
Nap: A Black-Box Approach to NUMA-Aware
Persistent Memory Indexes

Qing Wang, Youyou Lu, Junru Li, Jiwu Shu

Tsinghua University

Persistent Memory (PM)

Enjoy benefits of both storage and memory !

2

Storage Features
v Persistent
v High-density

Memory Features
v Byte-addressable
v High-performance

The figure of Optane DIMM is from https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html

PM Indexes

3

A PM Index is
v Crash-consistent
v Without de(serialization) at runtime
v Support instant recovery

CDDS (FAST’11)

NV-Tree (FAST’15)

WORT (FAST’17)

Level (OSDI’18)

CCEH (FAST’19)

Recipe (SOSP’19)

Clevel (ATC’20)

TIPS (ATC’21)

Simulation & Emulation Optane DIMM

Ba
nd

w
id

th
 (G

B/
s)

 # of Threads

Local Access Remote Access

0

2

4

6

3 6 9 12 15 18

NUMA impacts on PM Indexes (1)

4

However, NUMA impacts on PM Indexes are under-explored

Write Bandwidth

3 Optane DIMMs

D
R

A
M

PM

D
R

A
M

PM

node 0 node 1

UPI

local

remote

Ba
nd

w
id

th
 (G

B/
s)

 # of Threads

Local Access Remote Access

0

2

4

6

3 6 9 12 15 18

NUMA impacts on PM Indexes (1)

4

However, NUMA impacts on PM Indexes are under-explored

Write Bandwidth

3 Optane DIMMs

D
R

A
M

PM

D
R

A
M

PM

node 0 node 1

UPI

1) Peak remote PM write bandwidth is low
2) Concurrent remote accesses cause bandwidth collapses
The result is consistent with multiple recent studies (e.g., FAST’19, FAST’21, SIGMOD’21)

local

remote

NUMA impacts on PM Indexes (2)

5

Take CCEH (FAST’19, Hash Table) as an example

Insert op, up to 5 remote PM accesses

of Threads

Th
ro

ug
hp

ut
 (M

op
s/

s)

0

2

4

6

0 18 36 54 72

4 nodes, 50% insert/update, Zipfian 0.99

NUMA impacts on PM Indexes (2)

5

Take CCEH (FAST’19, Hash Table) as an example

Insert op, up to 5 remote PM accesses

of Threads

Th
ro

ug
hp

ut
 (M

op
s/

s)

0

2

4

6

0 18 36 54 72

4 nodes, 50% insert/update, Zipfian 0.99

NUMA impacts on PM Indexes (2)

5

Take CCEH (FAST’19, Hash Table) as an example

Insert op, up to 5 remote PM accesses

of Threads

Th
ro

ug
hp

ut
 (M

op
s/

s)

0

2

4

6

0 18 36 54 72

4 nodes, 50% insert/update, Zipfian 0.99

NUMA impacts on PM Indexes (2)

5

Take CCEH (FAST’19, Hash Table) as an example

Insert op, up to 5 remote PM accesses

of Threads

Th
ro

ug
hp

ut
 (M

op
s/

s)

0

2

4

6

0 18 36 54 72

4 nodes, 50% insert/update, Zipfian 0.99

NUMA impacts on PM Indexes (2)

5

Take CCEH (FAST’19, Hash Table) as an example

Insert op, up to 5 remote PM accesses

of Threads

Th
ro

ug
hp

ut
 (M

op
s/

s)

0

2

4

6

0 18 36 54 72

4 nodes, 50% insert/update, Zipfian 0.99

A fast PM index should reduces remote PM accesses, especially for writes

Limitations of Replication-based Approach

6

NUMA-aware DRAM indexes always use replication

node 0 node 1

Op Log

Each NUMA node maintains an index replica
A shared log records index operations
Synchronize replicas via replaying log entries

Node Replication
(ASPLOS’17)

Limitations of Replication-based Approach

6

NUMA-aware DRAM indexes always use replication

node 0 node 1

Op Log

Each NUMA node maintains an index replica
A shared log records index operations
Synchronize replicas via replaying log entries

Node Replication
(ASPLOS’17)

Three critical limitations :
v No crash consistency

v Multiple times of PM consumption

v Amplifying local accesses significantly

v Every update op is executed on every node

v PM has limited write bandwidth (1/6 DRAM)

v Background & Motivation

v Nap – a Black-Box Approach to NUMA-Aware PM Indexes

v Results

v Takeaways

Outline

7

Key Idea (1) - Making Hot Accesses NUMA-aware

Modern workloads always feature skewed access patterns
v YCSB (SOCC’10), Twitter cache workloads (OSDI’20) ….
v Top 100K hottest items receive > 50% accesses (typical Zipfian 0.99, 2 billion items)

8

Key Idea (1) - Making Hot Accesses NUMA-aware

Modern workloads always feature skewed access patterns
v YCSB (SOCC’10), Twitter cache workloads (OSDI’20) ….
v Top 100K hottest items receive > 50% accesses (typical Zipfian 0.99, 2 billion items)

8

Nap uses a NUMA-aware layer (NAL) to absorb hot accesses

Key Idea (1) - Making Hot Accesses NUMA-aware

Modern workloads always feature skewed access patterns
v YCSB (SOCC’10), Twitter cache workloads (OSDI’20) ….
v Top 100K hottest items receive > 50% accesses (typical Zipfian 0.99, 2 billion items)

8

Nap uses a NUMA-aware layer (NAL) to absorb hot accesses

Raw PM index

NAL

node 0 node 1hot accesses

cold accesses

Two components:
v Raw PM index – accommodate a large

number of cold items
v NAL – handle accesses to hot items in a

NUMA-aware way

Key Idea (1) - Making Hot Accesses NUMA-aware

9

Raw PM index

NAL

node 0 node 1
hot accesses

cold accesses

Eliminate lots of remote PM accesses
v Hot items receive a significant percentage of accesses

Black-box approach
v Raw PM index can be any concurrent PM index

v Do not require inner-knowledge of raw PM index

Bounded memory usage and recovery time
v Small hot set => Small NAL

NAL brings three advantages

Key Idea (2) - Minimizing PM State Synchronization

10

node 0 node 1

PM-resident partial view partial view

NAL

v NAL maintains per-node partial views in PM

v partial views absorb updates from local threads

v forbid PM state sync between partial views
v avoid amplification of local PM accesses

no sync

insert/update/delete

Challenges for Practical Design

11

Making key ideas practical must address several challenges

How to serve lookups to hot items ?
v the latest value of hot items can be in any partial view (so we call it partial)

How to ensure recoverability ?
v upon recovery, restoring the system into a correct state when there are multiple partial views

How to handle hotspots shift ?
v hotspots shift over time

Global View

12

Nap uses a DRAM-resident global view for lookups to hot items

node 0 node 1

DRAM

partial view partial view

NAL

global view

PM

Global View

12

Nap uses a DRAM-resident global view for lookups to hot items

node 0 node 1

DRAM

partial view partial view

NAL

insert/update/delete

global view

PM

�

Global View

12

Nap uses a DRAM-resident global view for lookups to hot items

node 0 node 1

DRAM

partial view partial view

NAL

insert/update/delete

global view

PM �

�

Global View

12

Nap uses a DRAM-resident global view for lookups to hot items

node 0 node 1

DRAM

partial view partial view

NAL

insert/update/delete

global view

PM

lookup

�

�

Global View

12

Nap uses a DRAM-resident global view for lookups to hot items

node 0 node 1

DRAM

partial view partial view

NAL

insert/update/delete

global view

PM

lookup

�

�
Range queries
merge items from global view
and raw PM index

Global View

12

Nap uses a DRAM-resident global view for lookups to hot items

node 0 node 1

DRAM

partial view partial view

NAL

insert/update/delete

global view

PM

lookup

�

�
Range queries
merge items from global view
and raw PM index

Concurrency Control
global view maintains readers-
writer locks for each hot item

Version-based Updates

13

Nap uses versions to order updates to different partial views

node 0 node 1

DRAM

partial view partial view

NAL

global view

PM

<K, V1, 6>

<K, V1, 6>

Raw PM index

Version-based Updates

13

Nap uses versions to order updates to different partial views

node 0 node 1

DRAM

partial view partial view

NAL

update(K, V2)

global view

PM

�
<K, V1, 6>

<K, V1, 6>

Raw PM index

Version-based Updates

13

Nap uses versions to order updates to different partial views

node 0 node 1

DRAM

partial view partial view

NAL

update(K, V2)

global view

PM �

�
<K, V1, 6>

<K, V1, 6>

update(K, V2, ver=7)

<K, V2, 7>

Raw PM index

Updates to partial
views are crash-
consistent

Version-based Updates

13

Nap uses versions to order updates to different partial views

node 0 node 1

DRAM

partial view partial view

NAL

update(K, V2)

global view

PM �

�
<K, V1, 6>

<K, V1, 6>

update(K, V2, ver=7)

<K, V2, 7>

<K, V2, 7>

�

Raw PM index

Updates to partial
views are crash-
consistent

Version-based Updates

13

Nap uses versions to order updates to different partial views

node 0 node 1

DRAM

partial view partial view

NAL

PM

<K, V1, 6> <K, V2, 7>

Raw PM index

Updates to partial
views are crash-
consistent

Version-based Updates

13

Nap uses versions to order updates to different partial views

node 0 node 1

DRAM

partial view partial view

NAL

PM

<K, V1, 6> <K, V2, 7>

Raw PM index

Updates to partial
views are crash-
consistent

V2 is the latest, since 7 > 6

Version-based Updates

13

Nap uses versions to order updates to different partial views

node 0 node 1

DRAM

partial view partial view

NAL

PM

<K, V1, 6> <K, V2, 7>

Raw PM index

Updates to partial
views are crash-
consistent

update(K, V2)

V2 is the latest, since 7 > 6

NAL Switch (1) – Detect Hot Set

14

Nap switches to a new NAL when detecting a new hot set

v Access threads publish their access patterns

using sampling

v A dedicated switch thread produces current
hot set

v a count-min sketch estimates frequency of keys

v a min heap records the current hot set

NAL Switch (2) – Three Phase Switch

15

A grace-period-based method to minimize blocking

NAL-old

cur = NAL-old
pre = null

Global Pointers

cur = NAL-old
pre = null

save a snapshot of {cur, pre}
before an operation

NAL Switch (2) – Three Phase Switch

15

A grace-period-based method to minimize blocking

Phase 1: Initialize and install a new NAL

v change global pointers, making NAL-new visible

v some threads see concurrent switch, others don’t

v if seeing switch, updates to NAL-old are blocked

NAL-old

cur = NAL-old
pre = null

Global Pointers

cur = NAL-old
pre = null

NAL-new

cur = NAL-new
pre = NAL-old

NAL Switch (2) – Three Phase Switch

15

A grace-period-based method to minimize blocking

Phase 1: Initialize and install a new NAL

v change global pointers, making NAL-new visible

v some threads see concurrent switch, others don’t

v if seeing switch, updates to NAL-old are blocked

NAL-old

cur = NAL-old
pre = null

Global Pointers

cur = NAL-old
pre = null

NAL-new

cur = NAL-new
pre = NAL-old

cur = NAL-new
pre = NAL-old

NAL Switch (2) – Three Phase Switch

15

A grace-period-based method to minimize blocking

Phase 1: Initialize and install a new NAL

v change global pointers, making NAL-new visible

v some threads see concurrent switch, others don’t

v if seeing switch, updates to NAL-old are blocked

NAL-old

cur = NAL-old
pre = null

Global Pointers

cur = NAL-old
pre = null

NAL-new

cur = NAL-new
pre = NAL-old

cur = NAL-new
pre = NAL-old

lookup/update

NAL Switch (2) – Three Phase Switch

15

A grace-period-based method to minimize blocking

Phase 1: Initialize and install a new NAL

v change global pointers, making NAL-new visible

v some threads see concurrent switch, others don’t

v if seeing switch, updates to NAL-old are blocked

NAL-old

cur = NAL-old
pre = null

Global Pointers

cur = NAL-old
pre = null

NAL-new

cur = NAL-new
pre = NAL-old

cur = NAL-new
pre = NAL-old

lookup/update

lookup

updates are blocked

NAL Switch (2) – Three Phase Switch

15

A grace-period-based method to minimize blocking

Phase 1: Initialize and install a new NAL

v change global pointers, making NAL-new visible

v some threads see concurrent switch, others don’t

v if seeing switch, updates to NAL-old are blocked

Phase 2: Flush NAL-old

v wait for a grace period, to ensure no updates on NAL-old

v flush items from global view of NAL-old into raw PM index
NAL-old

cur = NAL-old
pre = null

Global Pointers

cur = NAL-old
pre = null

NAL-new

cur = NAL-new
pre = NAL-old

cur = NAL-new
pre = NAL-old

updates are blocked

flush
a grace period

cur = NAL-new
pre = NAL-old

Phase 1: Initialize and install a new NAL
v change global pointers, making NAL-new visible

v some threads see concurrent switch, others don’t

v if seeing switch, updates to NAL-old are blocked

Phase 2: Flush NAL-old
v wait for a grace period, to ensure no updates on NAL-old

v flush items from global view of NAL-old into raw PM index

Phase 3: Recycle NAL-old
v set global pointer pre to null

v wait for a grace period, to ensure no lookups on NAL-old

v release PM/DRAM space of NAL-old

NAL Switch (2) – Three Phase Switch

15

A grace-period-based method to minimize blocking

cur = NAL-old
pre = null

Global Pointers

cur = NAL-old
pre = null

NAL-new

cur = NAL-new
pre = NAL-old

cur = NAL-new
pre = NAL-old

cur = NAL-new
pre = NAL-old

cur = NAL-new
pre = null

cur = NAL-new
pre = null

cur = NAL-new
pre = null

a grace period

NAL Switch (2) – Three Phase Switch

15

A grace-period-based method to minimize blocking

cur = NAL-old
pre = null

Global Pointers

cur = NAL-old
pre = null

NAL-new

cur = NAL-new
pre = NAL-old

cur = NAL-new
pre = NAL-old

cur = NAL-new
pre = NAL-old

cur = NAL-new
pre = null

cur = NAL-new
pre = null

cur = NAL-new
pre = nullPhase 1: Initialize and install a new NAL

Phase 2: Flush NAL-old

Phase 3: Recycle NAL-old

Only updates to NAL-old during phase 2 are blocked

Such a blocking has only a small impact since:
1) Current hot items are handled by NAL-new

2) Flushing NAL-old is data-race-free

v Background & Motivation

v Nap – a Black-Box Approach to NUMA-Aware PM Indexes

v Results

v Takeaways

Outline

16

Experimental Setup

Hardware Platform

CPU 4 * Intel Xeon Gold 6240M CPUs, 18 cores per node

PM 12 * 128GB Optane DIMMs (3 per node)

DRAM 12 * 32GB DDR4 DIMMs (3 per node)

17

Experimental Setup

Hardware Platform

CPU 4 * Intel Xeon Gold 6240M CPUs, 18 cores per node

PM 12 * 128GB Optane DIMMs (3 per node)

DRAM 12 * 32GB DDR4 DIMMs (3 per node)

Converted PM indexes

17

v Hash tables: CCEH (FAST’19), P-CLHT (SOSP’19), Clevel (ATC’20)

v Trees: FAST_FAIR (FAST’18), P-Masstree (SOSP’19)

Experimental Setup

Hardware Platform

CPU 4 * Intel Xeon Gold 6240M CPUs, 18 cores per node

PM 12 * 128GB Optane DIMMs (3 per node)

DRAM 12 * 32GB DDR4 DIMMs (3 per node)

Converted PM indexes

17

v Hash tables: CCEH (FAST’19), P-CLHT (SOSP’19), Clevel (ATC’20)

v Trees: FAST_FAIR (FAST’18), P-Masstree (SOSP’19)

Nap’s Setting
v Hot set size: 100K items

Experimental Setup

Hardware Platform

CPU 4 * Intel Xeon Gold 6240M CPUs, 18 cores per node

PM 12 * 128GB Optane DIMMs (3 per node)

DRAM 12 * 32GB DDR4 DIMMs (3 per node)

Converted PM indexes

Benchmark: YCSB-like, Zipfian 0.99, 15-byte keys and 8-byte values

17

v Hash tables: CCEH (FAST’19), P-CLHT (SOSP’19), Clevel (ATC’20)

v Trees: FAST_FAIR (FAST’18), P-Masstree (SOSP’19)

Nap’s Setting
v Hot set size: 100K items

18

Thread Count Vertical lines show boundaries between nodes

T
hr

ou
gh

pu
t

(M
op

s/
s) Write-intensive

(50% lookup,
50% update/insert)

Read-intensive
(95% lookup,
5% update/insert)

CCEH Clevel P-CLHT P-Masstree FAST_FAIR

Overall Performance

0

10

20

0

5

10

0 18 36 54 72
0

10

20

0

2

4

0 18 36 54 72
0

20

40

0

10

20

0 18 36 54 72
0

10

20

30

0

10

20

0 18 36 54 72
0
2
4
6
8

0

2

4

6

0 18 36 54 72

Nap w/o Nap

0

10

20

0

5

10

0 18 36 54 72

18

Thread Count Vertical lines show boundaries between nodes

T
hr

ou
gh

pu
t

(M
op

s/
s) Write-intensive

(50% lookup,
50% update/insert)

Read-intensive
(95% lookup,
5% update/insert)

CCEH Clevel P-CLHT P-Masstree FAST_FAIR

Nap-converted indexes yield much better scalability under multi-node servers (up to 2.3X)
v NAL absorbs 45% - 54% operations (hot accesses)

v In NAL, partial views eliminate remote PM writes and global view eliminates remote PM reads

Overall Performance

0

10

20

0

5

10

0 18 36 54 72
0

10

20

0

2

4

0 18 36 54 72
0

20

40

0

10

20

0 18 36 54 72
0

10

20

30

0

10

20

0 18 36 54 72
0
2
4
6
8

0

2

4

6

0 18 36 54 72

Nap w/o Nap

0

10

20

0

5

10

0 18 36 54 72

2.3×

19

workload changes

switch begins

switch ends
(a) 3-phase switch

(b) global lock

workload changes

switch begins
switch ends

0

10k

20k

10k

20k

3000 4000 5000 6000

Dynamic Workloads

Global lock: NAL switch acquires the
write lock, and every index operation
acquires the read lock

v P-Masstree
v 71 threads
v Write-intensive workloads
v Workload changes at time 4s

Times (ms)

T
hr

ou
gh

pu
t

(o
ps

/m
s)

19

workload changes

switch begins

switch ends
(a) 3-phase switch

(b) global lock

workload changes

switch begins
switch ends

0

10k

20k

10k

20k

3000 4000 5000 6000

Dynamic Workloads

Global lock: NAL switch acquires the
write lock, and every index operation
acquires the read lock

v P-Masstree
v 71 threads
v Write-intensive workloads
v Workload changes at time 4s

Times (ms)

T
hr

ou
gh

pu
t

(o
ps

/m
s)

Nap is robust enough to react to dynamic workloads quickly without sacrificing availability

unavailable (i.e., throughput is 0) for about 195ms)

>10K ops/ms for about 130ms, then drops to
4K~8K ops/ms for about 35ms

20

Overheads of Nap

vThroughput degradation under scan-intensive workloads
v 3% for FAST_FAIR, 14% for P-Masstree

v PM and DRAM consumption
v Less than 70MB when NAL maintains 100K hot items

v Recovery time
v 300ms ~ 1000ms

v Background & Motivation

v Nap – a Black-Box Approach to NUMA-Aware PM Indexes

v Results

v Takeaways

Outline

21

22

Takeaway 1

A fast NUMA-aware PM index must reduce remote PM accesses

without consuming extra local PM bandwidth

23

Takeaway 2

Minimizing remote PM accesses

No extra local PM accesses Constant DRAM/PM consumption

Cannot Pick Three

A PM index is impossible to be optimal in three aspects at the same time

23

Takeaway 2

Minimizing remote PM accesses

No extra local PM accesses Constant DRAM/PM consumption

Cannot Pick Three

A PM index is impossible to be optimal in three aspects at the same time

Nap achieves a sweet spot by leveraging the characteristics of common skewed
workloads with two key ideas:

1) making hot accesses NUMA-aware
2) minimizing PM state synchronization between NUMA nodes

partially meet (remote PM accesses
to cold items cannot be reduced)

fully meet fully meet

Thanks & QA

Contact Information: q-wang18@mails.tsinghua.edu.cn

Nap: A Black-Box Approach to NUMA-Aware
Persistent Memory Indexes

24

