Amy lgor
Tai+* Smolyar™

e o Optimizing Storage
Weit - Tsafrirt Performance with
— Calibrated Interrupts

! TECHNION

Israel Institute

of Technology OSD' 2021
‘vmware

Presenter: Ilgor Smolyar

* Denotes co-first authors with equal contribution

Motivation: rapid increase in storage performance

NVMe 5 psec 2M\
2.0 latency
10 usec
R H 1.5M~
S :
E 100 psec M~
e 50K
O
S 400K /450K \
ORS 15OK/2OOK \
[NVMe Optane
0.0 SATA/SAS NVMe NAND | gen1, gen?2
| 2008 2010 2 2 2014 2016 2018 u20
ya s
1. More efficient I/O interface 2. SSDs internals---latency

+ optimized software stack Improvements

Motivation 1;: faster I/O interface--software and hardware

CPU-bound async workload, io depth 256

Cost of I/O [1000s of cycles] Cost of I/O [%]

SATA/SAS NVMe NAND NVMe SATA/SAS NVMe NAND NAVAVIS
Optane geni Optane geni

B interrupt . other

Motivation 2: SSDs latency improvements

Device-bound sync workload, io depth 1

Latency of I/O [usec]

NAVAV ISR NVAYNID) NAVAVIS NAVAVIS NVMe NAND NVMe NAVAVIS
Optane gen1 Optane gen?2 Optane genl1 Optane gen?2

B interrupt . other

Interrupts are expensive.

Firing an interrupt on each completion
hampers performance.

Must Coalesce!

Interrupt coalescing

No coalescing: interrupt on each request

sismsslcocBc0cssEssBc-0c00<

CPU time

- Request #1 latency

Coalescing: interrupt every 4 requests Coalescing is
CPU efficient
\

e le, |le |l@ nc Gl EGE GG |
SiEssEs S SE o c ccll s S 9 ged oycies

\ 4

CPU time

- Request #1 latency

Coalescing problem: latency/throughput trade-off

Which request is latency sensitive?

Eternal question: when to generate an interrupt?

 Difficult question!
« Can heuristics help?

« Sense the workload and act accordingly

e Let’'s see how heuristics work in NICs

latency [usec]

Eternal question: when to generate an interrupt?

Heuristics are suboptimal

Intel XL710 TCP RR latency [usec] Mellanox CX-5 TCP RR lat. [usec]
200 = 80 120
66
Tolo I — . 100
60
80
120
40 60
80 29 30 AV i
232323 4 i 24 9> 18 40
48 nE | 20
__ 50
O 0] 0]
64B 256B 1KB 4KB 16KB 64KB 64B 256B 1KB 4KB 16KB 64KB
default L diff B o coalescing

adaptive heuristics

diff [psec]

Devices resort to use heuristics,
which is suboptimal for performance.

Problem: Semantic Gap

Missing Semantics:
when to generate an interrupt?

Our Solution

Software has the knowledge when it needs an interrupt.
/O requests should convey this knowledge to the device.

For NVMe devices we calibrate™ interrupts
with Urgent and Barrier flags.

* To calibrate: to adjust precisely for a particular function

Semantics: Urgent flag for latency sensitive request #1

Cinterrupts: on Urgent fire immediately, coalesce the rest Cinterrupts is
CPU efficient

S S, Ss 54“ C; S5 Sg 57 Ssnc2 C3]S4 C5nC6 Sz S Saved

|
Request #1 latency cycles

No coalescing: interrupt on each request

De@=0-0-0-0- 250-0-0-0-

Request #1 latency
Coalescing: interrupt every 4 requests
Si S; S3 S, St Sg Sy san C, | Cq c4nc5 Cg | C7 | Cg

Request #1 latency

Performance benefits of Urgent

Mixed workload, two threads: sync (urgent) and async (throughput)

total IOPS sync latency
[1000s] [usec]

YOO oo x1.15 - BO) e x4.39

interrupts
[1000s/sec]
)1 (0) R —
x2.74
200
150
100

. cinterrupts no coalescing [coalescing*

* Cinterrupts adaptive coalescing, superior to NVMe coalescing

Urgent improves latency.

Can we also optimize throughput?

Semantics: Barrier flag means end of a batch

Two threads, each submits batch of 3 requests
Cinterrupts: mark with Barrier the last request in the batch

No idle CPU
s s BIEEEc - B - -

thread #1 latency Improved latency

thread #2 latency

Coalescing: interrupt every 4 requests interrupt on

thread #1 thread #2 S tmeout

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ISEBENEg - - - - “ﬂ s Co

thread #1 latency

thread #2 latency

Performance benefits of Barrier

Async workload, two threads submit in batches

IOPS latency
[1000s] [usec]
300 0 . x145
250 x0.85
200 - XO71 30

150
100
50

10

. cinterrupts

CPU util: 100% CPU util: 100%

* Cinterrupts adaptive coalescing, superior to NVMe coalescing

interrupts
[1000s/sec]
)1 (0) R —
x3.42
200
150
100

no coalescing [coalescing*

CPU util: 64%

Barrier optimizes throughput.

Generates interrupt exactly when batch is ready.

Implementation: passing flags with Linux kernel support

* RWF_URGENT and RWF_BARRIER syscall flags

* Applications use explicitly in
* preadv2/pwritev2
e [0_Submit
* For legacy apps, kernel sets default annotations

 mark sync or blocking with Urgent
 mark async with Barrier

More in the paper

Aktlagy]
Satiiagg,

Optimizing S‘!orage Iy

erfnrmante with C‘nlibrated Inter,

Amy Ty Igor Smolygets
T Henticy

| hmarks == =
acro & micro benc
e More m

Michagy Wit

{eraey Stituge o Te ﬁ:n:l:."u,s

CMtpletion, an Iy g, = ML dseigl Elthey
fency iy Wicdiatey, jracrrup; o to

s by ay E
Whife SRAET eyer g tin

|ng : {. ' e e e i

: oalesc

interrupts adaptive ¢

* CIn :

 Emulation details tworking
Cinterrupts for netw

e (]

chang,
Ilmngh-
as

25 gy
¥ whieq imlermgy

e b,
PLs enah,
the

the

infep,
Iy

t

a0 reg)
A2 ey by

} reg
ESpcting g S¥sten cajy

4.0} w T Mgy

interfyey that albows, 4

I icrrhog, . hemack:

T

Conclusions

Lack of semantics when to generate an interrupt
IS a problem for high-speed I/O devices

Cinterrupts closes this Semantic Gap for NVMe
devices with Urgent and Barrier flags

Cinterrupts improves workloads performance
even In a dynamic environment

Thank Youl!

Have questions? Send us an email.
Amy Tai:
lgor Smolyar:
Michael Wel:

Dan Tsafrir;

mailto:taiam@vmware.com
mailto:igors@cs.echnion.ac.il
mailto:mwei@vmware.com
mailto:dan@cs.technion.ac.il

