Privacy Budget Scheduling

Tao Luo*, Mingen Pan*, **Pierre Tholoniat*** Asaf Cidon*, Roxana Geambasu*, Mathias Lécuyer[†]

**Columbia University* [†]*Microsoft Research*

Example: Messaging App

users, devices

functionality

database of user data

traditional code

What Can Leak?

traditional code

traditional

code

Yes, but it depends at which level we apply it

traditional

code

DP at Individual Model Level

- Privacy attacks find data points that make a given observed model more likely
- DP randomizes the training procedure of a model (e.g., SGD) to guarantee that no data point drastically increases the likelihood of the outputted model.
- The increase in likelihood of the outputted model. is controlled by the **privacy loss** $\varepsilon > 0$

O:

Definition. A randomized procedure $f: D \to O$ over databases is (ε, δ) differentially private if for all databases $d_1, d_2 \in D$ that differ in one data point, and for all output sets $S \subseteq$

$\Pr[f(d_1) \in S] \leq e^{arepsilon} \Pr[f(d_2) \in S] + \delta$

What can leak?

(Dinur-Nissim-03) Theoretical Result: Release of too many, too accurate statistics from a database **fundamentally** enables the database's reconstruction.

...

55

Our Vision: Privacy as a Compute Resource

• DP composes, so ML training tasks consume a global privacy budget ε_G

$$\sum_{task \ i} arepsilon_i \leq arepsilon_G.$$

- Privacy should be a **compute resource**, alongside CPU, GPU, RAM
- We must schedule privacy efficiently and fairly:
 - Can we use existing schedulers? Which ones?
 - Which fairness/efficiency properties?

PrivateKube

- Extension for Kubernetes that adds privacy as a new **resource** alongside traditional compute resources
- New scheduler: **Dominant Privacy Fairness (DPF)**, a variant of Dominant Resource Fairness (DRF)
- DPF enjoys similar **fairness properties** as DRF, with some definitional changes to account for privacy characteristics

1. Motivation

2. Architecture

3. DPF scheduler

4. Evaluation

15

ML workload

Private data blocks

Pipeline demands for privacy budget

Pipeline demands for privacy budget

Pipeline demands for privacy budget

1. Motivation

2. Architecture

3. DPF scheduler

4. Evaluation

17

DRF as a Basis

- Dominant Resource Fairness (DRF) to allocate **multiple resources** (Ghodsi+11)
- Popular for datacenters (CPU, GPU, RAM)
- For compute, it gives **max-min** fairness over m resources

 $R = \langle R_1, \ldots, R_m \rangle$ resource capacities $C = \langle C_1, \ldots, C_m \rangle$ consumed resources

DominantShare $(d_i) := \max_j \frac{d_{i,j}}{R_i}$

```
OnSchedulerTimer(WaitingJobs):
   for i \in SortedJobs :
       if C + d_i \leq R:
          C \leftarrow C + d_i
```

Algorithm 1. DRF

 $SortedJobs \leftarrow sortBy(DominantShare, WaitingJobs)$

t = 1

Demands for budget

block 1 block 2

Demands for budget

t = 1

Demands for budget

block 1 block 2

Demands for budget

block 1 block 2

Pipeline 3

1.0

1.0

Demands for budget

Dominant Privacy Fairness (DPF)

- Idea: unlock privacy budget for each block progressively, so budget remains for the future
- Like DRF but only for the first N pipelines for each block, and besteffort scheduling for the others

 $R = \langle R_1, \ldots, R_m \rangle$ private block capacities (aka ε^G) $C = \langle C_1, \ldots, C_m \rangle$ consumed budgets $U = \langle U_1, \ldots, U_m \rangle$ unlocked budgets (initially 0)

Algorithm 2. DPF-N

Dominant Privacy Fairness (DPF)

Idea: unlock privacy budget for each block progressively, so budget remains for the future

• Like DRF but only for the first N pipelines for each block, and besteffort scheduling for the others

```
R = \langle R_1, \ldots, R_m \rangle private block capacities (aka \varepsilon^G)
C = \langle C_1, \ldots, C_m \rangle consumed budgets
U = \langle U_1, \ldots, U_m \rangle unlocked budgets (initially 0)
```

```
OnPipelineArrival(d_i):
    for j \in \{j : d_{i,j} > 0\}:
        U_j \leftarrow \min(R_j, U_j + \frac{R_j}{N})
```

Algorithm 2. DPF-N

Dominant Privacy Fairness (DPF)

Idea: unlock privacy budget for each block progressively, so budget remains for the future

• Like DRF but only for the first N pipelines for each block, and besteffort scheduling for the others

Algorithm 2. DPF-N

 $R = \langle R_1, \ldots, R_m \rangle$ private block capacities (aka ε^G) $C = \langle C_1, \ldots, C_m \rangle$ consumed budgets $U = \langle U_1, \ldots, U_m \rangle$ unlocked budgets (initially 0)

 $OnPipelineArrival(d_i)$: for $j \in \{j : d_{i,j} > 0\}$: $U_i \leftarrow \min(R_i, U_i +$

DominantShare $(d_i) := \max_j \frac{d_{i,j}}{R_i}$ OnSchedulerTimer(WaitingJobs):for $i \in SortedJobs$: if $C + d_i \leq U$: $C \leftarrow C + d_i$

$$\frac{R_j}{N}$$

 $SortedJobs \leftarrow sortBy(DominantShare, WaitingJobs)$

t = 1

Pipeline 1

block 1 block 2

Incoming pipelines

block 1 block 2

t = 1

Pipeline 1

block 1 block 2

Incoming pipelines

DPF queue

block 1 block 2

Pipeline 2

block 1 block 2

Pipeline 1

block 1 block 2

Incoming pipelines

DPF queue

block 1 block 2

Incoming pipelines

DPF queue

block 1 block 2

Incoming pipelines

DPF queue

block 1 block 2
t=2

Pipeline 1

block 1 block 2

Incoming pipelines

DPF queue

block 1 block 2

Incoming pipelines

DPF queue

block 1 block 2

Incoming pipelines

DPF queue

block 1 block 2

Incoming pipelines

DPF queue

block 1 block 2

$$t=3$$

Pipeline 3

block 1 block 2

Incoming pipelines

DPF queue

block 1 block 2

DPF Properties

Max-min fairness only for the first N **pipelines** over any block

Game theoretic properties:

- sharing incentive
- strategy-proofness
- dynamic envy-freeness
- Pareto-efficiency

Definition. A pipeline is a *fair* demand pipeline if:

 ϵ_i^G/N and

a) its demand for each one of the blocks is smaller than the fair share

b) it is within the first N pipelines that requested some budget for all its requested blocks

1. Motivation

2. Architecture

3. DPF scheduler

4. Evaluation

36

Methodology Questions

- How does DPF compare to baseline schedulers?
- How do workload characteristics impact DPF?
- How does the DP semantic impact DPF?

Workloads

- Microbenchmark: $\varepsilon \in \{0.01\varepsilon^G, 0.1\varepsilon^G\}$, either the last block or the 10 last blocks
- Macrobenchmark: NLP pipelines and summary statistics over the Amazon Reviews dataset with various demands

How does DPF compare to baseline schedulers?

Allocation

N parameter for DPF and RR

How does DPF compare to baseline schedulers?

Latency

N parameter for DPF and RR

Pipeline scheduling delay

How does DPF compare to baseline schedulers?

Latency

Conclusion

- Privacy as a resource that should be tracked and scheduled
- PrivateKube incorporates privacy as a new resource into Kubernetes and provides **Dominant Privacy Fairness (DPF)**, the first scheduling algorithm suitable for this non-replenishable resource.
- Changes to the algorithm and fairness definitions show that scheduling privacy is a new problem, for which more work is needed.

Code and paper: https://columbia.github.io/PrivateKube **Contact:** pierre@cs.columbia.edu

References

(Carlini+18) Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, Alina Oprea, Colin Raffel. Extracting Training Data from Large Language Models. arxiv 2020.

(Shokri+17) Reza Shokri, Marco Stronati, Congzheng Song, Vitaly Shmatikov. *Membership Inference* Attacks against Machine Learning Models. S&P 2017.

(Calandrino+11) J. A. Calandrino, A. Kilzer, A. Narayanan, E. W. Felten, and V. Shmatikov. "You Might Also Like:" Privacy risks of collaborative filtering. S&P 2011.

(Lecuyer+19) M. Lecuyer, R. Spahn, R. Geambasu, and D. Hsu. Privacy Accounting and Quality Control in the Sage Differentially Private Machine Learning Platform. SOSP 2019.

(Ghodsi+11) Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, Ion Stoica. Dominant Resource Fairness: Fair Allocation of Multiple Resource Types. NSDI 2011.

References

(Zanella-Béguelin+20) Santiago Zanella-Béguelin, Lukas Wutschitz, Shruti Tople, Victor Rühle, Andrew Paverd, Olga Ohrimenko, Boris Köpf, Marc Brockschmidt. Analyzing Information Leakage of Updates to Natural Language Models. CCS 2020.

(Dinur+Nissim-03) I. Dinur and K. Nissim. *Revealing information while preserving privacy*. PODS, 2003.