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Abstract
This paper presents ServiceLab, a large-scale performance

testing platform developed at Meta. Currently, the diverse set

of applications and ML models it tests consumes millions

of machines in production, and each year it detects perfor-

mance regressions that could otherwise lead to the wastage

of millions of machines. A major challenge for ServiceLab

is to detect small performance regressions, sometimes as tiny

as 0.01%. These minor regressions matter due to our large

fleet size and their potential to accumulate over time. For in-

stance, the median regression detected by ServiceLab for our

large serverless platform, running on more than half a mil-

lion machines, is only 0.14%. Another challenge is running

performance tests in our private cloud, which, like the public

cloud, is a noisy environment that exhibits inherent perfor-

mance variances even for machines of the same instance type.

To address these challenges, we conduct a large-scale study

with millions of performance experiments to identify machine

factors, such as the kernel, CPU, and datacenter location, that

introduce variance to test results. Moreover, we present statis-

tical analysis methods to robustly identify small regressions.

Finally, we share our seven years of operational experience in

dealing with a diverse set of applications.

1 Introduction

In our hyperscale private cloud, tens of thousands of services

run on millions of machines to serve billions of users, and

engineers make thousands of code changes to these services

daily. Performance or resource usage regressions caused by

these changes may impact user experiences or even cause a

site outage. Therefore, engineers critically rely on automated

performance testing to catch regressions early.

Consider, for example, the frontend serverless platform

called FrontFaaS. More than ten thousand engineers write

code on this platform, with thousands of code changes com-

mitted daily and a new version released into production every
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three hours. If a code change causes even just a 0.01% regres-

sion in the platform’s overall CPU usage, an alarm is raised.

To our knowledge, strict thresholds of this level have not been

studied before. We use this strict threshold because Front-

FaaS consumes more than half a million machines and 0.01%

would mean more than 50 machines. Moreover, if left unde-

tected, many small regressions would accumulate over time.

Each year, we catch regressions in FrontFaaS that amount to

the capacity of more than one million machines.

This paper presents our performance testing platform called

ServiceLab. It currently tests about one thousand diverse ser-

vices and ML models, which, in aggregate, consume millions

of machines in production. Although performance testing is

widely used, there is no detailed report of its usage at hyper-

scale. Specifically, we have encountered several challenges

that have not been studied before:

1. How to run tests on heterogeneous machines provided by

the cloud while still ensuring comparable results?

2. How to detect regressions as small as 0.01%?

3. How to support hundreds of diverse services with one

uniform testing platform?

We elaborate on each of these challenges below.

Use heterogeneous cloud machines. To detect small regres-

sions, we must conduct numerous trials for an experiment

and then apply statistical analysis. Since running these trials

sequentially on one machine can take a long time (a trial takes

over one hour on average), a natural solution is to run them

in parallel on many machines. Ideally, these machines should

be identical to reduce performance variance.

However, when a test workload is launched on a cloud,

the cloud chooses machines to run the workload and even

machines of the same instance type exhibit varying perfor-

mance [47], due to differences in SSD wearing, memory chips

from different vendors, and varying frequencies of CPU’s

uncore components like memory controller, etc. This phe-

nomenon not only exists in public clouds but also in our

private cloud that we use to run testing workloads. Note that
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our private cloud runs workloads on Linux containers instead

of virtual machines (VMs) so there are no performance vari-

ances caused by VMs.

Although it is theoretically possible to reduce performance

variance by maintaining our own dedicated pool of identical

physical machines for testing, it is impractical for two main

reasons: (1) testing workloads are spiky, and running them

as on-demand workloads in the cloud is more cost-effective,

and (2) maintaining a dedicated pool of tens of thousands

of machines for testing requires an operations team that we

cannot afford, which is exactly the problem that clouds aim

to solve anyway.

Like in a public cloud, we can provision a batch of ma-

chines, keep a subset of ªnearly identical machinesº to run

test workloads, and return the rest. The key question is how

to select ªnearly identical machines.º Specifically, among

the factors affecting a machine’s performance, which are cru-

cial for machine selection, and which can be ignored and

addressed through statistical analysis?

To answer this question, we conducted a large-scale study

with millions of performance experiments on various ma-

chines, using both microbenchmarks and real-world applica-

tions. We find that the performance variance on two machines

is comparable to that on a single machine if the two machines

share the same instance type, CPU architecture (e.g., Intel

Cooper Lake), and kernel version, are located in the same

datacenter region, and have CPU turbo disabled. An interest-

ing observation is that the datacenter location matters, while

other factors such as RAM vendor and RAM speed are less

important. We will delve into this in §4.

Detect small regressions. For large services that consume

tens of thousands of machines, we need to detect regressions

as small as 0.01% while maintaining a low false positive rate.

A high false positive rate not only wastes engineers’ time in

unnecessary debugging but also leads to engineers distrust-

ing and ignoring the warnings even when they are correct.

Our experience indicates that there is no one-size-fits-all sta-

tistical model that can accurately detect regressions for all

services, due to the different outlier patterns of these services.

To address this issue, we leverage multiple statistical models

simultaneously and evaluate their false negatives and false

positives on historical data to select the best model for each

service. Although this ensemble approach may seem concep-

tually simple, we will discuss the intricacies of applying it at

scale in highly noisy production environments.

Support diverse services. Our private cloud runs numerous

services with intricate interdependencies, a complexity shared

with other hyperscalers [30, 38, 48]. A single testing solution

capable of covering all these services likely does not exist.

Can we achieve the next best thing, i.e., having a single so-

lution to cover the majority of code changes submitted by

engineers? ServiceLab indeed accomplishes this. Currently,

as a general-purpose testing platform, it covers more than half

of the total code changes, surpassing the combined coverage

of other specialized testing platforms.

ServiceLab takes the record-and-replay approach for test-

ing, with three key distinctions. First, unlike past solutions

that emphasize deterministic replay [8,20,24,62], ServiceLab

replays requests captured from a production system (PS) to a

system under test (SUT) without expecting the SUT to exhibit

the same behavior as the PS. In fact, due to testing changed

code, it is anticipated that the SUT may make outgoing calls

to downstream services that differ from those made by the

PS. Therefore, ServiceLab does not replay the responses from

downstream services to the SUT.

Second, ServiceLab allows the SUT to call downstream

services running in production, provided there are no adverse

side effects. Although users can set up a group of interdepen-

dent services in ServiceLab to create a self-contained testing

environment without relying on the production environment,

this approach is not consistently implemented due to practical

reasons. For instance, making a per-test replica of certain mas-

sive datasets accessed by the SUT, such as the social graph

for billions of users, is economically impractical.

In ServiceLab, the SUT can call downstream production

services, and most of those calls do not incur side effects, as

they are read-only or idempotent. If a SUT’s call to a down-

stream service does cause side effects, ServiceLab provides

a mock framework to assist the SUT in mitigating it. For ex-

ample, instead of writing to a production database, the writes

can be redirected to a test database.

Third, due to the complexity of hyperscale services, Ser-

viceLab does not attempt to provide a simple but inflexible

solution that requires no involvement from service owners,

because such a solution would only work for a small fraction

of services. Instead, ServiceLab allows and encourages the

service owner’s participation. For example, when testing a

sharded stateful service, it is the service owner’s responsibility

to populate the necessary states before the test starts.

With the three key distinctions above, while ServiceLab’s

record-and-replay approach may necessitate occasional in-

volvement from the service owner and does not extend to

certain complex services, it effectively covers the majority of

code changes submitted by engineers.

Contributions. We make the following contributions:

• We address the performance variance issue arising from

running tests in the cloud. Specifically, we conducted mil-

lions of experiments to identify the factors that contribute

most significantly to performance variance across machines.

Such a large-scale study has not been reported before.

• We develop statistical analysis methods to robustly identify

performance regression as small as 0.01%, even when tests

do not use identical machines. This represents a significant

refinement of existing methods, as no prior research has

achieved this level of a low threshold.

• This is the first holistic report of a hyperscale testing plat-
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form, including its design and our seven years of operational

experience in dealing with a diverse set of applications.

2 ServiceLab from a User’s Perspective

Before presenting the internals of ServiceLab, we first de-

scribe its usage from a user’s perspective. ServiceLab can be

used in different testing modes. The efficiency mode tests a

code or configuration change’s impact on key metrics such

as latency or CPU/memory usage. The capacity mode tests

a code or configuration change’s impact on the maximum

throughput that can be achieved, which affects the amount

of capacity needed to run the service. The hardware mode

compares the performance of different hardware running the

same code. Below, we focus on the efficiency mode.

2.1 ServiceLab in the Development Workflow

Figure 1 depicts our development workflow, where Service-

Lab is involved in the review-time test, commit test, deploy-

ment test, and config test. We elaborate on them below.

Meta uses the monorepo approach [12] to store code for

all projects in one repository. When developing a new feature

for an application, the developer clones the repository and

makes local changes without affecting others. Once the code

is ready, they submit the change, referred to as a diff, for peer

review. Both functional and performance tests are automati-

cally executed for the diff. The peer reviewer examines the

code and test results, requesting changes as needed before

approving the diff. Upon approval, the developer commits the

diff, triggering post-commit tests.

On a set schedule, the continuous-deployment tool com-

piles a new executable for the application and creates a re-

lease candidate (RC). It conducts tests to compare the RC

with the executable running in production. The RC is aban-

doned if a regression is identified. Otherwise, it is deployed

into production in stages, and the application’s health metrics,

including performance metrics, are monitored continuously.

If any health issue is detected, the deployment is reverted.

A common practice is to use a configuration parameter

known as a gate to control access to the new code path. Ini-

tially, the gate is disabled so that the application continues

to execute the old code path even after the new release is

deployed. Then, the developer makes a remote configuration

change to toggle the gate, enabling the application to execute

the new code path. If any issues arise, the gate can be instantly

disabled to revert back to the old code path without requiring

a new code release.

2.2 Setting Up Tests with ServiceLab

To register a system-under-test (SUT) with ServiceLab, the

application owner provides the following information:

• The selection criteria for code or configuration changes to

trigger a test (note that it may not be necessary to run tests

on every change);

• A container manifest that specifies the executable to test

and how to set up Linux containers to run the executable;

• The metrics to be aggregated at the end of a test run, and

the condition to fail the test;

• A traffic-recording configuration that instructs the RPC

system how to sample production traffic for later replay;

• The rate at which the recorded traffic will be replayed during

a test run.

ServiceLab supports both synthetic and record-and-replay

traffic for testing, but primarily relies on the latter because

it more accurately represents the production system. This

approach records live production traffic and then replays it

on a separate application instance in the testing environment,

which may run modified code. It is the application owner’s re-

sponsibility to ensure that a replay in the testing environment

does not cause undesirable side effects on the production sys-

tem. Moreover, a stateful application needs to set up its state

properly so that it can handle the replayed traffic.

Once a SUT is registered at ServiceLab, it undergoes tests

in four phases. The build phase compiles all required code into

a package. The allocation phase acquires necessary machines

from the cloud. The running phase initiates the target appli-

cation on the allocated machines and replays the recorded

workload. The analysis phase conducts statistical analysis on

the results to draw a conclusion.

3 Applications Tested by ServiceLab

Currently, ServiceLab tests about one thousand diverse ser-

vices and ML models, and their collective capacity consump-

tion in production amounts to millions of machines. We de-

scribe several representative and large workloads below.

3.1 FrontFaaS Serverless Platform

FrontFaaS is one of the most complex software ecosys-

tems in our private cloud. It is a serverless function-as-a-

service (FaaS) platform that runs on more than half a million

machines and has tens of thousands of developers making

changes to its code base, with thousands of code commits

every workday. ServiceLab tests FrontFaaS to detect CPU us-

age regression as small as 0.01%. It holistically tests different

aspects of FrontFaaS: its PHP runtime called HHVM [27],

the FaaS code written by tens of thousands of developers, and

that code’s impact on downstream services like databases.

Testing the language runtime. HHVM performs just-in-time

(JIT) compilation for efficient execution. The HHVM team

relies on ServiceLab to collect performance signals on com-

piler optimizations, monitoring metrics such as instructions

per cycle, execution time, and cache misses. In addition to

the core code written by the HHVM team, HHVM links with

many libraries developed by other teams, any of which may

cause regressions. HHVM tests compare the code running

in production with the code in the trunk (i.e., the latest code
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Figure 1: Code change workflow. In this figure, tests refer to both functional and performance tests, but this paper focuses on

performance tests.

in the monorepo shared by all developers), enabling devel-

opers to catch regressions before a new release candidate is

created. If a regression is detected, ServiceLab uses bisection

to identify the root cause.

Selecting diffs to test. In addition to testing HHVM, Ser-

viceLab also tests FrontFaaS’ application-level FaaS code.

FrontFaaS is the primary entry point for user-facing traffic for

our products and runs thousands of unique application end-

points. With thousands of FaaS code changes (diffs) occurring

every workday, it is not cost-effective to test every change.

Moreover, since a change is unlikely to affect all thousands

of application endpoints, it is unnecessary to replay the traffic

for all those endpoints during a test.

A ServiceLab component called DiffSuggester selects

which diffs to test based on a calculated impact score and also

determines the traffic for which endpoints to replay during

a test. DiffSuggester traverses the compiler’s abstract syntax

tree to identify functions modified by the diff. It calculates

an impact score for each modified function by leveraging a

profiling dataset of FrontFaaS’ execution in production to

estimate the global cost of the function, considering both its

execution frequency and resource consumption per invoca-

tion. The diff’s impact score is simply the sum of the impact

scores for all impacted functions. If a diff’s impact score is

above a threshold, ServiceLab will run experiments for it.

The threshold is statically chosen based on the number of

machines available to run experiments and the distribution of

diffs’ impact scores. Moreover, DiffSuggester also uses the

production profiling data to infer which application endpoints

are impacted by the diff and selectively replay traffic for those

endpoints with the right proportion.

Dealing with side effects. Because of the complexity of

FrontFaaS, it is too costly to set up an entirely isolated test-

ing environment for it. It invokes hundreds of downstream

services, which recursively have their own dependencies. All

these are hard to replicate in a testing environment and keep

them faithful to the production environment. Moreover, given

numerous concurrent tests, it is economically impractical to

make a per-test copy of certain massive datasets accessed by

FrontFaaS, such as the social graph for billions of users.

Therefore, ServiceLab allows a test instance of FrontFaaS

to call downstream services running in production and care-

fully manages any adverse side effects. The non-functional

side effects, such as test-induced load on downstream pro-

duction systems, is not a concern because that test load is

negligible compared to the production traffic from billions of

users. The functional side effects, such as writing to a produc-

tion database, is the main concern and is managed carefully.

By default, FrontFaaS’ writes to databases, caches, and

data warehouses are automatically dropped via a shim layer

in the client libraries, while reads to these production systems

are allowed. Unlike data stores where differences between

read and write can be easily identified, for generic RPC calls,

ServiceLab and the RPC system cannot easily infer whether

an RPC method has undesirable side effects or not. Therefore,

the RPC system drops calls to downstream production sys-

tems by default to ensure safety, while users can provide a

list of specific RPC calls that are allowed to proceed. How-

ever, this method may prevent certain code paths from being

executed and result in ServiceLab missing the opportunity

to detect regressions on those code paths. If the owners of

certain FrontFaaS endpoints really want to cover those code

paths, it is their responsibility to modify the code’s behavior

so that it can run in ServiceLab to exercise those code paths

without causing adverse side effects to production systems.

We will delve into this in §5.3.

Testing performance impact on downstream services. A

FrontFaaS diff may not cause regressions in the resource

usage of FrontFaas itself but may regress in the load it im-

poses on downstream services. Specifically, the social graph

database (TAO [11]) is one of the most important downstream

services for FrontFaaS, and ServiceLab also detects increased

reads to TAO. During a test, ServiceLab monitors the number

of read requests that FrontFaaS issues to TAO when process-

ing a replayed end-user request. Statistics are gathered at the

granularity of each type of end-user request because the num-

ber of reads to TAO may vary widely depending on the type

of the end-user request. Similar to reporting regressions on

FrontFaaS’ own metrics, ServiceLab also reports regressions

in reads to TAO.
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3.2 Sharded and Stateful Services

LASER is a low-latency key-value store that is frequently

accessed by FrontFaaS on the critical path of serving user

requests. LASER primarily serves as an indexing service for

data in the data warehouse. Its index can be updated either

by real-time stream processing that extracts data from data

streams or by running daily MapReduce computation to build

the index and then performing a bulk load into the key-value

store. LASER is sharded and managed by a shared, central

control plane similar to ShardManager [36] and Slicer [4],

which dynamically assigns shards to different LASER servers.

Testing LASER faces several challenges. First, to bring

up a LASER instance in the isolated test environment, we

have to disconnect it from the central shard control plane and

specifically instruct it to load certain shards, instead of relying

on the control plane’s dynamic shard assignment. Second,

we allow LASER to perform read-only accesses to the data

warehouse to set up its stateful index for testing. Finally, in

production, requests routed to a specific LASER shard have

an RPC header with the shard ID that matches with the shard;

otherwise, the requests would be rejected. LASER uses record-

and-replay for testing, which broadly samples requests for

different shards. When requests are replayed, ServiceLab

dynamically adds an RPC request header that matches with

the shard ID of the LASER server under test.

LASER uses three major metrics for regression detection.

These metrics and their regression thresholds are CPU usage

(2%), anonymous memory usage (5%), and SSD storage usage

(5%).

3.3 ML Prediction

MLPredictor is a shared ML deployment platform used by

ML engineers to effortlessly deploy and manage thousands

of ML models without the need for an understanding of the

underlying infrastructure. This ªserverlessº approach con-

ceals the operational complexities of large-scale distributed

systems, which are often unfamiliar to ML engineers.

MLPredictor uses record-and-replay, along with Service-

Lab’s capacity mode, to test performance under varying load

levels. ServiceLab incrementally increases the load level of

the replayed traffic until MLPredictor breaches its service

level objective (SLO), helping identify both the maximum

throughput and potential capacity regressions. Initially, we

recorded traffic for different models using uniform sampling,

leading to an overwhelming number of samples from high-

traffic models. Later, we switched to interval-based reservoir

sampling [5,57], capping the number of samples for a popular

model at a constant per time interval.

MLPredictor uses the maximum requests rate for regression

detection, with a threshold of 5%.

3.4 Data Aggregation

DataAggregator is a CPU-intensive backend service that han-

dles all news feed rankings. It is invoked by FrontFaaS upon a

user request, and its role is to collect all relevant information

about posts and analyze all the features (e.g., how many peo-

ple have liked this post previously) to predict the posts’ values

to the user. New releases of DataAggregator are deployed to

production multiple times throughout the day, and it primarily

uses ServiceLab for release-time testing.

Instead of using record-and-replay, it uses a forker service

to duplicate live production traffic and send it to the testing

environment in ServiceLab. The forker sends the production

system’s responses back to users but drops the test instance’s

responses so that they will not affect users. DataAggrega-

tor prefers testing with shadow production traffic instead of

recorded traffic because the setup is straightforward for them,

and the existence of the forker even predates ServiceLab.

DataAggregator uses 68 key metrics for regression detec-

tion. Examples of the key metrics and their regression thresh-

olds include container-level CPU usage (1.25%), process-

level CPU usage (0.6%), and p99 memory usage (3%). Some

metrics are related to the application logic, e.g., log error or

warning counts (5%), no stories returned (2%), and latency to

process all stories in the ranking service (30%).

3.5 XFinder

XFinder is a large service performing ads aggregation and

ranking. Upon receiving a user request, it fans out requests to

many leaf services, aggregates, and ranks the results before

returning them to the user. XFinder uses record-and-replay,

but to obtain accurate results, it requires near real-time traffic

recorded from production within the past hour. Each week,

it conducts over 3,000 and 1,000 experiments on code and

configuration changes, respectively. To understand the impact

of a change more precisely, instead of A/B tests, it runs 3-sided

experiments: (1) the version currently running in production;

(2) the latest version before this change; and (3) the new

version with the change to be tested.

XFinder uses 65 key metrics for regression detection. These

key metrics all use a regression threshold of 0.5%. The key

metrics include total CPU time, log error or warning counts,

count of ads returned, number of calls to downstream services,

and failure rates of these calls.

3.6 Ranker

Ranker executes a graph of rules for ranking. A diverse set of

application clients calls Ranker with different rules to provide

ranking for their specific purposes, and these rules impact

Ranker’s performance. Ranker relies on record-and-replay to

capture these rules. Requests from each application client are

sampled on the client side and stored in the data warehouse.

Each major client corresponds to a different shard of Ranker

deployment, and these different shards run the same Ranker

executable but serve different clients. Previously, Ranker cre-

ated a mix of requests when replaying them for testing in Ser-

viceLab. However, maintaining the correct ratio of requests

in the mix became a burdensome process, and an incorrect
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ratio would lead to missed regressions. As a result, Ranker

now runs separate experiments to replay traffic from different

major clients.

Ranker uses 30 key metrics for regression detection. The

key metrics and thresholds include container-level CPU us-

age (9%), container-level memory usage (7%), CPU MIPS

busy (5%), and application metrics such as different types of

candidates fetched (20%).

3.7 Applications not Using ServiceLab

ServiceLab tests now cover more than half of the total code

changes at Meta. The remaining applications choose other

testing methodologies for various reasons as described below.

A common theme among them is that setting up a service for

testing in ServiceLab requires effort, and sometimes a simpler

alternative exists.

First, Meta’s continuous deployment tool, Conveyor [22],

and its in-production detection tool, FBDetect, can catch per-

formance regressions either during the staged deployment

process or during steady-state execution in production. De-

spite the higher risk of catching issues in production, these

tools work sufficiently well for some services, leading those

services to skip pre-production testing in ServiceLab.

Second, some services have complex interdependencies,

and services like Meta’s cluster manager ecosystem [42, 54]

even depend on the physical data center environment. These

complex services have their own sophisticated ways of set-

ting up their testing environments, which are often overly

complicated to migrate to ServiceLab.

Third, some stateful services require a massive amount of

data for effective testing. It is too slow to populate such data

in newly allocated containers during each ServiceLab test run.

Therefore, these services maintain their own dedicated and

persistent test environments with prepopulated data, without

relying on ServiceLab.

Fourth, some services do not consume significant capacity

and do not have stringent performance requirements. As a

result, thorough performance testing is not a priority for them.

Their developers often prefer simpler ad-hoc testing methods,

as opposed to the burden of setting up and maintaining their

service setup in ServiceLab.

Finally, in a large organization with tens of thousands of

developers, our experience indicates that achieving universal

adoption of a technology is challenging unless it becomes a

company priority, as demonstrated by the Push4Push program

driving the universal adoption of the continuous deployment

tool at Meta [22]. So far, ServiceLab has relied entirely on

organic, bottom-up adoption without top-down push.

4 Taming Performance Variance

A key challenge in designing any testing platform is managing

variance in testing data to separate signals from noises. To set

the stage for the discussion, we first define some terminology.

Assessing a code change’s performance impact uses an A/B

test to compare two test runs, one with the change and one

without. A trial is a singular A/B test, and an experiment

comprises multiple such trials. An A/A test compares two

runs of the same code.

Performance differences may stem from (a) accidental vari-

ance caused by code’s random factors such as the timing of

lock contention; (b) environment variance, stemming from

testing environment differences like CPU generation and ker-

nel version; and (c) true regression in the code change. Our

goal is to minimize the impact of accidental and environment

variance to identify true regression.

To detect true regressions as small as 0.01%, we must ag-

gressively reduce both accidental and environmental variance,

as they could conceal small regressions. To reduce acciden-

tal variance, we collect a large amount of test data and then

apply statistical analysis. To reduce environmental variance,

we always acquire entire machines from our private cloud to

run tests, avoiding the ªnoisy neighborº problem. However,

sequentially executing all test runs on one machine, while

minimizing environmental variance, leads to prolonged test

times and a slowdown in the iteration speed of software de-

velopment.

One fundamental decision we have made is to run tests con-

currently on different machines to expedite testing. Initially,

the ServiceLab team operated its own dedicated machine pool

and meticulously configured the machines to be nearly identi-

cal to reduce environment variance across machines. However,

as the pool size expanded, maintaining it became uneconomi-

cal, leading us to switch to using our private cloud’s shared

machine pool. Moreover, the cloud allows ServiceLab to use

temporarily reclaimed resources called ªElastic Serversº, akin

to Spot Instances in AWS, for testing. Since Elastic Servers

can be revoked, our cloud employs predictive models to infer

the availability of Elastic Servers and run tests correspond-

ingly. When Elastic Servers are revoked unexpectedly, Ser-

viceLab simply re-runs the interrupted tests.

When acquiring machines from the cloud, ServiceLab can

specify a certain coarse-grained configuration such as CPU

cores and memory, but cannot control other details, such as

memory chip or kernel version. Note that the cloud automati-

cally updates kernels at its own schedule to ensure security

compliance. ServiceLab can provision a batch of machines,

retain a subset of ªnearly identical machinesº to run test work-

loads, and return the rest. We do not require machines to be

identical in every aspect as finding a sufficient number of such

machines is difficult. Next, we discuss how to select ªnearly

identical machinesº by using factors that impact a machine’s

performance most.

4.1 Machine Factors Impacting Performance

We analyze millions of test records to identify key factors im-

pacting a machine’s performance. Our analysis involves two

large datasets. The Release to Production (RTP) dataset com-

prises 21.5 million records, each executing a CPU or memory
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benchmark. The ServiceLab dataset contains 186K records,

each testing a real production application. Each record in

both datasets specifies the test result alongside the used hard-

ware and software configuration. Leveraging both datasets is

crucial as they complement each other. The RTP dataset pro-

vides diverse hardware results, though its benchmarks are less

complex. Conversely, the ServiceLab dataset contains real

application results, but the machines used are less diverse.

We use the ANOVA method [52] to identify factors that

best explain the variance in the data. ANOVA is similar to

linear regression but operates on categorical data. Its output,

the coefficient of determination (R2), represents the proportion

of the variance in the dependent variable (performance metrics

in our case) that is predictable from the independent variables

(e.g., CPU generation or kernel version). Our goal is to find a

minimal subset of key machine factors (independent variables)

that can explain as much variance as using many factors.

This allows us to use these key factors for machine selection.

Otherwise, a large number of factors would make it hard to

find matching machines due to overly aggressive filtering. To

achieve our goal, we first use many factors to establish an

approximate upper bound for R2, and then explore different

subsets of factors to approach the upper limit.

To set the stage for discussion, we will first describe how

physical machines are classified with three levels of granu-

larity. At the most coarse level, machines are classified into

tens of ServerTypes. Examples of ServerTypes include single-

CPU general-purpose machine, two-CPU general-purpose

machine, GPU training machine, GPU inference machine, etc.

The median granularity, known as ServerSubType, takes into

account more hardware information, such as RAM size and

CPU architecture (e.g., Intel Skylake, Cooper Lake, etc.). The

finest granularity, referred to as ServerModel, includes the

model names of all major components, such as CPU, RAM,

NIC, disk, etc. Typically, users specify ServerType when re-

questing machines from our private cloud. While specifying

ServerSubType is allowed, it is discouraged because it limits

flexibility for the cloud to choose machines. Users are not

allowed to specify specific ServerModel. Concretely, our pri-

vate cloud uses O(10) ServerTypes, O(100) ServerSubTypes,

and more than 10,000 ServerModels. They are equipped with

O(100) CPU models, O(100) RAM models, O(1000) disk

models, and O(100) NIC models.

To approximate the upper bound of R2, we use ServerModel

as one factor since it includes almost all hardware information

and add non-hardware factors like the kernel release version.

We first report our results on the RTP dataset. These factors

can achieve an R2 of 0.89 for the CPU benchmark and an R2

of 0.97 for the memory benchmark. In the remainder of this

section, we will focus on the CPU benchmark as the memory

benchmark exhibits much less variance.

We explore various factor subsets to determine if a small

combination can achieve an R2 close to the upper limit. Us-

ing three factorsÐServerType, CPU architecture, and kernel

releaseÐwe attain an R2 of 0.87 on the CPU benchmark,

closely approaching the upper bound. In practice, we observe

that the cloud can generally provide matching machines based

on these three factors. Note that this subset is not the only vi-

able option. As hardware factors are correlated, some factors

can be replaced by others. Additionally, we find that certain

factors, such as RAM speed and RAM vendor, have minimal

impact, even in memory benchmarks.

Analyzing the ServiceLab dataset reveals two additional

important factors: CPU turbo and the datacenter region where

the test was executed. Their impact varies across applications,

and adding these factors can increase R2 by up to 0.23. In

comparison, in the RTP dataset, adding these factors only

increases R2 by 0.01 for the CPU benchmark. The influence

of CPU turbo, previously reported in research [40], manifests

only in the ServiceLab dataset, not in the RTP dataset. This

difference arises due to constant CPU activity in the RTP

benchmarks. The datacenter region is significant for real ap-

plications tested in the ServiceLab dataset because many of

them have external dependencies. For example, if the test

instance of an application reads from a production database in

the region, the test result would be affected by the database’s

performance, which tends to vary across regions. In contrast,

the RTP benchmarks have no external dependencies.

While the key factors account for 87% of the variance,

the remaining 13% is attributed to other smaller factors. For

example, in machines with CPUs of the same model, the

frequency of their uncore components, such as cache and

memory controller, can vary, resulting in approximately a 2%

performance difference across tests. However, these factors

cannot be used for selecting machines from the cloud as they

are not exposed by the cloud.

Our analysis further reveals that certain CPU models and

kernel versions contribute significantly more variance than

others. Like prior works [40], we use Coefficient of Variance

(CoV), defined as the ratio of the standard deviation to the

mean, to compute the variance of a set of values. Specifically,

regarding CPU models, Intel Xeon E5-2680 v4 @ 2.40GHz

has the highest CoV at 42%, while AMD EPYC 7D13 36-

Core Processor has the lowest CoV at 5.6%, with an overall

P50 at 19%. Regarding the kernel, version 5.6.13-0 has the

highest CoV at 52%, and 5.2.0-240 has the lowest CoV at

9.5%, with the overall P50 at 36%. While investigating the

root cause of CoV is beyond the scope of this paper, Service-

Lab avoids using CPUs or kernel versions with high variance.

In summary, the strategy we use is to select similar ma-

chines with matching kernel versions, ServerTypes, CPU ar-

chitecture, and datacenter regions, while disabling CPU turbo.

To assess whether performance variance within the similar

machines selected by our criteria is comparable to that for

a single machine, we compare their CoVs. The comparison

is conducted using the RTP dataset with turbo disabled. The

CoVs for same-machine tests are 5.9% at P50 (50 percentile)

and 28% at P99, while for similar-machine tests, they are
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5.7% at P50 and 38% at P99. The P50 values are nearly iden-

tical, with a higher difference at P99. Overall, the difference

is deemed acceptable, considering the advantage of running

tests in parallel.

Applicability to public cloud. To implement our machine

selection method in a public cloud, we recommend using

bare metal instances, which are offered by all major cloud

providers, rather than the more commonly used virtual ma-

chine instances. Although it is reported that lightweight hy-

pervisors like AWS Nitro System can match the performance

of bare metal machines [34], they may still introduce greater

performance variability than bare metal machines. We have

not validated our method in virtualized environments.

4.2 Statistical Methods

Despite using matching machines, experiments still exhibit

variance. We conduct experiments multiple times and employ

statistical methods to determine the level of regression with

a confidence interval. In general, we observe that there is no

one-size-fits-all model due to the diverse requirements and

varying performance-data distribution of different services.

Therefore, ServiceLab incorporates multiple models with a

mechanism to learn the best model for each service based on

historical data.

Recall that a trial is a singular A/B test, and an experiment

comprises multiple trials. An A/A test compares two runs of

the same code. A test may generate multiple data points. For

example, a test may measure CPU utilization for an hour and

generate a CPU-utilization data point per minute.

A model used by ServiceLab is a combination of a statisti-

cal test method and a data preprocessing method. ServiceLab

uses the following statistical test methods:

• Student’s t-test [17]. If an experiment only contains a

single trial, we use the student’s t-test to determine whether

there is a significant difference between the means of the A

side and the B side.

• Permutation test [6]. If an experiment includes multiple tri-

als, for each trial, we first compute the difference in means

between the A side and the B side. This step results in a

vector of m values called M⃗, where m is the number of trials.

Then we posit the null hypothesis H0: µ∆ = 0, where µ∆ is

the mean of M⃗. We apply a permutation test for this hypoth-

esis as follows. We generate a large number of permuted

samples from M⃗ and calculate the mean for each. Then we

derive the p-value from the proportion of permuted sam-

ple means that are as extreme as or more extreme than the

observed mean of M⃗.

• Confidence interval test. The above tests infer the distri-

bution of the data from the experimental data. Since we can

only run a limited number of trials within an experiment

and some tests may incur outliers, such inference may not

be accurate. The confidence interval test builds the data

distribution from historical data. Specifically, it leverages

A/A tests from the past two weeks to build the distribution

of mean(A′)−mean(A), and further computes the confi-

dence interval given the p-value, i.e., the probability of the

observed difference of means being smaller than the confi-

dence interval is larger than 1− p. Then, for an experiment,

it can test whether the B side follows the same distribution

as the A side by determining whether mean(B)−mean(A)
is smaller than the confidence interval.

ServiceLab uses the following data preprocessing methods:

• Square root transformations. An important preprocessing

step involves square root transformations. This is motivated

by recognizing significant heterogeneity in the cost of re-

quests, with certain requests disproportionately impacting

mean metric values. Such disparities are exacerbated across

multiple trials, leading to skewed aggregations. The square

root transformation mitigates this, ensuring a more uniform

contribution from each request to the trial’s mean metric

value. This adjustment has been empirically validated to

enhance detection accuracy, especially for high-demand

services.

• Outlier detection. We use conventional outlier mitigation

methods, such as winsorization [18], which are particularly

effective in moderating the elevated variance observed when

services operate under strenuous conditions. Specifically,

we either delete data points that are above a certain per-

centile (called outlier-elim) or cap those data points at the

percentile value (called outlier-cap).

Out of all possible combinations of statistical test meth-

ods and data preprocessing methods, currently ServiceLab

uses seven combinations: t-test-none, t-test-sqrt, t-test-outlier-

elim, t-test-outlier-cap, permutation-test-none, permutation-

test-sqrt, and confidence-interval-none, as well as some

service-specific models.

ServiceLab uses an adaptive method to determine the best

model for each <service, metric> combination. It conducts

periodic A/A experiments and artificial A/B experiments (i.e.,

A/A experiments with injected regression on one side) to gen-

erate a ªground truth.º Then, ServiceLab tests each model on

the results of these experiments to obtain the model’s false

positive rate (from the A/A experiments), the false negative

rate (from the artificial A/B experiments), and the detectabil-

ity [10] (from the A/A experiments). ServiceLab then selects

the model with the highest score, which is a linear combi-

nation of the false positive rate, false negative rate, and de-

tectability, under the constraint that its false positive rate is

below a threshold. ServiceLab runs this model selection al-

gorithm periodically to adapt to changes in existing services

and accommodate new services and metrics.

In our production, 51% of the services have adopted the

confidence-interval-none model, 21% have adopted the t-test-

sqrt model, 21% have adopted the adaptive method, 5% have

adopted the t-test-none model, and 1% have adopted the
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permutation-test-none model. Not all services use the adaptive

method, either because they find a fixed model always works

well or because they have not tried the recently introduced

adaptive method.

The breakdown of the models chosen by the adaptive

method is as follows: confidence-interval-none (49%), t-

test-none (19%), t-test-outlier-cap (10%), t-test-outlier-elim

(9%), permutation-test-none model (5%), t-test-sqrt (4%), and

permutation-test-sqrt (3%). Over a 90-day period, for services

using the adaptive method, more than 50% of them have

changed models at least once, and more than 10% of them

have changed models at least four times. This indicates that

the best model for a service can change as the service’s code

and characteristics evolve.

Next, we discuss our journey to arrive at the current set of

models. Initially, ServiceLab only supported single-trial exper-

iments and thus used the student t-test with outliers handled by

winsorization. When working with services requiring multiple

trials, we found that the t-test did not work well. Outliers in

both trials and requests within a trial affected the experiment

results, showing up as either false positives or missed regres-

sions due to excluding outliers. Consequently, for multiple-

trial experiments, we added the permutation-test-none and

permutation-test-sqrt models. The confidence-interval test

was added to handle noisy metrics or ones that are not contin-

uous like CPU or memory. We found that for these metrics,

looking at the historical data to find the regression threshold

would work better than dealing with a t-distribution (as the

t-test and other variants do). Finally, motivated by the ob-

servation that different metrics follow different distribution

patterns and such patterns may change over time, we added

the adaptive method to help users find the best model.

Finally, we describe two optimizations that improve the

accuracy of the statistical methods.

Test warm up time. Identifying and excluding initial warm-

up periods in service operations is crucial for isolating steady-

state performance metrics. We employ an algorithm using

exponential moving averages to determine the point at which

a time series reaches approximate stationarity. Observations

before this point are discarded. As the duration of the warm-

up phase depends on the test environment, this determination

is made on an individual trial basis, ensuring that only matured

performance data undergoes further analysis.

Periodic A/A experiments. ServiceLab conducts periodic

A/A tests, and aggregates the results into a user dashboard, en-

abling users to monitor the false positive rate and detectability.

This dashboard aids users in modifying workload settings to

enhance the statistical signal of their experiment. For instance,

users can adjust parameters such as increasing the number of

trials, extending experiment duration, removing noisy metrics,

or changing the aggregation method.

5 ServiceLab Design

This section presents the design of ServiceLab, utilizing the

architecture diagram shown in Figure 2 in our discussion.

5.1 Experiment Lifecycle

During an experiment’s lifecycle, it transitions through sev-

eral phases: queued�build�allocation�running�analysis.

An experiment begins when a user or an automation tool sub-

mits a request via the Windtunnel API, which enqueues the

request into a DurableQ (durable queue) and creates an entry

in the Windtunnel DB to represent the experiment, setting its

phase as queued. The phase transition of an experiment is

managed by a processor, and multiple processors can work

independently to manage different experiments. When a pro-

cessor determines it can take on additional work, it polls the

DurableQ to claim a queued experiment and locks the corre-

sponding Windtunnel DB entry to prevent other processors

from performing duplicate work.

After some input validation and preprocessing, the proces-

sor transitions the experiment to the build phase, where the

experiment’s executables are created. The processor does not

compile the executables directly but instead sends a request

to a separate build service, which acts as a caching layer to

prevent duplicate builds.

Once all executables are built, the experiment enters the al-

location phase. Each team is configured with a certain testing-

machine quota that they are allowed to use. The processor

tracks the already used portion of the quota and determines

when to allocate machines for experiments, enforcing priority

and fairness. An experiment may need to run multiple jobs,

such as one for the A side of the A/B test and another for

the B side. As all jobs of an experiment must be allocated

from the same datacenter region to minimize variance (§4.1),

the processor decides from which region to allocate the jobs

based on the remaining quotas in different regions. Addition-

ally, the processor filters machines based on ServerType, CPU

architecture, and kernel version to minimize variance across

the selected machines (§4.1).

In addition to allocating the system-under-test (SUT) jobs,

the processor also allocates a traffic-replay job and a test-

harness job. The test-harness job drives the experiment and

monitors the test’s status. Depending on the experiment’s

purpose, different test-harness jobs can be used. For example,

to measure the maximum throughput that the SUT can sus-

tain, the capacity test harness can gradually increase the test

throughput until the SUT violates its SLOs, such as response

time, error rate, or CPU utilization exceeding a threshold.

Once all the necessary jobs are allocated, the experiment

enters the running phase. If the experiment is testing a

configuration change, the corresponding configuration ca-

nary [13,15,53] is set up correctly on the test machines. Subse-

quently, the traffic-replay job loads the previously recorded re-

quests that will be replayed during the experiment. Finally, the

processor instructs the test harness to start the test. Through-
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Figure 2: ServiceLab architecture. Windtunnel is the orchestration engine and Treadmill replays traffic and runs tests.

out the experiment, the test harness monitors the health checks

of all jobs and fails the experiment if any job fails its health

check. Meanwhile, the SUT exports performance metrics to

monitoring databases during the experiment.

After the test finishes, the processor deallocates all jobs and

transitions the experiment to the analysis phase. Aggregation

and statistical analysis of performance metrics are performed

by a service called Experiment Store (ES). The results are

written to the Windtunnel DB, which users can view from

a UI. These results can also trigger certain actions, such as

blocking a service from being released into production.

5.2 Traffic Record-and-Replay

At Meta, all services use the Thrift [49] RPC protocol, which

is leveraged by ServiceLab to record production traffic trans-

parently. The user specifies the Linux containers where RPC

traffic should be recorded. Upon receiving a request on these

containers, the Thrift server’s recording module flips a coin to

decide whether to sample the request. To minimize the impact

on RPC latency, the recorded data is written asynchronously.

The user configures the request sampling rate, and by default,

requests are sampled uniformly. For a service with a highly

variable request rate, reservoir sampling [5, 57] ensures that

sampled requests are evenly spread over time, with at most K

samples during each T time interval. In practice, the median

sampling rate is 0.03%, and above that, 22% of services set

sampling rate to 1%.

By default, ServiceLab assumes that RPC requests are

independentÐmeaning the execution of one request does

not depend on the execution of the previous request. How-

ever, this assumption may not hold for some services. In these

cases, the service can record all requests, and then during

replay, all recorded requests are replayed in order. For some

services, request dependencies are encoded at the RPC layer

and can thus be recorded accurately and transparently.

For sharded services, since sharding is done at the applica-

tion layer and is invisible to the RPC layer, ServiceLab relies

on the service owner to specify the set of Linux containers to

capture requests for all shards.

ServiceLab leverages the open-source load testing plat-

form Treadmill [61] to replay requests. Treadmill employs an

open-control loop to send requests at a fixed rate. We have im-

plemented several modifications to Treadmill, extending it to

load recorded requests from a datastore and replay Thrift RPC

requests. In support of A/B experiments, we further enhanced

Treadmill to ensure consistent pacing and request rates for

both sides. A single Treadmill instance loads an identical set

of requests to be dispatched to both SUTs, synchronizing the

sending of requests to ensure simultaneous receipt on both

sides. For the capacity mode, a control loop in the test har-

ness monitors the SUT and instructs Treadmill to dynamically

adjust the request rate.

Additionally, services may have a warm-up period during

which performance measurements should not be taken until

the service reaches a steady-state behavior. ServiceLab can

be configured to enable a warm-up phase, allowing a lower

request rate to be set during this phase to gradually increase

the load on the service. The service exports a counter to

indicate whether it has reached warm-up. Treadmill waits

for both sides to be warmed up before synchronizing and

sending requests once again for steady-state performance

measurement. For example, HHVM employs a JIT compiler,

and steady-state performance measurements should start after

JIT compilation is sufficiently warmed up.

Finally, services with high variability in request process-

ing time due to diverse request types are harder to handle.

FrontFaaS is one such example. We can reduce variability

by testing only with request types relevant to a specific code

change, as opposed to all request types.

5.3 Handling Service Dependencies

Meta products are built out of tens of thousands of services

with intricate interdependencies, akin to those documented in

prior research [30, 38, 48]. For example, FrontFaaS invokes

hundreds of downstream services. Consequently, testing a ser-

vice in isolation is challenging due to these interdependencies.

ServiceLab tackles this issue through various approaches.

First, users can set up a group of interdependent services

together in ServiceLab, creating a self-contained testing en-

vironment. While theoretically possible, this approach is not

consistently implemented in practice due to various reasons.

For instance, replicating the massive datasets accessed by
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services, like the social graph for billions of users, is often

economically impractical.

Second, ServiceLab allows a system under test (SUT) to

invoke certain services in the production environment, pro-

vided there are no adverse side effects. In ServiceLab, most

calls to downstream production services do not incur side ef-

fects because they are read-only or idempotent. Moreover, the

testing load imposed on these downstream services is often

negligible compared to their ample capacity to serve billions

of users. However, as these downstream services often exhibit

performance variance across datacenter regions, meaningful

comparisons can only be drawn from tests conducted in the

same region (§4.1).

Third, for a SUT that potentially can cause side effects

on downstream production services, ServiceLab requires the

service owner to modify the SUT’s behavior to prevent those

side effects. For example, the SUT may use a mock interface

of a database so that it writes data to a test database instead

of the production database. Moreover, to prevent a SUT from

accidentally accessing a production service, the RPC layer can

be instructed to block all traffic to production services except

those on an allowed list. Mocking or blocking traffic can result

in certain code paths not being executed, potentially causing

false negatives in testing results. However, § 6.1 shows that

the false negative rate of ServiceLab is acceptable.

Fourth, the business and performance metrics logged by

the SUT are kept separately from those generated by its coun-

terpart in production. This ensures that the analytics for these

metrics do not interfere with each other.

In summary, ServiceLab provides tools to assist service

owners in managing service dependencies during test envi-

ronment setup but does not offer complete isolation out of the

box. As a result, some complex services (e.g., MySQL) are

not tested in ServiceLab. They either use a specialized test

environment or conduct canary tests directly in production

by deploying new code to some instances of the production

service and comparing those instances with the rest. Despite

its limitations, ServiceLab is successful as a general-purpose

testing platform, covering more than half of the total code

changes by all services and surpassing the combined coverage

of all other specialized testing platforms.

6 Production Experience

During its steady state, ServiceLab constantly leverages tens

of thousands of machines to test hundreds of services and

hundreds of ML models. We use production data to answer

the following questions:

1. What are the statistics for different use cases (e.g., regres-

sion thresholds, number of trials, etc.)?

2. What are the false positive and false negative rates of

ServiceLab?

3. How much regression did actually ServiceLab prevent?

6.1 Testing FrontFaaS

As FrontFaaS is our largest programming platform and has

more code changes than other services, we report its statistics

separately. ServiceLab has been running for FrontFaaS for

over 5 years in production. It has a regression threshold as

low as 0.01%, and by default, it runs 25 trials in each experi-

ment. On average, developers made over 100,000 FrontFaaS

changes per month. ServiceLab ran at least one experiment

on 23% of those changes during that period. Leaving out 77%

showcases the importance of ServiceLab’s DiffSuggester in

reducing the machine capacity needed for testing. For the

code changes tested by ServiceLab, ServiceLab signaled per-

formance regressions on 0.3% (5,560) of those changes.

ServiceLab assigns regression tickets to developers, and

we calculate ServiceLab’s accuracy based on the developers’

actions in these tickets. We classify a signaled regression as

a true positive if the developer fixed the issue or marked the

issue as ªexpected,º perhaps due to a new product feature re-

quiring more resources. We classify it as a false positive if the

developer identified it as such. If the developer did not provide

a clear answer, we classify the regression as unknown. Among

all signaled regressions, 57% (3,173) are true positives, 15%

(823) are false positives, and 28% (1,564) are unknown. As-

suming the unknowns have the same false positive rate as

others, the overall false positive rate is about 21%.

Although the false positive rate of 21% may seem high

initially, it actually signifies a significant success of Service-

Lab because FrontFaaS uses a very low regression threshold,

0.01%. Out of all FrontFaaS diffs submitted by developers,

only 0.014% experience a false positive flagged by Service-

Lab, calculated as 23%×0.3%×21% = 0.014%. Assuming

a developer writes one diff per day, they will experience a

false positive about once every 20 years! While promoting

the adoption of ServiceLab, we learned that the per-developer

experience significantly affects whether developers ignore the

regression tickets assigned by ServiceLab. If a developer fre-

quently receives false-positive tickets, they are likely to ignore

them after repeated futile investigations. Conversely, if they

receive a false-positive ticket only once every 20 years, they

will likely always take ServiceLab regression tickets seriously

and investigate them. The good developer experience even at

a very low regression threshold of 0.01% demonstrates the

robustness of ServiceLab’s statistical methods.

Figure 3 shows the distribution of the level of regression of

those true positive cases. The median value (p50) is 0.14%,

p90 is 1.7%, and p99 is 38.7%. Summing them together, they

account for 12284% of regression over five years. Since very

large regressions are often caused by experimental purposes,

if we only sum those causing less than 1% regression, they

account for 545% of regression, which translates to over 2

million machines (i.e., 545% × the number of machines used

by FrontFaaS). This shows that ignoring small regressions

is not acceptable, as they will accumulate to a large number

over time. That is why FrontFaaS uses a strict threshold.
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Figure 3: Cumulative distribution of regressions detected by

ServiceLab for FrontFaaS.

Figure 4: Number of experiments completed each day.

To approximate the false negative rate, we rely on re-

ports from in-production monitoring of performance changes.

FrontFaaS has a production monitoring system that exam-

ines the per-function CPU usage of functions and raises a

signal if it detects a performance regression. It then attempts

to triage the performance regression to a code change. Out

of all changes, 0.02% (2038) of changes were found to cause

regressions but have been missed by ServiceLab, leading to

a false negative rate of 32%, calculated as 2038
2038+5560×(1−21%) .

However, this number should be viewed with caveats because

1) there are potential performance regressions that cannot be

root-caused to their original changes, which are not included

in this number, and 2) there is no guarantee that the production

monitoring system is fully accurate.

In summary, despite FrontFaaS’ low threshold of 0.01%,

ServiceLab achieves a reasonable false positive rate and false

negative rate, and helps us prevent a significant amount of

regressions, which could accumulate over years.

6.2 Testing Other Services

While FrontFaaS is reported in its own category, in this sec-

tion, we report the aggregate statistics for all non-FrontFaaS

services in one category. Figure 4 shows the number of Ser-

viceLab experiments completed each day for non-FrontFaaS

services. The majority of completed experiments are run au-

tomatically as part of code changes, configuration configs, or

service releases. ServiceLab supports a total of 483 distinct

Figure 5: Thresholds and number of trials. The size of the

circle represents the count of use cases with the same setting.

use cases, and their breakdown is shown below. Note that

ServiceLab also tests hundreds of distinct ML models, which

are counted as a single use case.

• 44% (N=211) of the use cases have experiments that auto-

matically run on code diffs.

• 15% (N=74) run automatically on code commits.

• 21% (N=100) run automatically on configuration changes.

• 22% (N=107) run as part of their release process.

The distribution of the number of trials in experiments is as

follows: p50=1, p90=10, p99=10, and p100=25. The distribu-

tion of the execution time of trials is as follows: p50= 2,820

seconds, p90= 4,200 seconds, p99=p100=259,200 seconds.

Among the 483 use cases, 413 have defined a relative thresh-

old on some metric; 5 have defined an absolute threshold on

some metric; the remaining ones do not define any threshold.

We focus on the 413 cases with a relative threshold in the

following discussion.

Each use case may contain multiple metrics with different

thresholds. Since the number of trials and trial duration are

usually determined by the strictest threshold, we define the

threshold of a use case as the smallest threshold among all

its metrics. 23% of the use cases have a threshold smaller

than 1%, while p50=5%, p90=10%, and p99=20%. This, once

again, emphasizes the importance of using small thresholds.

Figure 5 plots the threshold and the number of trials used

by different use cases. A circle in this figure represents the

count of use cases using a specific setting. This figure shows

that a large number of use cases use a relaxed threshold of 5%

or 10% with only one trial, but a small number of use cases

use a very small threshold with up to 25 trials. This small

subset includes many of the largest services.

Services often run preliminary experiments with a large

number of trials to determine how many trials are needed to

achieve a certain confidence interval in regression detection.

Specifically, they run multiple trials of A/A tests, compute

the difference between each pair of A/A test (i.e., A′
−A
A

), and

then determine the confidence interval (i.e., 95% within two

standard deviations assuming normal distribution). Figure 6
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Figure 6: The number of trials required for detecting small

regressions.

shows, for one service, how the confidence interval decreases

with more trials. Users can then decide the number of trials

according to their required confidence interval.

We examine how often ServiceLab signals a regression on

code changes during the 54 day period shown in Figure 4.

During this time, 15,058 code changes were tested and Ser-

viceLab signaled on 2,742 (18.5%) of those code changes

with at least one metric crossing its configured threshold. For

non-FrontFaaS services, ServiceLab reports on a diverse set

of metrics. Across these code changes, 2,714 different metrics

were considered as significant. 80% of the signaled metrics

had a threshold of less than 2%. Unlike the uniform Front-

FaaS platform used by over ten thousand developers, for these

413 diverse use cases, there are no uniform tools and hence

no clear marking about whether a reported regression is a true

or false positive. In subsequent sections, we will present some

examples with these use cases to understand their impact.

6.2.1 Example of True Positives

ServiceLab helps non-performance experts understand the

performance implications of their code. For example, con-

sider one case where ServiceLab successfully detected and

prevented a CPU performance regression in XFinder (§3.5)

before the change landed in production.

In the change, the developer inadvertently copied a large

data structure when introducing a new function. The Ser-

viceLab experiment that ran for this change detected a sig-

nificant CPU regression of around 20%. ServiceLab flagged

this change to both the developer and performance engineers

working on XFinder. The developer was working on a product

feature across multiple services, and was neither familiar with

the XFinder codebase nor C++. After ServiceLab flagged the

regression, the developer applied a fix by adding const when

passing the parameter to the function, eliminating the memory

copy of the data structure.

In another incident involving the Ranker service (§3.6), a

change increased the service’s memory usage by 50%. The

change involved enabling a new ranking library that increased

memory usage due to loading additional ranking configu-

rations. The increase in memory was expected due to the

additional functionality; however, the amount of increased

memory was not. ServiceLab detected the memory regression

before a release deployment. In this case, the developer who

included the additional ranking library knew that there would

be an added resource cost. However, ServiceLab helped the

developer and service owners understand the resource cost of

the regression before deployment. The developer reverted the

change and found optimizations to minimize the use of the

ranking library by excluding unused ranking configurations.

6.2.2 Example of False Positives

In another incident, a ranking service using ServiceLab occa-

sionally experienced high rates of false positives due to a pro-

duction issue with a downstream dependency. A production

misconfiguration led to imbalanced load among the machines

in the downstream service. During experiments, some of the

SUTs would send requests to these overloaded instances of

the downstream service. The queuing resulting from those

overloaded downstream instances affected the performance

measurement in ServiceLab, resulting in false positives. To

remediate this issue, the production routing configuration that

led to the imbalanced load was fixed. This remediated the

load imbalance issue in production and also eliminated the

false positives in ServiceLab.

6.2.3 Examples of False Negatives

False negatives are incidents where ServiceLab does not re-

port a regression but a regression actually occurs. These cases

are often reported by service owners. In one incident with

XFinder (§3.5), a developer was implementing a new feature

to read from an online classifier instead of an offline classifier.

The change introduced a new function call making use of the

new classifier to better classify the type of ads to return. The

change resulted in an increase of 0.62% in the total capacity

used by XFinder. ServiceLab failed to report a regression for

this change since this regression only applied to a subset of

request types, and those types were not represented in the set

of requests replayed in the experiment. Those request types

were newly added after the request trace was captured.

6.2.4 Summary

In our experience, the top reason for false positives is that

another event, such as another test or deployment either in the

SUT or in the downstream services, is happening concurrently

with a ServiceLab test, which will disrupt the result of the

ServiceLab test. The top reason for false negatives is that a

newly introduced feature is not tested since the requests for

replaying were recorded when this feature does not exist.

6.3 False Positive in A/A Experiments

As described in § 4.2, periodic A/A experiments provide an

empirical measurement of whether a metric would be con-

sidered significant with the same experiment inputs. Periodic

A/A experiments run every two hours and test for statisti-

cally significant differences without considering any signal-
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ing thresholds. Over a two-month period, we examined 6,783

metrics from A/A experiments where signaling was enabled.

Among these 6,783 metrics, the p50, p90, and p99 metric

had a false positive rate of 0.6%, 40%, and 64%, respectively.

This signifies the inherent variance in the services and the

test environment. It also emphasizes the importance of our

method of using results from A/A experiments to help select

the best statistical model for each service (§4.2).

6.4 Key Takeaways

We have learned several key lessons from our experience of

operating ServiceLab over seven years. Initially, the Service-

Lab team maintained a dedicated pool of identical physical

machines for testing to reduce performance variance. How-

ever, as ServiceLab adoption increased, we had to switch to

using heterogeneous cloud machines. This change was driven

by the high maintenance burden of a dedicated machine pool

and the lower cost of running some tests using the cloud’s

elastic capacity.

Testing a wide range of services is a key design goal for

ServiceLab. To achieve this, unlike traditional systems that

aim for completely isolated and reproducible environments,

ServiceLab allows Systems Under Test to call external depen-

dent services that handle live production traffic. This approach

significantly broadens the scope of services that ServiceLab

can test, accommodating those with complex interdependen-

cies that are too intricate or costly to replicate fully in a test

environment. Moreover, ServiceLab is extensible and allows

for developer customizations, recognizing that a one-size-fits-

all approach would fall short in supporting diverse services.

For example, while traffic record-and-replay simplifies test

setup, some services face strict time constraints for replay,

and others choose to use synthetic traffic.

7 Related Work

Performance Variance. Performance variance is a well-

known issue for performance experiments and reproducibility,

especially when the performance of two versions to com-

pare is close. There are multiple lines of work in this direc-

tion: 1) some works mitigate the problems by re-designing

systems [9, 16, 21, 25, 45, 51, 60], tuning configuration pa-

rameters [37, 39, 59, 64], or changing hardware [40, 58, 63].

2) Some works try to detect machines that are significantly

slower than others [19, 23, 28, 29, 43], so as to exclude such

outlier machines from performance experiments. We also

run routine performance tests to filter those outlier machines.

3) Some works propose statistical methods for performance

comparison [26, 31, 40].

The closest work is the study by Maricq et al. on perfor-

mance variance in CloudLab [40]. ServiceLab differs from

the CloudLab study in several ways. First, the CloudLab study

assumes repeated experiments are run on the same or identi-

cal machines, whereas ServiceLab identifies heterogeneous

machines with comparable performance to run experiments

in parallel. Second, the CloudLab study focuses on the num-

ber of experiments needed to achieve a certain confidence

interval, whereas ServiceLab addresses the problem more

holistically, using an ensemble of statistical models, A/A tests,

and artificial A/B tests. Finally, the CloudLab study only runs

microbenchmarks in a single-machine environment, whereas

ServiceLab must be robust enough to work in real-world sce-

narios with full services and complex interdependencies.

Performance Testing. Synthetic benchmark [14, 41, 46, 50,

55] and record-and-replay [1±3] are two primary methods

for performance evaluation. ServiceLab supports both but

primarily uses record-and-replay due to its high fidelity in

testing real applications.

Treadmill [61] and TailBench [32] overcome several com-

mon pitfalls of performance testing frameworks with synthetic

traffic, allowing them to precisely measure at microsecond-

scale. Lancet [33] incorporates online statistical tests to ensure

the obtained measurements are statistically sound. Primorac

et. al. leverage kernel-bypass networking and advanced NIC

features to further improve the precision of microsecond-scale

tail latency measurements [44].

Performance data from Google’s gmail [7] shows that work-

loads change constantly, both QPS and response size. Hence

we need to do real production traffic record and replay. Re-

cent studies including Kraken [56] and WSMeter [35] directly

utilize production traffic to carry out the performance tests,

to address the limitation of synthetic benchmarking in how

accurately they can reproduce the complex production envi-

ronment. Similarly, deterministic record and replay are com-

monly leveraged to reduce the non-determinism to simplify

multiprocessor software development and testing, which can

be done at multiple levels (e.g., virtual machine-level [20],

OS-level [8], and library-level [24]).

8 Conclusion

We have presented ServiceLab, which tests a large, diverse set

of applications to catch small performance regressions. It se-

lects similar but non-identical machines for testing and learns

the best statistical model for each service. During seven years

of production, ServiceLab has helped us prevent a significant

amount of regression, which could accumulate over time if

not detected promptly.
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