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Zoned Name Space (ZNS) Storage

* The logical address space is divided into fixed-sized zones.

* Each zone must be written sequentially and reset explicitly for reuse
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SSD Architecture |01
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Why ZNS!? Isolation, hot/cold separation
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Why ZNS? Small L2P Translation Table

Random Write

Sequential Write
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Why ZNS? GC-less, Predictable

Random Write Sequential Write
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New IO Stack for ZNS

Log-Structured File System (LFS) - Append Logging (Sequential Write)
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F2FS (Flash-Friendly File System)

* One of actively maintained Log-structured File Systems (LFS)

* Six types of segments: hot, warm, and cold segments for each node/data
* Multi-head logging

* Supports both append logging (AL) and threaded logging (TL)

* A patch version for ZNS is available (threaded logging is disabled)
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Segment Compaction

|. Victim segment selection - a segment with the lowest compaction cost

2. Destination block allocation - contiguous free space

3. Valid data copy - moves all valid data in the victim segment to the
destination segments via host-initiated read and write requests

* Many idle intervals of flash chips
4. Metadata & checkpoint update
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Robbing Peter to Pay Paul?

* Host-side GC in exchange for using GC-less ZNS SSD

* Host-side GC overhead > Device-side GC overhead
" |O Request Handling, H2D Data Transfer, Page Allocation, Metadata Update

Host Lo\ 4 Host Yes,
EXT4, XFS, ... \ LFS, F2FS, Btrfs, ... copy block yourself.
Random Overwrite Append Logging You can do better!
No GC Segment Compaction And can | use

J threaded logging?

Small trafficﬁ Large traffic .

{ = e b
g Garbage Collection < @
Need Over-Provisioning No GC (No OP)

(OP) Space Small L2P Mapping Table

\Large L2P Mapping Table

- J
Regular SSD ZNS SSD 10




ZNS+: LFS-Aware ZNS

* Internal Zone Compaction (1ZC)
* zone compaction command
= Can accelerate zone compaction
" Copy blocks within SSD
* Reduce host-to-device traffic
» SSD can schedule flash operations efficiently

* Sparse Sequential Write

* TL open command

* Can avoid zone compaction w/ threaded logging

" The host can overwrite a zone sparsely

v The block addresses of the consecutive writes must
be in the increasing order

" Transformed to dense request w/ internal
plugging by SSD
" Can hide latency by utilizing idle flash chips
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ZNS+-aware LFS

* Hybrid segment recycling (HSR): segment cleaning vs. threaded logging

* Copyback-aware block allocation: maximize on-chip copyback operations
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Experimental Setup

* ZNS+ emulator based on FEMU
* Real ZNS+ implemented at Cosmos+ OpenSSD
* Modified F2FS 4.10

* Comparison
= ZNS vs. IZC (internal zone compaction, no TL) vs. ZNS+ (IZC and TL)

The CASE of FEMU:
Cheap, Accurate, Scalable and Extensible Flash Emulator

Huaicheng Li, Mingzhe Hao, Michael Hao Tong,
Swaminatahan Sundararaman’, Matias Bjerling?, Haryadi S. Gunawi

University of Chicago TParallel Machines *CNEX Labs

A QEMU-based and DRAM-backed NVMe SSD Emulator

https://github.com/ucare-uchicago/femu
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Performance

* IZC

* 28.2-51.7% reduction at compaction time
* 1.3—1.9x higher throughputs than ZNS

 ZNS+
* 1.3-2.9x higher throughputs than ZNS
* > 86% of the reclaimed segments are handled by threaded logging
* Metadata write traffic reduction by 48%

Latency (ms)
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Flash Chip Parallelism

* ZNS+ shows a faster increase rate on ¢ Copyback-Aware (CAB) vs. -Unaware (CUB)

performance * CUB: cpbk ratio decreases linearly
* Increased compaction cost can be » CAB: > 80% of the copy requests are
hidden in the background by the processed by copyback
internal plugging. « ZNS+ increases cpbk ratio w/ thread
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Conclusion

* SSD evolution
* Black-box model — Regular SSD
* Log-on-Log, Unpredictable Delay

* Gray-box model — Multi-streamed SSD
* Host can specify the stream ID of each write request =» GC optimization

* White-box model — Open-Channel SSD, ZNS

* Exposes SSD hardware geometry to the host
* Current ZNS imposes a high storage reclaiming overhead on the host to simplify SSDs.

o ZNS+

* Place each storage management task in the most appropriate location
* Make the host and the SSD cooperate

* Code is available
* https://github.com/eslab-skku/ZNSplus
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Thank You

Further Questions? dongkun@skku.edu
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