
Jason Mohoney, Roger Waleffe, Yiheng Xu,
Theodoros Rekatsinas, Shivaram Venkataraman

marius
Learning Massive Graph Embeddings on a Single Machine

University of Wisconsin-Madison

marius-project.org

http://marius-project.org

Biochemistry Knowledge Graphs High-Energy Physics

Graphs are universal representations of rich semantics about

entities (nodes) and their relationships (edges)

Madison

Capital of

Wisconsin

Born in John
Bardeen

Borders
Illinois

Faculty at
UIUC

Awarded

Nobel
Prize in
Physics
(1956)

Nobel
Prize in
Physics
(1972)

Awarded

Located in

Subgraph of the Freebase knowledge graph

Madison

Capital of

Wisconsin

Born in John
Bardeen

Borders
Illinois

Faculty at
UIUC

Awarded

Nobel
Prize in
Physics
(1956)

Nobel
Prize in
Physics
(1972)

Awarded

Located in

Field?
Physics

Objective: Apply modern ML on graphs

Transform node and edge-types into embeddings (vectors)

Example Tasks:
- Link Prediction (focus of this work)

- Node classification

- Graph classification

Graph Embeddings

John
Bardeen

Field?
Physics → score

John
Bardeen → class

→ classM
W I

U

N N

Subgraph of the Freebase knowledge graph

Madison

Capital of

Wisconsin

Born in John
Bardeen

Borders
Illinois

Faculty at
UIUC

Awarded

Nobel
Prize in
Physics
(1956)

Nobel
Prize in
Physics
(1972)

Awarded

Located in

Field?
Physics

Objective: Apply modern ML on graphs

Transform node and edge-types into embeddings (vectors)

Example Tasks:
- Link Prediction (focus of this work)

- Node classification

- Graph classification

Graph Embeddings

John
Bardeen

Field?
Physics → score

John
Bardeen → class

→ classM
W I

U

N N

Learning Graph Embeddings

Node embeddings Table

Edge-type embeddings

0 d

0 d

|V |

|R |

Madison

Capital of

Wisconsin

Born in John
Bardeen

Borders
Illinois

Faculty at
UIUC

Awarded

Nobel
Prize in
Physics
(1956)

Nobel
Prize in
Physics
(1972)

Awarded

Located in

Training Process

// E ordered randomly
for (s, r, d) in E:

 // compute loss of model for an edge
 computeLoss(s, r, d)

// apply updates to embeddings of edge
 update(s, r, d)

G = (V, R, E)

Training requires iterating over all edges and
retrieving/updating embedding vectors

Learning Graph Embeddings

Node embeddings Table

Edge-type embeddings

0 d

0 d

|V |

|R |

Madison

Capital of

Wisconsin

Born in John
Bardeen

Borders
Illinois

Faculty at
UIUC

Awarded

Nobel
Prize in
Physics
(1956)

Nobel
Prize in
Physics
(1972)

Awarded

Located in

Batched Training

// E randomly grouped into batches
for batch in E:

 // compute loss of model for a batch
 computeLoss(batch)

// apply updates to embeddings in a batch
 update(batch)

G = (V, R, E)

Training requires iterating over all edges and
retrieving/updating embedding vectors

Learning Graph Embeddings

Node embeddings Table

Edge-type embeddings

0 d

0 d

|V |

|R |

Madison

Capital of

Wisconsin

Born in John
Bardeen

Borders
Illinois

Faculty at
UIUC

Awarded

Nobel
Prize in
Physics
(1956)

Nobel
Prize in
Physics
(1972)

Awarded

Located in

Batched Training: single iteration
batch = [(JB, Born, M),(M, Capital, W)]

// load embeddings
computeLoss(batch)

// update embeddings
update(batch)

G = (V, R, E)

Training requires iterating over all edges and
retrieving/updating embedding vectors

Learning Graph Embeddings

Madison

Capital of

Wisconsin

Born in John
Bardeen

Borders
Illinois

Faculty at
UIUC

Awarded

Nobel
Prize in
Physics
(1956)

Nobel
Prize in
Physics
(1972)

Awarded

Located in

Graph with batch highlighted

Node embeddings Table

Edge-type embeddings

0 d

0 d

|V |

|R |

Batched Training: single iteration
batch = [(JB, Born, M),(M, Capital, W)]

// load embeddings and compute loss
computeLoss(batch)

// update embeddings
update(batch)

Training requires iterating over all edges and
retrieving/updating embedding vectors

Learning Graph Embeddings

Madison

Capital of

Wisconsin

Born in John
Bardeen

Borders
Illinois

Faculty at
UIUC

Awarded

Nobel
Prize in
Physics
(1956)

Nobel
Prize in
Physics
(1972)

Awarded

Located in

Graph with batch highlighted

Node embeddings Table

Edge-type embeddings

0 d

0 d

|V |

|R |

Batched Training: single iteration
batch = [(JB, Born, M),(M, Capital, W)]

// load embeddings and compute loss
computeLoss(batch)

// update embeddings
update(batch)

Read
Training requires iterating over all edges and
retrieving/updating embedding vectors

Read

Learning Graph Embeddings

Madison

Capital of

Wisconsin

Born in John
Bardeen

Borders
Illinois

Faculty at
UIUC

Awarded

Nobel
Prize in
Physics
(1956)

Nobel
Prize in
Physics
(1972)

Awarded

Located in

Graph with batch highlighted

Node embeddings Table

Edge-type embeddings

0 d

0 d

|V |

|R |

Batched Training: single iteration
batch = [(JB, Born, M),(M, Capital, W)]

// load embeddings and compute loss
computeLoss(batch)

// update embeddings
update(batch)

Training requires iterating over all edges and
retrieving/updating embedding vectors Write

Write

Training requires efficient access to embedding parameters Irregular Access

Key Challenge: Data Movement

Large Datasets Moving embeddings to compute

AWS P3.2xLarge instance:

- 16 GB GPU Memory

- 61 GB CPU Memory

Embedding table unable to fit in GPU memory! Can the data movement bottlenecks be mitigated?

How to scale?

1. Store embeddings in CPU memory and transfer to GPU(s)
- Bottlenecked by transfer overheads
- Limited scalability DGL-KE

PyTorch Big-Graph (PBG)

PBG & DGL-KE

3. Distribute embeddings across multiple machines
 - Bottlenecked by transfer overheads
 - Expensive

2. Partition node embeddings and store on disk
 - Limited by disk throughput

Freebase86m:

- 338 million edges, 86 million nodes, 15,000 edge types

- Size of node embedding table for d = 400:

86 million x 400 x 4 bytes = 138 GB

Scaling to Large Graphs:

Design Goal: Eliminate data movement overheads inherent in graph embedding training

Results
- 10x reduction in runtime vs. DGL-KE on Twitter
- 3.7x runtime reduction vs. PBG on Freebase86m
- 2x higher utilization than PBG, 6-8x higher

utilization than DGL-KE

Method
- Use pipelining and async IO to hide data movement
- Utilize the full memory hierarchy with a partition buffer
- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)

GPU
Memory

CPU
Memory

Scaling to Large Graphs:

f

Marius Architecture

Method
- Use pipelining and async IO hide data movement
- Utilize the full memory hierarchy with a partition buffer
- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)

Partitioned Embeddings

Partition Buffer

Disk

GPU
Memory

CPU
Memory

Disk

Scaling to Large Graphs:

f

Pipeline

Marius Architecture

Method
- Use pipelining and async IO hide data movement
- Utilize the full memory hierarchy with a partition buffer
- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)

Partitioned Embeddings

Partition Buffer

Maximize GPU utilization

Async IO

GPU
Memory

CPU
Memory

Scaling to Large Graphs:

f

Marius Architecture

Method
- Use pipelining and async IO hide data movement
- Utilize the full memory hierarchy with a partition buffer
- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)

Partitioned Embeddings

Partition Buffer

Disk

Minimize IO through partition caching

GPU
Memory

CPU
Memory

Scaling to Large Graphs:

f

Marius Architecture

Method
- Use pipelining and async IO hide data movement
- Utilize the full memory hierarchy with a partition buffer
- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)

Partitioned Embeddings

Partition Buffer

Disk

Minimize IO to lower bound

Processing Partitions

Node Embedding Partitions

Node embeddings are partitioned uniformly into p
disjoint partitions.

Edge Buckets

Edge bucket (i,j) contains all edges with a source in
partition i and a destination in partition j

0

1

2

3

4

5

1 2 3 4 5

So
ur

ce
 P

ar
tit

io
n

Destination Partition
0

Adjacency Matrix

Edge Buckets

To iterate over all edges, we need to iterate
over all edge buckets

Node embedding table

0 d

|V |

d
Θ0

Θ2

Θ4

Θ1

Θ3

Θ5

Partitioned node embedding table (p = 6)

ΘV

0

|V |

Edge bucket orderings and IO

0

1

2

3

4

5

1 2 3 4 5

So
ur

ce
 P

ar
tit

io
n

Destination Partition

0

Partitions on disk

Partitions in Buffer

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

The order in which edge buckets are processed
has an impact on IO

Example: After processing edge bucket (3, 2)

Processing (2, 3): Requires no extra swaps

Processing (2, 4): Requires one swap

Processing (4, 5): Requires two swaps

c = 3

p = 6Θ2 Θ3

Size of partitions: 138 GB / 6 = 23 GB

23 GB / 400 MBps = ~57 seconds

Costly swaps!

Edge bucket orderings and IO

So
ur

ce
 P

ar
tit

io
n

Destination Partition

0

1

2

3

4

5

Partitions on disk Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Random Ordering

Hilbert Curve Ordering

~23 swaps

12 swaps c = 3

p = 6

Partitions in Buffer

A Lower Bound

Can never process more than 2c - 1 edge buckets per swap

⌈
p2 − c2

2c − 1
⌉ = ⌈

62 − 32

2 * 3 − 1
⌉ = 6

BETA Ordering 7 swaps

6 swaps

1 2 3 4 50

Buffer-aware Edge Traversal Algorithm (BETA)

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Partitions on disk

Partitions in Buffer

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through the
rest of the partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed

c = 3

p = 6

0

1

2

3

4

5

1 2 3 4 50

Buffer-aware Edge Traversal Algorithm (BETA)

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Partitions on disk

Partitions in Buffer

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5Θ0 Θ1 Θ2

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through the
rest of the partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed

c = 3

p = 6

0

1

2

3

4

5

1 2 3 4 50

Buffer-aware Edge Traversal Algorithm (BETA)

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Partitions on disk

Partitions in Buffer

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Θ0 Θ1 Θ2

0 swaps*

* Not counting initialized buffer, as with the previous orderings

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through
the rest of the partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed

c = 3

p = 6

0

1

2

3

4

5

1 2 3 4 50

Buffer-aware Edge Traversal Algorithm (BETA)

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Partitions on disk

Partitions in Buffer

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Θ0 Θ1 Θ2

Θ3

1 swap

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through
the rest of the partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed

c = 3

p = 6

0 swaps*

* Not counting initialized buffer, as with the previous orderings

0

1

2

3

4

5

1 2 3 4 50

Buffer-aware Edge Traversal Algorithm (BETA)

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Partitions on disk

Partitions in Buffer

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Θ0 Θ1 Θ3

2 swaps

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through
the rest of the partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed

c = 3

p = 6

1 swap

Θ4

0

1

2

3

4

5

1 2 3 4 50

Buffer-aware Edge Traversal Algorithm (BETA)

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Partitions on disk

Partitions in Buffer

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Θ0 Θ1 Θ4

3 swaps

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through
the rest of the partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed

c = 3

p = 6

2 swaps

Θ5

0

1

2

3

4

5

1 2 3 4 50

Buffer-aware Edge Traversal Algorithm (BETA)

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Partitions on disk

Partitions in Buffer

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Θ0 Θ1 Θ5

5 swaps

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through the
rest of the partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all
edge buckets have been processed

c = 3

p = 6

3 swaps

Θ2 Θ3

0

1

2

3

4

5

1 2 3 4 50

Buffer-aware Edge Traversal Algorithm (BETA)

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Partitions on disk

Partitions in Buffer

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Θ5Θ2 Θ3

5 swaps

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through
the rest of the partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed

c = 3

p = 6

0

1

2

3

4

5

1 2 3 4 50

Buffer-aware Edge Traversal Algorithm (BETA)

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Partitions on disk

Partitions in Buffer

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Θ5Θ2 Θ3

6 swaps

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through
the rest of the partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed

c = 3

p = 6

5 swaps

Θ4

0

1

2

3

4

5

1 2 3 4 50

Buffer-aware Edge Traversal Algorithm (BETA)

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Partitions on disk

Partitions in Buffer

Θ0 Θ1 Θ2 Θ3 Θ4 Θ5

Θ2 Θ3 Θ4

7 swaps

Close to the 6 swap lower bound!

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle through the
rest of the partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed

c = 3

p = 6

6 swaps

Θ5

0

1

2

3

4

5

1 2 3 4 50

Compatible

Open sourced system: marius-project.org

Built on PyTorch

~15,000 lines of C++ and growing

Python API

http://marius-project.org

Experimental evaluation

More in the paper
- System comparisons on two small/medium sized benchmark datasets
- Cost comparisons with multi-GPU and distributed configurations of DGL-KE and PBG
- The impact of asynchronous training and IO
- Scaling to configurations that are order(s) of magnitude larger than GPU and CPU capacity

Presented here
- Large scale single-GPU comparison with PBG (Facebook) and DGL-KE (Amazon)
- BETA ordering runtime and IO reduction vs. existing orderings and lower bound

Datasets
- Freebase86m knowledge graph
- Twitter social graph
- LiveJournal
- Freebase15k

Models
- Dot
- ComplEx
- DistMult

Hardware
- Amazon EC2 p3.2xlarge
- V100 GPU, 61GB DRAM

Marius up to 10x faster than DGL-
KE on large social graphs

Accuracy and Runtime Comparisons

All systems are trained to 10 epochs, reaching
convergence at near the same time

Twitter
1.46 billion edges
41.6 million nodes
1 edge-type
d = 50

System Model MRR Runtime

PBG
Dot

Product
0.313 5h15m

DGL-KE
Dot

Product
0.220 35h3m

Marius
Dot

Product
0.310 3h28m

Twitter

Freebase86m
338 million edges
86 million nodes
15,000 edge-types
d = 100

Marius up to 3.7x faster than PBG
on large knowledge graphs

System Model MRR Runtime

PBG ComplEx 0.725 7h27m

Marius ComplEx 0.726 2h1m

Freebase86m

Compared Orderings

Lower bound
- Minimum number of swaps possible for a configuration

Hilbert
 - Uses a Hilbert space filling curve to generate an ordering of the edge buckets

Hilbert Symmetric
 - Modified Hilbert ordering which reduces swaps by 2x
 - Processes edge buckets (j,i) and (i,j) together

Random
 - Not evaluated, impractical to run as swaps scale quadratically with increasing partitions

BETA
 - Our approach

BETA ordering leads to 33% reduction
in IO over locality based orderings

Buffer-aware Edge Traversal Algorithm (BETA)

Near the lower bound

To
ta

l I
O

 (G
B

)

0

225

450

675

900

Number of Partitions

8 16 32 64 128

Hilbert Hilbert Symmetric BETA Lower Bound

Reduction in IO corresponds directly
with ~33% reduction in runtime

Ru
nt

im
e

(m
)

0

100

200

300

400

d=50 d=100

BETA Hilbert Symmetric Hilbert

d = 100

Freebase86m

c =
p
4

c: buffer capacity, p: num partitions, d: embedding size

Conclusion & Future Work

Existing systems bottlenecked by data movement

Marius alleviates data movement bottlenecks
- Pipelining/Async IO
- Partition Buffer
- BETA Ordering

Future work

High Energy Physics Paleobiology (VLDB Demo 2021)Scaling GNNs

marius

Learning Massive Graph Embeddings on a
Single Machine

Jason Mohoney*, Roger Waleffe, Yiheng Xu,
Theodoros Rekatsinas, Shivaram Venkataraman

Thank you!

Open-source at marius-project.org

 * Email: mohoney2@wisc.edu

http://marius-project.org
mailto:mohoney2@wisc.edu

