
Finding Consensus Bugs in Ethereum via
Multi-transaction Differential Fuzzing

Youngseok Yang1 Taesoo Kim2 Byung-Gon Chun1,3

1Seoul National University 2Georgia Institute of Technology 3FriendliAI

1

Nov 11th, 2020 hard-fork

2

Ethereum ecosystem went down
● Infrastructure: Infura(largest), ...
● Exchanges: Binance(largest),
● DApps: Metamask, Uniswap, ...

Around 30 blocks abandoned
● $8.6M worth of ETH

Considered as Ethereum’s greatest
challenge since the 2016 DAO hack

Nov 11th, 2020 hard-fork

3

We found and
reported two

consensus bugs in
the most popular

Geth client

Bugs silently fixed in
new Geth client

releases, but not all
users upgraded

July, 2020 July~Nov, 2020 Nov 11th, 2020

An Ethereum
transaction

triggered one of the
bugs we reported

Our paper describes this

Background

4

Ethereum

5

Consensus is reached by decentralized clients that implement
the Ethereum Virtual Machine (EVM) specification

Ethereum
client

Ethereum
client

Ethereum
client

Ethereum
client

Ethereum
client

Network

Consensus bugs

6

Implementation bugs in Ethereum clients
that lead to incorrect blockchain states

Blockchain state

Account A
Balance: 0ETH

Transaction X
Blockchain state

Account A
Balance: 2ETH

Blockchain state

Account A
Balance: 0ETH

Transaction X
Blockchain state

Account A
Balance: 3ETH

Ethereum
Specification

Client Q
(Buggy)

Consensus bugs

7

Consensus bugs are extremely rare
● Since Ethereum launched in July 2014, only 13 consensus bugs have

been found in the most popular Geth and OpenEthereum clients
● Only 6 of them would have been exploitable on the live mainnet

Preventing consensus bugs is a top priority
● Consensus bugs have high impacts

○ Network split: Reliability issues (e.g., delaying transactions)
○ Theft: Security-critical issues (e.g., stealing ETH)

● Heavy investments in auditing, testing, and fuzzing Ethereum clients

Existing
Differential Fuzzers

8

Existing fuzzers

9

Differential fuzzers have found most of the consensus bugs in Ethereum

Overview:
Step 1. Generate an input blockchain state and a single transaction
Step 2. Initialize multiple Ethereum clients with the blockchain state
Step 3. Invoke the clients with the transaction
Step 4. Compare the output blockchain states
Step 4. If the outputs are the same, GOTO Step 1.
 If the outputs are not the same, a consensus bug is found

Existing fuzzers

10

Existing differential fuzzers test
only a single transaction in each iteration

⇒ Cannot cover the “full search space”

Existing fuzzers

11

Full search space
(Possible values of client program variables)

account_a =
{ ETH: 0, deleted: false }

account_a =
{ ETH: 53, deleted: true }

account_a =
{ ETH: 0, deleted: true }

account_a =
{ ETH: 41, deleted: true }

account_a =
{ ETH: 2, deleted: true }

The blockchain
state “A has 0
ETH” can be

represented in
multiple ways

Existing fuzzers

12

Full search space
(Possible values of client program variables)

Space which existing fuzzers can
cover (Single-transaction testing)Account A

has 0 ETH
account_a =

{ ETH: 0, deleted: false }

account_a =
{ ETH: 53, deleted: true }

account_a =
{ ETH: 0, deleted: true }

account_a =
{ ETH: 41, deleted: true }

account_a =
{ ETH: 2, deleted: true }

Fuzzer

Single transaction

Generate

Initialize
clients

Our Key Idea

13

Key idea

14

Goal: Enable the fuzzer to cover the full search space

Test a sequence of multiple transactions ⇒
Test various pre-transaction client program states

Case Study

15

Bugs we found

16

Shallow copy bug

Transfer-after-destruct bug

Shallow copy bug

Transfer-after-destruct bug

17

In this talk

Bugs we found

18

Transfer-after-destruct bug
Root cause
Geth “carries over” the balance of a deleted account object to
the newly created account object under the same address

At least 2 transactions are required to trigger the bug
- Transaction 1: Destroys account A, and sends 2 ETH to A
- Transaction 2: Sends 1 ETH to A

EVM Specification says “A has 1 ETH”
Buggy Geth says “A has 3 ETH”

Account A

19

Transfer-after-destruct bug

EVM
(Spec)

Geth
(Impl)

Balance: 0 ETH

Code: 0x6003...

// Contract (Address: B)
1: CALL A with 0 ETH
2: CALL A with 2 ETH

// Contract (Address A)
1: If VALUE == 0
2: SELFDESTRUCT
3: ELSE
4: STOP

address_A

account_object

balance_eth: 0

is_deleted: false

code: 0x6003...

Account A

20

Transfer-after-destruct bug

EVM
(Spec)

Geth
(Impl)

Balance: 0 ETH

Code: 0x6003...

// Contract (Address: B)
1: CALL A with 0 ETH
2: CALL A with 2 ETH

// Contract (Address A)
1: If VALUE == 0
2: SELFDESTRUCT
3: ELSE
4: STOP

Transaction 1:
Call B with 5 ETH

address_A

account_object

balance_eth: 0

is_deleted: true

code: 0x6003...

Account A

21

Transfer-after-destruct bug

EVM
(Spec)

Geth
(Impl)

Balance: 2 ETH

Code: 0x6003...

// Contract (Address: B)
1: CALL A with 0 ETH
2: CALL A with 2 ETH

address_A

account_object

balance_eth: 2

is_deleted: true

code: 0x6003...
Transaction 1:

Call B with 5 ETH

22

Transfer-after-destruct bug

EVM
(Spec)

Geth
(Impl)address_A

account_object

balance_eth: 2

is_deleted: true

code: 0x6003...

23

Transfer-after-destruct bug

EVM
(Spec)

Geth
(Impl)address_A

account_object

balance_eth: 3

is_deleted: false

code: 0x6003...

Transaction 2:
Call A with 1 ETH

Account A

Balance: 1 ETH

24

Transfer-after-destruct bug

EVM
(Spec)

Geth
(Impl)address_A

account_object

balance_eth: 3

is_deleted: false

code: 0x6003...

Account A

Balance: 1 ETH

Spec says “1 ETH”

Geth says “3 ETH”
(Consensus bug!)

25

Our goal

Design a system that automatically generates and tests
a sequence of multiple transactions

Fluffy Design

26

Design challenges

27

Challenge #1
How do we test multiple transactions efficiently?

Challenge #2:
How do we leverage intra-transaction dependencies?

Challenge #3
How do we generate high-quality multi-transaction test cases?

Fluffy (Our fuzzer)

28

Solution #1
Modifies existing clients to enable an efficient execution model

Solution #2
Test case design that encodes intra-transaction dependencies

Solution #3
Context, bytecode, and parameter mutation strategies that
reduce erroneous test cases

Fluffy overview

29

Fluffy
Client A

Client B

Mutator Corpus

(1) Pick

Fluffy overview

30

Fluffy

Test Case

Mutator Corpus

Block Block

Tx1 Tx2 Tx3

(2) Mutate

Client A

Client B

Fluffy overview

31

Fluffy

Test Case Client A

Client B

Mutator Corpus

S0 Tx1 S1 Tx2 S2

Block Block

Tx1 Tx2 Tx3

Tx3 S3

S0 Tx1 S1’ Tx2 S2’ Tx3 S3’

(3) Execute

Fluffy overview

32

Fluffy

Test Case Client A

Client B

Mutator Corpus

S0 Tx1 S1 Tx2 S2

S1

S2

Block Block

Tx1 Tx2 Tx3

Tx3 S3

S0 Tx1 S1’ Tx2 S2’ Tx3 S3’

S3

S1’

S2’

S3’

(4) Code coverage feedback
& Output blockchain states

Fluffy overview

33

Fluffy

Test Case

Checker

Client A

Client B

Mutator Corpus

S0 Tx1 S1 Tx2 S2

S1

S2

Block Block

Tx1 Tx2 Tx3

Tx3 S3

S0 Tx1 S1’ Tx2 S2’ Tx3 S3’

S3

S1’

S2’

S3’

(5) Save

Implementation
& Evaluation

34

Implementation

35

Integrations
● Built on top of libFuzzer using Rust and Go
● Supports fuzzing Geth and OpenEthereum (Used by 98% of nodes)

Fuzzing harnesses for optimized execution
● In-process fuzzing
● Skip transaction verification
● Disable JUMPDEST checking

Crash debugger for finding the root cause

Evaluation

36

Bug finding capability

Code coverage

Throughput

37

Single machine
● CPU: Intel(R) Xeon(R) CPU E5-2680 v3 (12 cores)
● Memory: 128 GB memory

Systems
● Fluffy: Our Fluffy implementation
● Fluffy-Random-Bytecode: Modified Fluffy that randomly generates bytecode
● EVMLab: A state-of-the-art fuzzer for Ethereum

Ethereum clients
● OpenEthereum v3.0.0
● Geth v1.9.14

Evaluation setup

38

Bug finding capability
Total 15 consensus bugs found since Ethereum launched in 2014
● Bug #1 and Bug #2: New consensus bugs found by Fluffy
● Bug #3 ~ Bug #15: Consensus bugs that were reported to be found

Bugs we do not experiment with
● Bug #3: Block mining, which Fluffy does not focus on
● Bug #5: Signature verification, which Fluffy does not focus on
● Bug #6: Was fixed by using a different library
● Bug #14: Details are undisclosed

Result
● Out of 11 bugs, Fluffy finds 10 bugs within just 12 hours
● Fluffy fails to find Bug #9, which requires specific inputs that satisfy tight

branch conditions to trigger (originally found with manual auditing)

Code coverage (Higher is better)

39

Code coverage (Higher is better)

40

2.7X EVMLab
1.8X Random bytecode

Throughput (Higher is better)

41

Throughput (Higher is better)

42

510X Transactions
55X Iterations

43

● Problem: Find new consensus bugs in Ethereum
● Solution: Multi-transaction differential fuzzer
● Result

○ Found two new high-impact consensus bugs that were
exploitable on the live Ethereum mainnet

○ Can find 10 out of 11 consensus bugs within 12 hours
○ vs. EVMLab: 2.7X code coverage, 510X throughput

https://github.com/snuspl/fluffy

Conclusion: Fluffy

https://github.com/snuspl/fluffy

