ZNS+:Advanced Zoned Namespace
Interface for Supporting In-Storage
Zone Compaction

Kyuhwa Han'2, Hyunho Gwak!, Dongkun Shin', and Joo-Young Hwang?

'Sungkyunkwan University, 2Samsung Electronics

& PSmsunce

Zoned Name Space (ZNS) Storage

* The logical address space is divided into fixed-sized zones.

* Each zone must be written sequentially and reset explicitly for reuse

_ Storage LBA range ,
Zone 0 Zone | Zone 2 Zone 3 o o o Zone N
......... nvm-,
Eo" Zone Size .."..E s

SAMSUNG
— ~ QUICK START GUIDE 77 ZNS SSD
* Written | Remainin ; : .
bIOCI(S bIOCI(S g Linux Kerngl Featgres Sysl‘em Complianc.e Tests - ; QLC(4b|t) ZNS SSD

Write Pointer
https://zonedstorage.io/ https://nvmexpress.org/

SSD Architecture |01

p N Chip Block (Erase Unit)
() parallel channels arallel ways
Fw (FTL) | D Y block page
] [. block age jal wri
Processor _ chit I chip || chip” ¥ pag Sequetntlal wrff,
ock page cannot overwrite
/ Flash flash | flash H_ sh | ‘ flash before erase
DRAM controller chip | [chip chip |_
* Evzrge buf Flash flash || flash H flash || flash RISEC 2 page SV
/ MaP | |_controller chip | [chip || chip H chip 4AKB~16KB
NULAE E Flash / flas FJ-| flas D_H ﬂaSh flash :)Cop/—ybaCkGarbage Collection (GC) ———
Controller ntroll chi chi ChID chip J Before GC Copy valid pages
|6 (4@annels X 4 ways) flash chips can be accessed in parallel Block Block Block Block Block Block
X X X X (D)
N L2P mapping Block L2 mapping SEEs X © - X © [©
] @A — 2 X X B b (A)
— (B) =) & ® | | @& ® [| @
\ o X l
> (D) Address re-mapping Erase invalid blocks
- Block Block Block Block Block Block Block
Initial logical-to-physical (A) X X (D) N (D)
L2P) address mappin © X X © 2l | 2l | ©
(L2F) PPIng Out-of-place update X X m = & & T
Address re-mapping X X
|

Why ZNS!? Isolation, hot/cold separation

[Data][Data J[Data } Data [Data J[Data]
Stream | Stream 2 Stream 3 Stream | Stream 2 Stream 3
~__] >
-lﬂ@ ﬂ Eﬂg '-lﬂ@ ﬂ =
Zone | Zone 2 Zone 3
S e ey e ey ey

D Data
Str::?n ..-- . -. Stream
EOEEEC- - ECEEED- -

% Arrival order-based placement % Zone-based placement
(Flash Block Group | ™ Flash Block Group 2\ (" Flash BIo Group I FIash Block Group 2)

T T mmmmjmmma]

Flash Block Group 3 Flash Block Group 7 Flash Block Group 3 Flash Block Group 4

ECEER "
\ 7,
ZNS SSD

Regular SSD

Why ZNS? Small L2P Translation Table

Random Write

Sequential Write

> — — —

EENUEEE.

LBNO LBNI1 LBN2 LBN3 LBN4 LBNS5 LBN6 LBN7
LBN: Logical Block Number

LBN-level L2P translation table Fblock 0
LBN | Fblock/Fpage Fpage 0 A
0 8 *Fpage | | B || Sequential
I 1/1 Fpage 2 C Write
2 0/2 Fpage 3 D !
3 0/0
4 3 Fblock |
5 "o Fpage 0 E
6 03 — > Fpage | | F Sequential
- 2 Fpage2 | G Write
Logical Block Size = 4KB Fpage 3 H v

Regular SSD

W
A B C D E F G H
LBNO LBNI LBN2 LBN3| LBN4 LBNS5 LBNé6 LBN7
Zone 0 Zone |

— Fblock 0
Zone-level L2P Fpage 0 | A
translation table Fpage | | B Sequential
Zone | Fblock Fpage 2 C Write
0 0 Fpage3 | D |}
I I 1
Fblock |
Logical Zone Size = xxMB Fpage 0 E
Fpage | | F Sequential
Fpage2 | G Write
Fpage 3 H ||
ZNS SSD

Why ZNS? GC-less, Predictable

Random Write Sequential Write
B F Cl Al H El D Gl Al Bl Cl DI E F G H
LBNO LBNI LBN2 LBN3 LBN4 LBNS5 LBN6 LBN7 LBNO LBNI LBN2 LBN3|LBN4 LBNS5 LBN6 LBN7
Zone 0 Zone |
LBN-level L2P translation table Fblock 0 Fblock 2) > Fblock 0 Fblock 2
LBN | Fblock/Fpage Fpage 0 x Fpage 0 | Al Zonel-le.vel L bF|) Fpage O x Fpage 0 | Al
translation table
0 3/0 > Fpage | B | Fpagel Cl Fpage | x Fpage | Bl
I 3/2 Fpage 0) x \\fpage 2 El Zone Fblock Fpage 2 x Fpage 2 Cl
\
2 2/1 Fpage 3 D J Fp‘&ge 3 Gl 0 2 Fpage 3 x Fpage 3 DI
KN \ | |
3 20 A L Fblock |
7 o Fblock | "~ Fhlock 3 (OP)
Fpage 0 | 0K NS GC-less,No OP rugeo [E

5 212 page Fpage 8, | *

2 31 — Fpage | F S~ Fpage | e WAF ~ | Fpage | F

- ~ Frage2 | JX | Fpage2 1> (write amp. factor) free2 | G

Fpage 3 H +-+Fpage3-+— Fpage 3 H
GC: valid page copy
Regular SSD ZNS SSD

=>» write amplified, unexpected delay

New IO Stack for ZNS

Log-Structured File System (LFS) - Append Logging (Sequential Write)
| | | | | | || | | | | | | | ' : I I I I I I [

>
Segment 0 Segment | Segment 2

I I I I I I [7
=Zone 0 \ = Zone | / = Zone 2
Per-Zone In-Order Queue i i — -

I 2 .’
ZNS SSD Zone Scheduler
~ v

Zone Mapping \)
I I

_ Flash block group 0 Flash block group | Flash block group 2

J

F2FS (Flash-Friendly File System)

* One of actively maintained Log-structured File Systems (LFS)

* Six types of segments: hot, warm, and cold segments for each node/data
* Multi-head logging

* Supports both append logging (AL) and threaded logging (TL)

* A patch version for ZNS is available (threaded logging is disabled)

Segments

- >
Check Metadata Node | Node | Node | Data Data Data
point (hot) | (warm) | (cold) | (hot) | (warm)| (cold)
. overwrite .
valid clean | new data COPYN\ .--mereeeforeme. _ new Wte
block | |block j j } \ - ;’:“’*/ ::: PIPRAAA
: A TF AV
) osaee AL AN Y

Threaded Logging Segment Compaction and Append Logging

Segment Compaction

|. Victim segment selection - a segment with the lowest compaction cost

2. Destination block allocation - contiguous free space

3. Valid data copy - moves all valid data in the victim segment to the
destination segments via host-initiated read and write requests

* Many idle intervals of flash chips
4. Metadata & checkpoint update

@ victim @ destination block allocation (@ data copy @ metadata update
selection < > |

File System . read write v
page allocation ¥ v v v T A
Block Layer ~ request handling req int
itio] Al Al Al 7 A
Host Bus muttip'e DMA DMA]
reads VAV AV A&)
Flash Controller Read | Write write
Flash Chip 0 R|e—idle ,|R| w [w W
Flash Chip 1 R R] < idle Sww
Flash Chip 2 R||R w | w
Flash Chip 3 R |R] w | w

Normal segment compaction via host-level copy

Robbing Peter to Pay Paul?

* Host-side GC in exchange for using GC-less ZNS SSD

* Host-side GC overhead > Device-side GC overhead
" |O Request Handling, H2D Data Transfer, Page Allocation, Metadata Update

Host Lo\ 4 Host Yes,
EXT4, XFS, ... \ LFS, F2FS, Btrfs, ... copy block yourself.
Random Overwrite Append Logging You can do better!
No GC Segment Compaction And can | use

J threaded logging?

Small trafficﬁ Large traffic .

{ = e b
g Garbage Collection < @
Need Over-Provisioning No GC (No OP)

(OP) Space Small L2P Mapping Table

\Large L2P Mapping Table

- J
Regular SSD ZNS SSD 10

ZNS+: LFS-Aware ZNS

* Internal Zone Compaction (1ZC)
* zone compaction command
= Can accelerate zone compaction
" Copy blocks within SSD
* Reduce host-to-device traffic
» SSD can schedule flash operations efficiently

* Sparse Sequential Write

* TL open command

* Can avoid zone compaction w/ threaded logging

" The host can overwrite a zone sparsely

v The block addresses of the consecutive writes must
be in the increasing order

" Transformed to dense request w/ internal
plugging by SSD
" Can hide latency by utilizing idle flash chips

Host
!‘
LFS, F2FS, Btrfs, ... =
Copy Threaded
Offloading Logging y
Small traffic @
- ¥ ¥ \ 4 J
Zone Internal ~
Compaction Plugging
No GC (No OP)
_ Small L2P Mapping Table)
ZNS+ SSD
@ victim ® destination block allocation @ metadata update
selection |
File System d @ copy offloading v
Block Layer "req int |:|
Host Bus |:|
\ 4
Flash Controller | zone_compaction write
Flash Chip 0 RIIR[[w || w W
Flash Chip 1 R | [copyback]
Flash Chip 2 RI[w [w|
Flash Chip 3 copyback|

Efficient internal scheduling

ZNS+-aware LFS

* Hybrid segment recycling (HSR): segment cleaning vs. threaded logging

* Copyback-aware block allocation: maximize on-chip copyback operations

Logical copy
Host e S .
K y e\
Copyback- | see. BB [1]2]3]4]5]s
HSR .
aware BA Then, | will use a
Copy Threaded copyback—aV\{are
\ Offloading Logging block allocation.
& o
=
Small{ traffic
AV 4
(] Z Int |
c one PT erna Do you know | can
ompaction ugging copy data quickly

No GC (No OP)
Small L2P Mapping Table

ZNS+ SSD

within a flash chip?
It's copyback.

Zone |

- J

Experimental Setup

* ZNS+ emulator based on FEMU
* Real ZNS+ implemented at Cosmos+ OpenSSD
* Modified F2FS 4.10

* Comparison
= ZNS vs. IZC (internal zone compaction, no TL) vs. ZNS+ (IZC and TL)

The CASE of FEMU:
Cheap, Accurate, Scalable and Extensible Flash Emulator

Huaicheng Li, Mingzhe Hao, Michael Hao Tong,
Swaminatahan Sundararaman’, Matias Bjerling?, Haryadi S. Gunawi

University of Chicago TParallel Machines *CNEX Labs

A QEMU-based and DRAM-backed NVMe SSD Emulator

https://github.com/ucare-uchicago/femu

13

https://github.com/ucare-uchicago/femu

Performance

* IZC

* 28.2-51.7% reduction at compaction time
* 1.3—1.9x higher throughputs than ZNS

 ZNS+
* 1.3-2.9x higher throughputs than ZNS
* > 86% of the reclaimed segments are handled by threaded logging
* Metadata write traffic reduction by 48%

Latency (ms)

20 " [Dinit phase Bread phase OZNS BIZC(w/o cpbk) BIZC OZNS+w/o cpbk) BZNS+
15 Owrite phase OIZC phase “‘“f:: 12 2.91x 2.46X
s |H « || B = [200 | 282% it 1.89x)f | 18441 1 7gy 1.33x
|0 8 =1 1N I 1
ZNS IZC|ZNS IZC|ZNS IZC|ZNS 1ZC|ZNS 1ZC %D 3 [[
F \Y% T Y-a Y-f 'E 0

Compaction Time

Flash Chip Parallelism

* ZNS+ shows a faster increase rate on ¢ Copyback-Aware (CAB) vs. -Unaware (CUB)

performance * CUB: cpbk ratio decreases linearly
* Increased compaction cost can be » CAB: > 80% of the copy requests are
hidden in the background by the processed by copyback
internal plugging. « ZNS+ increases cpbk ratio w/ thread
Low internal B/W High internal B/W logging (internal plugging)
ZNS ~ ZNS+ ZNS << ZNS+
18 @ @ 100% T
2 s oz 01ZC-CUB ol 0% BatzEiEtiEntatitneitntn
J 1p ||B1ZC-CAB BZNS+-CUB ZNS¥ 60%
o mZNS+-CAB A 17 40% ([N
2 9 \
5. gis 20% || | PRL Dcpbk OR/P
g] ZN 0% T [TTTTTTITTTITT
qg 3 = 2 4 81632/2 4 81632 |2 4 816322 4 81632
& o e L
)] 16 37 CUB CAB CUB CAB
of flash chips 1ZC ZNS+

of flash chips T = Zone size T = Compaction cost T copyback (cpbk) and read-and-program (R/P) distribution

Conclusion

* SSD evolution
* Black-box model — Regular SSD
* Log-on-Log, Unpredictable Delay

* Gray-box model — Multi-streamed SSD
* Host can specify the stream ID of each write request =» GC optimization

* White-box model — Open-Channel SSD, ZNS

* Exposes SSD hardware geometry to the host
* Current ZNS imposes a high storage reclaiming overhead on the host to simplify SSDs.

o ZNS+

* Place each storage management task in the most appropriate location
* Make the host and the SSD cooperate

* Code is available
* https://github.com/eslab-skku/ZNSplus

16

Thank You

Further Questions? dongkun@skku.edu

17

mailto:Dongkun@skku.edu

