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Is Differential Privacy (DP) the Solution?
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DP at Individual Model Level

e Privacy attacks find data points that make a
given observed model more likely

e DP randomizes the training procedure of a
model (e.g., SGD) to guarantee that no data
point drastically increases the likelihood of
the outputted model.

e The increase in likelihood of the outputted model
IS controlled by the privacy loss ¢ > 0

Definition. A randomized procedure
f : D — O over databases is (e,6)-

differentially private if for all
databases d,,ds € D that differ in one

data point, and for all output sets S C
O:
Pr(f(d,) € S] < e Pr[f(dy) € S|+ 6
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Problem: Privacy Loss Accumulates

Multiple models amplify attack U
power, with or without DP
(Zanella-Beguelin+20, Dinur- T
Nissim-03) /_ | _\
ML model: ML model: ML model:

autocomplete recommendation ad targeting

10



Problem: Privacy Loss Accumulates

O

What can leak?

T
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Problem: Privacy Loss Accumulates

O

What can leak? ?

(Dinur-Nissim-03) Theoretical Result:
Release of too many, too accurate statistics

from a database fundamentally enables the
database’s reconstruction.
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Solution: DP at Workload Level
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-level e DP
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Our Vision:
Privacy as a Compute Resource

« DP composes, so ML training tasks consume a global privacy budget <.

Z&i S&'(;.

task 1

e Privacy should be a compute resource, alongside CPU, GPU, RAM

e We must schedule privacy efficiently and fairly:

= Can we use existing schedulers? Which ones?
= Which fairness/efficiency properties?
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PrivateKube

o Extension for Kubernetes that adds privacy as a new
resource alongside traditional compute resources

 New scheduler: Dominant Privacy Fairness (DPF), a
variant of Dominant Resource Fairness (DRF)

e DPF enjoys similar fairness properties as DRF, with
some definitional changes to account for privacy
characteristics
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DRF as a Basis

o« Dominant Resource Fairness (DRF)
to allocate multiple resources
(Ghodsi+11)

o Popular for datacenters (CPU, GPU,
RAM)

e For compute, it gives max-min
fairness over m resources

Algorithm 1. DRF

R = (R,,...,R,) resource capacities
C = (Cy,...,C,) consumed resources

DominantShare(d;) := max; Cj%—’

OnSchedulerTimer(W aitingJobs) :
SortedJobs < sortBy(DominantShare, WaitingJobs)
for 2 € SortedJobs :
ifC+d; <R:
C + C +d;
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Problem: Privacy is not Replenishable
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Dominant Privacy Fairness (DPF)

e |Idea: unlock privacy budget for
each block progressively, so
budget remains for the future

o Like DRF but only for the first N

pipelines for each block, and best-
effort scheduling for the others

Algorithm 2. DPF-N

R= (Ri;e0s; R,,) private block capacities (aka £“)
C = (Cy,..., C») consumed budgets
U = (Uy,...,U,) unlocked budgets (initially 0)
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Dominant Privacy Fairness (DPF)

e |Idea: unlock privacy budget for
each block progressively, so
budget remains for the future

o Like DRF but only for the first N

pipelines for each block, and best-
effort scheduling for the others

Algorithm 2. DPF-N

R = (Ry,...,R,) private block capacities (aka £%)
C = (Cy,..., C») consumed budgets
U = (Uy,...,U,) unlocked budgets (initially 0)

OnPipelineArrival(d; ) :
forje{j:d;; >0}:
U; + min(R;,U; + %)
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Dominant Privacy Fairness (DPF)

Algorithm 2. DPF-N

R = (Ry,...,R,,) private block capacities (aka %)
] C = (Cy,...,C,) consumed budgets
e |Idea: unlock privacy budget for U = (Uy,...,U,) unlocked budgets (initially 0)
each block progressively, so o |
_ OnPipelineArrival(d; ) :
budget remains for the future ford € {j :di; > 0} :
U; + min(R;,U; + %)
e Like DRF but Only for the first N DominantShare(d;) := max; %}i
pipe”nes for each block, and best- OnSchedulerTimer(W aitingJobs) :
: Sorted.Jobs < sortBy(DominantShare, W aitingJobs)
effort scheduling for the others for i € SortedJobs -
lf C/Y . di S U :

C + C +d;
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Incoming pipelines
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DPF Example
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Incoming pipelines
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DPF Example
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Max-min fairness only for the first N

DPF Properties

pipelines over any block

Game theoretic properties:

sharing incentive
strategy-proofness
dynamic envy-freeness
Pareto-efficiency

Definition. A pipeline is a fair
demand pipeline if:

a) its demand for each one of the
blocks is smaller than the fair share
EJG/N and

D) it Is within the first N pipelines
that requested some budget for all
ItS requested blocks
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Methodology

Questions

How does DPF compare to baseline

schedulers?
How do workload characteristics impact DPF?
How does the DP semantic impact DPF?

Workloads

Microbenchmark: ¢ € {0.01¢“,0.1¢%}, either the last block

or the 10 last blocks
Macrobenchmark: NLP pipelines and summary statistics
over the Amazon Reviews dataset with various demands
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Number of pipelines allocated

How does DPF compare to baseline schedulers?

Allocation
— FCFS
\ — RR
— DPF
200 400 600

N parameter for DPF and RR
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How does DPF compare to baseline schedulers?

Allocation Latency
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How does DPF compare to baseline schedulers?

Allocation Latency
g
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Conclusion

e Privacy as a resource that should be tracked and scheduled

e PrivateKube incorporates privacy as a new resource into Kubernetes and
provides Dominant Privacy Fairness (DPF), the first scheduling algorithm
suitable for this non-replenishable resource.

e Changes to the algorithm and fairness definitions show that scheduling
privacy is a new problem, for which more work is needed.

Code and paper: https://columbia.github.io/PrivateKube

Contact: pierre@cs.columbia.edu
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