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● Distributed systems are hard to implement correctly

● To prove the desired correctness property holds

Find an inductive invariant

Why learn invariants for distributed protocols?
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Related work

● IVy (Padon et al., PLDI ’16)

○ Cannot find invariants

● I4 (Ma et al., SOSP ’19)

○ Not guaranteed to find invariants

● FOL-IC3 (Koenig et al., PLDI ’20)

○ Slow in practice



Our contribution

● DistAI, a data-driven method to learn inductive invariants for distributed 

protocols.

○ Fully automated

○ Guaranteed to succeed

○ Fast
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Candidate invariant enumeration

● The strongest possible invariants w.r.t. the subsamples 

enumerated candidate invariants

any invariants that holds on the subsamples

● Feed candidate invariants to IVy
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Monotonic refinement

● Minimum weakening

● Add all its weakened variants to the candidate set

● Never “bypass” the correct invariants



Convergence

● When safety property fails, increase template or maximum literal and retry.



Convergence

● When safety property fails, increase template or maximum literal and retry.



Convergence

● When safety property fails, increase template or maximum literal and retry.

strongest invariants   +   minimum weakening



Evaluation

● Evaluated on 14 distributed protocols (12 from prior work, 2 newly introduced)

● Compared with I4 and FOL-IC3 
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Conclusion

● We present DistAI, a data-driven automated invariant learning system

○ Two-stage sampling

○ Candidate invariant enumeration

○ Monotonic refinement

● Compared with alternative methods, DistAI

○ Fully automated

○ Guarantee to succeed

○ Much faster



Thank you

● Feel free to contact us if you have any questions

○ Jianan Yao: jianan@cs.columbia.edu

○ Runzhou Tao: runzhou.tao@columbia.edu

mailto:jianan@cs.columbia.edu
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