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Motivation: rapid increase in storage performance
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Motivation 1;: faster I/O interface--software and hardware

CPU-bound async workload, io depth 256
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Motivation 2: SSDs latency improvements

Device-bound sync workload, io depth 1

Latency of I/O [usec]
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Interrupts are expensive.

Firing an interrupt on each completion
hampers performance.

Must Coalesce!



Interrupt coalescing

No coalescing: interrupt on each request
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Coalescing problem: latency/throughput trade-off

Which request is latency sensitive?




Eternal question: when to generate an interrupt?

 Difficult question!
« Can heuristics help?

« Sense the workload and act accordingly

e Let’'s see how heuristics work in NICs



latency [usec]

Eternal question: when to generate an interrupt?

Heuristics are suboptimal
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Devices resort to use heuristics,
which is suboptimal for performance.

Problem: Semantic Gap

Missing Semantics:
when to generate an interrupt?



Our Solution

Software has the knowledge when it needs an interrupt.
/O requests should convey this knowledge to the device.

For NVMe devices we calibrate™ interrupts
with Urgent and Barrier flags.

* To calibrate: to adjust precisely for a particular function



Semantics: Urgent flag for latency sensitive request #1

Cinterrupts: on Urgent fire immediately, coalesce the rest Cinterrupts is
CPU efficient
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Performance benefits of Urgent

Mixed workload, two threads: sync (urgent) and async (throughput)
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* Cinterrupts adaptive coalescing, superior to NVMe coalescing



Urgent improves latency.

Can we also optimize throughput?



Semantics: Barrier flag means end of a batch

Two threads, each submits batch of 3 requests
Cinterrupts: mark with Barrier the last request in the batch
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Performance benefits of Barrier

Async workload, two threads submit in batches
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Barrier optimizes throughput.

Generates interrupt exactly when batch is ready.



Implementation: passing flags with Linux kernel support

* RWF_URGENT and RWF_BARRIER syscall flags

* Applications use explicitly in
* preadv2/pwritev2
e [0_Submit
* For legacy apps, kernel sets default annotations

 mark sync or blocking with Urgent
 mark async with Barrier



More in the paper
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Conclusions

Lack of semantics when to generate an interrupt
IS a problem for high-speed I/O devices

Cinterrupts closes this Semantic Gap for NVMe
devices with Urgent and Barrier flags

Cinterrupts improves workloads performance
even In a dynamic environment
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