
DistAI: Data-Driven Automated Invariant

Learning for Distributed Protocols

Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, Gabriel Ryan

Columbia University

Why learn invariants for distributed protocols?

● Distributed systems are hard to implement correctly

○ lost or corrupt packets

○ node failures

○ ...

Why learn invariants for distributed protocols?

● Distributed systems are hard to implement correctly

○ lost or corrupt packets

○ node failures

○ ...

● Distributed systems are hard to implement correctly

● To prove the desired correctness property holds

Find an inductive invariant

Why learn invariants for distributed protocols?

Example: mutual exclusion protocol

request

request

reply

reply

Example: mutual exclusion protocol

request

request

reply

reply

enter leave

Example: mutual exclusion protocol

request

request

reply

reply

enter leave

Correctness property:

Example: mutual exclusion protocol

request

request

reply

reply

enter leave

Correctness property: inductive

Example: mutual exclusion protocol

request

request

reply

reply

enter leave

Invariants:

Correctness property:

Example: mutual exclusion protocol

request

request

reply

reply

enter leave

Invariants:
}✅ inductive

Correctness property:

Related work

● IVy (Padon et al., PLDI ’16)

○ Cannot find invariants

● I4 (Ma et al., SOSP ’19)

○ Not guaranteed to find invariants

● FOL-IC3 (Koenig et al., PLDI ’20)

○ Slow in practice

Our contribution

● DistAI, a data-driven method to learn inductive invariants for distributed

protocols.

○ Fully automated

○ Guaranteed to succeed

○ Fast

DistAI workflow

protocol

DistAI workflow

protocol subsamples

(traces)

two-stage

sampling

DistAI workflow

protocol candidate

invariants

subsamples

(traces)

enumeration
two-stage

sampling

DistAI workflow

protocol candidate

invariants

subsamples

(traces)

IVy

enumeration
two-stage

sampling

DistAI workflow

protocol

enumeration
candidate

invariants

subsamples

(traces)

IVy

✅ pass

inductive

invariant

two-stage

sampling

DistAI workflow

protocol candidate

invariants

subsamples

(traces)

IVy

failed

invariants

fail

enumeration
two-stage

sampling

DistAI workflow

protocol candidate

invariants

subsamples

(traces)

IVy

failed

invariants

monotonic

refinement
weakened

invariants

enumeration
two-stage

sampling

DistAI workflow

protocol candidate

invariants

subsamples

(traces)

IVy

failed

invariants

monotonic

refinement
weakened

invariants

✅ pass

inductive

invariant

enumeration
two-stage

sampling

DistAI workflow

protocol candidate

invariants

subsamples

(traces)

IVy

weakened

invariants

safety property fail

two-stage

sampling enumeration

failed

invariants

monotonic

refinement

DistAI workflow

protocol candidate

invariants

subsamples

(traces)

IVy

weakened

invariants

safety property fail

two-stage

sampling enumeration

failed

invariants

monotonic

refinement

increase

formula

size

Sampling

protocol state action taken

Init (n1,n2,n3)

request(n1,n3)

Sampling

protocol state action taken

Init (n1,n2,n3)

request(n1,n3)

Sampling

protocol state action taken

Init (n1,n2,n3)
reply(n1,n3)

request(n1,n3)

Sampling

protocol state action taken

Init (n1,n2,n3)
reply(n1,n3) ... holds(n1)

request(n1,n3)

Sampling

protocol state action taken

Init (n1,n2,n3)
reply(n1,n3) ... holds(n1)

Init (n1,n2,n3,n4)

request(n1,n3)

Sampling

protocol state action taken

Init (n1,n2,n3)
reply(n1,n3) ... holds(n1)

request(n4,n1)
Init (n1,n2,n3,n4)

request(n2,n4) leave(n3)...

request(n1,n3)

Sampling

protocol state action taken

Init (n1,n2,n3)
reply(n1,n3) ... holds(n1)

request(n4,n1)
Init (n1,n2,n3,n4)

request(n2,n4) leave(n3)

request(n2,n3)
Init (n1,n2,n3,n4)

replied(n2,n3) replied(n4,n2)

...

...

request(n1,n3)

Sampling

protocol state action taken

Init (n1,n2,n3)
reply(n1,n3) ... holds(n1)

request(n4,n1)
Init (n1,n2,n3,n4)

request(n2,n4) leave(n3)

request(n2,n3)
Init (n1,n2,n3,n4)

replied(n2,n3) replied(n4,n2)

...

...

samples

● Real invariants: small number of quantified variables

Subsampling

● Real invariants: small number of quantified variables

Subsampling

● Real invariants: small number of quantified variables

Subsampling

Subsampling

● Real invariants: small number of quantified variables

● Given a template (e.g.,), project samples using variable mappings

Subsampling

X\Y n1 n2 n3 n4

n1 0 1 1 1

n2 1 0 1 0

n3 1 1 0 0

n4 1 1 1 1

requested(X,Y)

● Real invariants: small number of quantified variables

● Given a template (e.g.,), project samples using variable mappings

Subsampling

X\Y n1 n2 n3 n4

n1 0 1 1 1

n2 1 0 1 0

n3 1 1 0 0

n4 1 1 1 1

requested(X,Y)

requested(n2,n4)

● Real invariants: small number of quantified variables

● Given a template (e.g.,), project samples using variable mappings

● Real invariants: small number of quantified variables

● Given a template (e.g.,), project samples using variable mappings

Subsampling

X\Y n1 n2 n3 n4

n1 0 1 1 1

n2 1 0 1 0

n3 1 1 0 0

n4 1 1 1 1

requested(X,Y)

Subsampling

X\Y n1 n2 n3 n4

n1 0 1 1 1

n2 1 0 1 0

n3 1 1 0 0

n4 1 1 1 1

requested(X,Y) requested(X,Y)

X\Y N1 N2

N1 0 1

N2 1 0

● Real invariants: small number of quantified variables

● Given a template (e.g.,), project samples using variable mappings

● Real invariants: small number of quantified variables

● Given a template (e.g.,), project samples using variable mappings

Subsampling

X\Y n1 n2 n3 n4

n1 0 1 1 1

n2 1 0 1 0

n3 1 1 0 0

n4 1 1 1 1

requested(X,Y) requested(X,Y)

X\Y N1 N2

N1 0 1

N2 1 0

subsample

Subsampling

X\Y n1 n2 n3 n4

n1 0 1 1 1

n2 1 0 1 0

n3 1 1 0 0

n4 1 1 1 1

requested(X,Y) requested(X,Y)

X\Y N1 N2

N1 0 0

N2 1 1

subsample

● Real invariants: small number of quantified variables

● Given a template (e.g.,), project samples using variable mappings

Candidate invariant enumeration

● An invariant must hold on every subsample.

Candidate invariant enumeration

● An invariant must hold on every subsample.

● Enumerate formulas under a template (e.g.,) & max-literal (e.g., 3).

Candidate invariant enumeration

● An invariant must hold on every subsample.

● Enumerate formulas under a template (e.g.,) & max-literal (e.g., 3).

literal = 4

Candidate invariant enumeration

● An invariant must hold on every subsample.

● Enumerate formulas under a template (e.g.,) & max-literal (e.g., 3).

● Check the formula against the subsamples.

Candidate invariant enumeration

● An invariant must hold on every subsample.

● Enumerate formulas under a template (e.g.,) & max-literal (e.g., 3).

● Check the formula against the subsamples.

● If implied by an existing invariant, skip the check.

Candidate invariant enumeration

● An invariant must hold on every subsample.

● Enumerate formulas under a template (e.g.,) & max-literal (e.g., 3).

● Check the formula against the subsamples.

● If implied by an existing invariant, skip the check.

Candidate invariant enumeration

● An invariant must hold on every subsample.

● Enumerate formulas under a template (e.g.,) & max-literal (e.g., 3).

● Check the formula against the subsamples.

● If implied by an existing invariant, skip the check.

✅

skip

skip

Candidate invariant enumeration

● An invariant must hold on every subsample.

● Enumerate formulas under a template (e.g.,) & max-literal (e.g., 3).

● Check the formula against the subsamples.

● If implied by an existing invariant, skip the check.

check

check

Candidate invariant enumeration

● The strongest possible invariants w.r.t. the subsamples.

Candidate invariant enumeration

● The strongest possible invariants w.r.t. the subsamples.

any invariants that holds on the subsamples

enumerated candidate invariants

Candidate invariant enumeration

● The strongest possible invariants w.r.t. the subsamples.

any invariants that holds on the subsamples

enumerated candidate invariants

Candidate invariant enumeration

● The strongest possible invariants w.r.t. the subsamples

enumerated candidate invariants

any invariants that holds on the subsamples

● Feed candidate invariants to IVy

Monotonic refinement

Monotonic refinement

● An invariant must hold on every subsample. ✅

● A formula that holds on every subsample is an invariant.

Monotonic refinement

● An invariant must hold on every subsample. ✅

● A formula that holds on every subsample is an invariant.

incomplete

samples

Monotonic refinement

● An invariant must hold on every subsample. ✅

● A formula that holds on every subsample is an invariant.

incomplete

samples
too strong

invariants

Monotonic refinement

● An invariant must hold on every subsample. ✅

● A formula that holds on every subsample is an invariant.

incomplete

samples
too strong

invariants

weaken the candidate invariants

Monotonic refinement

● Minimum weakening

Monotonic refinement

● Minimum weakening

● Add all its weakened variants to the candidate set

Monotonic refinement

● Minimum weakening

● Add all its weakened variants to the candidate set

Monotonic refinement

● Minimum weakening

● Add all its weakened variants to the candidate set

● Never “bypass” the correct invariants

Convergence

● When safety property fails, increase template or maximum literal and retry.

Convergence

● When safety property fails, increase template or maximum literal and retry.

Convergence

● When safety property fails, increase template or maximum literal and retry.

strongest invariants + minimum weakening

Evaluation

● Evaluated on 14 distributed protocols (12 from prior work, 2 newly introduced)

● Compared with I4 and FOL-IC3

Evaluation

Protocol Protocol

asynchronous lock server chord ring maintenance

database chain replication decentralized lock

distributed lock hashed sharding

leader election learning switch

lock server Paxos

permissioned blockchain Ricart-Agrawala

simple consensus two-phase commit

Evaluation

Protocol Protocol

asynchronous lock server chord ring maintenance

database chain replication decentralized lock

distributed lock hashed sharding

leader election learning switch

lock server Paxos

permissioned blockchain Ricart-Agrawala

simple consensus two-phase commit

I4

Evaluation

Protocol Protocol

asynchronous lock server chord ring maintenance

database chain replication decentralized lock

distributed lock hashed sharding

leader election learning switch

lock server Paxos

permissioned blockchain Ricart-Agrawala

simple consensus two-phase commit

FOL-IC3I4

Evaluation

Protocol Protocol

asynchronous lock server chord ring maintenance

database chain replication decentralized lock

distributed lock hashed sharding

leader election learning switch

lock server Paxos

permissioned blockchain Ricart-Agrawala

simple consensus two-phase commit

FOL-IC3 DistAII4

Evaluation

Protocol Protocol

asynchronous lock server chord ring maintenance

database chain replication decentralized lock

distributed lock hashed sharding

leader election learning switch

lock server Paxos

permissioned blockchain Ricart-Agrawala

simple consensus two-phase commit

FOL-IC3 DistAII4

Conclusion

● We present DistAI, a data-driven automated invariant learning system

○ Two-stage sampling

○ Candidate invariant enumeration

○ Monotonic refinement

● Compared with alternative methods, DistAI

○ Fully automated

○ Guarantee to succeed

○ Much faster

Thank you

● Feel free to contact us if you have any questions

○ Jianan Yao: jianan@cs.columbia.edu

○ Runzhou Tao: runzhou.tao@columbia.edu

mailto:jianan@cs.columbia.edu
mailto:runzhou.tao@columbia.edu

