Privacy Budget
Scheduling

Tao Luo*, Mingen Pan*, Pierre Tholoniat*
Asaf Cidon*, Roxana Geambasu*, Mathias Lécuyer’

*Columbia University Microsoft Research

Example: Messaging App

users, devices

traditional
functionality code

Access control

database of user data

Example: Messaging App

users, devices

models / predictions

traditional

ML model: ML model: ML model: code
autocomplete recommendation ad targeting

functionality

Access control

database of user data

privacy attacks

functionality

database of user data

SSN, address, ...
(Carlini+20)

user actions
(Calandrino+11)

ML model:
recommendation

What Can Leak?

membership
(Shokri+17)

traditional
code

Access control

Is Differential Privacy (DP) the Solution?
O

privacy attacks : ! r

ML model: ML model: ML model: traditional
autocomplete recommendation ad targeting code

Access control

functionality

database of user data

Is Differential Privacy (DP) the Solution?

Yes, but it depends at which
U level we apply it

privacy attacks : ! r

ML model: ML model: ML model: traditional
autocomplete recommendation ad targeting code

Access control

functionality

database of user data

DP at Individual Model Level

e Privacy attacks find data points that make a
given observed model more likely

e DP randomizes the training procedure of a
model (e.g., SGD) to guarantee that no data
point drastically increases the likelihood of
the outputted model.

e The increase in likelihood of the outputted model
IS controlled by the privacy loss ¢ > 0

Definition. A randomized procedure
f : D — O over databases is (e,6)-

differentially private if for all
databases d,,ds € D that differ in one

data point, and for all output sets S C
O:
Pr(f(d,) € S] < e Pr[f(dy) € S|+ 6

Problem: Privacy Loss Accumulates

O

o

ML model: ML model: ML model:
autocomplete recommendation ad targeting

Problem: Privacy Loss Accumulates

ML model: ML model: ML model:
autocomplete recommendation ad targeting

Problem: Privacy Loss Accumulates

O

e

ML model: ML model: ML model:
autocomplete recommendation ad targeting

Problem: Privacy Loss Accumulates

Multiple models amplify attack U
power, with or without DP
(Zanella-Beguelin+20, Dinur- T
Nissim-03) /_ | _\
ML model: ML model: ML model:

autocomplete recommendation ad targeting

10

Problem: Privacy Loss Accumulates

O

What can leak?

T

ML model:
autocomplete

ML model:
recommendation

ML model:
ad targeting

workload of
multiple,
repeatedly trained
models

growing database
of user data

11

Problem: Privacy Loss Accumulates

O

What can leak? ?

(Dinur-Nissim-03) Theoretical Result:
Release of too many, too accurate statistics

from a database fundamentally enables the
database’s reconstruction.

11

Solution: DP at Workload Level

ML model:
recommendation

ML model: ML model:
autocomplete ad targeting

-level e DP

12

Our Vision:
Privacy as a Compute Resource

« DP composes, so ML training tasks consume a global privacy budget <.

Z&i S&'(;.

task 1

e Privacy should be a compute resource, alongside CPU, GPU, RAM

e We must schedule privacy efficiently and fairly:

= Can we use existing schedulers? Which ones?
= Which fairness/efficiency properties?

13

PrivateKube

o Extension for Kubernetes that adds privacy as a new
resource alongside traditional compute resources

 New scheduler: Dominant Privacy Fairness (DPF), a
variant of Dominant Resource Fairness (DRF)

e DPF enjoys similar fairness properties as DRF, with
some definitional changes to account for privacy
characteristics

14

Outline

1. Motivation
2. Architecture
3. DPF scheduler

4. Evaluation

Architecture

ML workload

Workload Standard scheduler

orchestrator :
Privacy scheduler
t1=1 t=2 13=3 t,=4
rgggﬁlggls Private data
(nodes) blocks

Architecture

ML workload | statistics |

Workload
orchestrator

Physical
resources
(nodes)

Standard scheduler

d; = (02,0,0,0)

CPU: 1000 CPU: 2000 CPU: 100088 CPU: 1000
RAM: 64G RAM: 128G RAM: 64G B8 RAM: 32G

Privacy scheduler

t1=1 ty=2 t3=3 t;, =4

-l | | |

Pipeline demands
for privacy budget

Private data
blocks

ML workload | statistics |

Workload
orchestrator

Physical
resources
(nodes)

Architecture

text
autocomplete

Standard scheduler

dflzz(g.)s, 05,0, 3)

CPU: 1000 CPU: 2000 CPU: 100088 CPU: 1000
RAM: 64G RAM: 128G RAM: 64G B8 RAM: 32G

Privacy scheduler

t1=1 ty=2 t3=3 t;, =4

Bl | |

Pipeline demands
for privacy budget

Private data
blocks

ML workload | statistics |

Workload
orchestrator

Physical
resources
(nodes)

Architecture

text
autocomplete

model

Standard scheduler

recommendation

d; = (0.2,0,0,0
dy = (8.5,0.5,0,3)
d; = (0,0,0,0.3)

CPU: 1000 CPU: 2000 CPU: 100088 CPU: 1000
RAM: 64G RAM: 128G RAM: 64G B8 RAM: 32G

Privacy scheduler

t1=1 ty=2 t3=3 t;, =4

= -

Pipeline demands
for privacy budget

Private data
blocks

Outline

1. Motivation
2. Architecture
3. DPF scheduler

4. Evaluation

DRF as a Basis

o« Dominant Resource Fairness (DRF)
to allocate multiple resources
(Ghodsi+11)

o Popular for datacenters (CPU, GPU,
RAM)

e For compute, it gives max-min
fairness over m resources

Algorithm 1. DRF

R = (R,,...,R,) resource capacities
C = (Cy,...,C,) consumed resources

DominantShare(d;) := max; Cj%—’

OnSchedulerTimer(W aitingJobs) :
SortedJobs < sortBy(DominantShare, WaitingJobs)
for 2 € SortedJobs :
ifC+d; <R:
C + C +d;

18

Problem: Privacy is not Replenishable

t =1
4—
Pipeline 1 Pipeline 2
J 15 | 10
block 1 block 2 block 1 block 2 block 1 block 2

Demands for budget Consumed budget

Problem: Privacy is not Replenishable

t=1

Pipeline 2

=9

1.0

block 1 block 2

Demands for budget

block 1 block 2

Consumed budget

20

Problem: Privacy is not Replenishable

block 1 block 2

Demands for budget Consumed budget

Problem: Privacy is not Replenishable

t =2

Pipeline 3

1.0 1.0
block 1 block 2 block 1 block 2

Demands for budget Consumed budget

Problem: Privacy is not Replenishable

t =2

Not enough budget left for
future pipelines

Pipeline 3

1.0 1.0
block 1 block 2 block 1 block 2

Demands for budget Consumed budget

Dominant Privacy Fairness (DPF)

e |Idea: unlock privacy budget for
each block progressively, so
budget remains for the future

o Like DRF but only for the first N

pipelines for each block, and best-
effort scheduling for the others

Algorithm 2. DPF-N

R= (Ri;e0s; R,,) private block capacities (aka £“)
C = (Cy,..., C») consumed budgets
U = (Uy,...,U,) unlocked budgets (initially 0)

24

Dominant Privacy Fairness (DPF)

e |Idea: unlock privacy budget for
each block progressively, so
budget remains for the future

o Like DRF but only for the first N

pipelines for each block, and best-
effort scheduling for the others

Algorithm 2. DPF-N

R = (Ry,...,R,) private block capacities (aka £%)
C = (Cy,..., C») consumed budgets
U = (Uy,...,U,) unlocked budgets (initially 0)

OnPipelineArrival(d;) :
forje{j:d;; >0}:
U; + min(R;,U; + %)

24

Dominant Privacy Fairness (DPF)

Algorithm 2. DPF-N

R = (Ry,...,R,,) private block capacities (aka %)
] C = (Cy,...,C,) consumed budgets
e |Idea: unlock privacy budget for U = (Uy,...,U,) unlocked budgets (initially 0)
each block progressively, so o |
_ OnPipelineArrival(d;) :
budget remains for the future ford € {j :di; > 0} :
U; + min(R;,U; + %)
e Like DRF but Only for the first N DominantShare(d;) := max; %}i
pipe”nes for each block, and best- OnSchedulerTimer(W aitingJobs) :
: Sorted.Jobs < sortBy(DominantShare, W aitingJobs)
effort scheduling for the others for i € SortedJobs -
lf C/Y . di S U :

C + C +d;

Pipeline 1

_—

block 1 block 2

Incoming pipelines

DPF Example

t=1

DPF queue

block 1 block 2

Allocated budget

25

Incoming pipelines

DPF Example

t=1

Pipeline 1

.

block 1 block 2

DPF queue

Unlock some budget
(fair share)

block 1 block 2

Allocated budget

26

Pipeline 2

block 1 block 2

Incoming pipelines

DPF Example

t =2

Pipeline 1

.

block 1 block 2

DPF queue

block 1 block 2

Allocated budget

ar

Incoming pipelines

DPF Example

t =2

Pipeline 2 Pipeline 1

N i

block 1 block 2 block 1 block 2

DPF queue

block 1 block 2

Allocated budget

28

DPF Example

Higher priority (smaller

dominant share) t =2

Pipeline 1 Pipeline 2

block 1 block 2 block 1 block 2

Incoming pipelines DPF queue

block 1 block 2

Allocated budget

29

DPF Example

t =2

Pipeline 1

.

block 1 block 2

Incoming pipelines DPF queue

block 1 block 2

Allocated budget

30

Pipeline 3

15

1.0

block 1 block 2

Incoming pipelines

DPF Example

t =3

Pipeline 1

block 1 block 2

DPF queue

block 1 block 2

Allocated budget

31

Incoming pipelines

DPF Example

Pipeline 3

kS

1.0

block 1 block 2

t =3

Pipeline 1

block 1 block 2

DPF queue

block 1 block 2

Allocated budget

32

DPF Example

. t=3
Higher priority (tie-
breaking with the 2nd
dominant share)
Pipelina 3 Pipeline 1
15 1.0

block 1 block 2

Incoming pipelines

block 1 block 2

DPF queue

block 1 block 2

Allocated budget

33

DPF Example

t =3

Pipeline 3

1.5 1.0
block 1 block 2 block 1 block 2

Incoming pipelines DPF queue Allocated budget

Max-min fairness only for the first N

DPF Properties

pipelines over any block

Game theoretic properties:

sharing incentive
strategy-proofness
dynamic envy-freeness
Pareto-efficiency

Definition. A pipeline is a fair
demand pipeline if:

a) its demand for each one of the
blocks is smaller than the fair share
EJG/N and

D) it Is within the first N pipelines
that requested some budget for all
ItS requested blocks

35

Outline

1. Motivation
2. Architecture
3. DPF scheduler

4. Evaluation

Methodology

Questions

How does DPF compare to baseline

schedulers?
How do workload characteristics impact DPF?
How does the DP semantic impact DPF?

Workloads

Microbenchmark: ¢ € {0.01¢“,0.1¢%}, either the last block

or the 10 last blocks
Macrobenchmark: NLP pipelines and summary statistics
over the Amazon Reviews dataset with various demands

37

Number of pipelines allocated

How does DPF compare to baseline schedulers?

Allocation
— FCFS
\ — RR
— DPF
200 400 600

N parameter for DPF and RR

38

How does DPF compare to baseline schedulers?

Allocation Latency

g =

£ 2500 i

2 —FCFS O [—— FCFS

[TS TR g s I

(7g) — -
—DPF E

£ 1500 T 0

b du

=8 o

‘A 1000 2 0,4//f

(T

< -

o 500 9 0.2

0 o

= S 0

= 0 L

. 200 400 600 0 100 200 300

N parameter for DPF and RR Pipeline scheduling delay

38

How does DPF compare to baseline schedulers?

Allocation Latency
g
£ 2500 B
Y —hras- 0§ —
— %} o .
v — -
= DPF E

£ 1500 T 06
v B
=1 a
@ 1000 “— 04//
— o
o c
5 500 g A
0 o
= 2 0
= 0 L
= 200 400 600 0 100 200 300

N parameter for DPF and RR Pipeline scheduling dela}/

Timeout

38

Conclusion

e Privacy as a resource that should be tracked and scheduled

e PrivateKube incorporates privacy as a new resource into Kubernetes and
provides Dominant Privacy Fairness (DPF), the first scheduling algorithm
suitable for this non-replenishable resource.

e Changes to the algorithm and fairness definitions show that scheduling
privacy is a new problem, for which more work is needed.

Code and paper: https://columbia.github.io/PrivateKube

Contact: pierre@cs.columbia.edu

References

(Carlini+18) Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss,
Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, Alina Oprea, Colin Raffel.
Extracting Training Data from Large Language Models. arxiv 2020.

(Shokri+17) Reza Shokri, Marco Stronati, Congzheng Song, Vitaly Shmatikov. Membership Inference
Attacks against Machine Learning Models. S&P 2017.

(Calandrino+11) J. A. Calandrino, A. Kilzer, A. Narayanan, E. W. Felten, and V. Shmatikov. “You Might
Also Like:” Privacy risks of collaborative filtering. S&P 2011.

(Lecuyer+19) M. Lecuyer, R. Spahn, R. Geambasu, and D. Hsu. Privacy Accounting and Quality Control
in the Sage Differentially Private Machine Learning Platform. SOSP 2019.

(Ghodsi+11) Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, lon Stoica.

Dominant Resource Fairness: Fair Allocation of Multiple Resource Types. NSDI 2011.
40

References

(Zanella-Béguelin+20) Santiago Zanella-Béguelin, Lukas Wutschitz, Shruti Tople, Victor Ruhle, Andrew

Paverd, Olga Ohrimenko, Boris KOpf, Marc Brockschmidt. Analyzing Information Leakage of Updates to
Natural Language Models. CCS 2020.

(Dinur+Nissim-03) |. Dinur and K. Nissim. Revealing information while preserving privacy. PODS, 2003.

41

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

