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Persistent Memory (PM)

Enjoy benefits of both storage and memory !
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Storage Features
v Persistent
v High-density

Memory Features 
v Byte-addressable
v High-performance

The figure of Optane DIMM is from https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html 



PM Indexes
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A PM Index is 
v Crash-consistent
v Without de(serialization) at runtime
v Support instant recovery

CDDS (FAST’11)

NV-Tree (FAST’15)

WORT (FAST’17)

Level (OSDI’18)

CCEH (FAST’19)

Recipe (SOSP’19)

Clevel (ATC’20)

TIPS (ATC’21)

Simulation & Emulation Optane DIMM
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However,  NUMA impacts on PM Indexes are under-explored
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However,  NUMA impacts on PM Indexes are under-explored
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1) Peak remote PM write bandwidth is low
2) Concurrent remote accesses cause bandwidth collapses
The result is consistent with multiple recent studies (e.g., FAST’19, FAST’21, SIGMOD’21)

local

remote



NUMA impacts on PM Indexes (2)
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Take CCEH (FAST’19, Hash Table) as an example 

Insert op,  up to 5 remote PM accesses

# of Threads

Th
ro

ug
hp

ut
 (M

op
s/

s)

0

2

4

6

0 18 36 54 72

4 nodes, 50% insert/update, Zipfian 0.99 



NUMA impacts on PM Indexes (2)

5

Take CCEH (FAST’19, Hash Table) as an example 

Insert op,  up to 5 remote PM accesses

# of Threads

Th
ro

ug
hp

ut
 (M

op
s/

s)

0

2

4

6

0 18 36 54 72

4 nodes, 50% insert/update, Zipfian 0.99 



NUMA impacts on PM Indexes (2)

5

Take CCEH (FAST’19, Hash Table) as an example 

Insert op,  up to 5 remote PM accesses

# of Threads

Th
ro

ug
hp

ut
 (M

op
s/

s)

0

2

4

6

0 18 36 54 72

4 nodes, 50% insert/update, Zipfian 0.99 



NUMA impacts on PM Indexes (2)

5

Take CCEH (FAST’19, Hash Table) as an example 

Insert op,  up to 5 remote PM accesses

# of Threads

Th
ro

ug
hp

ut
 (M

op
s/

s)

0

2

4

6

0 18 36 54 72

4 nodes, 50% insert/update, Zipfian 0.99 



NUMA impacts on PM Indexes (2)

5

Take CCEH (FAST’19, Hash Table) as an example 

Insert op,  up to 5 remote PM accesses
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4 nodes, 50% insert/update, Zipfian 0.99 

A fast PM index should reduces remote PM accesses, especially for writes



Limitations of Replication-based Approach 
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NUMA-aware DRAM indexes always use replication  

node 0 node 1

Op Log

Each NUMA node maintains an index replica
A shared log records index operations
Synchronize replicas via replaying log entries

Node Replication 
(ASPLOS’17 )



Limitations of Replication-based Approach 

6

NUMA-aware DRAM indexes always use replication  

node 0 node 1

Op Log

Each NUMA node maintains an index replica
A shared log records index operations
Synchronize replicas via replaying log entries

Node Replication 
(ASPLOS’17 )

Three critical limitations :
v No crash consistency

v Multiple times of PM consumption

v Amplifying local accesses significantly

v Every update op is executed on every node

v PM has limited write bandwidth (1/6 DRAM)



v Background & Motivation

v Nap – a Black-Box Approach to NUMA-Aware PM Indexes

v Results

v Takeaways

Outline
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Key Idea (1) - Making Hot Accesses NUMA-aware

Modern workloads always feature skewed access patterns
v YCSB (SOCC’10), Twitter cache workloads (OSDI’20) ….
v Top 100K hottest items receive > 50% accesses (typical Zipfian 0.99, 2 billion items)

8
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Nap uses a NUMA-aware layer (NAL) to absorb hot accesses

Raw PM index

NAL

node 0 node 1hot accesses

cold accesses

Two components:
v Raw PM index – accommodate a large

number of cold items
v NAL – handle accesses to hot items in a        

NUMA-aware way 



Key Idea (1) - Making Hot Accesses NUMA-aware
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Raw PM index

NAL

node 0 node 1
hot accesses

cold accesses

Eliminate lots of remote PM accesses
v Hot items receive a significant percentage of accesses

Black-box approach
v Raw PM index can be any concurrent PM index

v Do not require inner-knowledge of raw PM index

Bounded memory usage and recovery time
v Small hot set => Small NAL

NAL brings three advantages



Key Idea (2) - Minimizing PM State Synchronization
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node 0 node 1

PM-resident partial view partial view

NAL

v NAL maintains per-node partial views in PM

v partial views absorb updates from local threads

v forbid PM state sync between partial views
v avoid amplification of local PM accesses

no sync

insert/update/delete



Challenges for Practical Design
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Making key ideas practical must address several challenges 

How to serve lookups to hot items ?
v the latest value of hot items can be in any partial view (so we call it partial)

How to ensure recoverability ?
v upon recovery,  restoring the system into a correct state when there are multiple partial views

How to handle hotspots shift ? 
v hotspots shift over time



Global View
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Nap uses a DRAM-resident global view for lookups to hot items

node 0 node 1

DRAM

partial view partial view

NAL

global view

PM
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Nap uses a DRAM-resident global view for lookups to hot items
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Range queries 
merge items from global view 
and raw PM index
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Nap uses a DRAM-resident global view for lookups to hot items

node 0 node 1

DRAM

partial view partial view

NAL

insert/update/delete

global view

PM

lookup

�

�
Range queries 
merge items from global view 
and raw PM index

Concurrency Control
global view maintains readers-
writer locks for each hot item



Version-based Updates
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Nap uses versions to order updates to different partial views

node 0 node 1

DRAM

partial view partial view

NAL

global view

PM

<K, V1, 6>

<K, V1, 6>

Raw PM index
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Nap uses versions to order updates to different partial views
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partial view partial view
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Raw PM index

Updates to partial 
views are crash-
consistent

update(K, V2)

V2 is the latest, since 7 > 6



NAL Switch (1) – Detect Hot Set
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Nap switches to a new NAL when detecting a new hot set  

v Access threads publish their access patterns

using sampling

v A dedicated switch thread produces current 
hot set

v a count-min sketch estimates frequency of keys

v a min heap records the current hot set



NAL Switch (2) – Three Phase Switch
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A grace-period-based method to minimize blocking

NAL-old

cur = NAL-old 
pre = null

Global Pointers

cur = NAL-old
pre = null

save a snapshot of {cur, pre} 
before an operation
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A grace-period-based method to minimize blocking

Phase 1: Initialize and install a new NAL

v change global pointers, making NAL-new visible

v some threads see concurrent switch, others don’t

v if seeing switch, updates to NAL-old are blocked
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A grace-period-based method to minimize blocking

Phase 1: Initialize and install a new NAL

v change global pointers, making NAL-new visible

v some threads see concurrent switch, others don’t
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A grace-period-based method to minimize blocking

Phase 1: Initialize and install a new NAL

v change global pointers, making NAL-new visible

v some threads see concurrent switch, others don’t

v if seeing switch, updates to NAL-old are blocked

Phase 2:  Flush NAL-old

v wait for a grace period, to ensure no updates on NAL-old

v flush items from global view of NAL-old into raw PM index
NAL-old

cur = NAL-old 
pre = null

Global Pointers

cur = NAL-old
pre = null

NAL-new

cur = NAL-new 
pre = NAL-old

cur = NAL-new
pre = NAL-old

updates are blocked

flush
a grace period

cur = NAL-new
pre = NAL-old



Phase 1: Initialize and install a new NAL
v change global pointers, making NAL-new visible

v some threads see concurrent switch, others don’t

v if seeing switch, updates to NAL-old are blocked

Phase 2:  Flush NAL-old
v wait for a grace period, to ensure no updates on NAL-old

v flush items from global view of NAL-old into raw PM index

Phase 3:  Recycle NAL-old
v set global pointer pre to null 

v wait for a grace period, to ensure no lookups on NAL-old

v release PM/DRAM space of NAL-old

NAL Switch (2) – Three Phase Switch
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A grace-period-based method to minimize blocking

cur = NAL-old 
pre = null

Global Pointers

cur = NAL-old
pre = null

NAL-new

cur = NAL-new 
pre = NAL-old

cur = NAL-new
pre = NAL-old

cur = NAL-new
pre = NAL-old

cur = NAL-new 
pre = null

cur = NAL-new
pre = null

cur = NAL-new
pre = null

a grace period
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A grace-period-based method to minimize blocking

cur = NAL-old 
pre = null

Global Pointers

cur = NAL-old
pre = null

NAL-new

cur = NAL-new 
pre = NAL-old

cur = NAL-new
pre = NAL-old

cur = NAL-new
pre = NAL-old

cur = NAL-new 
pre = null

cur = NAL-new
pre = null

cur = NAL-new
pre = nullPhase 1: Initialize and install a new NAL

Phase 2:  Flush NAL-old

Phase 3:  Recycle NAL-old

Only updates to NAL-old during phase 2 are blocked

Such a blocking has only a small impact since:
1) Current hot items are handled by NAL-new

2) Flushing NAL-old is data-race-free
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v Results

v Takeaways
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Experimental Setup

Hardware Platform 

CPU 4 * Intel Xeon Gold 6240M CPUs, 18 cores per node

PM 12 * 128GB Optane DIMMs (3 per node)

DRAM 12 * 32GB DDR4 DIMMs (3 per node)

17
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Hardware Platform 

CPU 4 * Intel Xeon Gold 6240M CPUs, 18 cores per node

PM 12 * 128GB Optane DIMMs (3 per node)

DRAM 12 * 32GB DDR4 DIMMs (3 per node)

Converted PM indexes

Benchmark: YCSB-like, Zipfian 0.99, 15-byte keys and 8-byte values

17

v Hash tables: CCEH (FAST’19), P-CLHT (SOSP’19), Clevel (ATC’20)

v Trees: FAST_FAIR (FAST’18), P-Masstree (SOSP’19)

Nap’s Setting
v Hot set size: 100K items
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Nap-converted indexes yield much better scalability under multi-node servers (up to 2.3X)
v NAL absorbs 45% - 54% operations (hot accesses)

v In NAL, partial views eliminate remote PM writes and global view eliminates remote PM reads
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workload changes

switch begins

switch ends
(a) 3-phase switch

(b) global lock

workload changes

switch begins
switch ends
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Dynamic Workloads

Global lock: NAL switch acquires the 
write lock, and every index operation 
acquires the read lock 

v P-Masstree
v 71 threads
v Write-intensive workloads
v Workload changes at time 4s
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workload changes

switch begins

switch ends
(a) 3-phase switch

(b) global lock

workload changes
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Global lock: NAL switch acquires the 
write lock, and every index operation 
acquires the read lock 

v P-Masstree
v 71 threads
v Write-intensive workloads
v Workload changes at time 4s
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Nap is robust enough to react to dynamic workloads quickly without sacrificing availability

unavailable (i.e., throughput is 0) for about 195ms)

>10K ops/ms for about 130ms, then drops to 
4K~8K ops/ms for about 35ms
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Overheads of Nap

vThroughput degradation under scan-intensive workloads
v 3% for FAST_FAIR, 14% for P-Masstree

v PM and DRAM consumption
v Less than 70MB when NAL maintains 100K hot items

v Recovery time
v 300ms ~ 1000ms
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Takeaway 1

A fast NUMA-aware PM index must reduce remote PM accesses 

without consuming extra local PM bandwidth
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Takeaway 2

Minimizing remote PM accesses

No extra local PM accesses Constant DRAM/PM consumption

Cannot Pick Three

A PM index is impossible to be optimal in three aspects at the same time 
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Takeaway 2

Minimizing remote PM accesses

No extra local PM accesses Constant DRAM/PM consumption

Cannot Pick Three

A PM index is impossible to be optimal in three aspects at the same time 

Nap achieves a sweet spot by leveraging the characteristics of common skewed 
workloads with two key ideas: 

1) making hot accesses NUMA-aware 
2) minimizing PM state synchronization between NUMA nodes

partially meet (remote PM accesses 
to cold items cannot be reduced)

fully meet fully meet



Thanks & QA

Contact Information: q-wang18@mails.tsinghua.edu.cn
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Persistent Memory Indexes
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