
Dorylus: Affordable, Scalable, and
Accurate GNN Training with Distributed
CPU Servers and Serverless Threads

John Thorpe*, Yifan Qiao*, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao Jia,
Jinliang Wei, Keval Vora, Ravi Netravali, Miryung Kim, Harry Xu

UCLA University of Wisconsin CMU Google Brain Simon Fraser Princeton University

Input data

Input Layer
Hidden Layer 1 Hidden Layer 2

Predictions

Machine Learning

2

?

0

1

2

3 4
5

Graph Neural Networks

3

Goals:
● Affordability
● Scalability
● Performance

0

1

2

3 4
5

1 L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou,and Y. Dai.
NeuGraph: Parallel deep neural network computation on large
graphs. In USENIX ATC, pages 443–457, 2019.

4

0

1-hop neighbors

1

2

3

2-hop neighbors

2

0

1

4

5

0

0

Stages of a Graph Neural Network

0

1

2

3 4
5

1 L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou,and Y. Dai.
NeuGraph: Parallel deep neural network computation on large
graphs. In USENIX ATC, pages 443–457, 2019.

5

Edge-cut
partition

0

1-hop neighbors

1

2

3

2-hop neighbors

2

0

1

4

5

0

0

Stages of a Graph Neural Network

2-hop neighbors

0

1

2

3 4
5

1-hop neighbors
6

Edge-cut
partition

1

2

3

2

0

1

4

5

0

0

0

Scatter

Message passing
along edges

Stages of a Graph Neural Network

2-hop neighbors

0

1

2

3 4
5

1-hop neighbors
7

Edge-cut
partition

1

2

3

2

0

1

4

5

0

0

Apply
Edge

0

Scatter

Apply neural network on
edge data

Stages of a Graph Neural Network

2-hop neighbors

0

1

2

3 4
5

1-hop neighbors
8

Edge-cut
partition

1

2

3

2

0

1

4

5

0

0

Apply
Edge

0

Scatter Gather

Aggregate messages from
neighbors

Stages of a Graph Neural Network

2-hop neighbors

0

1

2

3 4
5

1 L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou,and Y. Dai.
NeuGraph: Parallel deep neural network computation on large
graphs. In USENIX ATC, pages 443–457, 2019. 1-hop neighbors

9

Edge-cut
partition

1

2

3

2

0

1

4

5

0

0

Apply
Edge

0

Apply
VertexScatter Gather

SAGA-NN1

Apply neural network on
aggregated data

Stages of a Graph Neural Network

2-hop neighbors

0

1

2

3 4
5

1 L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou,and Y. Dai.
NeuGraph: Parallel deep neural network computation on large
graphs. In USENIX ATC, pages 443–457, 2019. 1-hop neighbors

10

Edge-cut
partition

1

2

3

2

0

1

4

5

0

0

Apply
Edge

0

Apply
VertexScatter Gather

SAGA-NN1

Stages of a Graph Neural Network

2-hop neighbors

0

1

2

3 4
5

1 L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou,and Y. Dai.
NeuGraph: Parallel deep neural network computation on large
graphs. In USENIX ATC, pages 443–457, 2019. 1-hop neighbors

11

Edge-cut
partition

1

2

3

2

0

1

4

5

0

0

Apply
Edge

0

Apply
VertexScatter Gather

SAGA-NN1

Stages of a Graph Neural Network

2-hop neighbors

0

1

2

3 4
5

1 L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou,and Y. Dai.
NeuGraph: Parallel deep neural network computation on large
graphs. In USENIX ATC, pages 443–457, 2019. 1-hop neighbors

12

Edge-cut
partition

1

2

3

2

0

1

4

5

0

0

Apply
Edge

0

Apply
VertexScatter Gather

SAGA-NN1

Stages of a Graph Neural Network

2-hop neighbors

0

1

2

3 4
5

1 L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou,and Y. Dai.
NeuGraph: Parallel deep neural network computation on large
graphs. In USENIX ATC, pages 443–457, 2019. 1-hop neighbors

13

Edge-cut
partition

1

2

3

2

0

1

4

5

0

0

Apply
Edge

0

Apply
VertexScatter Gather

SAGA-NN1

Goals:
● Affordability
● Scalability
● Performance

Stages of a Graph Neural Network

GNNs Comprise Very Different Workloads

Input Layer
Hidden Layer 1 Hidden Layer 2

Predictions

Apply

Scatter

Gather

0

1

2

3 4
5

0

1

2

3 4
5

Memory intensive!
Compute intensive!

14

GPUs Are Not a Good Fit for Graph Operations

Limited device memory + large adjacency matrix = poor scalability!

15

GPUs Are Not a Good Fit for Graph Operations

GPUs work very well for tensor computation
● Less efficient for Gather
● Idle for Scatter across partitions

16

Apply
Edge

Apply
VertexScatter Gather

Time

CPUs Are Not Efficient for Tensor Workloads

17

Apply
Edge

Apply
VertexScatter Gather

Time

CPUs provide scalability for graph operations
● Not optimized for highly parallel computation

Combining CPUs and GPUs is Cost-Ineffective

18

Apply
Edge

Apply
VertexScatter Gather

Time

Get the scalability of CPUs with performance of GPUs
● GPUs under-utilized during graph operations

Using Many CPU Servers Can Still Be Expensive

19

Apply
Edge

Apply
VertexScatter Gather

Time

Allocating many CPU servers increases parallelism at the expense of cost
● Many unnecessary resources allocated along with CPU machines

Key Insight: Serverless Fits Our Goals

Highly scalable interface fits needs of tensor computation
● Invoke thousands of threads in parallel

Low-cost, flexible pricing model

Fine grained: Only pay for compute resources on millisecond basis

Apply
Edge

Apply
Vertex

20

Serverless: cloud execution model that provisions resources on demand

Provide high performance-per-dollar (value)

Serverless Achieves Low-Cost, Scalable Efficiency

Serverless Pool

21

Apply
Edge

Apply
VertexScatter Gather

Time

Challenges with Using Serverless

● Each thread has limited resources
○ Weak CPU, limited memory

● Limited network
○ Design to handle light asynchronous tasks

22

Challenge 1: Limited Resources

Each serverless thread has limited memory and compute
● Better for highly parallel computation without dependencies

23

Solution: Computation Separation

Separation of graph and tensor computation
● Scale graph operations on CPU servers

24

Dorylus Architecture

Serverless Pool

Graph Servers

Weight Servers

25

Dorylus Architecture

Serverless Pool

Graph Servers

Weight Servers

Scatter

26

Dorylus Architecture

Serverless Pool

Graph Servers

Weight Servers

Scatter

Apply
Edge

27

Dorylus Architecture

Serverless Pool

Graph Servers

Weight Servers

Scatter

Apply
Edge

Gather

28

Dorylus Architecture

Serverless Pool

Graph Servers

Weight Servers

Scatter

Apply
Edge

Gather

Apply
Vertex

29

Flow of Decomposed Tasks

Scatter Apply
Edge Gather Apply

Vertex

∇Scatter∇Apply
Edge∇Gather ∇Apply

Vertex

...

Layer 2, …, Layer L forwardLayer 1 forward

Next
Epoch

Start
Backprop

...

... ...

Layer 1 backward Layer 2, …, Layer L backward

Weight
Update

Weight
Update

Serverless thread

Graph Server

Weight Server

Apply
Edge

∇Apply
Edge

Apply
Vertex

∇Apply
Vertex

Layer 1 backward Layer 2, …, Layer L backward

30

Challenge 2: Limited Network

Network latency has high overhead
● Significantly hinders performance

Running sequentially leads to stalls

31

Solution: Create Pipeline of Decomposed Tasks

32

Scatter

Gather

Apply
Edge

Apply
Vertex

Scatter

Gather

Apply
Edge

Apply
Vertex

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

5

5

6

Time Time

Serverless thread

Graph Server

Data Chunks Moving Through Layer of Pipeline

Serverless
Thread Pool

0 - 99

Gatheri Scatteri Gatheri+1

CPU Graph
Server

...

...Apply
Edgei-1

33

Apply
Vertexi

Serverless
Thread Pool

100 - 199

0 - 99

Gatheri Scatteri Gatheri+1

CPU Graph
Server

...

...Apply
Edgei-1

34

Data Chunks Moving Through Layer of Pipeline

Apply
Vertexi

Serverless
Thread Pool

0 - 99200 - 299

100 - 199

Gatheri Scatteri Gatheri+1

CPU Graph
Server

...

...Apply
Edgei-1

35

Data Chunks Moving Through Layer of Pipeline

Apply
Edgei

Apply
Vertexi

Serverless
Thread Pool

100 - 199300 - 399

200 - 299 0 - 99

Gatheri Scatteri Gatheri+1

CPU Graph
Server

...

...Apply
Edgei-1

36

Data Chunks Moving Through Layer of Pipeline

Apply
Edgei

Apply
Vertexi

Serverless
Thread Pool

200 - 299400 - 499

300 - 399 100 - 199

Gatheri Scatteri Gatheri+1

CPU Graph
Server

...

...Apply
Edgei-1

0 - 99

37

Data Chunks Moving Through Layer of Pipeline

Apply
Edgei

Apply
Vertexi

Serverless
Thread Pool

0 - 99200 - 299

100 - 199

Gatheri Scatteri Gatheri+1

CPU Graph
Server

...

...Apply
Edgei-1

Synchronize!

Dependencies on neighbor data

38

Data Chunks Moving Through Layer of Pipeline

Synchronize after Scatter Hinders Pipeline

Scatter

0 - 99

100 - 199

200 - 299

300 - 399

|V|

.

.

.

Pipeline not fully utilized
● Network latency challenge not resolved!

Modified Solution: Introduce asynchrony to pipeline
● Allow pipeline to saturate fully

39

Two Sync Points Makes Asynchrony Difficult

Gather Apply
Vertex Scatter Apply

Edge

∇Gather∇Apply
Vertex∇Scatter ∇Apply

Edge

...
Start

Backprop

...

Weight
Update

Weight
Update

...

∇Scatter

...

...

1. Sync before new epoch
● Dependency on updated parameters

2. Sync after every Scatter
● Dependency on neighbors’ features

40

Minimizing Effects of Asynchrony on Convergence

Bounded staleness (graph-parallel path)
● No chunk in the system can get S epochs ahead of others

○ S is some staleness bound

Weight stashing at weight servers2 (tensor-parallel path)
● Cache parameters used in forward to use same version in backward

We have formally proved the convergence of our system

2 D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri,N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia. PipeDream: Generalized
pipeline parallelism for DNN training. In SOSP, page 1–15, 2019.

41

Serverless Optimizations

● Task fusion

● Tensor rematerialization

● Lambda internal streaming

Details in the paper
42

Data Graphs

Graph Size (|V|, |E|) # features # labels Avg.
Degree

Reddit-small (232.9K,
114.8M)

602 41 492.9

Reddit-large (1.1M, 1.3B) 301 50 645.4

Amazon (9.2M, 313.9M) 300 25 35.1

Friendster (65.6M, 3.6B) 32 50 27.5

Target metrics:
● Performance
● Cost
● Value: Performance-per-dollar

Dense

Sparse

43

We Evaluated Several Aspects of Dorylus

44

Evaluated Dorylus variants without serverless
● CPU-only: All stages run on CPUs
● GPU-only: All stages run on GPUs

Compared staleness bounds to determine optimal asynchrony

Compared against existing systems

Effects of scaling out

Breakdown of time/costs per stage

45

We Evaluated Several Aspects of Dorylus

Evaluated Dorylus variants without serverless
● CPU-only: All stages run on CPUs
● GPU-only: All stages run on GPUs

Compared staleness bounds to determine optimal asynchrony

Compared against existing systems

Effects of scaling out

Breakdown of time/costs per stage

High Value on Large-Sparse Graphs

Dorylus provides better value than CPU and
GPU-based backends on large sparse graphs

Dorylus outperforms GPU based
implementations on very large graphs

46

Dorylus Outperforms Existing Systems
Time to Target Accuracy on Reddit-small

Dorylus outperforms sampling based methods
● 3.25x faster than DGL (sampling)

Slower than GPU-based non-sampling systems
● Whole graph can fit in GPU memory

47

Dorylus Scales Full Graph Training
Time to Target Accuracy on Amazon

On a large, sparse graph
● Dorylus 1.99x faster than DGL (sampling)
● Only 1.37x slower than Dorylus (GPU only)

Value comparison:
● 17.7x value of DGL (sampling)
● 8.6x value of AliGraph

48

Conclusion: Dorylus Provides Value

Dorylus: Affordably scaling Graph Neural Network training to billion-edge graphs

● Utilize computation separation to specialize resources

● Implement bounded asynchronous pipeline

● Up to 2.75x more performance-per-dollar than CPU-only, 4.83x GPU-only

● Opens possibility to apply our techniques to other models

Thank you! Code at https://github.com/uclasystem/dorylus. For questions email jothor@cs.ucla.edu

https://github.com/uclasystem/dorylus

