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Zoned Name Space (ZNS) Storage

• The logical address space is divided into fixed-sized zones. 

• Each zone must be written sequentially and reset explicitly for reuse
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• • •

https://zonedstorage.io/ https://nvmexpress.org/

QLC(4bit) ZNS SSD

(June 2021)

2



SSD Architecture 101
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parallel channels parallel ways

16 (4 channels x 4 ways) flash chips can be accessed in parallel
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Why ZNS? Isolation, hot/cold separation 
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• • •
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Why ZNS? Small L2P Translation Table

Regular SSD ZNS SSD

B F C A H E D G

LBN Fblock/Fpage

0 0/1

1 1/1

2 0/2

3 0/0

4 1/3

5 1/0

6 0/3

7 1/2

LBN-level L2P translation table

Random Write Sequential Write

Zone Fblock

0 0

1 1

A B C D E F G H

Zone 0 Zone 1

Fpage 0 A

Fpage 1 B

Fpage 2 C

Fpage 3 D

Fblock 0

LBN 0 LBN 1 LBN 2 LBN 3 LBN 4 LBN 5 LBN 6 LBN 7 LBN 0 LBN 1 LBN 2 LBN 3 LBN 4 LBN 5 LBN 6 LBN 7

Fpage 0 E

Fpage 1 F

Fpage 2 G

Fpage 3 H

Fblock 1

Fpage 0 A

Fpage 1 B

Fpage 2 C

Fpage 3 D

Fblock 0

Fpage 0 E

Fpage 1 F

Fpage 2 G

Fpage 3 H

Fblock 1
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LBN: Logical Block Number

Logical Block Size = 4KB

Logical Zone Size = xxMB
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Why ZNS? GC-less, Predictable 

Regular SSD ZNS SSD
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LBN Fblock/Fpage

0 0/1

1 1/1
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6 0/3

7 1/2

LBN-level L2P translation table
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New IO Stack for ZNS

Log-Structured File System (LFS) – Append Logging (Sequential Write)

Per-Zone In-Order Queue

ZNS SSD

Segment 0

= Zone 0

Segment 1

= Zone 1

Segment 2

= Zone 2

Flash block group 0 Flash block group 1 Flash block group 2

Zone SchedulerZone Scheduler

Zone Mapping
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F2FS (Flash-Friendly File System)

• One of actively maintained Log-structured File Systems (LFS)

• Six types of segments: hot, warm, and cold segments for each node/data

• Multi-head logging

• Supports both append logging (AL) and threaded logging (TL)

• A patch version for ZNS is available (threaded logging is disabled)
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Segment Compaction

1. Victim segment selection - a segment with the lowest compaction cost

2. Destination block allocation - contiguous free space 

3. Valid data copy - moves all valid data in the victim segment to the 
destination segments via host-initiated read and write requests
• Many idle intervals of flash chips

4. Metadata & checkpoint update 
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Robbing Peter to Pay Paul?

Garbage Collection

Need Over-Provisioning 

(OP) Space

Large L2P Mapping Table

Regular SSD

EXT4, XFS, …

Random Overwrite

No GC

Host

• Host-side GC in exchange for using GC-less ZNS SSD

• Host-side GC overhead > Device-side GC overhead 
▪ IO Request Handling, H2D Data Transfer, Page Allocation, Metadata Update

Small traffic

No GC (No OP)

Small L2P Mapping Table

ZNS SSD

LFS, F2FS, Btrfs, …

Append Logging

Segment Compaction

Host

Large traffic

Can I
help U?

Yes, 
copy block yourself. 
You can do better!

And can I use 
threaded logging?
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ZNS+: LFS-Aware ZNS 

• Internal Zone Compaction (IZC)
▪ zone_compaction command

▪ Can accelerate zone compaction

▪ Copy blocks within SSD

▪ Reduce host-to-device traffic

▪ SSD can schedule flash operations efficiently

• Sparse Sequential Write
▪ TL_open command

▪ Can avoid zone compaction w/ threaded logging

▪ The host can overwrite a zone sparsely
✓The block addresses of the consecutive writes must 

be in the increasing order

▪ Transformed to dense request w/ internal 
plugging by SSD

▪ Can hide latency by utilizing idle flash chips
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Small L2P Mapping Table
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ZNS+-aware LFS

• Hybrid segment recycling (HSR): segment cleaning vs. threaded logging

• Copyback-aware block allocation: maximize on-chip copyback operations

No GC (No OP)

Small L2P Mapping Table

ZNS+ SSD
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Do you know I can 
copy data quickly 

within a flash chip?
It’s copyback.

I see.
Then, I will use a 
copyback-aware 
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Copyback-
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Experimental Setup

• ZNS+ emulator based on FEMU

• Real ZNS+ implemented at Cosmos+ OpenSSD

• Modified F2FS 4.10

• Comparison
▪ ZNS vs. IZC (internal zone compaction, no TL) vs. ZNS+ (IZC and TL)

https://github.com/ucare-uchicago/femu

A QEMU-based and DRAM-backed NVMe SSD Emulator
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Cosmos+ OpenSSD
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Performance

• IZC
• 28.2–51.7% reduction at compaction time

• 1.3–1.9x higher throughputs than ZNS

• ZNS+
• 1.3–2.9x higher throughputs than ZNS

• > 86% of the reclaimed segments are handled by threaded logging

• Metadata write traffic reduction by 48%

Compaction Time
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Flash Chip Parallelism
• ZNS+ shows a faster increase rate on 

performance 

• Increased compaction cost can be 
hidden in the background by the 
internal plugging.

• Copyback-Aware (CAB) vs. -Unaware (CUB)

• CUB: cpbk ratio decreases linearly 

• CAB: > 80% of the copy requests are 
processed by copyback

• ZNS+ increases cpbk ratio w/ thread
logging (internal plugging)
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Conclusion

• SSD evolution
• Black-box model – Regular SSD

• Log-on-Log, Unpredictable Delay

• Gray-box model – Multi-streamed SSD
• Host can specify the stream ID of each write request ➔ GC optimization

• White-box model – Open-Channel SSD, ZNS
• Exposes SSD hardware geometry to the host

• Current ZNS imposes a high storage reclaiming overhead on the host to simplify SSDs. 

• ZNS+ 
• Place each storage management task in the most appropriate location

• Make the host and the SSD cooperate

• Code is available
• https://github.com/eslab-skku/ZNSplus
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Thank You

Further Questions? dongkun@skku.edu
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