF [3] and FCsN [40] present domain-specific frameworks
for automatically distributing large neural network model in-
ference across FPGAs with hardware UDP/TCP send/recv for
FPGA-to-FPGA data movement. These projects are comple-
mentary to our work, and integrating ACCL+ will enhance
their flexibility and performance.

4 ACCL+: An FPGA Collective Engine

ACCL+ is an FPGA-based collective abstraction designed for
both FPGA and CPU applications, focusing on versatility and
adaptability. Its primary goals include:

G1: Offering a standard collective API that abstracts different
platforms and protocols from the application layer.

G2: Providing flexibility to dynamically select collectives
and their algorithms at runtime, and to modify them
without major architectural changes.

G3: Ensuring portability across various FPGA platforms and
communication models for a wide range of applications.

G4: Supporting multiple transport protocols under a high-
level collective abstraction.

G5: Providing high-throughput and low-latency performance
for various collectives.

To achieve these goals, ACCL+ features a modular design
that separates platform-specific and transport layer compo-
nents from the core collective design. Its architecture includes
layers of abstraction in both software and hardware, as shown
in Figure 2, enabling a central CCL offload engine (CCLO)

to adapt to diverse platforms and communication protocols.
In this section we will describe each layer.

4.1 Application Interface

To satisfy G1, ACCL+ provides standard APIs for both CPU
and FPGA applications. ACCL+ implements two drivers that
offer similar, platform- and protocol-agnostic collective APIs
for these scenarios. The ACCL+ drivers expose an MPI-like
API, catering to the message-passing paradigm and facilitat-
ing the porting of existing MPI-based applications to ACCL+
collectives, and a streaming collectives API to overlap com-
munication and computation in hardware.

ACCL+ Drivers. The host-side CCL driver allows initializa-
tion and runtime management of platform and ACCL+ data
structures and hardware, as well as protocol offload engine
(POE) initialization, i.e., setting up sessions for TCP or queue-
pairs for RDMA. The CCL HLS driver is not capable of such
initialization, and therefore the application must perform host-
side initialization before any FPGA application kernels are
started. We provide a more detailed description of ACCL+
initialization in Appendix A.

Listing 1: Reduce collective API in C++.

CCLRequest xreduce(BaseBuffer &buf, unsigned int
count, unsigned int root, reduceFunction func,
communicatorld comm_id, flagType flags);

MPI-like Collective API. This API require the application
to store data in memory before invoking collectives. Listing |
shows the MPI-like collective API, including arguments like
datatype, buffer pointer, and element count, along with flags
indicating buffer location (host or FPGA memory) and the
option for synchronous calls. To facilitate portability, message
passing collectives operate on an ACCL+ specific buffer class
which can wrap normal C++ arrays with additional platform-
specific information. Common collectives, such as reduce,
broadcast, and barrier, are supported. Each MPI-like collective
call in the host CCL driver has a corresponding HLS API call
with a similar syntax for direct invocation from FPGA kernels.
Streaming Collective API. This API allows data to originate
and terminate at the stream interfaces between the FPGA
application kernels and the ACCL+ hardware, instead of in
memory buffers.

Listing 2: Example kernel using streaming send in HLS.

/l set up command and data interfaces
cclo_hls :: Command cclo(cmd, sts, communicator);
cclo_hls :: Data data(data_to_cclo, data_from_cclo);

/] issue streaming send command without buffer argument
cclo.send(type, count, dst_rank);

¢ /I push data in streams to network without buffering
for (int i =0; i <N; i++) {

8 data.push(/+ generate data =/); }

o cclo. finalize (); // wait for send completion

214 18th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

<+—> Control Path <+— Data Path
CPU Ctrl t t FPGA Kernel Ctrl

| Command Arbiter |

(e

v
ontrol Plane
Micro-Controller
Updﬁ(Mem Micro-code
RxBuf A1
— © Movement
Mem | Manager RxBuf Req/Resp Proce Mem
\Ctrl rocessor Ctr|/
ﬂ)ata Plane | Rx_Notif Tx Ctrl \
> — le——
Network B S EEE Tx System Network
Rx Network Tx
- On-Chip
Reduction Compress
Plugin Plugin

\ FPGA Kernel Data

Figure 3: Hardware architecture of CCLO engine.

Mem Data /

Listing 2 demonstrates an example FPGA kernel issuing
a streaming send command to the CCLO engine (line 5) and
subsequent pushes to the CCLO streaming data interface,
64B per cycle (line 8), followed by a wait for CCLO comple-
tion. The HLS-based streaming APIs are tailored for FPGA
applications running in a streaming fashion and this code
is synthesizable with HLS tools. HDL-based FPGA kernels
can interact with the collective engine directly, through the
same interfaces. Additionally, the host can also call streaming
collectives via the host-side CCL driver.

4.2 CCLO Engine

Our approach to satisfying G2, i.e., achieving flexible collec-
tive implementation in hardware, differs from related work.
One method deploys all collective modules in FPGA fab-
ric simultaneously [26,45], consuming extensive resources
and not allowing modifications to the collective algorithms
without recompiling the entire design. Another method pur-
sues flexibility by implementing the collectives in embedded
micro-controllers (uC) on FPGAs [89], which are often lim-
ited by a low clocking frequency, e.g., 200 MHz, and the
sequential execution nature, thus sacrificing performance.

Our Approach. We utilize a hybrid approach that leverages
the strengths of both methods. To ensure flexibility, low la-
tency, and high throughput, the key design principle is to
decouple the CCLO logic into the flexible control plane and
the parallel data processing plane. The CCLO control plane
is flexible, centered around an embedded uC [108], which
enables the implementation of different collective algorithms
through firmware updates without needing to refactorize the
entire design and re-synthesize. The CCLO data plane con-
tains independent latency-optimized hardware modules with

uC Microcode I
A 4

Microcode Decode and Dispatch

‘ 1 ‘ Mer:\CrtI
Rx Buf R . — <
R Op0 Opl [—1 Res >

i i i

Rx Buf Ack Mem Crtl Ack

> Command Align and Retire <

1
‘ uC Microcode Ack

1 A
Tx Crtl ; Tx Crtl Ack I

Figure 4: Architecture of the Data Movement Processor.

wide data path for concurrent execution. Moreover, to further
reduce the load on the uC, we minimize its code footprint by of-
floading tasks such as packet assembling and tag matching to
hardware. Additionally, interactions with memory controllers
are offloaded to dedicated hardware, preventing the uC from
stalling during memory accesses. As a result, the uC handles
a set of high-level data movement primitives that facilitate the
implementation of the actual collective algorithms.

Figure 3 shows the overall architecture of the CCLO en-
gine, which orchestrates the collective data movement through
a set of standardized CCLO interfaces to interact with the
application, the memory and the network. The CCLO ac-
cepts communication requests from the host or application
kernels, communicates with the protocol offload engine, man-
ages buffers in FPGA memory (HBM, DDR, BRAM), and
manage data streams from other kernels.

4.2.1 Flexible Control Plane

The CCLO control plane contains a uC that issues high-level
data movement commands to a hardware-accelerated data
movement processor (DMP). The CCLO control plane also
contains a RxBuf Manager (RBM), which manages temporary
Rx buffers. The uC, DMP, and RBM store states in a small
configuration memory implemented as FPGA BRAM. The
configuration memory is also accessible by the CPU through
MMIO and includes information about the communicator,
e.g., session or queue pair IDs, pool of allocated Rx buffers.
Besides, FIFO queues are incorporated into all command
paths, allowing multiple in-flight instructions. Currently, these
FIFO queues are set to a depth of 32, which can be further
increased at compile time.

Collective Programming with Primitives in uC. The uC
firmware implements various collective algorithms and syn-
chronization protocols, such as eager and rendezvous, using
high-level primitives. Each primitive instruction consists of
three slots: two for operands (data entering CCLO) and one
for the result (data exiting CCLO). This design aligns with
common collective operations, e.g., reduce, which processes
two inputs to produce one output. Unary operations like send
can disregard one operand slot. Operand slots include opcodes
and flags that define the data movement specifics, dictating

USENIX Association

18th USENIX Symposium on Operating Systems Design and Implementation 215

when and where data should move. For instance, data can be
moved immediately or upon arrival, sourced from a memory
buffer when using the MPI-like API, or from the data interface
of the FPGA kernel when using the streaming API. Addition-
ally, the data can either be sent to a remote node through the
network or remain local as intermediate results. These ele-
ments can be combined to cover nearly all data movement
needs in collective operations.

Data Movement Processor. The primary purpose of the DMP
is to conceal memory access latency from the uC, ensuring
that the uC does not stall for memory accesses or wait for
data streams, as shown in Figure 4. Upon the receipt of the
microcode generated by the uC @, the DMP first decodes
the microcode and dispatch the code to different compute
units (CUs). The DMP primarily consists of three CUs, align-
ing with the structure of the primitive, each responsible for
controlling one or more components in the datapath. If the
microcode indicates to fetch data from memory and forward
it to the network, the CU issues memory requests to the target
address and then issues the Tx control @ to the data plane,
ensuring the data plane waits for incoming memory streams
to forward to the network. If the operand is expected to come
over network and buffered in temporary buffers, the DMP also
sends out requests periodically to the RBM to check if the mes-
sage has arrived €. The DMP operates in a pipelined fashion,
and each operand slot independently interprets its instruction
fields, emitting commands for corresponding datapath blocks.
Upon receiving acknowledgements from datapath blocks, the
DMP signals instruction completion to the uC.

RxBuf Manager. The RBM alleviates uC load by au-
tonomously managing temporary Rx buffers and reassem-
bling messages from network packets, especially under the
eager protocol. It uses a state table in FPGA on-chip mem-
ory and a set of finite-state machines (FSMs) to handle Rx
buffers. Upon notification of incoming messages @, RBM
checks the state table using the message ID. If the message
is new, it identifies a free Rx buffer from the configuration
memory and issues requests to store the message there. Since
messages are often split into packets that may arrive inter-
leaved, RBM uses the state table to piece together packets
into complete messages in the appropriate Rx buffer. When a
full message is assembled, RBM updates the exchange mem-
ory’s buffer list @, marking it ready for retrieval, and stores
essential metadata (source ID, tag, Rx buffer address) for tag
matching, facilitating buffer identification by the DMP.

4.2.2 Parallel Data Plane

Rx and Tx System. In ACCL+, we implement a message
protocol that includes a signature for each message. This sig-
nature contains metadata such as message type, destination
rank, length, tag, and a sequence number to track the order
of messages. The Tx and Rx systems feature a 512-bit wide
data path and are responsible for packetizing and depacke-

Sender Receiver Sender Receiver
APP CCLO CCLO APP APP CCLO CcCLo APP

EAGER_MSG VD

RNDZ_MSG

RDMA_WRITE
RNDZ_DONE

RDMA_SEND

RDMA_SEND

or TCP/UDP Rx Buf

to Dest
DONE

DONE

(a) Eager protocol (b) Rendezvous protocol

Figure 5: CCLO eager and rendezvous with send/recv.

tizing the signature along with the user payload. They also
issue commands to interact with the POEs. The processes of
issuing commands, inserting signatures, and parsing can vary
across different synchronization protocols. Both the Rx and
Tx systems incorporate a finite state machine to manage these
variations appropriately.

Network On Chip. All the data streams internal to the CCLO
can be routed in the granularity of packets based on the dest
field that comes along with the data.

Streaming Plugins. The plug-ins are utilized for applying
unary and binary operations to in-flight data and can be en-
abled at compile time. Binary operations are typically utilized
to implement reductions - sum, max, etc. Unary operators may
implement compression or encryption. Each of the plug-ins
is a streaming kernel and may implement more than one func-
tion, in which case the control plane will specify the desired
function by setting its dest field of the plugin input stream.

4.2.3 Message Synchronization Protocol

The CCLO supports two distinct message synchronization
protocols: eager and rendezvous. Thanks to its flexible design,
both protocols can be tuned dynamically at runtime.

The eager protocol allows the sender CCLO to immedi-
ately send data upon receiving a command, and the receiver
buffers the data in the CCLO Rx buffer before moving it to
its destination (either in memory or in FPGA kernel streams
depends on runtime configuration), as shown in Figure 5a.
This protocol is preferred for small messages to minimize
latency since there is no handshake phase and small message
sizes incur little overhead. We implement the eager protocol
using UDP/TCP or two-sided RDMA verb.

In contrast, the rendezvous protocol requires resolving the
result buffer address before transmission, as shown in Fig-
ure 5b. Once resolved, data is directly placed into the des-
tination, eliminating the need for temporary buffering. We
use two-sided RDMA SEND for rendezvous handshake mes-
sages, and we use one-sided RDMA WRITE for actual message
transmission bypassing the intervention from the receiver uC.
Given that one-sided RDMA operations are transparent to
the receiver uC, a key design decision is how the uC should
detect message arrival. One approach is to make the uC pe-

216 18th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

Table 2: Algorithms used for example collectives.

Collective Eager Rendezvous
Bcast One-to-all | One-to-all;Recursive doubling
Reduce Ring All-to-one;Binary tree
Gather Ring All-to-one;Binary tree
All-to-all Linear Linear

riodically poll the destination buffers in memory. However,
this approach increases uC overhead and latency, especially
since buffers may be located in various memory systems like
CPU or FPGA memory. Additionally, if the destination is a
streaming interface rather than a buffer, polling is not feasible.
Therefore, we choose an alternative method: the sender uC
dispatches a small control message using two-sided RDMA
SEND immediately after the one-sided RDMA WRITE. This
control message is processed by the receiver uC to confirm
the completion of the data transfer. Though not depicted in
Figure 3, the uC contains specific ports that directly interact
with the data plane for rendezvous handshake and control
messages, bypassing the RBM and DMP. These command
paths also incorporate FIFO queues.

4.2.4 Collective Algorithms

We provide different implementations for various collectives,
and users can define their own. Collectives are realized by
specifying a communication pattern as a C function in uC
firmware, and then executing this pattern through instructions
in DMP and Tx/Rx System on each FPGA in the communica-
tor. Table 2 summarizes the algorithms and communication
patterns used to implement collectives. For eager protocols
with unreliable transmission (e.g., UDP), we currently use
simple algorithms like ring and one-to-all to minimize the
chances of packet loss. Future firmware improvements can
enhance POE awareness for finer-grained algorithm selec-
tion. In contrast, when using RDMA, the rendezvous protocol
employs more advanced algorithms like tree or recursive dou-
bling. The token-based flow control in RDMA makes it well-
suited for these sophisticated algorithms in the rendezvous
protocol. For broadcast, we implement a simple one-to-all
algorithm with small rank size, while with large rank size, we
adopt more advanced recursive doubling such that the data
transmission is not bottlenecked at the root rank. For gather
and reduce, we apply a similar strategy. With small message
size, we adopt an all-to-one approach to reduce the number
of intermediate hops needed. On the other hand, with larger
message sizes, to avoid a potential in-cast problem with the
all-to-one approach, we adopt a tree-based algorithm. Tuning
of the algorithms for specific collectives can be done at run-
time through configuration parameters to the CCLO engine.

BaseBuffer.hpp I
BaseDevice.hpp
Simulatiommvme o

hpp @ bl

XrtBuffer.hpp
XrtDevice.hj

SimDevice.hpp CoyoteDevic

L N ardwere

Host
XRT Shell Phy AddrI Mom Coyote Shell Phy Addr

ever m
Device Mem
Phy Addr l_
3 I
Device Mem

Cmd Data Mem Descriptor
Phy Addr Virtual Addr
FPGA Kernel

Host Mem

FPGA Kernel

Figure 6: CCL driver for different memory managements.

4.3 ACCL+ Platform Support

A platform is defined by a software interface specification,
defining how FPGA memory is allocated and manipulated,
and how FPGA kernels are called, and a hardware interface
specification, i.e., how FPGA kernels, including the CCLO,
plug into hardware services in the FPGA. To facilitate porta-
bility between platforms and to satisfy G3, the ACCL+ host
CCL driver layers the APIs on top of generic class types, such
as BaseBuffer for memory allocation and data movement be-
tween host and FPGA, and BaseDevice for CCLO invocation.
These are specialized to individual platforms through class
inheritance, as illustrated in Figure 6. Each specific CCL class
interfaces with platform-native drivers and employs distinct
processes for handling data movement. ACCL+ supports both
the commercial AMD Vitis platforms and the open-source
Coyote platform [62], as well as a virtual simulation platform.
New platforms can be added easily.

Integration with Coyote. Coyote utilizes a shared-memory
model with a central memory management logic governed by
a software-populated translation lookaside buffer (TLB). This
TLB records allocated pages and facilitates virtual-physical
address translation. The FPGA kernel issues memory requests
through a descriptor interface, using virtual addresses directed
to either host or device memory. The TLB interprets these
requests, interacting with host DMA or device DMA based on
the physical location of the memory page, forwarding the data
to FPGA applications in a streaming manner. If a memory
page is not registered during TLB lookup, it triggers an inter-
ruption to the CPU, resulting in a page fault and introducing a
performance penalty. Therefore, the CCL driver, specifically
the CoyoteBuffer class, eagerly maps pages to the Coyote
TLBs when instantiating buffers. We modified Coyote, during
integration, to increase the associativity of the TLB cache
and expand the number of streaming interfaces Coyote pro-
vided to a single application region, from a single interface to
three interfaces which is required by the CCLO engine. We
also implemented a Coyote-specific adapter to convert from
CCLO (R)DMA request syntax to Coyote-specific syntax, as
indicated in Figure 7.

USENIX Association

18th USENIX Symposium on Operating Systems Design and Implementation 217

Integration with Vitis. Vitis platforms implement a parti-
tioned memory model and the Xilinx Runtime (XRT) [59] is
utilized by the CCL driver for low-level interaction with the
platform. A XRT-controlled XDMA IP core [110] moves data
between host and FPGA memory, while FPGA memory is
accessed by FPGA kernels through Data Movers [109]. The
CCLO memory interfaces align with the Data Mover inter-
faces, eliminating the need for dedicated memory interface
adapters for the Vitis platform. As a result of the partitioned
memory, the CCL driver explicitly migrates buffers between
host and FPGA memory prior to or after the collective execu-
tion if the data originally resides in host memory - a process
denoted staging. Staging creates performance penalty when
ACCL+ collectives target host memory, as observed by re-
lated work on collective offload on DPUs [96]. Therefore,
Vitis platforms favor distributed FPGA applications where
data is streamed or resides in FPGA memory.

Simulation Platform We implemented an additional sim-
ulation platform for debugging and performance optimiza-
tion. This simulation platform roughly models a Vitis plat-
form, whereby FPGA chip interfaces (XDMA, Ethernet) are
replaced by ZMQ [48] interfaces. A stand-alone simulated
FPGA node is compiled to include memory and one ACCL+
CCLO Engine. The ACCL+ host driver includes dedicated
buffer and device abstractions capable of connecting to the
simulated node via ZMQ. ACCL+ provides convenient launch
scripts to set up a simulated cluster of such simulation nodes.

The simulated nodes connect to each other through ZMQ
rather than real Ethernet. While the simulated ZMQ network
may lack realistic features like packet loss and reordering, it
serves as a valuable functional simulation.

ACCL+ provides two simulation levels of the CCLO en-
gine: functional simulation using compiled ACCL+ HLS
source code and C firmware, and cycle-accurate (but slow)
simulation using Verilog HDL generated from compiling the
CCLO HLS code and firmware. For FPGA applications re-
quiring streaming data exchange between FPGA kernels and
the CCLO, we provide a bus functional model of the CCLO
that connects via ZMQ to the simulated node.

4.4 Protocol Offload Engine

To satisfy G4, ACCL+ supports several 100 Gb/s protocol
offload engines (POE) in hardware: UDP [107] and TCP [45]
on Vitis platforms, and all the network services provided by
Coyote. Notably, ACCL+ supports collectives with RDMA by
leveraging the unified and virtualized memory space across
the FPGA and the CPU provided by Coyote. All the POEs
expose streaming control and data interfaces to other modules
and some POEs (e.g., TCP) require direct memory access
for packet buffering for re-transmission. For portability, the
CCLO Engine has a set of POE-independent internal inter-
faces - two pairs of meta and data streaming interfaces (one
for Tx and one for Rx). The meta interfaces contains various

1 Coyote Mem Interface

Shell & POE Dependent
Interface Adapters

Descriptor] | | Data

Mem Intf |
Adapter | RDMA WRITE

[B

Net Data Data
CcCLo <«— | RDMA RDMA
Engine | <—> | Adapter (oL
Net Meta RDMA
11 Rea/Resq

App Kernel Data v App Kernel Cmd

Figure 7: ACCL+ with Coyote-RDMA data path with corre-
sponding POE and memory adapters.

sub fields to indicate the op code, data length, communication
session IDs, etc. The meta interfaces are then adapted to the
POE interfaces with dedicated FPGA components as exem-
plified in Figure 7. The selection of the POE and its adapters
is a compile time parameter of the CCLO Engine.

Coyote RDMA POE. It supports standard RDMA verbs,
including one-sided operations like WRITE and two-sided op-
erations like SEND. The RDMA POE incorporates various
streaming interfaces for RDMA commands, memory com-
mands, and data. Default Configuration: On the initiating
side of a WRITE operation, the RDMA POE issues memory
requests directly to the Coyote memory management logic,
fetching data from either host or device memory and stream-
ing it through the network. On the passive side of WRITE, the
data is directly written to virtualized memory. ACCL+ Integra-
tion: In the ACCL+-enabled configuration, the CCLO engine
acts as a "bump-in-the-wire" engine between the memory
management unit and the RDMA POE, as shown in Figure 7.
On the initiating side of a WRITE, the CCLO engine issues
RDMA commands and is responsible for data preparation,
either fetching from memory or obtaining it from the applica-
tion kernel in the form of streams. On the passive side, data
bypasses the CCLO and is directly forwarded to the memory
management unit. For single-sided WRITE, streaming into the
application kernel is also possible by configuring the datapath
at compile time. The CCLO engine consistently manages data
and metadata streams from two-sided SEND. For CCL driver
with RDMA, a queue pair needs to be exchanged between
each node and needs to be registered to the RDMA POE.

TCP POE. The TCP POE supports up to 1,000 connections
and can be configured to support window scaling and out-of-
order packet processing. As a reliable transmission protocol,
the TCP POE also needs to access protocol-internal buffers
for re-transmission. The CCLO engine prepares and accepts
all the data streams with the TCP POE. For CCL driver with
TCP POE, a TCP session needs to be established between
each node to construct the communicator.

218 18th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

100 &
- —#— cclo-cyt-rdma-F2F ,‘;_""i"ﬂ
80 =
2 cclo-cyt-rdma-H2H LA
S, o| =4= mpi-rdma-H2H ,
é 40
=2
3
g 20 ,*4—&—-*’//
= » ¥
0
10 J12 o1 516 518 220 522
Size[B]

Figure 8: Send/Recv throughput comparison.

kernel-hw 10.32
coyote-sw 3.77
xrt-sw 45|32

0 10 20 30 40 50
CCLO Invocation Latency [us]

Figure 9: CCLO invocation latency from different parts.

5 Microbenchmark Evaluation

We evaluate ACCL+ on a heterogeneous cluster with 10 AMD
EPYC CPUs and 10 attached FPGA cards (Alveo-U55C).
Each CPU is equipped with a 100 Gb/s Mellanox NIC, while
each FPGA features a 100 Gb/s Ethernet interface. All de-
vices are connected to Cisco Nexus 9336C-FX2 switches.
Evaluation scenarios consider data residing on the FPGA for
distributed FPGA application (suffix F2F) and on the CPU
for distributed CPU applications (suffix H2H). For F2F, the
FPGA application data traverses the network directly through
ACCL+. As a baseline, the FPGA data initially is moved to
the CPU memory and then is transmitted via a commodity
NIC. In H2H, the CPU application data is transferred to the
FPGA and then transmitted with ACCL+. This is compared
to transmitting the CPU data directly with a commodity NIC.
We use the notion of cclo with different suffixes to indicate
different configurations of ACCL+. The focus of these ex-
periments is evaluating RDMA running with Coyote (suffix
cyt) due to space limitations. We nevertheless present some
results with ACCL+ running TCP on top of the Vitis XRT
(suffix xrt) platform to compare it to ACCL [16], which uti-
lizes an embedded micro-controller to orchestrate collective
operations. Experiments configure both MPI-like collectives
with memory pointers and streaming collectives. For the H2H
experiments, MPI-like collectives are mandatory, while the
F2F experiments are configured to run with streaming col-
lectives. ACCL+ operates at 250 MHz in micro-benchmarks,
with varying frequency in the use-case study due to the design
complexity. The comparisons involve MPICH 4.0.2 with TCP
and OpenMPI 4.1.3 compiled with RDMA using OpenUCX
1.13.1 on the cluster CPUs and Mellanox 100 Gb/s NICs.
MPI libraries self-configure for collective algorithms and syn-
chronization protocols. Each micro benchmark experiment is
averaged over 250 runs.

FPGA kernel to host DDR

_ I MPI using RoCE

4 300 s Host DDR to FPGA kernel

I FPGA kernel invocation from Coyote sw

400

-
2
g 200
©
~ 100 =
s _
02‘9 211 213 215 217 219

Size [B]

Figure 10: Latency breakdown of broadcasting FPGA pro-
duced data using software MPI with eight ranks with Coyote.

Send/Recv Throughput. We first evaluate pure throughput
using send/recv. Figure 8 shows the throughput compari-
son of ACCL+ with Coyote RDMA and software MPI with
RoCE backend. Notably, ACCL+ with RDMA achieves a
peak throughput of 95 Gb/s, nearly saturating the network
bandwidth. Compared to software MPI variants, ACCL+ ex-
hibits comparable and slightly higher peak throughput. This
is attributed to the FPGA network stack’s ability to process
network packets at line-rate in a pipelined fashion. More-
over, there is minimal distinction between F2F and H2H for
ACCLH, thanks to the unified memory space provided by Coy-
ote and both host memory access through PCle and FPGA
memory access offer higher bandwidth than the network.

Invocation Latency. Figure 9 shows the invocation latency of
the CCLO engine to execute a dummy NOP operation, which
includes the time from receiving request untill the acknowl-
edgement. For FPGA kernels that can directly interact with
the CCLO engine, the invocation latency is minimal compared
to software invocation from the host, showing a clear bene-
fit of bypassing host control with FPGA-based applications.
Coyote software driver contains a thin and optimized layer for
invocation and scheduling and the resulting CCLO invocation
time mainly consists of a PCle write and a PCle read latency.
In contrast, the XRT invocation latency is significantly higher
as it is not intended for fine-grained data movement.

FPGA-to-FPGA with Software MPI. To enable a more
direct ACCL+ vs. software MPI comparison for executing
collectives between kernels on FPGA, we model the execu-
tion time for MPICH- and OpenMPI-based device-to-device
data movement, which includes: (1) moving data from FPGA
HBM/kernel to host DDR through the PCle, (2) executing
the collective using software MPI, (3) moving data from host
DDR to FPGA HBM/kernel, and (4) invoking the next com-
putation kernel. We use the CCLO host invocation time as an
approximation of the invocation time of other computation
kernels. We measure the duration of each of the above steps
and present a break-down of execution time of the collec-
tive with Coyote platform in Figure 10. We could observe
that the PCle transfer time is dominant for small messages
while the collective time is dominant for large messages. Such

USENIX Association

18th USENIX Symposium on Operating Systems Design and Implementation 219

28 29
—#— cclo-cyt-rndzvs-rdma-F2F === cclo-cyt-rndzvs-rdma-F2F
27 cclo-cyt-eager-rdma-F2F 281 == mpi-rdma-F2F

=—4— mpi-rdma-F2F

Latency[us]
N
v
Latency[us]
N
>

—e— cclo-cyt-rndzvs-rdma-F2F
—&— mpi-rdma-F2F

Latency[us]
~

2% —e— cclo-cyt-rndzvs-rdma-F2F
—&— mpi-rdma-F2F

2lo 212 214 216 218 210 212 2la 216 218

Size[B] Size[B]

(a) Broadcast (b) Gather

210 212 214 216 215
Size[B]

(c) Reduce

210 212 214 216 218
Size[B]

(d) All-to-all

Figure 11: Collective latency comparison between ACCL+ RDMA and software MPI RDMA with eight ranks and device data

N
»

—#— cclo-cyt-rndzvs-rdma-H2H
cclo-cyt-eager-rdma-H2H
== mpi-rdma-H2H

—#— cclo-cyt-rndzvs-rdma-H2H
== mpi-rdma-H2H

Latency[us]
N
%

Latency[us]
N

N
el

N
kY

Latency[us]
N N
> %

N
vl

N
»

—#— cclo-cyt-rndzvs-rdma-H2H
== mpi-rdma-H2H

Latency[us]

—#=— cclo-cyt-rndzvs-rdma-H2H
=—d— mpi-rdma-H2H

Size[B] Size[B]

(a) Broadcast (b) Gather

olo)12 ola 516 018 >io o12 ol 216 o1

210 212 214 215 218
Size[B]

(c) Reduce

210 212 214 216 215
Size[B]

(d) All-to-all

Figure 12: Collective latency comparison between ACCL+ RDMA and software MPI RDMA with eight ranks and host data

breakdown for XRT platform can be derived by changing the
Coyote invocation latency to XRT invocation latency.

F2F Collective Latency RDMA. Figure 11 illustrates the
latency of ACCL+ RDMA collectives with various mes-
sage sizes on eight Alveo-U55C boards. This is compared
to FPGA-to-FPGA data movement with software MPI over
RDMA. For clarity, we present experiments showcasing bet-
ter performance between eager and rendezvous collectives.
The algorithms for each collective in ACCL+ are detailed in
Table 2. Notably, ACCL+ exhibits significant performance
benefits compared to its software counterpart. This advantage
stems from the hardware’s efficient execution of collectives
and the direct network access within the FPGA device, elimi-
nating the need for data copying to CPU memory.

H2H Collective Latency RDMA. Figure 12 illustrates a
latency comparison between ACCL+ and software MPI tar-
geting host data. The performance gains with ACCL+ vary
across different collectives. Notably, for operations like broad-
cast and gather, ACCL+ consistently outperforms software
MPI across a range of message sizes. However, for other col-
lectives such as reduce and all-to-all, ACCL+ shows only
marginal benefits and, in some cases, falls short of software
MPI performance. One reason is that software MPI adapts its
algorithms more finely to different configurations, whereas
ACCL+ currently supports only a limited set of options. How-
ever, by offloading collective to hardware, CPU cycles could
be freed for other computation tasks. Besides, by comparing
ACCL+ F2F and H2H performance, we could observe that
the ACCL+ collective latency has minimal difference because

=4 cclo-cyt-rndzvs-rdma-H2 H
== mpi-rdma-H2H

1201 == cclo-cyt-rndzvs-rdma-H2H
110 == mpi-rdma-H2H

All-to-one

Latency [us]
Latency [us]

50 {All-to-on€

3 P! 5 6 7 8 3 P! 5 6 7 8
Number of Nodes Number of Nodes

(a) 8KB message size. (b) 128KB message size.

Figure 13: Latency vs. rank sizes (Reduce).

Coyote with unified memory allows direct memory access to
both host and FPGA memory.

Effect of Synchronization Protocol. Despite the simpler
algorithms used by most eager collectives, such as one-to-
all or ring, we observe that eager collectives can sometimes
outperform rendezvous collectives with small message sizes,
as seen in broadcast. This is because eager collectives do not
require a handshake to resolve addresses.

Collective Algorithm and Scalability. Figure 13 illustrates
the impact of algorithm selection and scalability on both
ACCL+ and software MPI during collective executions. For
an 8 KB message size, ACCL+’s reduce operation adopts an
all-to-one algorithm, resulting in minimal latency increase
across nodes. However, recognizing potential bottlenecks at
the root node with this approach, ACCL+ switches to a bi-
nary tree algorithm for larger message sizes, such as 128
KB. In this case, an increase in latency is observed after

220 18th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

N
=

N
IS

N)
S

cclo-xrt-tcp-H2H 12 cclo-xrt-tcp-H2H
= cclo-xrt-tcp-F2F =———e—— cclo-xrt-tcp-F2F
= gccl-tcp-H2H g accl-tcp-H2H
—t— mpi-tcp-H2H 210 e mpi-tcp-H2H
\/_/ 7‘. Y

211 213 215 217 219 221 211 213 215 217 219 221
Size[B] Size[B]

(a) Gather.

Latency [ps]
Latency [us]

N
]

N
>

(b) Reduce.

Figure 14: Comparison of collective performance between
ACCL+ TCP with XRT, software MPI TCP and ACCL TCP.

four nodes, stabilizing until eight nodes due to a consistent
tree depth. On the other hand, software MPI exhibits a more
fine-grained approach to algorithm selection based on the
scale of the message size and the number of nodes. For in-
stance, it deploys three distinct algorithms within the 8§ KB
range: an all-to-one algorithm for fewer than four nodes, a
ring protocol for four to eight nodes, and an optimized bino-
mial algorithm for 8 nodes. Additionally, for larger messages,
software MPI switches between an all-to-one algorithm be-
low three nodes and a binomial tree algorithm between four
and eight nodes. This fine-grained algorithmic tuning con-
tributes to its superior performance in certain H2H scenarios.
While software MPI’s approach involves detailed algorithmic
tuning, ACCL+’s flexible design allows for potential future en-
hancements through additional fine-grained tuning to further
optimize performance.

XRT Platform and TCP. In Figure 14, we evaluate ACCL+
TCP with the XRT platform and compare it against software
MPI with TCP. We also include a comparison with ACCL [46]
collectives, which employs a similar embedded processor to
orchestrate collectives and supports TCP on the XRT plat-
form. Notably, ACCL+ TCP consistently outperforms its soft-
ware counterpart across all configurations, benefiting from the
line-rate processing capabilities of a hardware TCP POE. Fur-
thermore, ACCL+ demonstrates superior performance com-
pared to ACCL. While both ACCL+ and ACCL utilize embed-
ded microprocessors for collective orchestration in hardware,
ACCL+ distinguishes itself by offloading more tasks to the
hardware data plane, such as utilizing the RxBuf Manager for
packet assembling. In contrast, ACCL relies more on the mi-
croprocessor, leading to lower performance. When comparing
ACCL+ TCP for serving host applications and device applica-
tions, a significant overhead is observed for host applications.
This is attributed to the limitation of XRT platform, which
prohibits direct data movement from the FPGA kernel to host
buffers, resulting in a memory-copy overhead. Additionally,
the XRT software invocation latency is notably higher, as
indicated in Figure 9.

Table 3: Parameters of the target recommendation model.

Embed Size
50GB

Tables Concat Vec Len
100 3200

FC Layers
(2048, 512, 256)

Matrix split in rows
and columns

Vector split in
hunks & d
Chunks cople Sum

o [2t [[e = ||
-— -—) -—)
”%%

Figure 15: Checkerboard block decomposition.

6 Case Study: Deep Learning Recommenda-
tion Model

Deep Learning Recommendation Models (DLRM) are widely
used in personalized recommendation systems for various
scenarios [23, 37, 117]. The structure of a DLRM includes
two major components: memory-bound embedding layers
and computation-bound fully-connected (FC) layers. These
models handle both dense and sparse features, with the latter
stored as embedding vectors in tables. In inference, these
vectors are accessed via indexes, resulting in multiple random
memory accesses. The retrieved embedding vectors are then
concatenated with dense features and passed through several
FC layers to predict the click-through rate, incurring heavy
computational loads due to vector-matrix multiplication.
DLRM has been a focal point for acceleration on GPUs and
FPGA:s, given that CPU solutions are generally constrained
by both random memory access and computation [43,49, 63].
GPU-based solutions [42,49, 52, 58] mostly accelerate the
computation-bound FC layers to gain high throughput. How-
ever, the large batch sizes required for efficient GPU com-
putation, coupled with random memory access, often lead to
increased latency (tens of milliseconds). FPGA-based tech-
niques [57,71] overcome the embedding lookup bottleneck by
distributing tables across memory banks and enabling paral-
lel accesses, leveraging high-bandwidth-memory (HBM) and
on-chip memory (BRAM/URAM). However, this approach
is constrained by the requirement for embedding tables to fit
within a single FPGA’s memory (e.g., 16 GB HBM on AMD
Alveo-U55C), limiting the size of embedding layer. Addition-
ally, the finite computational resources on a single node pose
restrictions on overall throughput for all FC layers.

6.1 Distributed DLRM Inference

We aim to demonstrate that ACCL+ can facilitate distribut-
ing DLRM inference across FPGAs to accommodate larger
embedding layers, as in many large-scale industrial settings,
while at the same time achieving low latency and high through-
put. Table 3 shows the detailed configuration of such an
industrial-level recommendation model [58]. In such a use

USENIX Association

18th USENIX Symposium on Operating Systems Design and Implementation 221

Embedding
Lookup

l— >| oo eature. | -I Partial Layer 1 I]

(1-Embed | =% [5-Slave | o
g ul
(2-Embed | =% [6-Slave | o]
en: 0’ Layer 2 “
[3-Embed]'%[7-Slave]
(a-Embed | =25 8-Slave J—— 9-Root |~ 10-Agg]

Figure 16: Conceptual design of partitioned DLRM, with FC1
decomposed and FC2, FC3 pipelined across nodes.

case, the embedding table does not fit into a single FPGA
HBM and therefore both the embedding lookup and the com-
putation are distributed across the network. This poses signifi-
cant challenges for performance, scalability, and networking.
Vector-Matrix Multiplications Decomposition for DLRM.
The computation pattern in DLRM inference involves a chain
of three vector-matrix multiplications, with the inference out-
put vector computed as a sequence of operations involving
three matrices of FC layers (FC1, FC2, FC3) and a concate-
nated embedding vector. The concept of distributed vector-
matrix multiplication has been extensively studied in litera-
ture [90] across CPUs and the same principle can be applied
to an FPGA cluster. One common approach is checkerboard
block decomposition of matrix, as shown in Figure 15. This
method involves partitioning the matrix in terms of both rows
and columns, while partitioning the vector ensures that pro-
cesses associated with the same matrix row partition share the
same sub-embedding vector. Each process can then perform
partial computations, and the results belonging to the same
row partition are concatenated and subsequently aggregated.
Decomposed and Pipelined Distributed DLRM. The parti-
tioning strategy for the DLRM considers the need for balanced
resource utilization, ensuring that the overall throughput is not
limited by any process among all nodes. Typically, the compu-
tation load of the FC1 is significantly larger than subsequent
layers like FC2 and F'C3. To accommodate this, resource dis-
tribution should reflect the varying computation requirements.
Additionally, for modern FPGAs with HBM, the capacity re-
quires a minimum number of FPGAs to effectively store the
embedding layer. A conceptual partitioned DLRM is illus-
trated in Figure 16. In this scenario, FC1 is decomposed and
distributed across multiple FPGAs using the checkerboard
block decomposition, and FC2 and FC3 are assigned to one
FPGA each. The embedding tables are evenly distributed
across nodes 1-4, with partial vectors transmitted to nodes
5-8, leveraging the network’s low latency. Similarly, partial
results computed on nodes 1-4 are forwarded to correspond-
ing nodes 5-8, where an overall reduction of all partial FC1
results is conducted. The aggregated F'C1 results are then for-
warded to node 9 for FC2 computation, followed by node 10
for FC3 computation and final processing. Scaling resources

BN OPENMPI COMPUTE OPENMP| COMMS mmm CCLO COMPUTE mmE CCLO COMMS

2048 x 2048 4096 x 4096 8192 x 8192
1.88x 1.88x 17.5 1.98x5 02x

10 1.94x

15.0
0.8

0.6 25

3.92x3.96x

0.4

Latency [ms]

0.2

0.0

a4
Ranks

Figure 17: Speedup comparison and latency breakdown of
distributed vector-matrix multiplication.

according to the computation distribution requirements of
each layer could lead to improved performance. For exam-
ple, increasing the allocation of FPGAs for different layers
based on their computational load. Such partitioning method
requires diverse communication patterns by each node, such
as send-only, send/recv, and reduction and ACCL+ provides a
unified design supporting all the communication requirements
of the DLRM through a standard interface. Additionally, for
nodes that do not require reduction, the streaming reduction
plugins of ACCL+ can be removed with a compilation flag,
reducing resource consumption and improving routing and
timing. Furthermore, the cross-node simulation provided by
ACCL+ can facilitate the development process, reducing hard-
ware debugging cycles.

6.2 Use Case Evaluation

Distributed FC Layer Execution on CPU. We use an illus-
trative example to demonstrate how ACCL+ can be utilized
to improve the efficiency of distributed work executing on
CPU. In this use case, we distribute an FC layer workload
(matrix-vector multiplication) by partitioning the weight ma-
trix column-wise, with each rank receiving part of the input
vector and a subset of the weight matrix columns. The matrix-
vector product is obtained by summing the partial rank prod-
ucts using the reduce collective. For the implementation, we
use the highly optimized Eigen library [39], distributing it
with both ACCL+ RDMA and MPI RDMA. In this experi-
ment we do not overlap computation and communication.
The overall execution time of the distributed FC layer is
compared to its single-node execution, as depicted in Fig-
ure |7, where top-of-bar numbers indicate the speed-up com-
pared to single-node execution. We observe that utilizing
ACCL+ instead of MPI for the reduction generally results
in lower matrix-vector computation time. This performance
increase is most likely due to reduced pressure on the CPU
cache, as ACCL+ utilizes FPGA memory for all intermediate
reduction data structures. The figure indicates two instances
of super-linear scaling, attributed to the weight matrix parti-
tions fitting into either L2 (8 MB) or L3 (128 MB) caches

222 18th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

124e+04 I Y P B 333e+05
100 1.00e+04
7.30e+038.00e+03

10%4 26.1x [16.1X

Latency (us)
I
2

2.07e+04;
1.28e+04

8.01e+03

Throughput (inference / sec)

107]
6.8le+0 4.41e+03
b=32 b=64 b=128 b=256 b=1 b=32 b=64 b=128 b=256 b=1

CPU FPGA CPU FPGA

(a) DLRM latency. (b) DLRM Throughput.

2

Figure 18: ACCL+ DLRM performance comparison.

on the CPU after partitioning, whereas the entire matrix did
not fit in caches during single-node execution. The reduction
time itself is higher in most cases due to an additional copy re-
quired to move data between Eigen result buffers and ACCL+
buffers, which can be eliminated with further optimization.
Overall, distributing work with ACCL+ achieves lower la-
tency, especially for specific configurations of FC size and
number of ranks.

Distributed FPGA-based DLRM. We distribute an indus-
trial DLRM model, as in Table 3, with ACCL+ on 10 U55C
FPGAs following the same design principle as shown in Fig-
ure 16. The communication between the embedding node
and the reduce slave node during each inference requires the
transmission of a 3.2 KB partial embedding vector and a 4
KB partial result. Additionally, the reduction process span-
ning nodes 5 to 9 operates with a message size of 8 KB per
inference. The achieved operating frequency is 115 MHz. We
utilize 32-bit fixed-point precision for computation. All the
application kernels utilize streaming collective APIs to inter-
act with ACCL+. ACCL+ DLRM is configured with the TCP
backend from XRT. Though the communication latency could
be further optimized with ACCL+ RDMA, it is not on the criti-
cal path of overall latency as it is overlapped with computation.
We also compare with CPU implementation [58], where the
DLRM inference is run on an Intel Xeon Platinum 8259CL
CPU @ 2.50 GHz (32 vCPU, Cascade Lake, SIMD supported)
and 256 GB DRAM with TensorFlow Serving enabled. Fig-
ure 18(a) shows the latency comparison between ACCL+
and the CPU baseline. We evaluate various batch sizes on
the CPU. On the other hand, ACCL+ works with streaming
data without batching. The hardware implementation demon-
strates two orders of magnitude lower latency compared to
the CPU. This substantial latency reduction in the hardware
implementation is attributed to the parallel arithmetic units
in hardware and the significant latency introduced by random
memory accesses. Figure 18(b) shows the throughput compar-
ison. ACCL+ shows more than an order of magnitude higher
throughput compared to CPU baseline.

Table 4: Resource utilization.

Component CLB kLUT DSP BRAM URAM
US55C(100%) 1303 9024 2016 960
CCLO 12.1% 1.6% 5.7% 0
TCP POE 19.8% 0 10.6% 0
RDMA POE 13.0% 0 5.3% 0
DLRM FC1 278.1% 580.1% 186.3% 798.3%
DLRM FC2 29.6% 85.1% 34.2% 97.9%
DLRM FC3 6.2% 16.1% 2.2% 20.8%

6.3 Resource Consumption

The resource utilization of ACCL+ components and the over-
all utilization of DLRM across nodes are summarized in Ta-
ble 4. In the ACCL+ subsystem, the majority of resources
are allocated to POEs, with the TCP POE being the most
resource-intensive, while the CCLO engine utilizes compara-
tively fewer LUT and memory resources. DLRM utilization
is categorized by different layers, and the presented utilization
values represent the sum across multiple FPGAs after decom-
position. Note that DLRM FC1 utilization exceeds 100%,
reflecting the decomposition across 8 FPGAs (max 800%).
The primary resource bottlenecks for DLRM are URAM,
serving as fast on-chip memory for storing small embedding
tables, and DSP, essential for matrix computations.

7 Discussion

In this paper we have explored the design of ACCL+ target-
ing efficient and high-speed offload of MPI-like collective
operations. However, due to its flexible and portable design,
ACCL+ can be utilized in various applications and scenarios
beyond the demonstrated use cases. This section explores
how ACCL+ can be extended for a broader range of users
applications.

Integrating ACCL+ with Machine Learning Frameworks.
While in HPC it is commonplace to develop distributed ap-
plications utilizing MPI collectives explicitly, in the field of
Machine Learning, codes are often written by Data Scien-
tists who reason about distributed execution in high-level
terms such as data, model, or expert parallelism [20]. Integrat-
ing ACCL+ into popular machine learning frameworks like
TensorFlow [1] and PyTorch [78] is therefore essential to en-
able its use in ML. Our ongoing work focuses on integrating
ACCL+ into PyTorch’s Distributed Data Parallel (DDP) [82]
module. DDP supports various communication backends for
collective operations, which are invoked automatically by the
PyTorch execution orchestrator to distribute work to a cluster.
We aim to add ACCL+ as a new communication backend to
PyTorch DDP, enabling the use of FPGA-based smartNICs
to enhance collective operations in Al training and inference.

USENIX Association

18th USENIX Symposium on Operating Systems Design and Implementation 223

Additionally, we plan to extend ACCL+ support to other ma-
chine learning frameworks.

ACCL+ for Streaming Applications. ACCL+ can also be
used for distributed applications that do not require bulk syn-
chronous parallel collective communications, such as stream-
ing applications. In such a scenario, one could use ACCL+
as a transport layer for model-parallel, multi-FPGA stream-
ing accelerators, e.g., Elastic-DF [3]. ACCL+ has existing
streaming primitives and collectives which could be utilized
for this purpose, as demonstrated in the implementation of
the DLRM in Section 6. A more flexible transport based
on ACCL+ would, for example, enable higher flexibility in
partitioning DNN5s to multiple FPGAs.

Implementing Other Distributed Programming Models
with ACCL+. The shared memory (SHMEM) programming
model [17] is gaining in popularity as it becomes evident
that it enables finer-grained overlap between compute and
communication on GPU-accelerated systems [50]. SHMEM
libraries include MPI-like collectives but add asynchronous
one-sided operations (put/get) and signals. These additional
operations could be implemented easily into ACCL+ with
minimal firmware modifications and no hardware recompi-
lation. Utilizing ACCL+ could reduce the latency of one-
sided SHMEM operations, especially where these are used to
implement complex communication sequences such as halo
exchanges in stencil computations.

8 Conclusion

In this paper, we introduce ACCL+, an open-source FPGA-
based collective library designed for portability across diverse
platforms and communication protocols. ACCL+ offers flexi-
bility in implementing collectives without the need for FPGA
re-synthesis and demonstrates high performance as collective
abstractions for FPGA-distributed applications and as a collec-
tive offload engine for CPU applications. With ACCL+, there
is potential for exploring new possibilities by extending col-
lectives across CPU and FPGA boundaries and orchestrating
them for a unified application.

Acknowledgements

We would like to thank AMD for the donation of the HACC
FPGA cluster at ETH Zurich on which the experiments were
conducted. We thank our shepherd Ming Liu and the anony-
mous reviewers for their helpful feedback.

References

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.

[7]

(8]

[10]

(11]

In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2016.

Mohammadreza Alimadadi, Hieu Mai, Shenghsun Cho,
Michael Ferdman, Peter Milder, and Shuai Mu. Wa-
verunner: An Elegant Approach to Hardware Acceler-
ation of State Machine Replication. In 20th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI). USENIX Association, 2023.

Tobias Alonso, Lucian Petrica, Mario Ruiz, Jakoba
Petri-Koenig, Yaman Umuroglu, Ioannis Stamelos,
Elias Koromilas, Michaela Blott, and Kees Vissers.
Elastic-DF: Scaling Performance of DNN Inference in
FPGA Clouds through Automatic Partitioning. ACM
Transactions on Reconfigurable Technology and Sys-
tems (TRETS), 2021.

Catalina Alvarez, Zhenhao He, Gustavo Alonso, and
Ankit Singla. Specializing the Network for Scatter-
Gather Workloads. In Proceedings of the 11th ACM
Symposium on Cloud Computing (SoCC). Association
for Computing Machinery, 2020.

AMD. RCCL’s documentation. https://rccl.
readthedocs.io/en/rocm-4.3.0/, 2021.

Omer Arap, Lucas R.B. Brasilino, Ezra Kissel, Alexan-
der Shroyer, and Martin Swany. Offloading Collective
Operations to Programmable Logic. Journal of IEEE
Micro, 2017.

Omer Arap, Geoffrey M. Brown, Bryce Himebaugh,
and D. Martin Swany. Software Defined Multicasting
for MPI Collective Operation Offloading with the NetF-
PGA. In European Conference on Parallel Processing,
2014.

Omer Arap and Martin Swany. Offloading Collec-
tive Operations to Programmable Logic on a Zynq
Cluster. In 2016 IEEE 24th Annual Symposium on
High-Performance Interconnects (HOTI), 2016.

ARM. AMBA 4 AXI4-Stream Protocol Specification.
https://developer.arm.com/documentation/
ihi0051/a/, 2010.

Mikhail Asiatici, Nithin George, Kizheppatt Vipin,
Suhaib A. Fahmy, and Paolo Ienne. Virtualized Exe-
cution Runtime for FPGA Accelerators in the Cloud.
Journal of IEEE Access, 2017.

Mohammadreza Bayatpour, Nick Sarkauskas, Hari
Subramoni, Jahanzeb Magbool Hashmi, and Dha-
baleswar K. Panda. BluesMPI: Efficient MPI Non-
blocking Alltoall Offloading Designs on Modern Blue-
Field Smart NICs. In Bradford L. Chamberlain, Ana-
Lucia Varbanescu, Hatem Ltaief, and Piotr Luszczek,

224 18th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

https://rccl.readthedocs.io/en/rocm-4.3.0/
https://rccl.readthedocs.io/en/rocm-4.3.0/
https://developer.arm.com/documentation/ihi0051/a/
https://developer.arm.com/documentation/ihi0051/a/

[12]

(13]

(14]

(15]

(16]

(17]

(18]

editors, High Performance Computing, Cham, 2021.
Springer International Publishing.

Saman Biookaghazadeh, Pravin Kumar Ravi, and Ming
Zhao. Toward Multi-FPGA Acceleration of the Neural
Networks. ACM Journal on Emerging Technologies in
Computing Systems, 2021.

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow,
Mohammad Ewais, Naif Tarafdar, Juan Camilo Vega,
Ken Eguro, Dirk Koch, Suranga Handagala, Miriam
Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste,
Burkhard Ringlein, Jakub Szefer, Ahmed Sanaullah,
and Russell Tessier. The Future of FPGA Accelera-
tion in Datacenters and the Cloud. ACM Transactions
on Reconfigurable Technology and Systems (TRETS),
2022.

Junehyuk Boo, Yujin Chung, Eunjin Baek, Seongmin
Na, Changsu Kim, and Jangwoo Kim. F4T: A Fast and
Flexible FPGA-Based Full-Stack TCP Acceleration
Framework. In Proceedings of the 50th Annual Inter-
national Symposium on Computer Architecture (ISCA).
Association for Computing Machinery, 2023.

Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya
Kashyap, Hasan Al Maruf, Onur Mutlu, and Aasheesh
Kolli. Rethinking Software Runtimes for Disaggre-
gated Memory. In Proceedings of the 26th ACM In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems (AS-
PLOS). Association for Computing Machinery, 2021.

Adrian M. Caulfield, Eric S. Chung, Andrew Putnam,
Hari Angepat, Jeremy Fowers, Michael Haselman,
Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young
Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov,
Michael Papamichael, Lisa Woods, Sitaram Lanka,
Derek Chiou, and Doug Burger. A cloud-scale accel-
eration architecture. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MI-
CRO), 2016.

Barbara Chapman, Tony Curtis, Swaroop Pophale,
Stephen Poole, Jeff Kuehn, Chuck Koelbel, and Lau-
ren Smith. Introducing OpenSHMEM: SHMEM for
the PGAS community. In Proceedings of the Fourth
Conference on Partitioned Global Address Space Pro-
gramming Model, 2010.

Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus
Franke, Xiaotao Chang, and Kun Wang. Enabling FP-
GAs in the Cloud. In Proceedings of the 11th ACM
Conference on Computing Frontiers (CF). Association
for Computing Machinery, 2014.

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael
Papamichael, Adrian Caulfield, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman,
Maleen Abeydeera, Logan Adams, Hari Angepat,
Christian Boehn, Derek Chiou, Oren Firestein, Alessan-
dro Forin, Kang Su Gatlin, Mahdi Ghandi, Stephen
Heil, Kyle Holohan, Ahmad EI Husseini, Tamas Juhasz,
Kara Kagi, Ratna K. Kovvuri, Sitaram Lanka, Friedel
van Megen, Dima Mukhortov, Prerak Patel, Bran-
don Perez, Amanda Rapsang, Steven Reinhardt, Bita
Rouhani, Adam Sapek, Raja Seera, Sangeetha Shekar,
Balaji Sridharan, Gabriel Weisz, Lisa Woods, Phillip
Yi Xiao, Dan Zhang, Ritchie Zhao, and Doug Burger.
Serving DNNSs in Real Time at Datacenter Scale with
Project Brainwave. Journal of IEEE Micro, 2018.

Colossal. AL Paradigms of Parallelism.
https://colossalai.org/docs/concepts/
paradigms_of_parallelism.

Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo
Noguera, Kees Vissers, and Zhiru Zhang. High-Level
Synthesis for FPGAs: From Prototyping to Deploy-
ment. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2011.

Nicholas Contini, Bharath Ramesh, Kaushik Kan-
dadi Suresh, Tu Tran, Ben Michalowicz, Mustafa Ab-
duljabbar, Hari Subramoni, and Dhabaleswar Panda.
Enabling Reconfigurable HPC through MPI-Based
Inter-FPGA Communication. In Proceedings of the
37th International Conference on Supercomputing
(ICS). Association for Computing Machinery, 2023.

Paul Covington, Jay Adams, and Emre Sargin. Deep
neural networks for youtube recommendations. In
Proceedings of the 10th ACM Conference on Recom-
mender Systems, 2016.

Abhishek Das, David Nguyen, Joseph Zambreno,
Gokhan Memik, and Alok Choudhary. An FPGA-
Based Network Intrusion Detection Architecture. IEEE

Transactions on Information Forensics and Security,
2008.

Juan Miguel de Haro, Rubén Cano, Carlos Alvarez,
Daniel Jiménez-Gonzalez, Xavier Martorell, Eduard
Ayguadé, Jesus Labarta, Francois Abel, Burkhard
Ringlein, and Beat Weiss. OmpSs@cloudFPGA: An
FPGA Task-Based Programming Model with Message
Passing. In 2022 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2022.

Tiziano De Matteis, Johannes de Fine Licht, Jakub
Berének, and Torsten Hoefler. Streaming Message

USENIX Association

18th USENIX Symposium on Operating Systems Design and Implementation

225

https://colossalai.org/docs/concepts/paradigms_of_parallelism
https://colossalai.org/docs/concepts/paradigms_of_parallelism

[27

—

(28]

(29]

[30

—_

(31]

(32]

(33]

(34]

Interface: High-Performance Distributed Memory Pro-
gramming on Reconfigurable Hardware. In Proceed-
ings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis.
Association for Computing Machinery, 2019.

Li Ding, Ping Kang, Wenbo Yin, and Linli Wang. Hard-
ware TCP Offload Engine based on 10-Gbps Ethernet
for low-latency network communication. In 2016 In-
ternational Conference on Field-Programmable Tech-
nology (FPT), 2016.

Haggai Eran, Maxim Fudim, Gabi Malka, Gal Shalom,
Noam Cohen, Amit Hermony, Dotan Levi, Liran Liss,
and Mark Silberstein. FlexDriver: A Network Driver
for Your Accelerator. In Proceedings of the 27th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems (AS-
PLOS). Association for Computing Machinery, 2022.

Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka,
and Mark Silberstein. NICA: An Infrastructure for
Inline Acceleration of Network Applications. In 2019
USENIX Annual Technical Conference (ATC), Renton,
WA, 2019. USENIX Association.

Nariman Eskandari, Naif Tarafdar, Daniel Ly-Ma, and
Paul Chow. A Modular Heterogeneous Stack for De-
ploying FPGAs and CPUs in the Data Center. In Pro-
ceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays (FPGA). Associ-
ation for Computing Machinery, 2019.

Yuanwei Fang, Chen Zou, and Andrew A. Chien. Ac-
celerating Raw Data Analysis with the ACCORDA
Software and Hardware Architecture. Proceedings of
the Very Large Data Base Endowment (VLDB), 2019.

Clément Farabet, Cyril Poulet, and Yann LeCun. An
FPGA-based stream processor for embedded real-time
vision with Convolutional Networks. In 2009 IEEE
12th International Conference on Computer Vision
Workshops, ICCV Workshops, 2009.

Kermin Fleming, Hsin-Jung Yang, Michael Adler, and
Joel Emer. The LEAP FPGA operating system. In 2074
24th International Conference on Field Programmable
Logic and Applications (FPL), 2014.

Kermin Elliott Fleming, Michael Adler, Michael Pel-
lauer, Angshuman Parashar, Arvind Mithal, and Joel
Emer. Leveraging Latency-Insensitivity to Ease Multi-
ple FPGA Design. In Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays (FPGA). Association for Computing Machin-
ery, 2012.

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Alex Forencich, Alex C. Snoeren, George Porter, and
George Papen. Corundum: An Open-Source 100-Gbps
Nic. In 2020 IEEE 28th Annual International Sym-
posium on Field-Programmable Custom Computing
Machines (FCCM), 2020.

Shanyuan Gao, Andrew G. Schmidt, and Ron Sass.
Hardware implementation of MPI_Barrier on an FPGA
cluster. In 2009 International Conference on Field
Programmable Logic and Applications (FPL), 2009.

Carlos A Gomez-Uribe and Neil Hunt. The netflix
recommender system: Algorithms, business value, and
innovation. ACM Transactions on Management Infor-
mation Systems (TMIS), 2015.

Richard L. Graham, Timothy S. Woodall, and Jef-
frey M. Squyres. Open MPI: A Flexible High Per-
formance MPL. In Proceedings of the 6th International
Conference on Parallel Processing and Applied Math-
ematics. Springer-Verlag, 2005.

Gaél Guennebaud, Benoit Jacob, et al. Eigen. URI:
http://eigen. tuxfamily. org, 2010.

Angqi Guo, Tong Geng, Yongan Zhang, Pouya Haghi,
Chunshu Wu, Cheng Tan, Yingyan Lin, Ang Li, and
Martin Herbordt. A Framework for Neural Network In-
ference on FPGA-Centric SmartNICs. In 2022 32nd In-
ternational Conference on Field-Programmable Logic
and Applications (FPL), 2022.

Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong
Huang, and Yiying Zhang. Clio: A Hardware-Software
Co-Designed Disaggregated Memory System. In Pro-
ceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). Association for
Computing Machinery, 2022.

Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong
Wang, Brandon Reagen, Gu-Yeon Wei, Hsien-Hsin S
Lee, David Brooks, and Carole-Jean Wu. DeepRecSys:
A System for Optimizing End-To-End At-scale Neu-
ral Recommendation Inference. In 2020 ACM/IEEE
47th Annual International Symposium on Computer
Architecture (ISCA), 2020.

Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim
Naumov, Brandon Reagen, David Brooks, Bradford
Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia,
et al. The architectural implications of Facebook’s
DNN-based personalized recommendation. In 2020
IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2020.

226

18th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

Pouya Haghi, Anqi Guo, Tong Geng, Justin Broaddus,
Derek Schafer, Anthony Skjellum, and Martin Her-
bordt. A Reconfigurable Compute-in-the-Network
FPGA Assistant for High-Level Collective Support
with Distributed Matrix Multiply Case Study. In 2020
International Conference on Field-Programmable
Technology (ICFPT), 2020.

Zhenhao He, Dario Korolija, and Gustavo Alonso.
EasyNet: 100 Gbps Network for HLS. In 2021 31st In-
ternational Conference on Field-Programmable Logic
and Applications (FPL), 2021.

Zhenhao He, Daniele Parravicini, Lucian Petrica, Ken-
neth O’Brien, Gustavo Alonso, and Michaela Blott.
ACCL: FPGA-Accelerated Collectives over 100 Gbps
TCP-IP. In 2021 IEEE/ACM International Workshop
on Heterogeneous High-performance Reconfigurable
Computing (H2RC), 2021.

Fernando Luis Herrmann, Guilherme Perin, Josue
Paulo Jose de Freitas, Rafael Bertagnolli, and Joao Bap-
tista dos Santos Martins. A Gigabit UDP/IP network
stack in FPGA. In 2009 16th IEEE International Con-
ference on Electronics, Circuits and Systems - (ICECS
2009), 2009.

Pieter Hintjens. ZeroMQ: messaging for many appli-
cations. "O’Reilly Media, Inc.", 2013.

Samuel Hsia, Udit Gupta, Mark Wilkening, Carole-
Jean Wu, Gu-Yeon Wei, and David Brooks. Cross-
Stack Workload Characterization of Deep Recommen-
dation Systems. In 2020 IEEE International Sympo-
sium on Workload Characterization (IISWC), 2020.

Chung-Hsing Hsu and Neena Imam. Assessment of
nvshmem for high performance computing. Interna-
tional Journal of Networking and Computing, 2021.

Changho Hwang, KyoungSoo Park, Ran Shu, Xinyuan
Qu, Peng Cheng, and Yongqiang Xiong. ARK: GPU-
driven Code Execution for Distributed Deep Learning.
In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2023.

Ranggi Hwang, Taehun Kim, Youngeun Kwon, and
Minsoo Rhu. Centaur: A Chiplet-based, Hybrid Sparse-
Dense Accelerator for Personalized Recommendations.
In 2020 ACM/IEEE 47th Annual International Sympo-
sium on Computer Architecture (ISCA), 2020.

Intel. Intel FPGA Add-on for oneAPI Base
Toolkit. https://www.intel.com/content/www/
us/en/developer/tools/oneapi/fpga.html.

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

Intel. Intel Quartus Prime Standard Edition
User Guide: Getting Started. https://www.
intel.com/content/www/us/en/programmable/
documentation/yoql529444104707.html.

Houxiang Ji, Mark Mansi, Yan Sun, Yifan Yuan, Jing-
han Huang, Reese Kuper, Michael M. Swift, and
Nam Sung Kim. STYX: Exploiting SmartNIC Ca-
pability to Reduce Datacenter Memory Tax. In 2023
USENIX Annual Technical Conference (USENIX ATC
23). USENIX Association, 2023.

Yong Ji and Qing-Sheng Hu. 40Gbps multi-connection
TCP/IP offload engine. In 2011 International Confer-
ence on Wireless Communications and Signal Process-
ing (WCSP), 2011.

Wengqi Jiang, Zhenhao He, Shuai Zhang, Thomas B
Preufler, Kai Zeng, Liang Feng, Jiansong Zhang,
Tongxuan Liu, Yong Li, Jingren Zhou, et al. MicroRec:
Efficient Recommendation Inference by Hardware and
Data Structure Solutions. In 2021 4th Conference on
Machine Learning and Systems (MLSys), 2021.

Wengqi Jiang, Zhenhao He, Shuai Zhang, Kai Zeng,
Liang Feng, Jiansong Zhang, Tongxuan Liu, Yong Li,
Jingren Zhou, Ce Zhang, and Gustavo Alonso. Flee-
trec: Large-scale recommendation inference on hybrid
gpu-fpga clusters. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data
Mining (KDD). Association for Computing Machinery,
2021.

Vinod Kathail. Xilinx Vitis Unified Software Platform.
In The 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA), 2020.

Ahmed Khawaja, Joshua Landgraf, Rohith Prakash,
Michael Wei, Eric Schkufza, and Christopher J. Ross-
bach. Sharing, Protection, and Compatibility for Re-
configurable Fabric with AmorphOS. In /3th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18). USENIX Association, 2018.

Dario Korolija, Dimitrios Koutsoukos, Kimberly Kee-
Alonso. Farview: Disaggregated memory with opera-
tor off-loading for database engines. In /2th Annual
Conference on Innovative Data Systems Research Pro-
ceedings (CIDR), 2022.

Dario Korolija, Timothy Roscoe, and Gustavo Alonso.
Do OS abstractions make sense on FPGAs? In 14th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). USENIX Association,
2020.

USENIX Association

18th USENIX Symposium on Operating Systems Design and Implementation

227

https://www.intel.com/content/www/us/en/developer/tools/oneapi/fpga.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/fpga.html
https://www.intel.com/content/www/us/en/programmable/documentation/yoq1529444104707.html
https://www.intel.com/content/www/us/en/programmable/documentation/yoq1529444104707.html
https://www.intel.com/content/www/us/en/programmable/documentation/yoq1529444104707.html

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. Ten-
sorDIMM: A Practical Near-Memory Processing Ar-
chitecture for Embeddings and Tensor Operations in
Deep Learning. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2019.

Joshua Lant, Emmanouil Skordalakis, Kyriakos
Paraskevas, William B. Toms, Mikel Lujin, and
John Goodacre. DiAD - Distributed Acceleration
for Datacenter FPGAs. In 2023 33rd International
Conference on Field-Programmable Logic and
Applications (FPL), 2023.

Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei
Lu, Yonggiang Xiong, Andrew Putnam, Enhong Chen,
and Lintao Zhang. KV-Direct: High-Performance In-
Memory Key-Value Store with Programmable NIC.
In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP), 2017.

Junnan Li, Zhigang Sun, Jinli Yan, Xiangrui Yang,
Yue Jiang, and Wei Quan. DrawerPipe: A Recon-
figurable Pipeline for Network Processing on FPGA-
Based SmartNIC. Electronics, 2020.

Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh
Sivaraman, and Aditya Akella. PANIC: A High-
Performance Programmable NIC for Multi-Tenant Net-
works. In Proceedings of the 14th USENIX Confer-
ence on Operating Systems Design and Implementation
(OSDI). USENIX Association, 2020.

Junyi Liu, Aleksandar Dragojevi¢, Shane Fleming, An-
tonios Katsarakis, Dario Korolija, Igor Zablotchi, Ho-
Cheung Ng, Anuj Kalia, and Miguel Castro. Hon-
eycomb: ordered key-value store acceleration on an
FPGA-based SmartNIC. IEEE Transactions on Com-
puters (TC), 2023.

Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang
Xiong, Peng Cheng, Jiansong Zhang, Enhong Chen,
and Thomas Moscibroda. Multi-Path Transport for
RDMA in Datacenters. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
18), Renton, WA, 2018. USENIX Association.

Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe
Cheng, Yanqgiang Liu, Abel Mulugeta Eneyew, Zheng-
wei Qi, and Baris Kasikci. A Hypervisor for Shared-
Memory FPGA Platforms. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS). Association for Computing Ma-
chinery, 2020.

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

Chinmay Mahajan, Ashwin Krishnan, Manoj Nambiar,
and Rekha Singhal. Hetero-Rec: Optimal Deployment
of Embeddings for High-Speed Recommendations. In
Proceedings of the Second International Conference on
AI-ML Systems (AIMLSystems), New York, NY, USA,
2023. Association for Computing Machinery.

Joel Mbongue, Festus Hategekimana, Danielle
Tchuinkou Kwadjo, David Andrews, and Christophe
Bobda. FPGAVirt: A Novel Virtualization Framework
for FPGAs in the Cloud. In 2018 IEEE 11th Interna-
tional Conference on Cloud Computing (CLOUD),
2018.

Kenji Mizutani, Hiroshi Yamaguchi, Yutaka Urino, and
Michihiro Koibuchi. OPTWEB: A Lightweight Fully
Connected Inter-FPGA Network for Efficient Collec-
tives. IEEE Transactions on Computers (TC), 2021.

NVDIA. NVIDIA Collective Communications
Library (NCCL). https://docs.nvidia.com/
deeplearning/nccl/index.html, 2021.

Neal Oliver, Rahul R. Sharma, Stephen Chang,
Bhushan Chitlur, Elkin Garcia, Joseph Grecco, Aaron
Grier, Nelson Ijih, Yaping Liu, Pratik Marolia, Henry
Mitchel, Suchit Subhaschandra, Arthur Sheiman, Tim
Whisonant, and Prabhat Gupta. A Reconfigurable
Computing System Based on a Cache-Coherent Fabric.
In 2011 International Conference on Reconfigurable
Computing and FPGAs, 2011.

Dhabaleswar Kumar Panda, Hari Subramoni, Ching-
Hsiang Chu, and Mohammadreza Bayatpour. The
MVAPICH project: Transforming research into high-
performance MPI library for HPC community. Journal
of Computational Science, 2021.

Jongse Park, Hardik Sharma, Divya Mahajan,
Joon Kyung Kim, Preston Olds, and Hadi Es-
maeilzadeh. Scale-out Acceleration for Machine
Learning. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microar-
chitecture (MICRO). Association for Computing
Machinery, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Informa-
tion Processing Systems, 2019.

Suchita Pati, Shaizeen Aga, Mahzabeen Islam, Nuwan
Jayasena, and Matthew D Sinclair. T3: Transpar-
ent Tracking & Triggering for Fine-grained Over-
lap of Compute & Collectives. arXiv preprint
arXiv:2401.16677, 2024.

228

18th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

https://docs.nvidia.com/deeplearning/nccl/index.html
https://docs.nvidia.com/deeplearning/nccl/index.html

(80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

Sreeram Potluri, Hao Wang, Devendar Bureddy,
Ashish Kumar Singh, Carlos Rosales, and Dha-
baleswar K Panda. Optimizing MPI communication on
multi-GPU systems using CUDA inter-process com-
munication. In 2012 IEEE 26th International Parallel
and Distributed Processing Symposium Workshops &
PhD Forum. IEEE, 2012.

Andrew Putnam, Adrian Caulfield, Eric Chung, Derek
Chiou, Kypros Constantinides, John Demme, Hadi Es-
maeilzadeh, Jeremy Fowers, Jan Gray, Michael Hasel-
man, Scott Hauck, Stephen Heil, Amir Hormati, Joo-
Young Kim, Sitaram Lanka, Eric Peterson, Aaron
Smith, Jason Thong, Phillip Yi Xiao, Doug Burger,
Jim Larus, Gopi Prashanth Gopal, and Simon Pope. A
Reconfigurable Fabric for Accelerating Large-Scale
Datacenter Services. In Proceeding of the 41st Annual
International Symposium on Computer Architecuture
(ISCA). IEEE Press, 2014.

PyTorch. DistributedDataParallel. https:
//pytorch.org/docs/stable/generated/torch.
nn.parallel.DistributedDataParallel.html.

Masudul Hassan Quraishi, Erfan Bank Tavakoli, and
Fengbo Ren. A Survey of System Architectures and
Techniques for FPGA Virtualization. [EEE Trans-
actions on Parallel and Distributed Systems (TPDS),
2021.

Burkhard Ringlein, Francois Abel, Alexander Ditter,
Beat Weiss, Christoph Hagleitner, and Dietmar Fey.
ZRLMPI: A Unified Programming Model for Recon-
figurable Heterogeneous Computing Clusters. In 2020
IEEE 28th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM).

Burkhard Ringlein, Francois Abel, Alexander Ditter,
Beat Weiss, Christoph Hagleitner, and Dietmar Fey.
Programming Reconfigurable Heterogeneous Comput-
ing Clusters Using MPI With Transpilation. In 2020
IEEE/ACM International Workshop on Heterogeneous
High-performance Reconfigurable Computing (H2RC),
2020.

Burkhard Ringlein, Francois Abel, Dionysios Diaman-
topoulos, Beat Weiss, Christoph Hagleitner, Marc Re-
ichenbach, and Dietmar Fey. A Case for Function-as-
a-Service with Disaggregated FPGAs. In 2021 IEEE
14th International Conference on Cloud Computing
(CLOUD), 2021.

Mario Ruiz, David Sidler, Gustavo Sutter, Gustavo
Alonso, and Sergio Lopez-Buedo. Limago: An FPGA-
Based Open-Source 100 GbE TCP/IP Stack. In 2019
29th International Conference on Field Programmable
Logic and Applications (FPL), 2019.

(88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

Manuel Saldafia, Arun Patel, Christopher Madill,
Daniel Nunes, Danyao Wang, Paul Chow, Ralph Wit-
tig, Henry Styles, and Andrew Putnam. MPI as a
Programming Model for High-Performance Reconfig-
urable Computers. ACM Transactions on Reconfig-
urable Technology and Systems (TRETS), 2010.

Manuel Saldana and Paul Chow. TMD-MPI: An MPI
Implementation for Multiple Processors Across Multi-
ple FPGAs. In 2006 International Conference on Field
Programmable Logic and Applications (FPL), 2006.

Martin D. Schatz, Robert A. van de Geijn, and Jack
Poulson. Parallel Matrix Multiplication: A Systematic
Journey. SIAM Journal on Scientific Computing, 2016.

Niklas Schelten, Fritjof Steinert, Anton Schulte, and
Benno Stabernack. A High-Throughput, Resource-
Efficient Implementation of the RoOCEv2 Remote DMA
Protocol for Network-Attached Hardware Accelera-
tors. In 2020 International Conference on Field-
Programmable Technology (ICFPT), 2020.

Junnan Shan, Mihai T. Lazarescu, Jordi Cortadella,
Luciano Lavagno, and Mario R. Casu. CNN-on-
AWS: Efficient Allocation of Multikernel Applications
on Multi-FPGA Platforms. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 2021.

Yizhou Shan, Will Lin, Zhiyuan Guo, and Yiying
Zhang. Towards a Fully Disaggregated and Pro-
grammable Data Center. In Proceedings of the 13th
ACM SIGOPS Asia-Pacific Workshop on Systems (AP-
Sys). Association for Computing Machinery, 2022.

David Sidler, Zsolt Istvan, and Gustavo Alonso. Low-
latency TCP/IP stack for data center applications. In
2016 26th International Conference on Field Pro-
grammable Logic and Applications (FPL), 2016.

David Sidler, Zeke Wang, Monica Chiosa, Amit Kulka-
rni, and Gustavo Alonso. StRoM: Smart Remote Mem-
ory. In Proceedings of the Fifteenth European Confer-
ence on Computer Systems (EuroSys). Association for
Computing Machinery, 2020.

Kaushik Kandadi Suresh, Benjamin Michalowicz,
Bharath Ramesh, Nick Contini, Jinghan Yao, Shulei
Xu, Aamir Shafi, Hari Subramoni, and Dhabaleswar
Panda. A Novel Framework for Efficient Offloading
of Communication Operations to Bluefield SmartNICs.
In 2023 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2023.

Naif Tarafdar, Nariman Eskandari, Varun Sharma,
Charles Lo, and Paul Chow. Galapagos: A Full Stack

USENIX Association

18th USENIX Symposium on Operating Systems Design and Implementation

229

https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

Approach to FPGA Integration in the Cloud. Journal
of IEEE Micro, 2018.

Maroun Tork, Lina Maudlej, and Mark Silberstein.
Lynx: A SmartNIC-Driven Accelerator-Centric Archi-
tecture for Network Servers. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS). Association for Computing Ma-
chinery, 2020.

Anuj Vaishnav, Khoa Dang Pham, and Dirk Koch. A
Survey on FPGA Virtualization. In 2018 28th Interna-
tional Conference on Field Programmable Logic and
Applications (FPL), 2018.

Anuj Vaishnav, Khoa Dang Pham, Dirk Koch, and
James Garside. Resource Elastic Virtualization for
FPGAs Using OpenCL. In 2018 28th International
Conference on Field Programmable Logic and Appli-
cations (FPL), 2018.

John Paul Walters, Xiandong Meng, Vipin Chaudhary,
Tim Oliver, Leow Yuan Yeow, Bertil Schmidt, Darran
Nathan, and Joseph Landman. MPI-HMMER-boost:
distributed FPGA acceleration. The Journal of VLSI
Signal Processing Systems for Signal, Image, and Video
Technology, 2007.

Hao Wang, Sreeram Potluri, Devendar Bureddy, Carlos
Rosales, and Dhabaleswar K. Panda. GPU-Aware MPI
on RDMA-Enabled Clusters: Design, Implementation
and Evaluation. IEEE Transactions on Parallel and
Distributed Systems (TPDS), 2014.

Zeke Wang, Hongjing Huang, Jie Zhang, Fei Wu, and
Gustavo Alonso. FpgaNIC: An FPGA-based Versatile
100Gb SmartNIC for GPUs. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22). USENIX
Association, 2022.

Jagath Weerasinghe, Francois Abel, Christoph Hagleit-
ner, and Andreas Herkersdorf. Enabling FPGAs in
Hyperscale Data Centers. In 2015 IEEE 12th Intl
Conf on Ubiquitous Intelligence and Computing and
2015 IEEE 12th Intl Conf on Autonomic and Trusted
Computing and 2015 IEEE 15th Intl Conf on Scalable
Computing and Communications and Its Associated
Workshops (UIC-ATC-ScalCom), 2015.

Jagath Weerasinghe, Raphael Polig, Francois Abel, and
Christoph Hagleitner. Network-attached FPGAs for
data center applications. In 2016 International Confer-
ence on Field-Programmable Technology (FPT), 2016.

Gabriel Weisz, Joseph Melber, Yu Wang, Kermin Flem-
ing, Eriko Nurvitadhi, and James C. Hoe. A Study

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

of Pointer-Chasing Performance on Shared-Memory
Processor-FPGA Systems. In Proceedings of the
2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA). Association for
Computing Machinery, 2016.

AMD Xilinx. XUP Vitis Network Example
(VNX). https://github.com/Xilinx/xup_vitis_
network_example.

AMD Xilinx. Quick Start Guide: MicroBlaze Soft
Processor for Vitis 2019.2. https://www.xilinx.
com/support/documentation/quick_start/
microblaze-quick-start-guide-with-vitis.
pdf, 2019.

AMD Xilinx. AXI DataMover v5.1
LogiCORE IP Product Guide. https:
//docs.xilinx.com/r/en-US/pg022_
axl_datamover/AXI-DataMover-v5.
1-LogiCORE-IP-Product-Guide, 2023.

AMD Xilinx. DMA for PCI Express (PCle)
Subsystem. https://www.xilinx.com/products/
intellectual-property/pcie-dma.html, 2023.

Chao-Tung Yang, Chih-Lin Huang, and Cheng-Fang
Lin. Hybrid CUDA, OpenMP, and MPI parallel pro-
gramming on multicore GPU clusters. Computer
Physics Communications, 2011.

Yue Zha and Jing Li. Virtualizing FPGAs in the Cloud.
In Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). Associ-
ation for Computing Machinery, 2020.

Yue Zha and Jing Li. Hetero-ViTAL: A Virtualiza-
tion Stack for Heterogeneous FPGA Clusters. In 2021
ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA), 2021.

Yue Zha and Jing Li. When Application-Specific ISA
Meets FPGAs: A Multi-Layer Virtualization Frame-
work for Heterogeneous Cloud FPGAs. In Proceedings
of the 26th ACM International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems (ASPLOS). Association for Computing
Machinery, 2021.

Jie Zhang, Hongjing Huang, Lingjun Zhu, Shu Ma,
Dazhong Rong, Yijun Hou, Mo Sun, Chaojie Gu, Peng
Cheng, Chao Shi, and Zeke Wang. SmartDS: Middle-
Tier-Centric SmartNIC Enabling Application-Aware
Message Split for Disaggregated Block Storage. In
Proceedings of the 50th Annual International Sympo-
sium on Computer Architecture (ISCA). Association
for Computing Machinery, 2023.

230

18th USENIX Symposium on Operating Systems Design and Implementation

USENIX Association

https://github.com/Xilinx/xup_vitis_network_example
https://github.com/Xilinx/xup_vitis_network_example
https://www.xilinx.com/support/documentation/quick_start/microblaze-quick-start-guide-with-vitis.pdf
https://www.xilinx.com/support/documentation/quick_start/microblaze-quick-start-guide-with-vitis.pdf
https://www.xilinx.com/support/documentation/quick_start/microblaze-quick-start-guide-with-vitis.pdf
https://www.xilinx.com/support/documentation/quick_start/microblaze-quick-start-guide-with-vitis.pdf
https://docs.xilinx.com/r/en-US/pg022_axi_datamover/AXI-DataMover-v5.1-LogiCORE-IP-Product-Guide
https://docs.xilinx.com/r/en-US/pg022_axi_datamover/AXI-DataMover-v5.1-LogiCORE-IP-Product-Guide
https://docs.xilinx.com/r/en-US/pg022_axi_datamover/AXI-DataMover-v5.1-LogiCORE-IP-Product-Guide
https://docs.xilinx.com/r/en-US/pg022_axi_datamover/AXI-DataMover-v5.1-LogiCORE-IP-Product-Guide
https://www.xilinx.com/products/intellectual-property/pcie-dma.html
https://www.xilinx.com/products/intellectual-property/pcie-dma.html

[116] Wentai Zhang, Jiaxi Zhang, Minghua Shen, Guojie
Luo, and Nong Xiao. An Efficient Mapping Approach
to Large-Scale DNNs on Multi-FPGA Architectures.
In 2019 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), 2019.

[117] Guorui Zhou, Xiaogiang Zhu, Chenru Song, Ying Fan,
Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and
Kun Gai. Deep interest network for click-through rate
prediction. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining (KDD), 2018.

[118] Yu Zhu, Zhenhao He, Wengqi Jiang, Kai Zeng, Jingren
Zhou, and Gustavo Alonso. Distributed Recommen-
dation Inference on FPGA Clusters. In 2021 31th In-
ternational Conference on Field-Programmable Logic
and Applications (FPL). IEEE, 2021.

[119] Noa Zilberman, Yury Audzevich, G. Adam Covington,
and Andrew W. Moore. NetFPGA SUME: Toward 100
Gbps as Research Commodity. Journal of IEEE Micro,
2014.

Appendices

A ACCL+ Initialization

ACCL-+ is specifically designed to deliver a high-speed col-
lective communication solution tailored for FPGAs, or to
function as a specialized NIC for CPUs. To simplify the ini-
tialization process, we choose not to generalize the network
stack in the hardware for general-purpose communication. In-
stead, we utilize the conventional NIC in the CPU system for
launching ACCL+ applications in a distributed environment,
such as through mpirun, or for establishing RDMA queue
pairs for ACCL+ communicators. This NIC only involves a
lower-speed connection to other ranks.

Other than the collective API, the CCL driver also exposes
a housekeeping API which enables CCLO configuration and
monitoring, and a primitive API consisting of simple data
movement operations (send, receive, copy). Listing 3 illus-
trates the three APIs - the code initializes ACCL+, invokes
the ACCL+ send/receive primitives to exchange data between
ranks O and 1, and executes an reduce collective on all ranks.

In this example, we utilize the MPI library to determine
the local rank ID (lines 6-8) when the application has been
launched with mpirun. Then ACCL+ is initialized by calling
the constructor function and passing the Coyote device object
(line 11). Similar approach is applied for Vitis device object.
Within the constructor, it also allocates and configures a set
of CCLO-managed Rx buffers for collective operations in the

FPGA memory, e.g., for the eager protocol. The code then
constructs the communicator according to rank information
and protocol type (line 15). If the protocol is TCP, the code
will issue commands to open connections between each rank
in the communicator via the protocol offload engine. If the
protocol is RDMA, the code utilizes the commodity NIC to
change queue pair information. The TCP connections and
the RDMA queue pairs are generalized to session IDs in the
communicator. All configuration information is offloaded to
the FPGA so that the CCLO can rapidly access them. Just like
MPI, ACCL+ can be configured with multiple communicators
of different sizes. While not pictured here for brevity, each
ACCL+ collective can specify the communicator it operates
on, with COMM_WORLD being the default.

Lines 21-25 implement data movement from the buffer
of rank 1 to the buffer of rank 0 utilizing the primitives APL
Lines 27 execute collectives on the entire communicator using
the collectives APIL

#include "accl.hpp"
2> #include <mpi.h>
using namespace ACCL;

int main(int argc, char **argv) ({
6 int mpi_rank;
MPI_Init (&argc, &argv);
8 MPI_Comm_rank (MPI_COMM_WORLD, é&mpi_rank);

10 CoyoteDevice* device = new CoyoteDevice();
11 ACCL* accl = new ACCL(device);

13 std::map<int, std::string> ranks_dict = /*
Populate rank vector*/;

14 Protocol protocol = TCP; // or RDMA

15 accl->configure_communicator (ranks_dict, mpi_rank,
protocol);

17 const int bufsize = 64;
18 auto opbuf = accl->create_buffer<int> (bufsize);
19 auto resbuf = accl->create_buffer<int>(bufsize);

21 if (mpi_rank == 0) {
accl->send(opbuf, bufsize, 1); // Send to rank 1
} else if (mpi_rank == 1) {
24 accl->receive (opbuf, bufsize, 0); // Receive
from rank 0

}

accl->reduce (opbuf, resbuf, bufsize, 0); // Root
rank 0

29 opbuf->free_buffer();
30 resbuf->free_buffer () ;
31 delete accl;

delete device;
33 MPI_Finalize();
34 }

Listing 3: Initialization and invocation of collectives from
CPU.

USENIX Association

18th USENIX Symposium on Operating Systems Design and Implementation 231

	Introduction
	Background
	Related Work
	ACCL+: An FPGA Collective Engine
	Application Interface
	CCLO Engine
	Flexible Control Plane
	Parallel Data Plane
	Message Synchronization Protocol
	Collective Algorithms

	ACCL+ Platform Support
	Protocol Offload Engine

	Microbenchmark Evaluation
	Case Study: Deep Learning Recommendation Model
	Distributed DLRM Inference
	Use Case Evaluation
	Resource Consumption

	Discussion
	Conclusion
	Appendices
	ACCL+ Initialization

