

Dorylus: Affordable, Scalable, and Accurate GNN Training with Distributed CPU Servers and Serverless Threads

John Thorpe*, Yifan Qiao*, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao Jia, Jinliang Wei, Keval Vora, Ravi Netravali, Miryung Kim, Harry Xu

UCLA University of Wisconsin CMU Google Brain Simon Fraser Princeton University

Machine Learning

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers".

What causes precipitation to fall? gravity

What is another main form of precipitation besides drizzle, rain, snow, sleet and hail? graupel

Where do water droplets collide with ice crystals to form precipitation? within a cloud

Graph Neural Networks

Goals:

- Affordability
- Scalability
- Performance

GNNs Comprise Very Different Workloads

GPUs Are Not a Good Fit for Graph Operations

Limited device memory + large adjacency matrix = poor scalability!

GPUs Are Not a Good Fit for Graph Operations

GPUs work very well for tensor computation

- Less efficient for Gather
- Idle for Scatter across partitions

CPUs Are Not Efficient for Tensor Workloads

CPUs provide scalability for graph operations

• Not optimized for highly parallel computation

Combining CPUs and GPUs is Cost-Ineffective

UCLA

Get the scalability of CPUs with performance of GPUs

GPUs under-utilized during graph operations

Using Many CPU Servers Can Still Be Expensive

Time

Allocating many CPU servers increases parallelism at the expense of cost

• Many unnecessary resources allocated along with CPU machines

Key Insight: Serverless Fits Our Goals

Serverless: cloud execution model that provisions resources on demand

Highly scalable interface fits needs of tensor computation

• Invoke thousands of threads in parallel

Low-cost, flexible pricing model

Fine grained: Only pay for compute resources on millisecond basis

Provide high performance-per-dollar (value)

Serverless Achieves Low-Cost, Scalable Efficiency

Time

UCLA

Challenges with Using Serverless

- Each thread has limited resources
 - Weak CPU, limited memory

- Limited network
 - Design to handle light asynchronous tasks

Challenge 1: Limited Resources

Each serverless thread has limited memory and compute

• Better for highly parallel computation without dependencies

Solution: Computation Separation

Separation of graph and tensor computation

• Scale graph operations on CPU servers

Flow of Decomposed Tasks

Layer 2, ..., Layer L backward

Challenge 2: Limited Network

Network latency has high overhead

• Significantly hinders performance

Running sequentially leads to stalls

Solution: Create Pipeline of Decomposed Tasks

Serverless thread

UCLA

Data Chunks Moving Through Layer of Pipeline

UCLA

Data Chunks Moving Through Layer of Pipeline

Synchronize after Scatter Hinders Pipeline

Pipeline not fully utilized

• Network latency challenge not resolved!

Modified Solution: Introduce asynchrony to pipeline

• Allow pipeline to saturate fully

Two Sync Points Makes Asynchrony Difficult

Minimizing Effects of Asynchrony on Convergence

Bounded staleness (graph-parallel path)

- No chunk in the system can get S epochs ahead of others
 - S is some staleness bound

Weight stashing at weight servers² (tensor-parallel path)

• Cache parameters used in forward to use same version in backward

We have formally proved the convergence of our system

Serverless Optimizations

- Task fusion
- Tensor rematerialization
- Lambda internal streaming

Data Graphs

	Graph	Size (V , E)	# features	# labels	Avg. Degree
Dense	Reddit-small	(232.9K, 114.8M)	602	41	492.9
	Reddit-large	(1.1M, 1.3B)	301	50	645.4
Sparse	Amazon	(9.2M, 313.9M)	300	25	35.1
	Friendster	(65.6M, 3.6B)	32	50	27.5

Target metrics:

- Performance
- Cost
- Value: Performance-per-dollar

We Evaluated Several Aspects of Dorylus

Compared staleness bounds to determine optimal asynchrony

Evaluated Dorylus variants without serverless

- CPU-only: All stages run on CPUs
- GPU-only: All stages run on GPUs

Compared against existing systems

Effects of scaling out

Breakdown of time/costs per stage

We Evaluated Several Aspects of Dorylus

Compared staleness bounds to determine optimal asynchrony

Evaluated Dorylus variants without serverless

- CPU-only: All stages run on CPUs
- GPU-only: All stages run on GPUs

Compared against existing systems

Effects of scaling out

Breakdown of time/costs per stage

UCLA

High Value on Large-Sparse Graphs

Dorylus provides better value than CPU and GPU-based backends on large sparse graphs

Dorylus outperforms GPU based implementations on very large graphs

Dorylus Outperforms Existing Systems

Dorylus outperforms sampling based methods

• **3.25x** faster than DGL (sampling)

Slower than GPU-based non-sampling systems

• Whole graph can fit in GPU memory

Time to Target Accuracy on Reddit-small

Dorylus Scales Full Graph Training

On a large, sparse graph

- Dorylus **1.99x** faster than DGL (sampling)
- Only **1.37x** slower than Dorylus (GPU only)

Value comparison:

- **17.7x** value of DGL (sampling)
- 8.6x value of AliGraph

Time to Target Accuracy on Amazon

Conclusion: Dorylus Provides Value

Dorylus: Affordably scaling Graph Neural Network training to billion-edge graphs

- Utilize computation separation to specialize resources
- Implement bounded asynchronous pipeline
- Up to 2.75x more performance-per-dollar than CPU-only, 4.83x GPU-only
- Opens possibility to apply our techniques to other models

Thank you! Code at https://github.com/uclasystem/dorylus. For questions email jothor@cs.ucla.edu