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Goals:
● Affordability
● Scalability
● Performance



0

1

2

3 4
5

1 L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou,and Y. Dai. 
NeuGraph: Parallel deep neural network computation on large 
graphs. In USENIX ATC, pages 443–457, 2019.

4

0

1-hop neighbors

1

2

3

2-hop neighbors

2

0

1

4

5

0

0

Stages of a Graph Neural Network



0

1

2

3 4
5

1 L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou,and Y. Dai. 
NeuGraph: Parallel deep neural network computation on large 
graphs. In USENIX ATC, pages 443–457, 2019.

5

Edge-cut 
partition

0

1-hop neighbors

1

2

3

2-hop neighbors

2

0

1

4

5

0

0

Stages of a Graph Neural Network



2-hop neighbors

0

1

2

3 4
5

1-hop neighbors
6

Edge-cut 
partition

1

2

3

2

0

1

4

5

0

0

0

Scatter

Message passing 
along edges

Stages of a Graph Neural Network



2-hop neighbors

0

1

2

3 4
5

1-hop neighbors
7

Edge-cut 
partition

1

2

3

2

0

1

4

5

0

0

Apply 
Edge

0

Scatter

Apply neural network on 
edge data

Stages of a Graph Neural Network



2-hop neighbors

0

1

2

3 4
5

1-hop neighbors
8

Edge-cut 
partition

1

2

3

2

0

1

4

5

0

0

Apply 
Edge

0

Scatter Gather

Aggregate messages from 
neighbors

Stages of a Graph Neural Network



2-hop neighbors

0

1

2

3 4
5

1 L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou,and Y. Dai. 
NeuGraph: Parallel deep neural network computation on large 
graphs. In USENIX ATC, pages 443–457, 2019. 1-hop neighbors

9

Edge-cut 
partition

1

2

3

2

0

1

4

5

0

0

Apply 
Edge

0

Apply 
VertexScatter Gather

SAGA-NN1

Apply neural network on 
aggregated data

Stages of a Graph Neural Network



2-hop neighbors

0

1

2

3 4
5

1 L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou,and Y. Dai. 
NeuGraph: Parallel deep neural network computation on large 
graphs. In USENIX ATC, pages 443–457, 2019. 1-hop neighbors

10

Edge-cut 
partition

1

2

3

2

0

1

4

5

0

0

Apply 
Edge

0

Apply 
VertexScatter Gather

SAGA-NN1

Stages of a Graph Neural Network



2-hop neighbors

0

1

2

3 4
5

1 L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou,and Y. Dai. 
NeuGraph: Parallel deep neural network computation on large 
graphs. In USENIX ATC, pages 443–457, 2019. 1-hop neighbors

11

Edge-cut 
partition

1

2

3

2

0

1

4

5

0

0

Apply 
Edge

0

Apply 
VertexScatter Gather

SAGA-NN1

Stages of a Graph Neural Network



2-hop neighbors

0

1

2

3 4
5

1 L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou,and Y. Dai. 
NeuGraph: Parallel deep neural network computation on large 
graphs. In USENIX ATC, pages 443–457, 2019. 1-hop neighbors

12

Edge-cut 
partition

1

2

3

2

0

1

4

5

0

0

Apply 
Edge

0

Apply 
VertexScatter Gather

SAGA-NN1

Stages of a Graph Neural Network



2-hop neighbors

0

1

2

3 4
5

1 L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou,and Y. Dai. 
NeuGraph: Parallel deep neural network computation on large 
graphs. In USENIX ATC, pages 443–457, 2019. 1-hop neighbors

13

Edge-cut 
partition

1

2

3

2

0

1

4

5

0

0

Apply 
Edge

0

Apply 
VertexScatter Gather

SAGA-NN1

Goals:
● Affordability
● Scalability
● Performance

Stages of a Graph Neural Network



GNNs Comprise Very Different Workloads
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GPUs Are Not a Good Fit for Graph Operations

Limited device memory + large adjacency matrix = poor scalability!
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GPUs Are Not a Good Fit for Graph Operations

GPUs work very well for tensor computation
● Less efficient for Gather
● Idle for Scatter across partitions
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CPUs Are Not Efficient for Tensor Workloads
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CPUs provide scalability for graph operations
● Not optimized for highly parallel computation



Combining CPUs and GPUs is Cost-Ineffective
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Using Many CPU Servers Can Still Be Expensive
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Allocating many CPU servers increases parallelism at the expense of cost
● Many unnecessary resources allocated along with CPU machines



Key Insight: Serverless Fits Our Goals

Highly scalable interface fits needs of tensor computation
● Invoke thousands of threads in parallel

Low-cost, flexible pricing model

Fine grained: Only pay for compute resources on millisecond basis
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Serverless: cloud execution model that provisions resources on demand

Provide high performance-per-dollar (value)



Serverless Achieves Low-Cost, Scalable Efficiency

Serverless Pool
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Challenges with Using Serverless

● Each thread has limited resources
○ Weak CPU, limited memory

● Limited network
○ Design to handle light asynchronous tasks
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Challenge 1: Limited Resources

Each serverless thread has limited memory and compute
● Better for highly parallel computation without dependencies
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Solution: Computation Separation

Separation of graph and tensor computation
● Scale graph operations on CPU servers
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Dorylus Architecture
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Flow of Decomposed Tasks
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Challenge 2: Limited Network

Network latency has high overhead
● Significantly hinders performance

Running sequentially leads to stalls
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Solution: Create Pipeline of Decomposed Tasks
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Data Chunks Moving Through Layer of Pipeline
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Synchronize after Scatter Hinders Pipeline

Scatter
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Pipeline not fully utilized
● Network latency challenge not resolved!

Modified Solution: Introduce asynchrony to pipeline
● Allow pipeline to saturate fully
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Two Sync Points Makes Asynchrony Difficult
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Minimizing Effects of Asynchrony on Convergence

Bounded staleness (graph-parallel path)
● No chunk in the system can get S epochs ahead of others

○ S is some staleness bound

Weight stashing at weight servers2 (tensor-parallel path)
● Cache parameters used in forward to use same version in backward

We have formally proved the convergence of our system

2 D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri,N. R. Devanur, 
G. R. Ganger, P. B. Gibbons, and M. Zaharia. PipeDream: Generalized 
pipeline parallelism for DNN training. In SOSP, page 1–15, 2019.
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Serverless Optimizations

● Task fusion

● Tensor rematerialization

● Lambda internal streaming

Details in the paper
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Data Graphs

Graph Size (|V|, |E|) # features # labels Avg. 
Degree

Reddit-small (232.9K, 
114.8M)

602 41 492.9

Reddit-large (1.1M, 1.3B) 301 50 645.4

Amazon (9.2M, 313.9M) 300 25 35.1

Friendster (65.6M, 3.6B) 32 50 27.5

Target metrics:
● Performance
● Cost
● Value: Performance-per-dollar

Dense

Sparse
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We Evaluated Several Aspects of Dorylus
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Evaluated Dorylus variants without serverless
● CPU-only: All stages run on CPUs
● GPU-only: All stages run on GPUs

Compared staleness bounds to determine optimal asynchrony

Compared against existing systems

Effects of scaling out

Breakdown of time/costs per stage



45

We Evaluated Several Aspects of Dorylus

Evaluated Dorylus variants without serverless
● CPU-only: All stages run on CPUs
● GPU-only: All stages run on GPUs

Compared staleness bounds to determine optimal asynchrony

Compared against existing systems

Effects of scaling out

Breakdown of time/costs per stage



High Value on Large-Sparse Graphs

Dorylus provides better value than CPU and 
GPU-based backends on large sparse graphs

Dorylus outperforms GPU based 
implementations on very large graphs
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Dorylus Outperforms Existing Systems
Time to Target Accuracy on Reddit-small

Dorylus outperforms sampling based methods
● 3.25x faster than DGL (sampling)

Slower than GPU-based non-sampling systems
● Whole graph can fit in GPU memory
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Dorylus Scales Full Graph Training
Time to Target Accuracy on Amazon

On a large, sparse graph
● Dorylus 1.99x faster than DGL (sampling)
● Only 1.37x slower than Dorylus (GPU only)

Value comparison:
● 17.7x value of DGL (sampling)
● 8.6x value of AliGraph
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Conclusion: Dorylus Provides Value

Dorylus: Affordably scaling Graph Neural Network training to billion-edge graphs

● Utilize computation separation to specialize resources

● Implement bounded asynchronous pipeline

● Up to 2.75x more performance-per-dollar than CPU-only, 4.83x GPU-only

● Opens possibility to apply our techniques to other models

Thank you! Code at https://github.com/uclasystem/dorylus. For questions email jothor@cs.ucla.edu

https://github.com/uclasystem/dorylus

