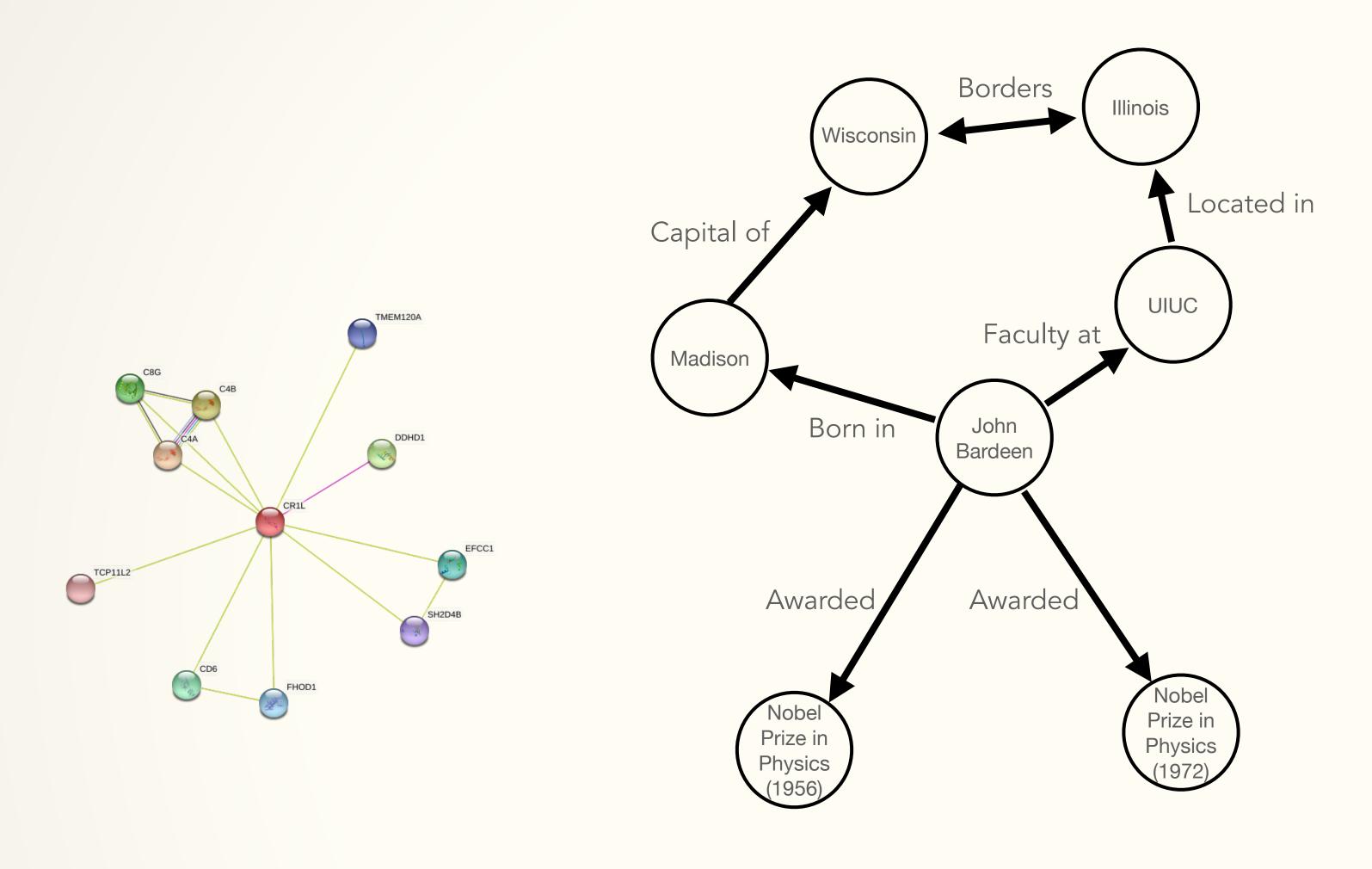
marius Learning Massive Graph Embeddings on a Single Machine

Jason Mohoney, Roger Waleffe, Yiheng Xu, Theodoros Rekatsinas, Shivaram Venkataraman

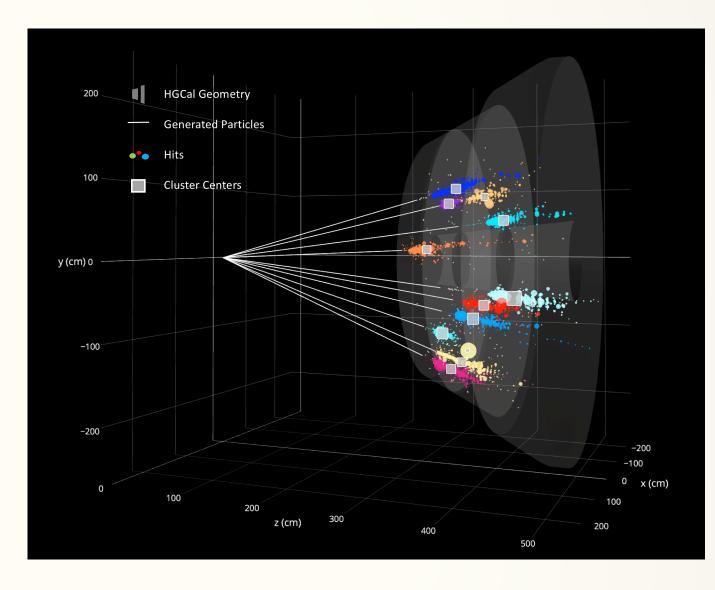
marius-project.org

University of Wisconsin-Madison



Biochemistry

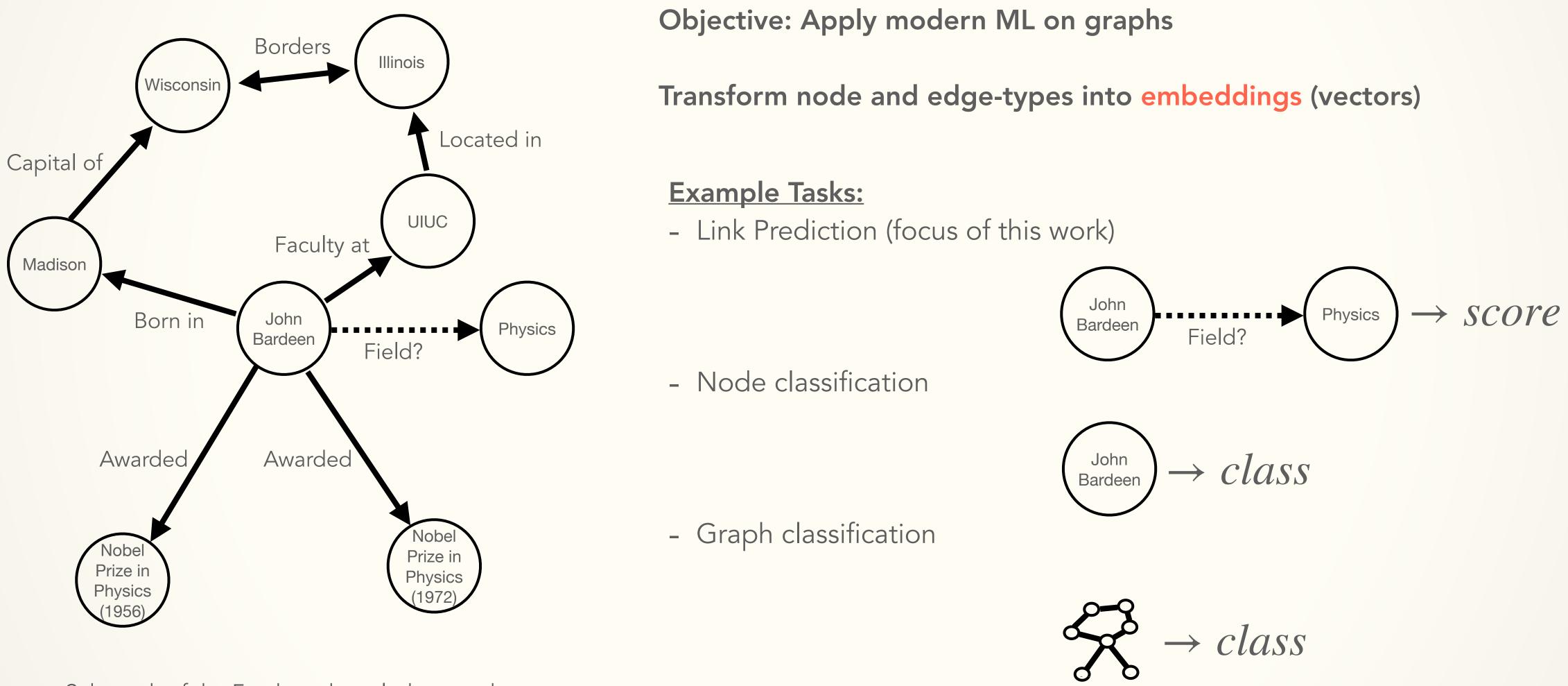
Knowledge Graphs



High-Energy Physics

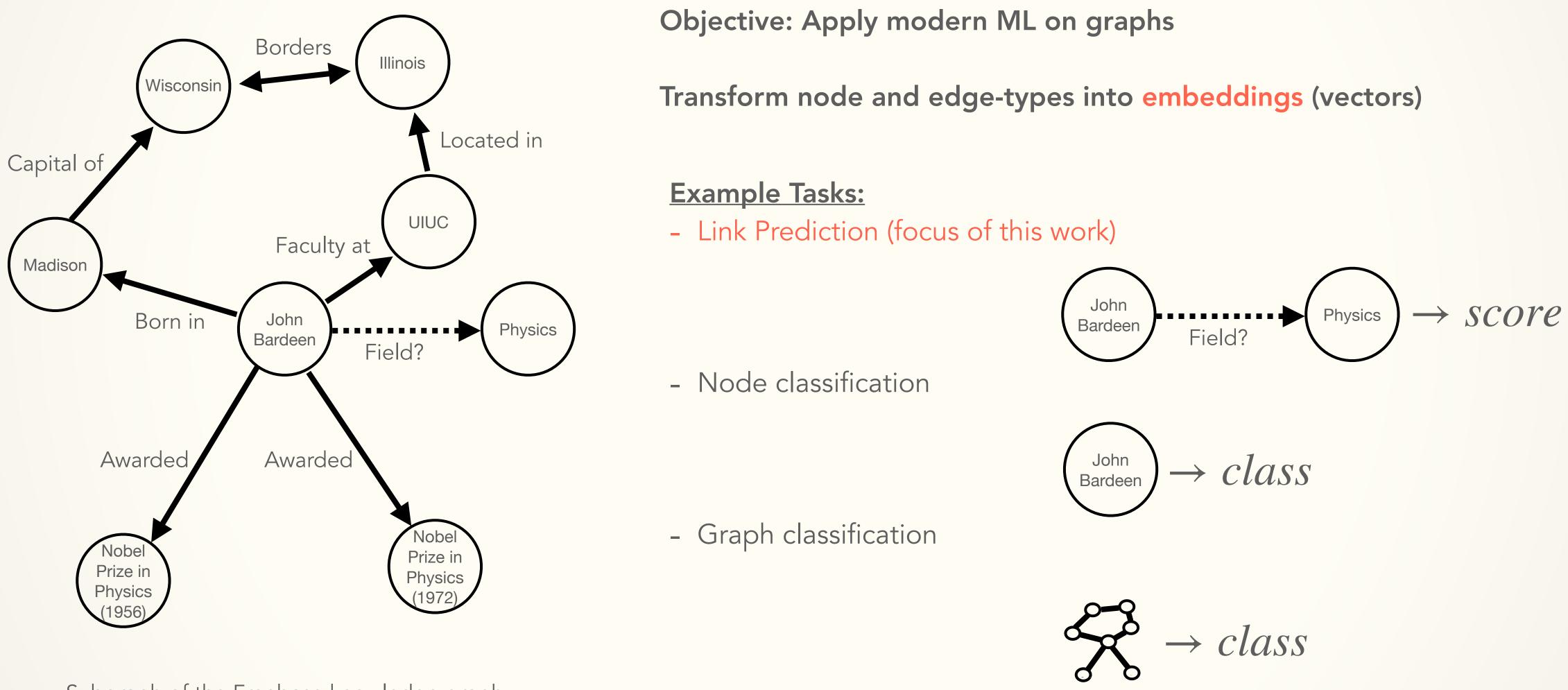
Graphs are universal representations of rich semantics about entities (nodes) and their relationships (edges)

Graph Embeddings



Subgraph of the Freebase knowledge graph

Graph Embeddings



Subgraph of the Freebase knowledge graph

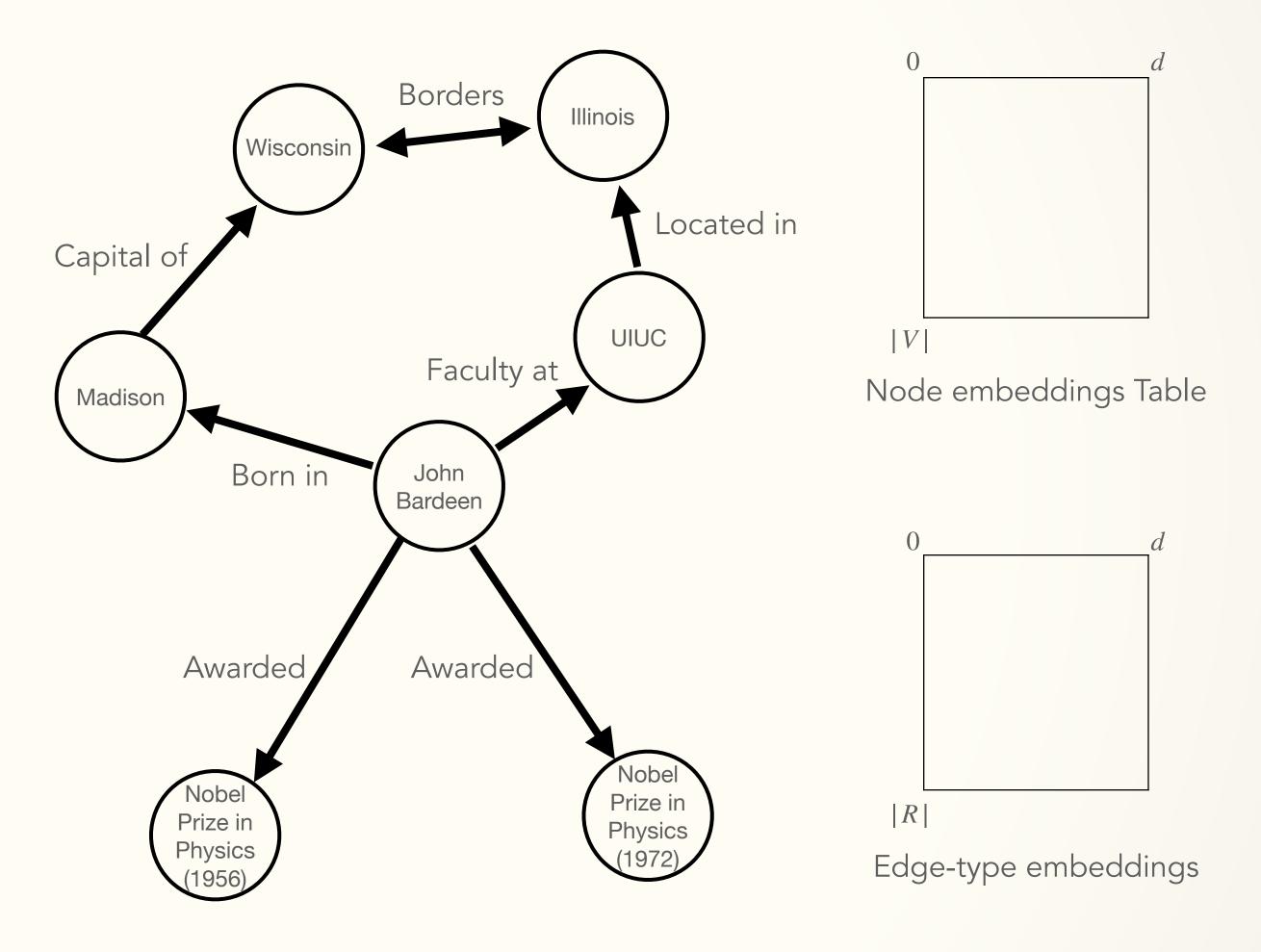
Training requires iterating over all edges and retrieving/updating embedding vectors

Training Process

// E ordered randomly
for (s, r, d) in E:

// compute loss of model for an edge
computeLoss(s, r, d)

// apply updates to embeddings of edge
update(s, r, d)



G = (V, R, E)

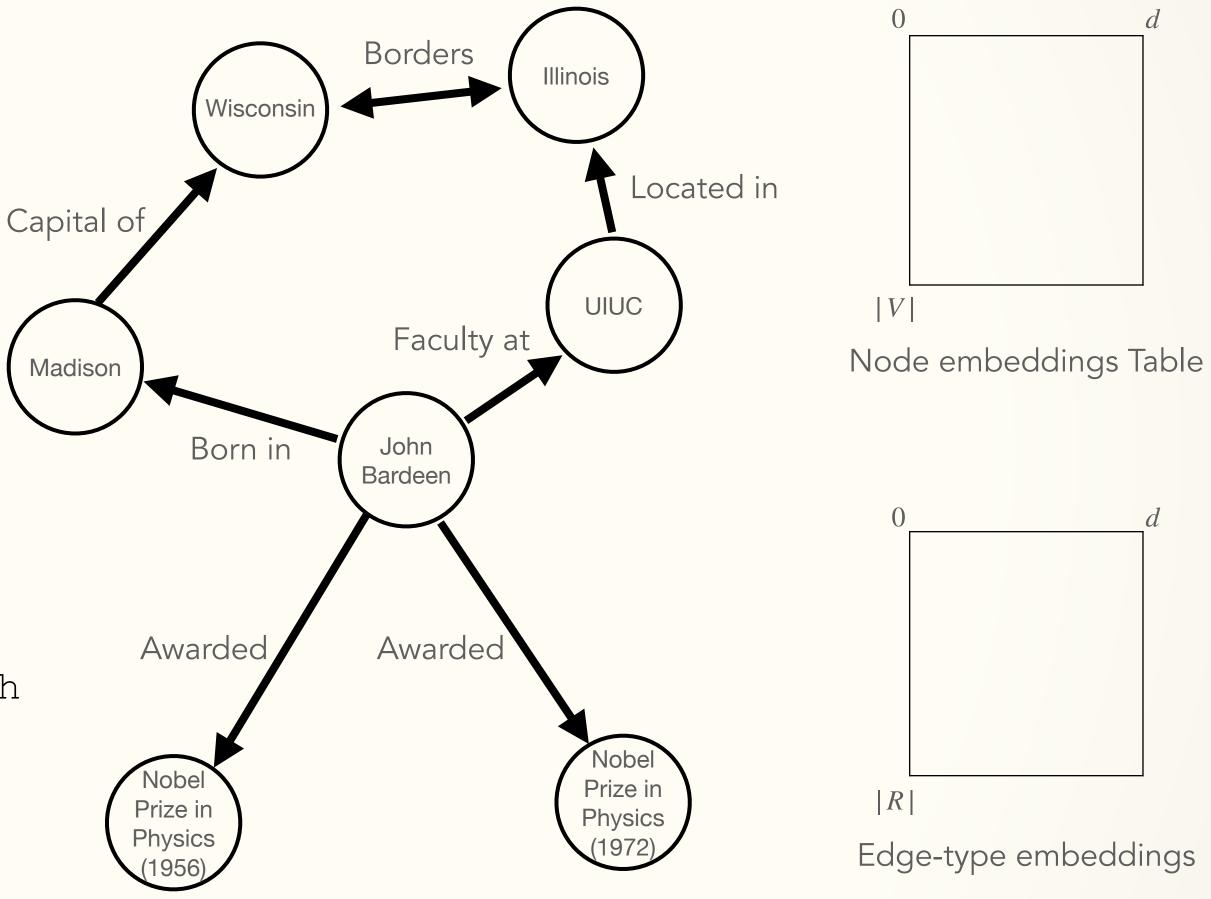
Training requires iterating over all edges and retrieving/updating embedding vectors

Batched Training

// E randomly grouped into batches
for batch in E:

// compute loss of model for a batch
computeLoss(batch)

// apply updates to embeddings in a batch
update(batch)



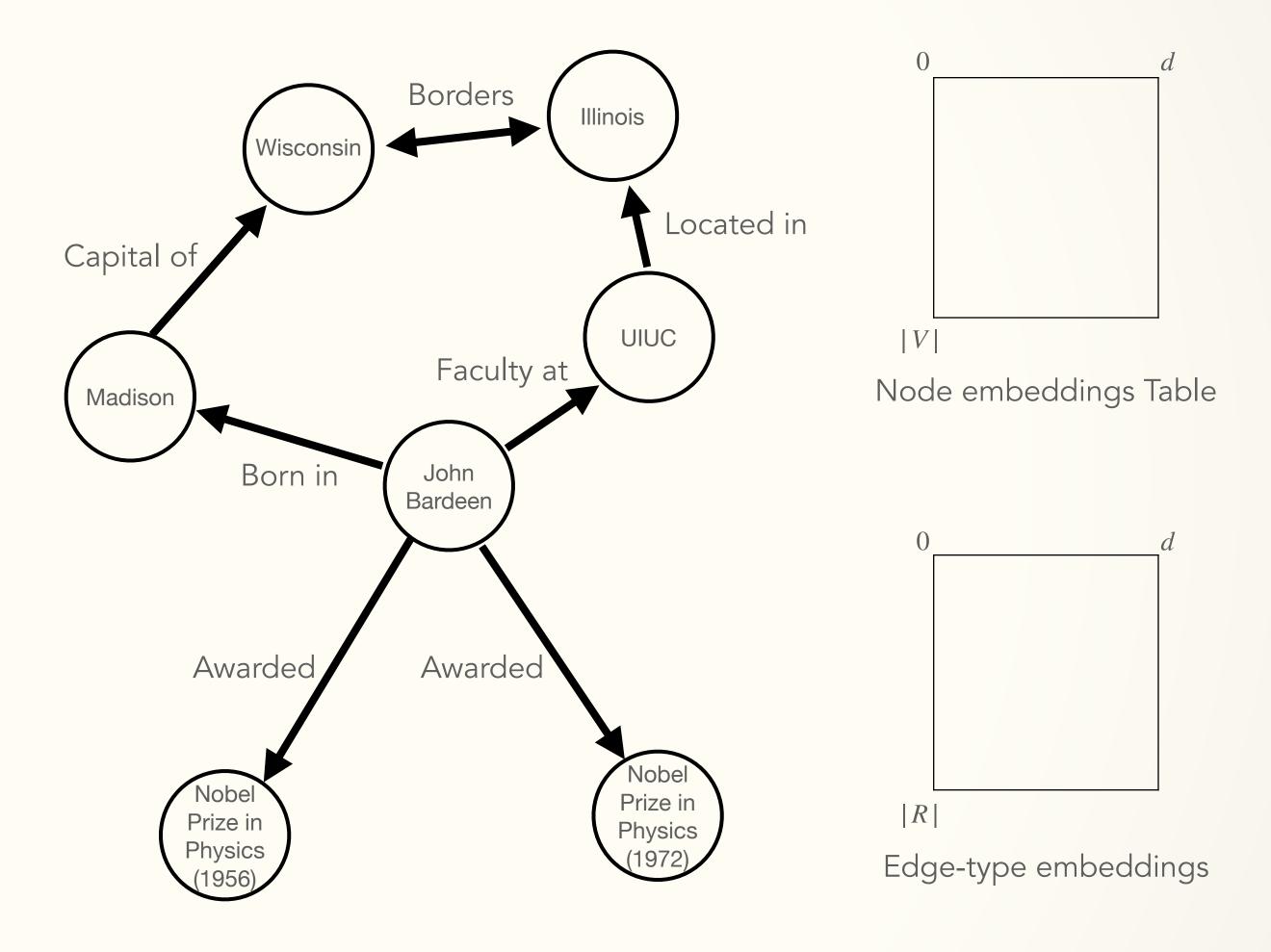
G = (V, R, E)

Training requires iterating over all edges and retrieving/updating embedding vectors

Batched Training: single iteration
batch = [(JB, Born, M), (M, Capital, W)]

// load embeddings
computeLoss(batch)

// update embeddings
update(batch)



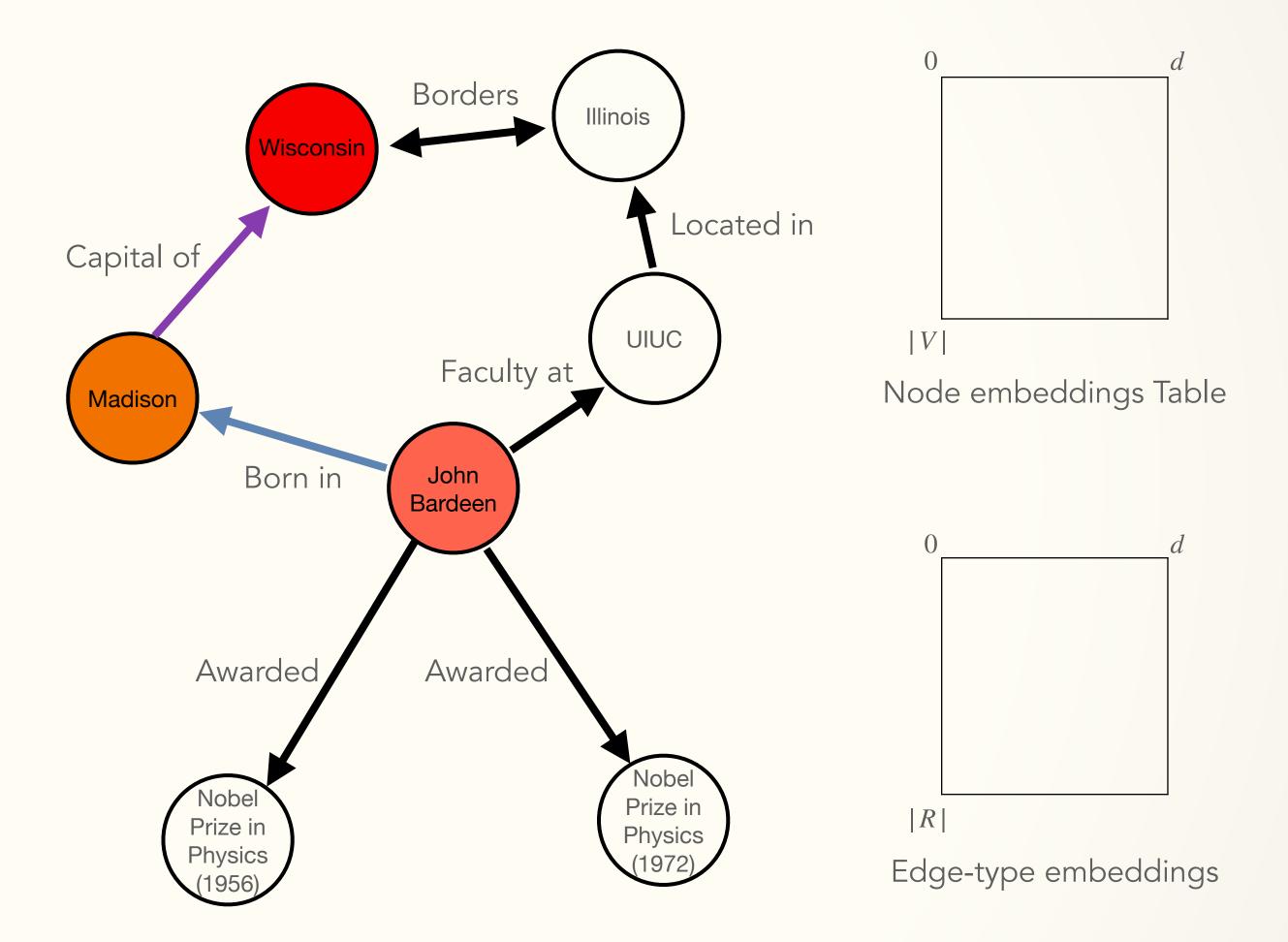
G = (V, R, E)

Training requires iterating over all edges and retrieving/updating embedding vectors

Batched Training: single iteration
batch = [(JB, Born, M), (M, Capital, W)]

// load embeddings and compute loss
computeLoss(batch)

```
// update embeddings
update(batch)
```



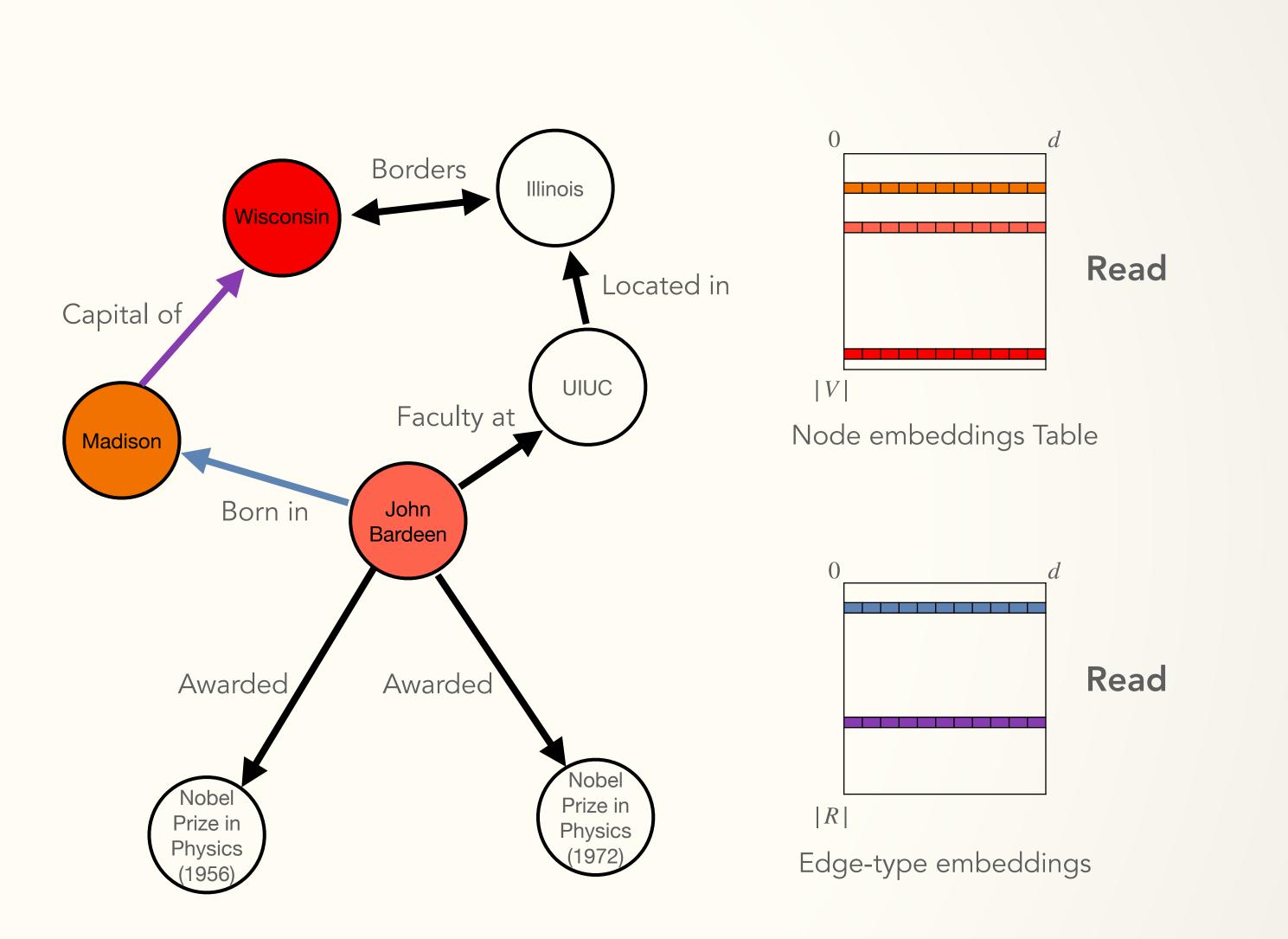
Graph with batch highlighted

Training requires iterating over all edges and retrieving/updating embedding vectors

Batched Training: single iteration
batch = [(JB, Born, M), (M, Capital, W)]

// load embeddings and compute loss
computeLoss(batch)

// update embeddings
update(batch)



Graph with batch highlighted

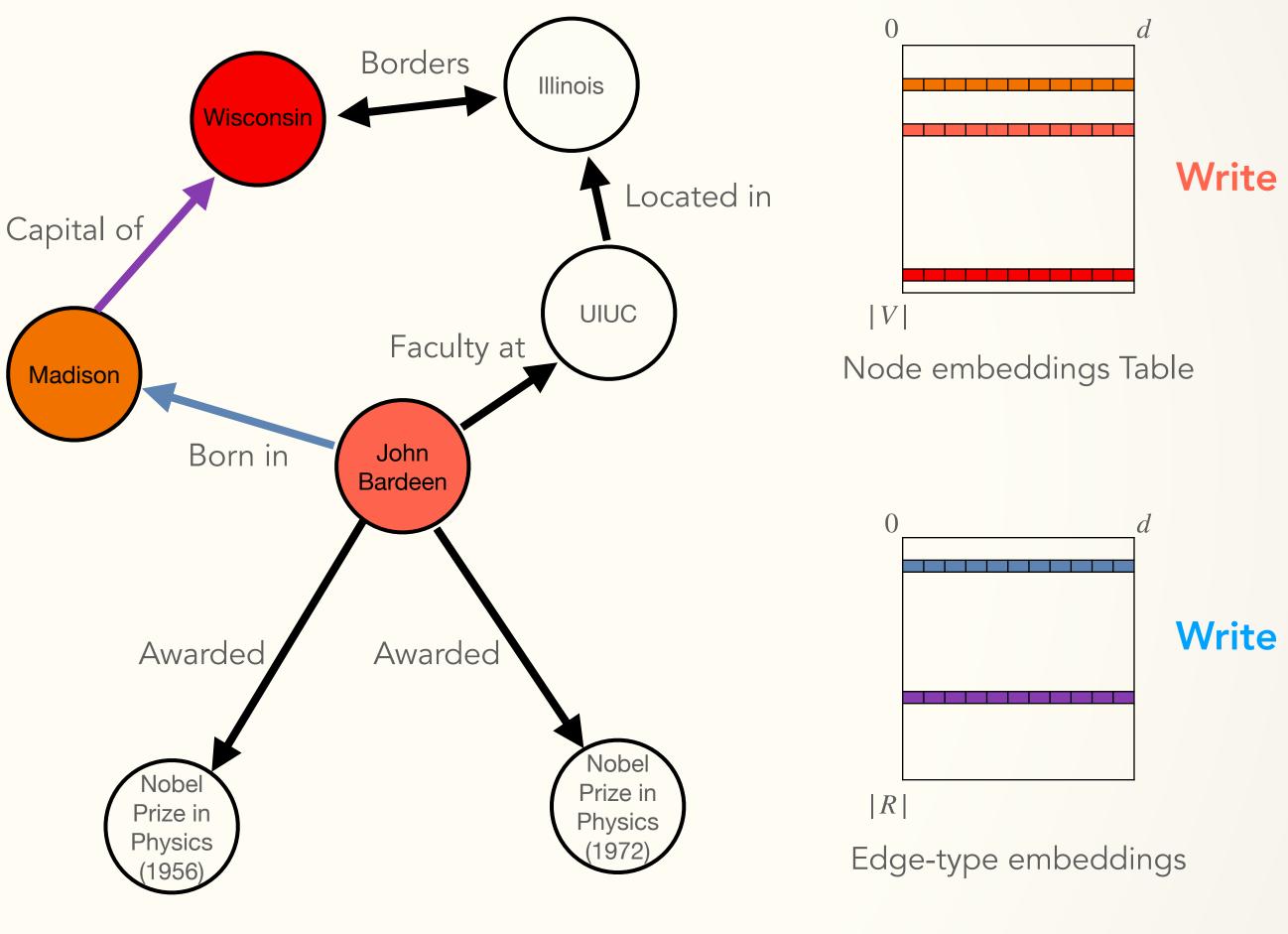
Training requires iterating over all edges and retrieving/updating embedding vectors

Batched Training: single iteration batch = [(JB, Born, M), (M, Capital, W)]

load embeddings and compute loss computeLoss (batch)

update embeddings update (batch)

Training requires efficient access to embedding parameters



Graph with batch highlighted

Irregular Access

Key Challenge: Data Movement

Large Datasets

Freebase86m:

- 338 million edges, 86 million nodes, 15,000 edge types
- Size of node embedding table for d = 400:

86 million x 400 x 4 bytes = 138 GB

AWS P3.2xLarge instance:

- 16 GB GPU Memory
- 61 GB CPU Memory

Embedding table unable to fit in GPU memory!

Moving embeddings to compute

How to scale?

- 1. Store embeddings in CPU memory and transfer to GPU(s)
 - Bottlenecked by transfer overheads
 - Limited scalability
- 2. Partition node embeddings and store on disk
 - Limited by disk throughput
- 3. Distribute embeddings across multiple machines
 - Bottlenecked by transfer overheads
 - Expensive

Can the data movement bottlenecks be mitigated?

PBG & DGL-KE

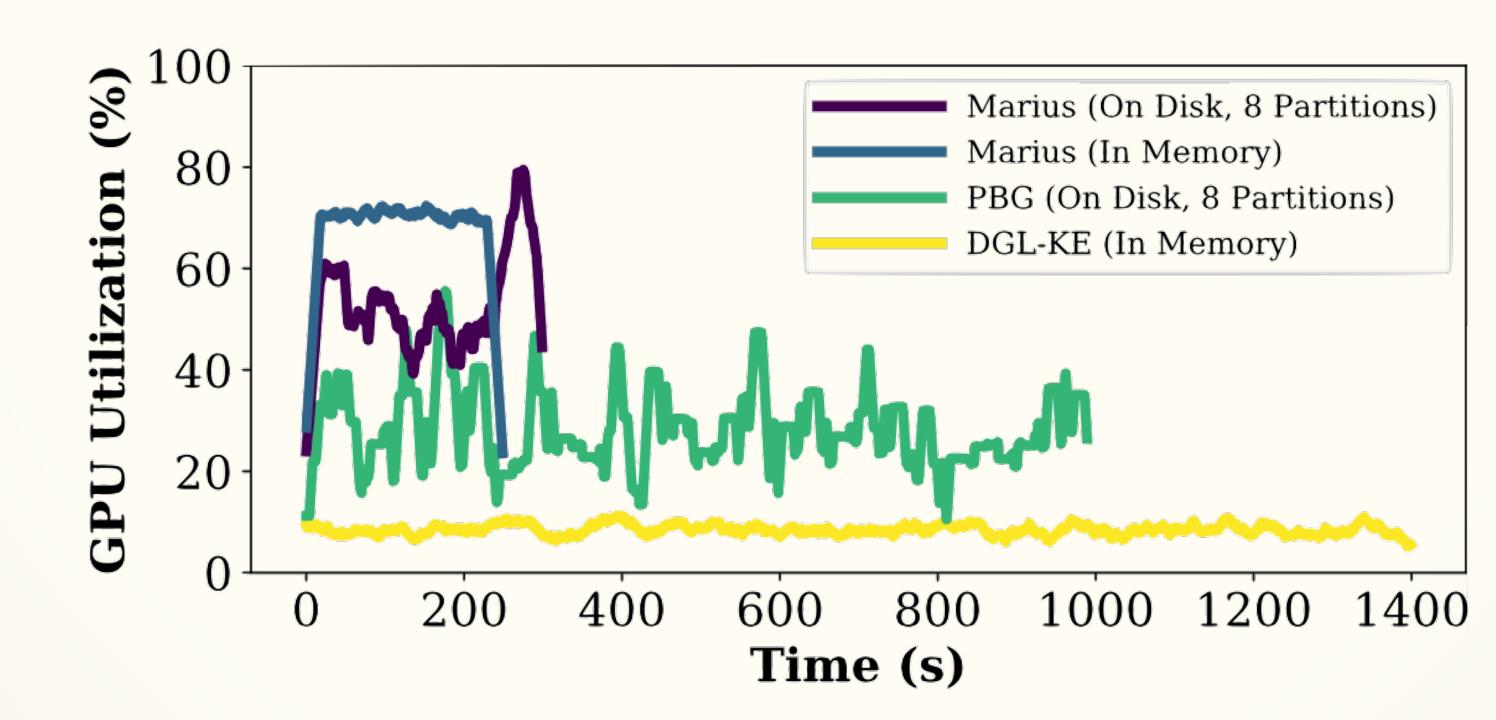
DGL-KE

Scaling to Large Graphs: Marius

Design Goal: Eliminate data movement overheads inherent in graph embedding training

Method

- Use pipelining and async IO to hide data movement
- Utilize the full memory hierarchy with a partition buffer
- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)



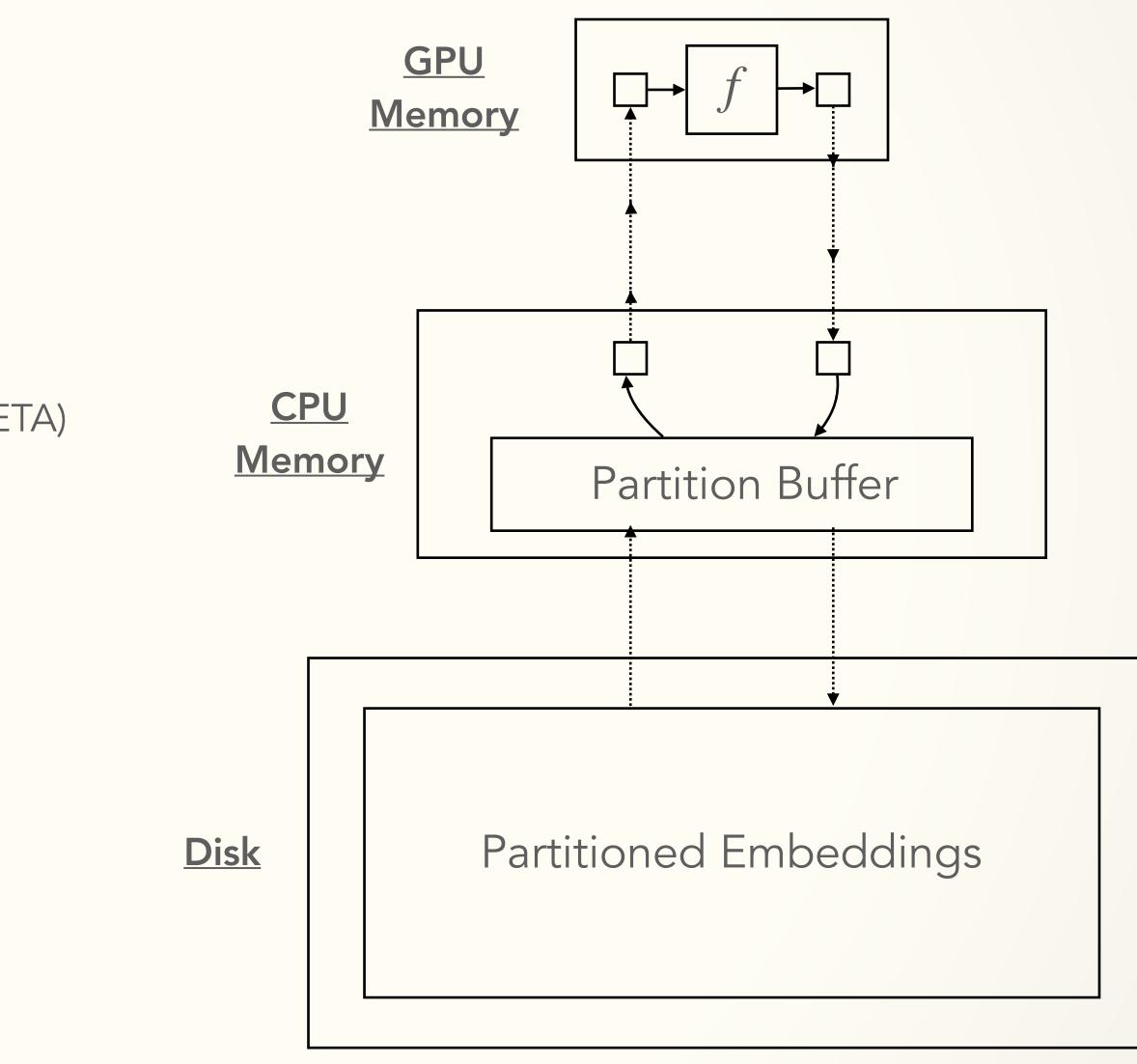
Results

- 10x reduction in runtime vs. DGL-KE on Twitter
- 3.7x runtime reduction vs. PBG on Freebase86m
- 2x higher utilization than PBG, 6-8x higher utilization than DGL-KE

Scaling to Large Graphs: Marius

Method

- Use pipelining and async IO hide data movement
- Utilize the full memory hierarchy with a partition buffer
- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)

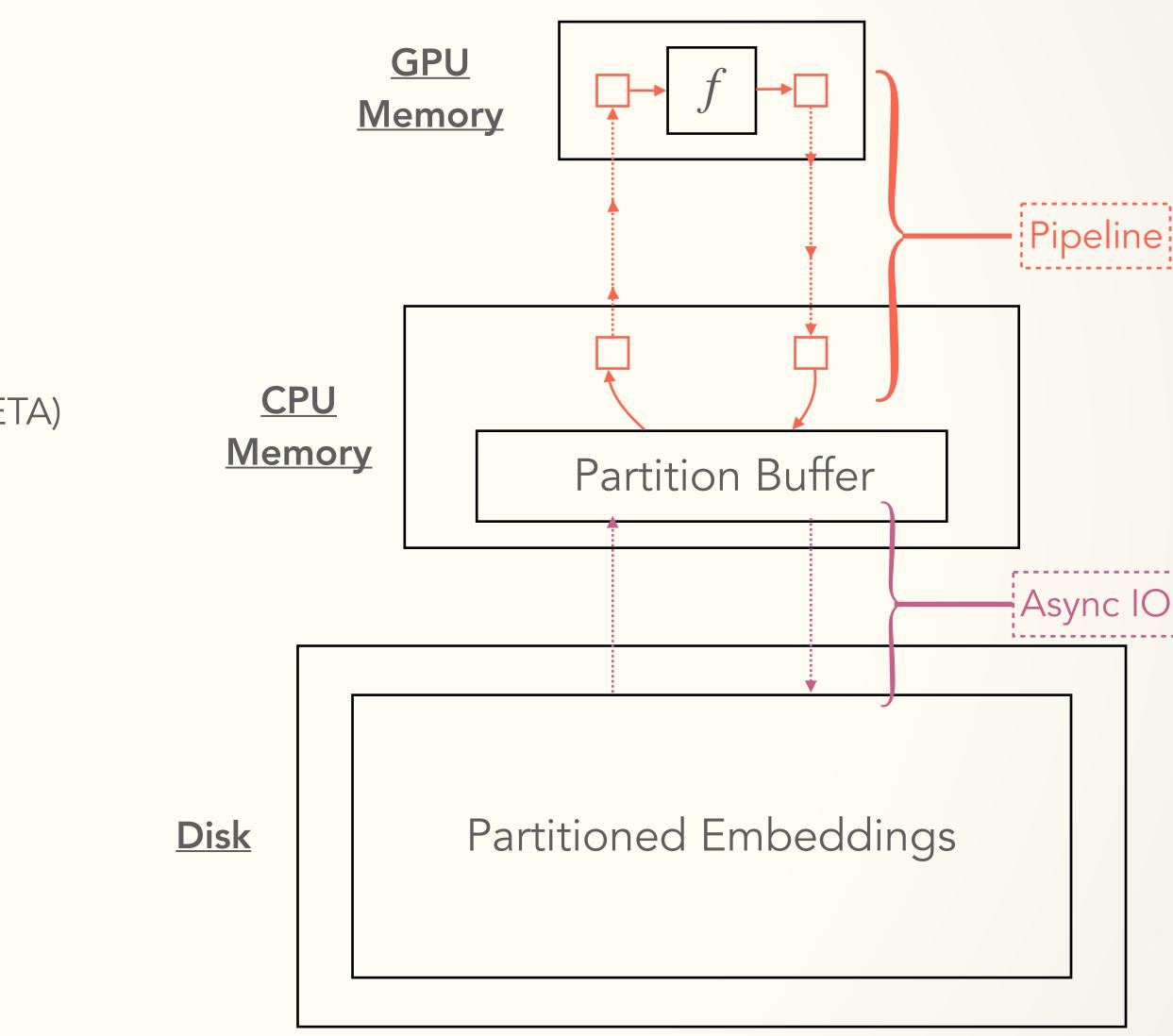


Scaling to Large Graphs: **Comparius**

Method

- Use pipelining and async IO hide data movement
- Utilize the full memory hierarchy with a partition buffer
- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)

Maximize GPU utilization

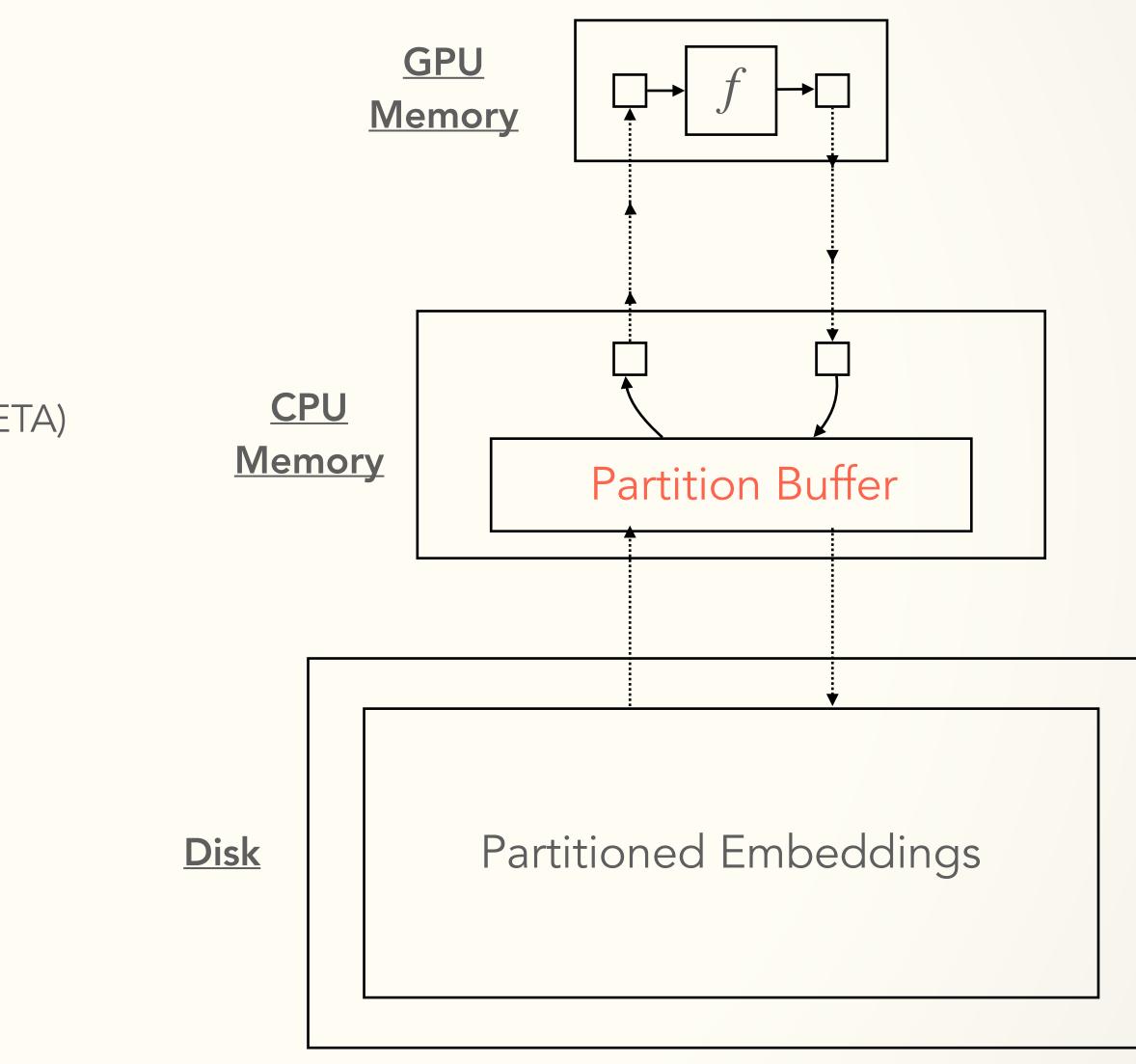


Scaling to Large Graphs: **Comparius**

Method

- Use pipelining and async IO hide data movement
- Utilize the full memory hierarchy with a partition buffer
- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)

Minimize IO through partition caching

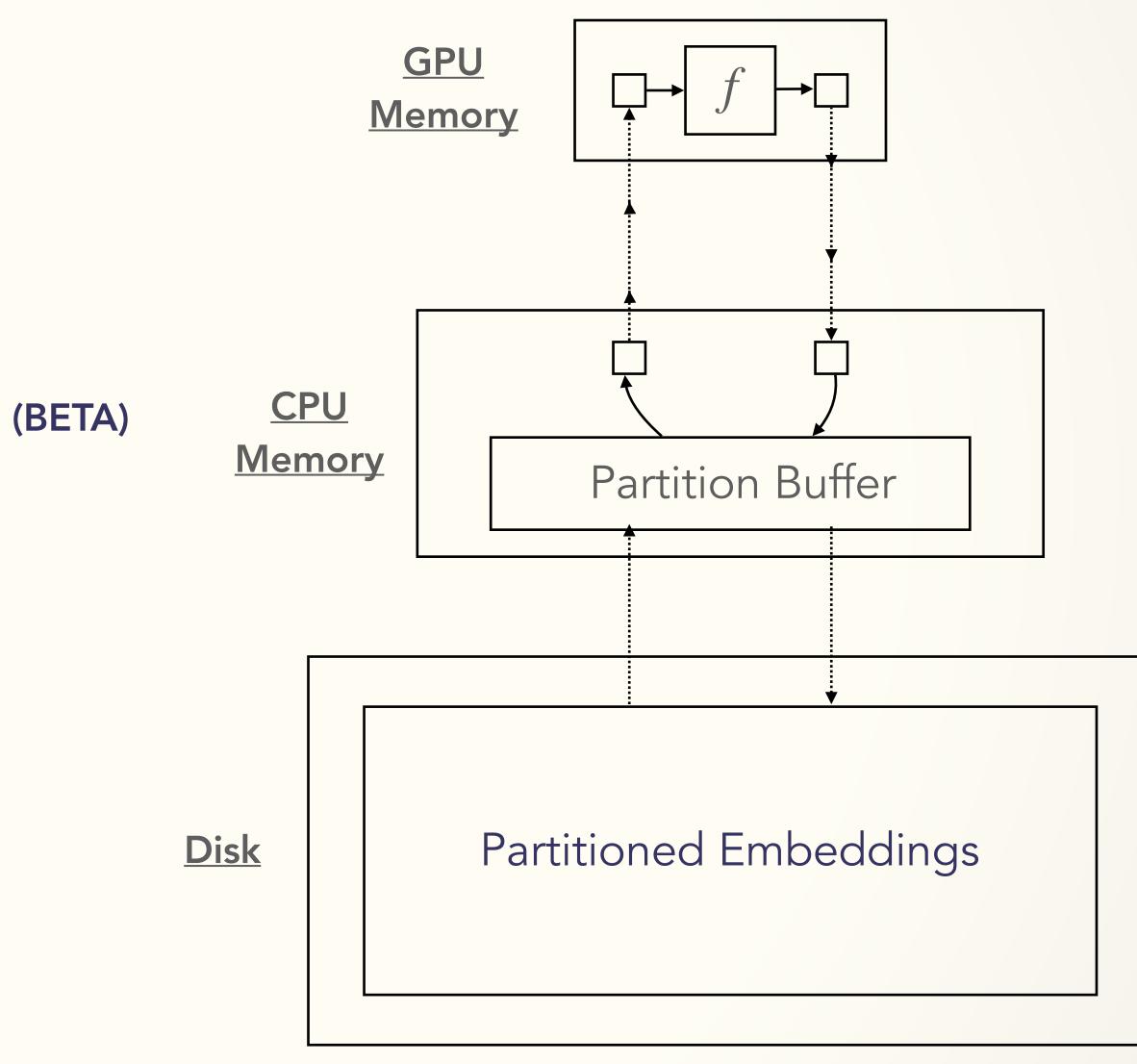


Scaling to Large Graphs: **Comparius**

Method

- Use pipelining and async IO hide data movement
- Utilize the full memory hierarchy with a partition buffer
- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)

Minimize IO to lower bound



Processing Partitions

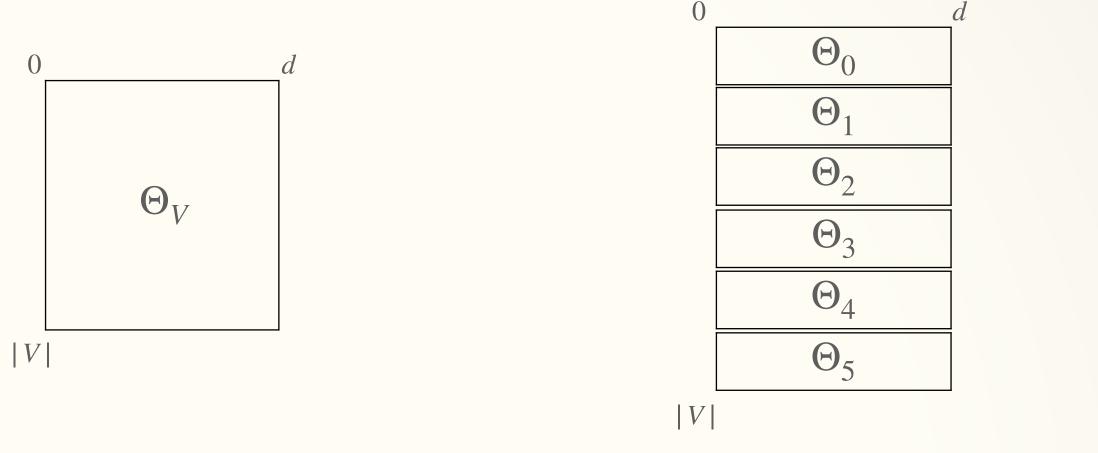
Node Embedding Partitions

Node embeddings are partitioned uniformly into p disjoint partitions.

Edge Buckets

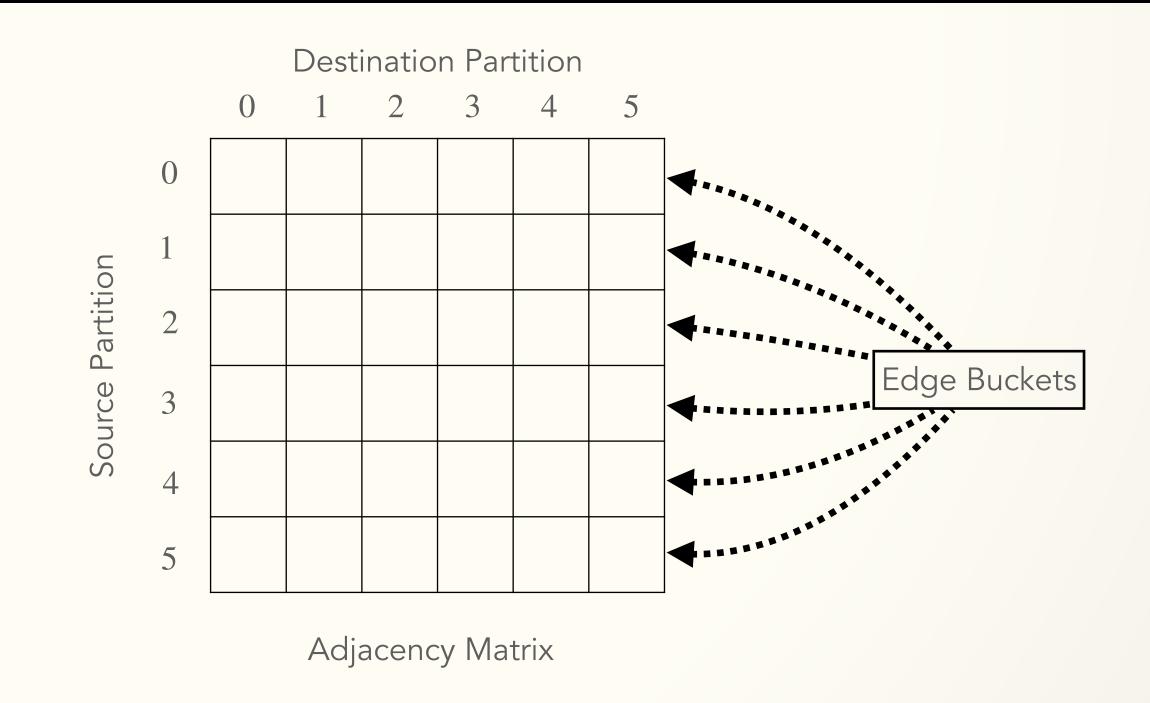
Edge bucket (i,j) contains all edges with a source in partition i and a destination in partition j

To iterate over all edges, we need to iterate over all edge buckets



Node embedding table

Partitioned node embedding table (p = 6)



Edge bucket orderings and IO

The order in which edge buckets are processed has an impact on IO

Size of partitions: 138 GB / 6 = 23 GB

<u>23 GB / 400 MBps = ~57 seconds</u>

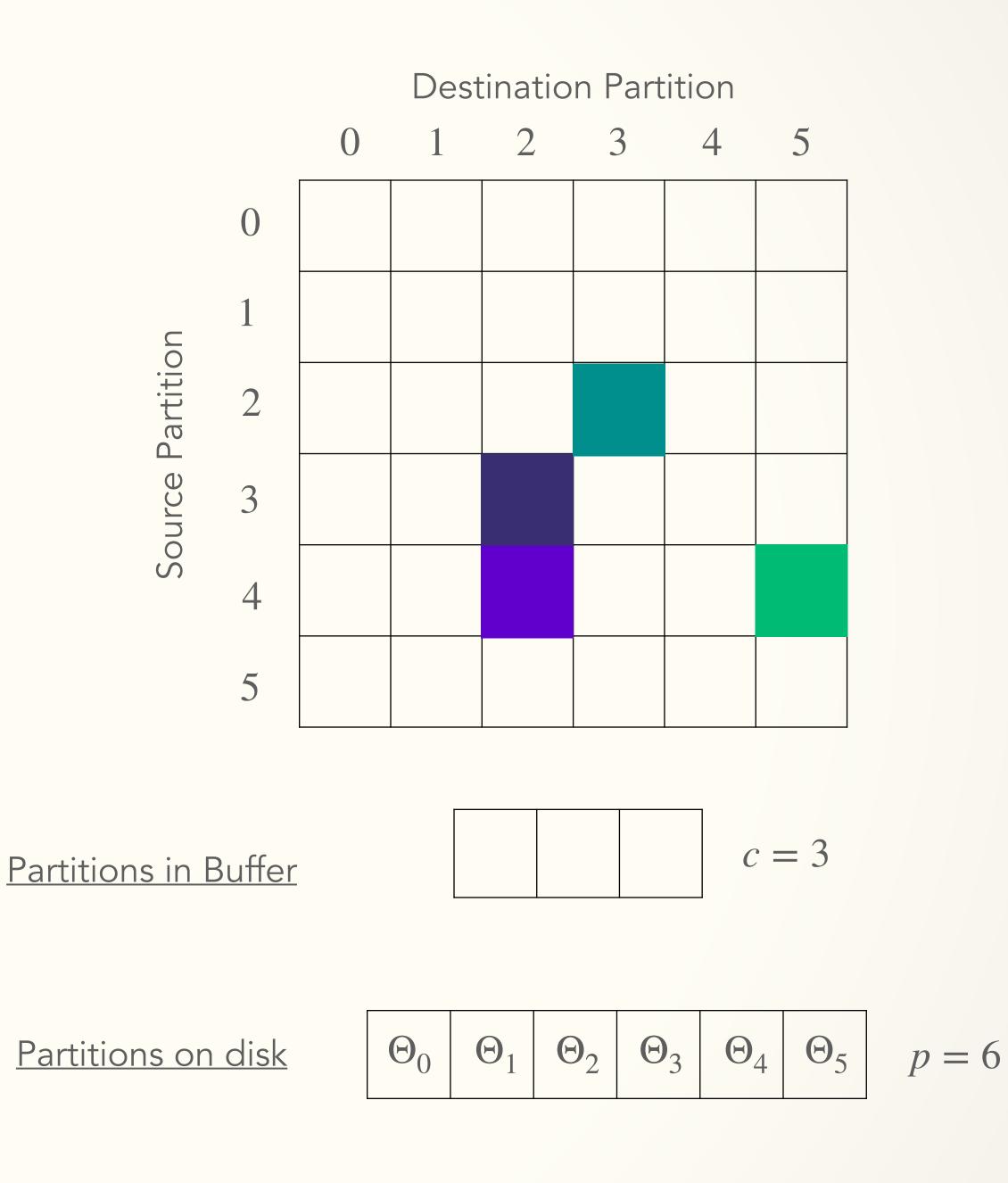
Costly swaps!

Example: After processing edge bucket (3, 2)

Processing (2, 3): Requires no extra swaps

Processing (2, 4): Requires one swap

Processing (4, 5): Requires two swaps



Edge bucket orderings and IO

A Lower Bound

Can never process more than 2c - 1 edge buckets per swap

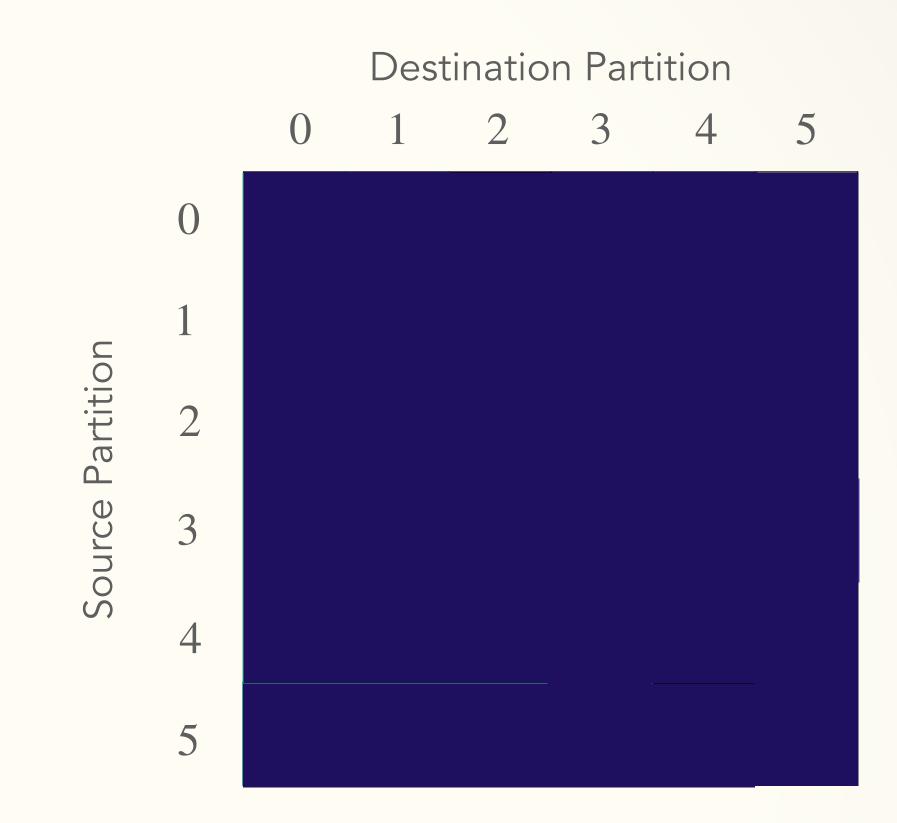
$$\lceil \frac{p^2 - c^2}{2c - 1} \rceil = \lceil \frac{6^2 - 3^2}{2*3 - 1} \rceil = 6$$

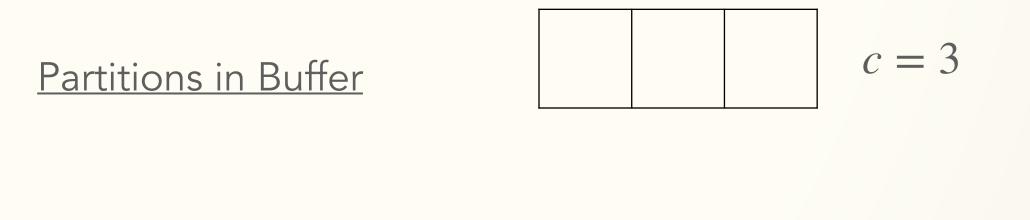
<u>6 swaps</u>

Random Ordering ~23 swaps

Hilbert Curve Ordering12 swaps

BETA Ordering <u>7 swaps</u>

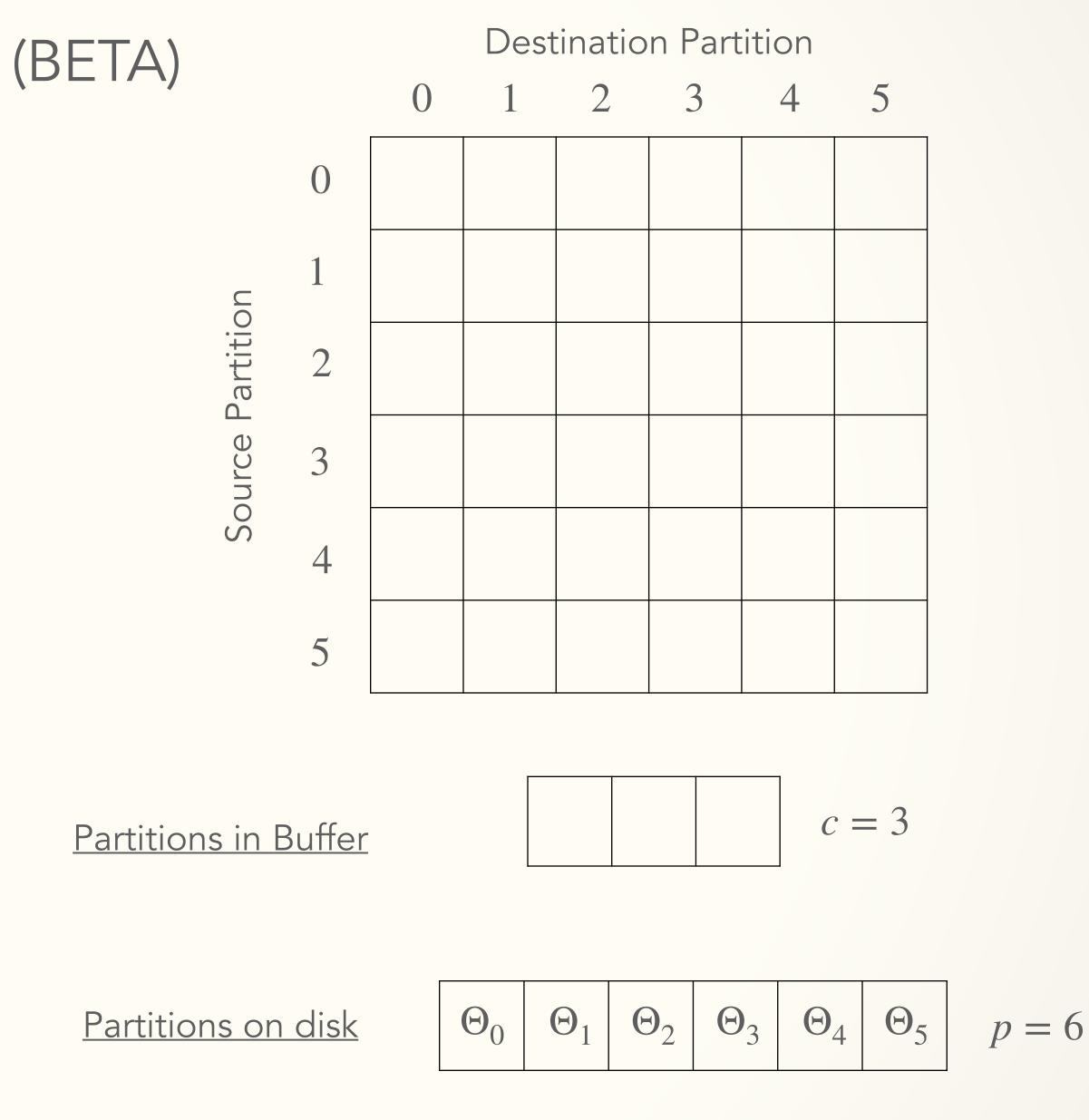




 $\Theta_0 \mid \Theta_1 \mid \Theta_2 \mid \Theta_3 \mid \Theta_4 \mid \Theta_5 \mid p = 6$

BETA Ordering

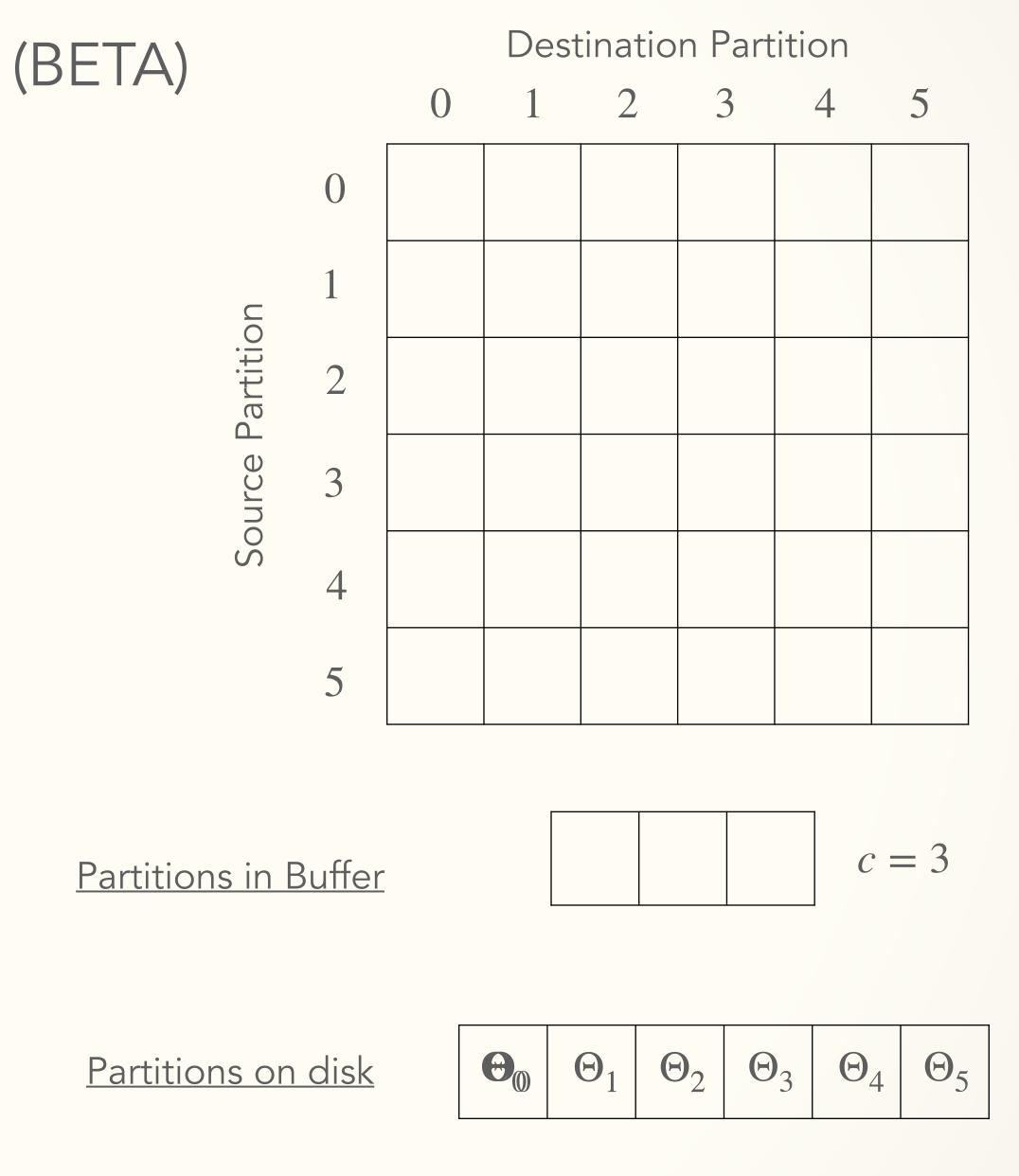
- 1. Randomly initialize buffer
- 2. Use the last spot in the buffer to cycle through the rest of the partitions, processing their corresponding edge buckets
- 3. Fix a new c 1 partitions and repeat until all edge buckets have been processed



BETA Ordering

1. Randomly initialize buffer

- 2. Use the last spot in the buffer to cycle through the rest of the partitions, processing their corresponding edge buckets
- 3. Fix a new c 1 partitions and repeat until all edge buckets have been processed

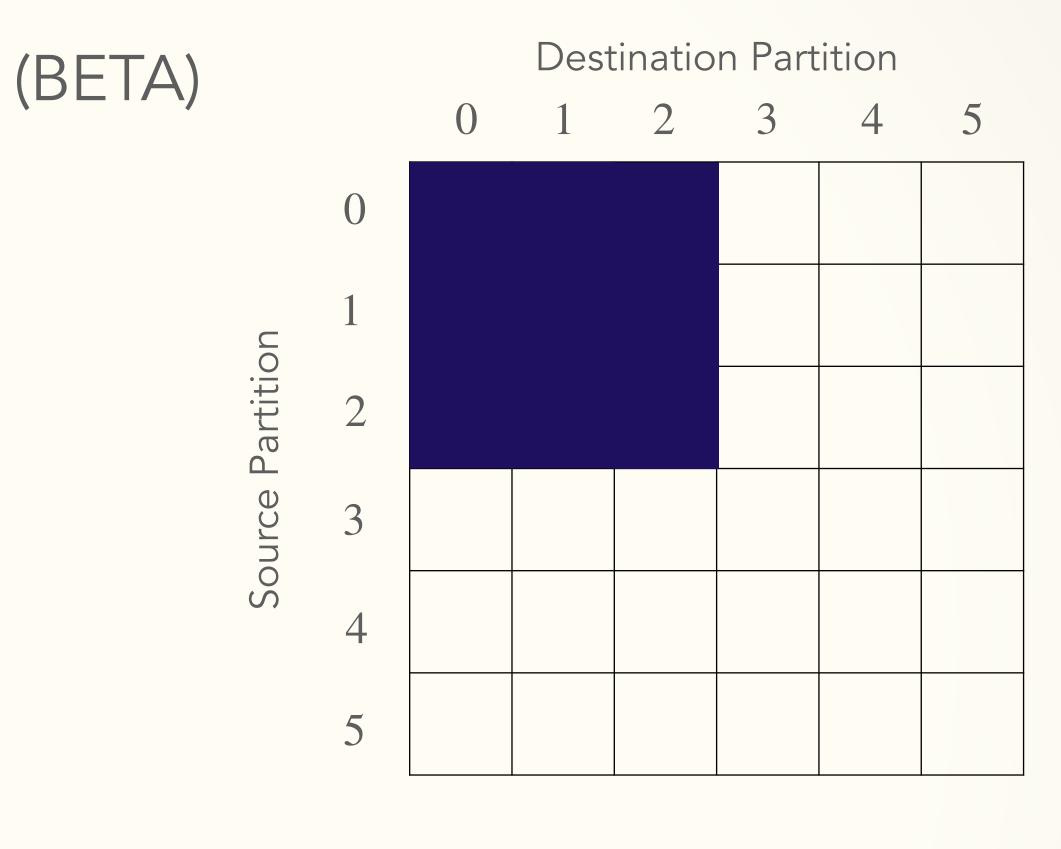


p = 6

BETA Ordering

- 1. Randomly initialize buffer
- 2. Use the last spot in the buffer to cycle through the rest of the partitions, processing their corresponding edge buckets
- 3. Fix a new c 1 partitions and repeat until all edge buckets have been processed

* Not counting initialized buffer, as with the previous orderings



Partitions in Buffer $\Theta_0 \quad \Theta_1 \quad \Theta_2$

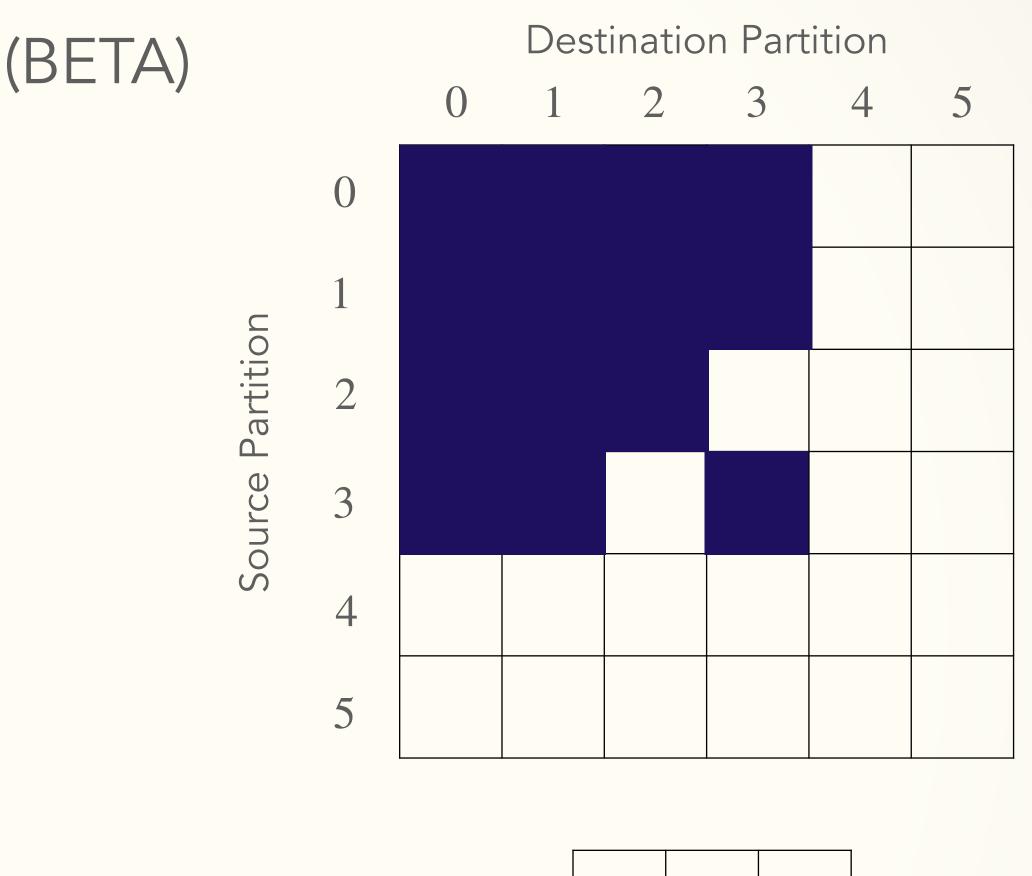
$$\begin{array}{|c|c|c|} \Theta_0 & \Theta_1 & \Theta_2 & c = 3 \end{array}$$

$$\Theta_0 \quad \Theta_1 \quad \Theta_2 \quad \Theta_3 \quad \Theta_4 \quad \Theta_5 \quad p = 6$$

BETA Ordering

- 1. Randomly initialize buffer
- 2. Use the last spot in the buffer to cycle through the rest of the partitions, processing their corresponding edge buckets
- 3. Fix a new c 1 partitions and repeat until all edge buckets have been processed

* Not counting initialized buffer, as with the previous orderings



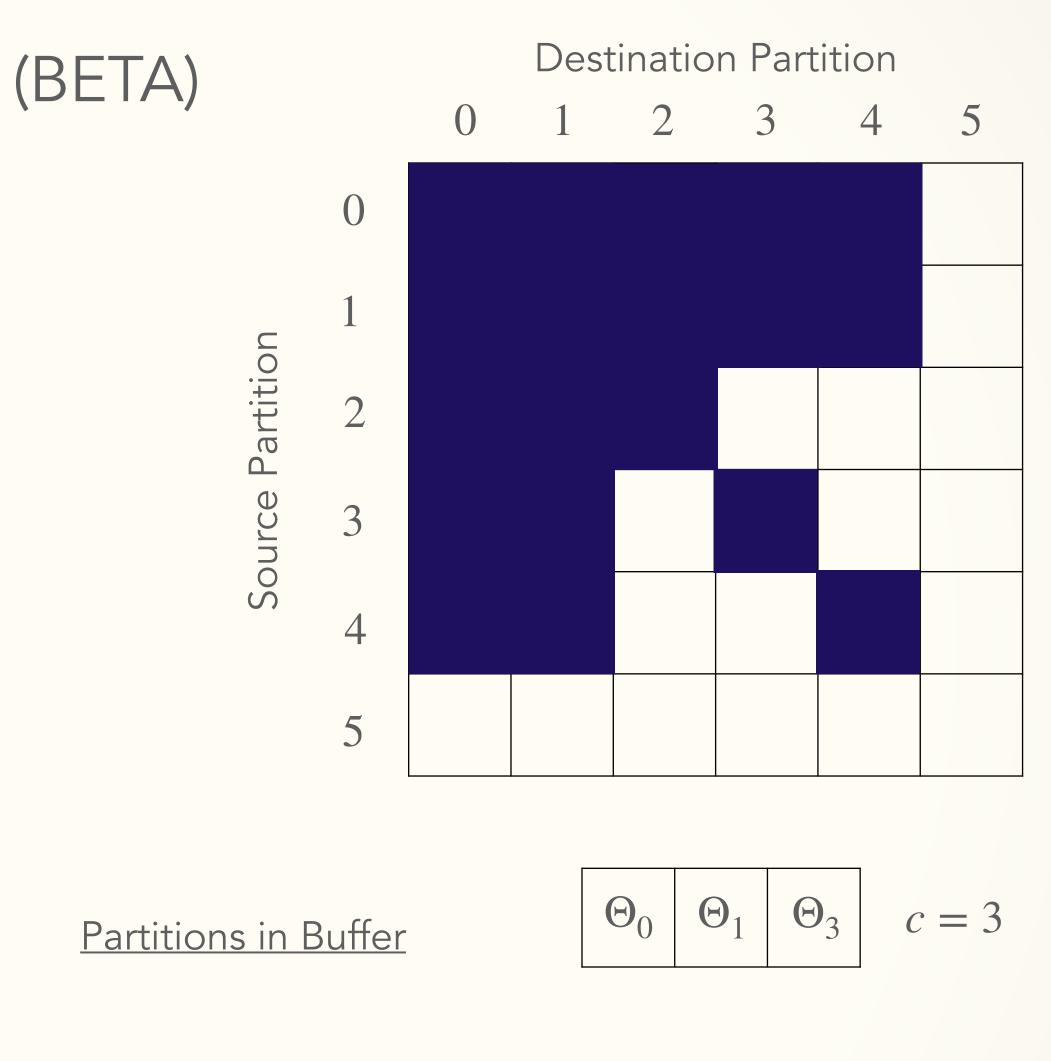
Partitions in Buffer

$$\Theta_0 \mid \Theta_1 \mid \Theta_2 \mid c = 3$$

$$\Theta_0 \quad \Theta_1 \quad \Theta_2 \quad \Theta_3 \quad \Theta_4 \quad \Theta_5 \quad p = 6$$

BETA Ordering

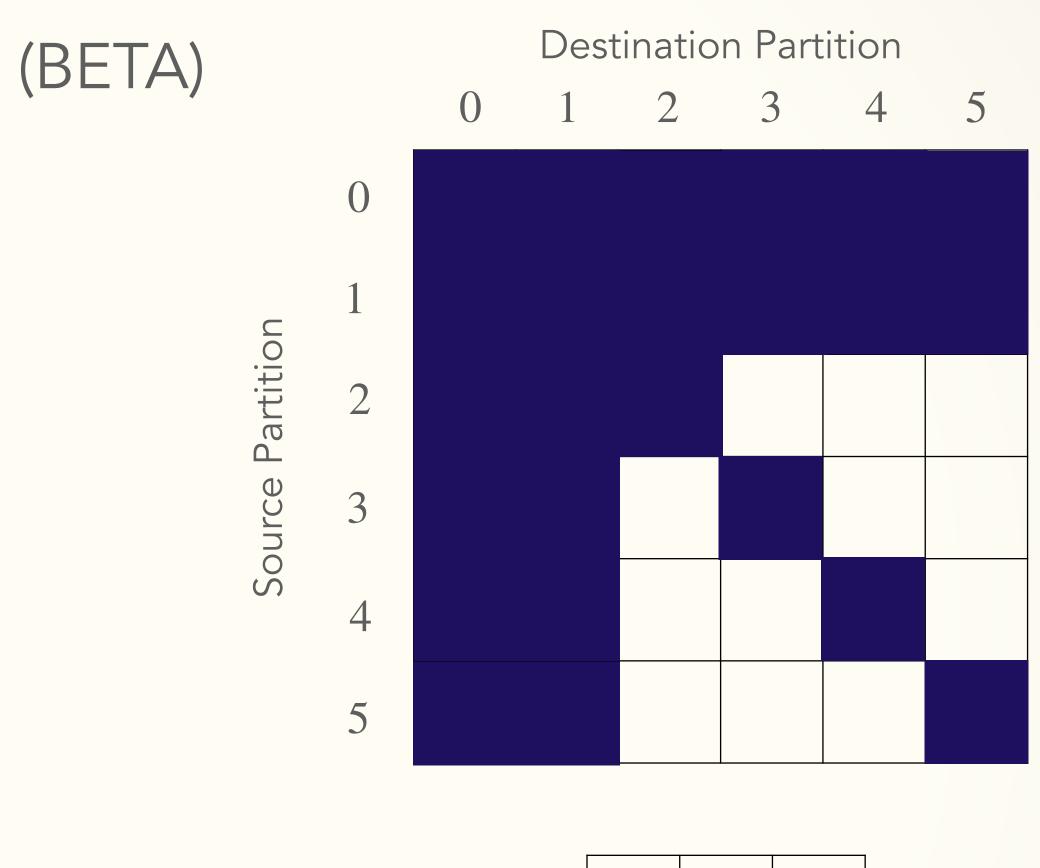
- 1. Randomly initialize buffer
- 2. Use the last spot in the buffer to cycle through the rest of the partitions, processing their corresponding edge buckets
- 3. Fix a new c 1 partitions and repeat until all edge buckets have been processed



$$\Theta_0 \mid \Theta_1 \mid \Theta_2 \mid \Theta_3 \mid \Theta_4 \mid \Theta_5 \mid p = 6$$

BETA Ordering

- 1. Randomly initialize buffer
- 2. Use the last spot in the buffer to cycle through the rest of the partitions, processing their corresponding edge buckets
- 3. Fix a new c 1 partitions and repeat until all edge buckets have been processed

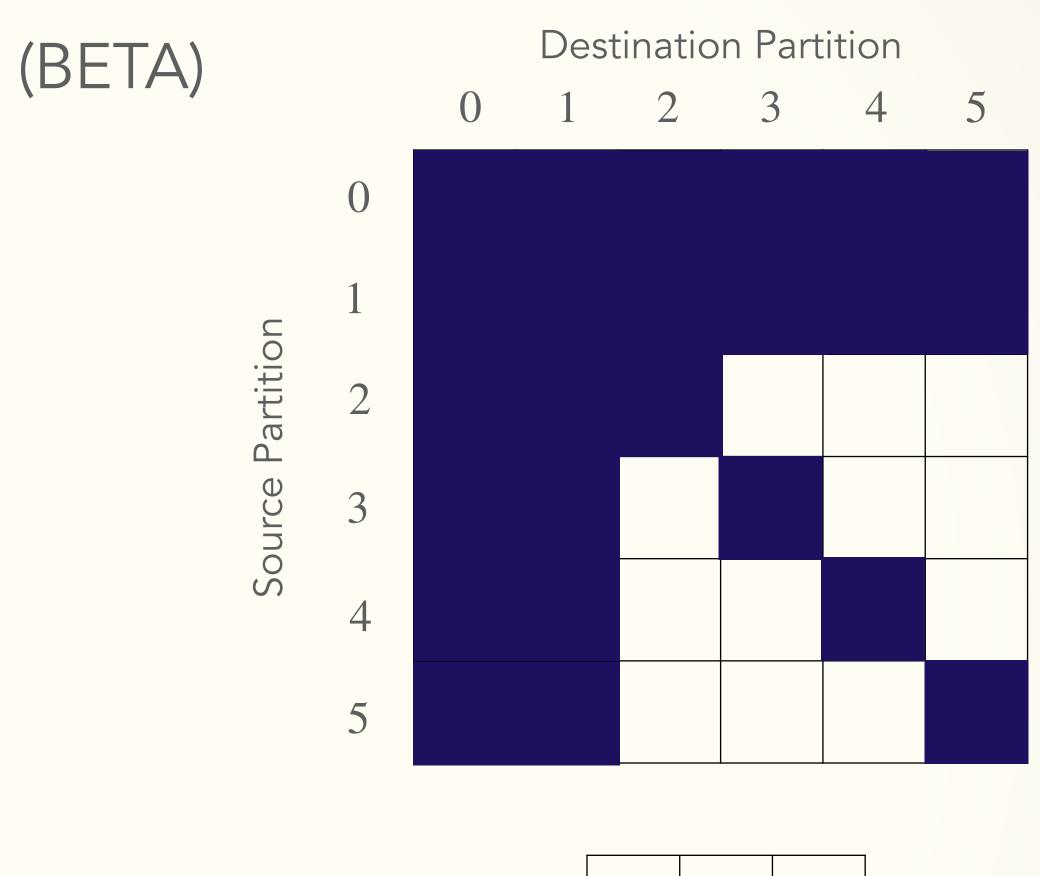


<u>Partitions in Buffer</u> $\Theta_0 \quad \Theta_1 \quad \Theta_4 \quad c = 3$

$$\Theta_0 \quad \Theta_1 \quad \Theta_2 \quad \Theta_3 \quad \Theta_4 \quad \Theta_5 \quad p = 6$$

BETA Ordering

- 1. Randomly initialize buffer
- Use the last spot in the buffer to cycle through the rest of the partitions, processing their corresponding edge buckets
- 3. Fix a new c 1 partitions and repeat until all edge buckets have been processed

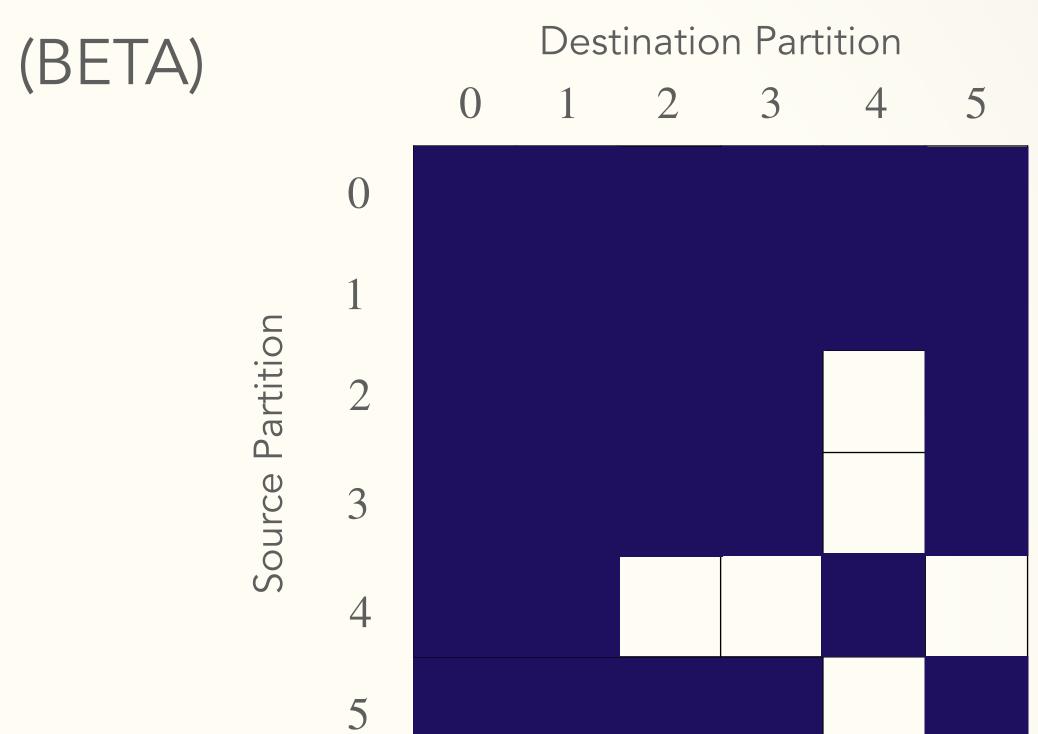


Partitions in Buffer Θ_0 Θ_1 Θ_5 c=3

$$\Theta_0 \quad \Theta_1 \quad \Theta_2 \quad \Theta_3 \quad \Theta_4 \quad \Theta_5 \quad p = 6$$

BETA Ordering

- 1. Randomly initialize buffer
- 2. Use the last spot in the buffer to cycle through the rest of the partitions, processing their corresponding edge buckets
- 3. Fix a new c 1 partitions and repeat until all edge buckets have been processed



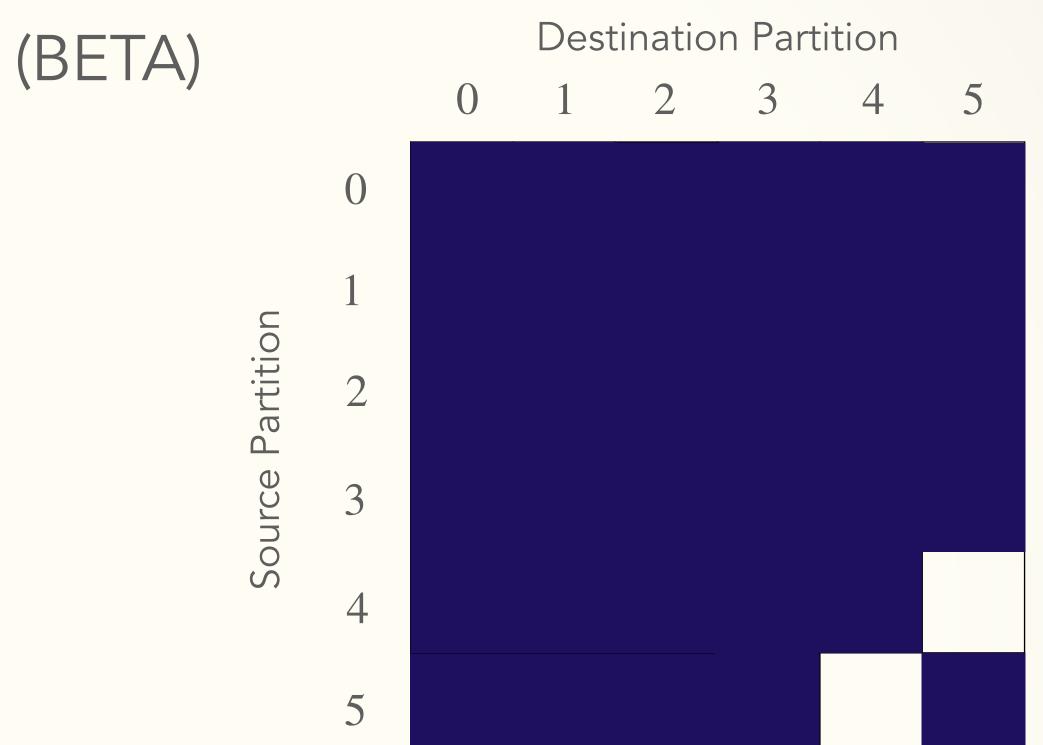
Partitions in Buffer Θ_2 Θ_3 Θ_5 c=3

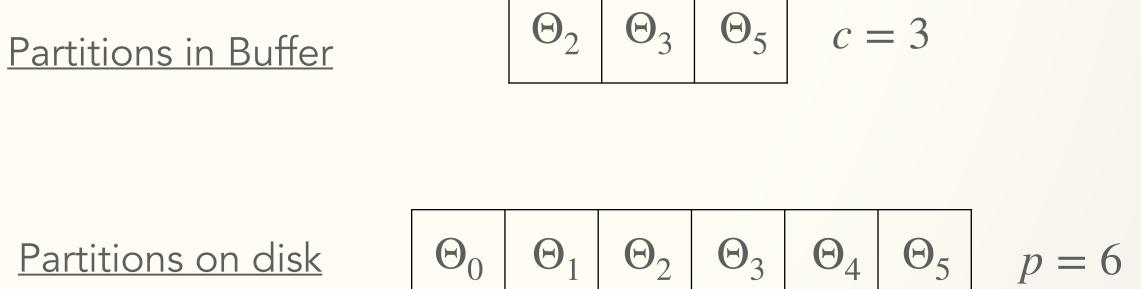
$$\Theta_0 \quad \Theta_1 \quad \Theta_2 \quad \Theta_3 \quad \Theta_4 \quad \Theta_5 \quad p = 6$$

BETA Ordering

- 1. Randomly initialize buffer
- 2. Use the last spot in the buffer to cycle through the rest of the partitions, processing their corresponding edge buckets
- 3. Fix a new c 1 partitions and repeat until all edge buckets have been processed

Б swaps

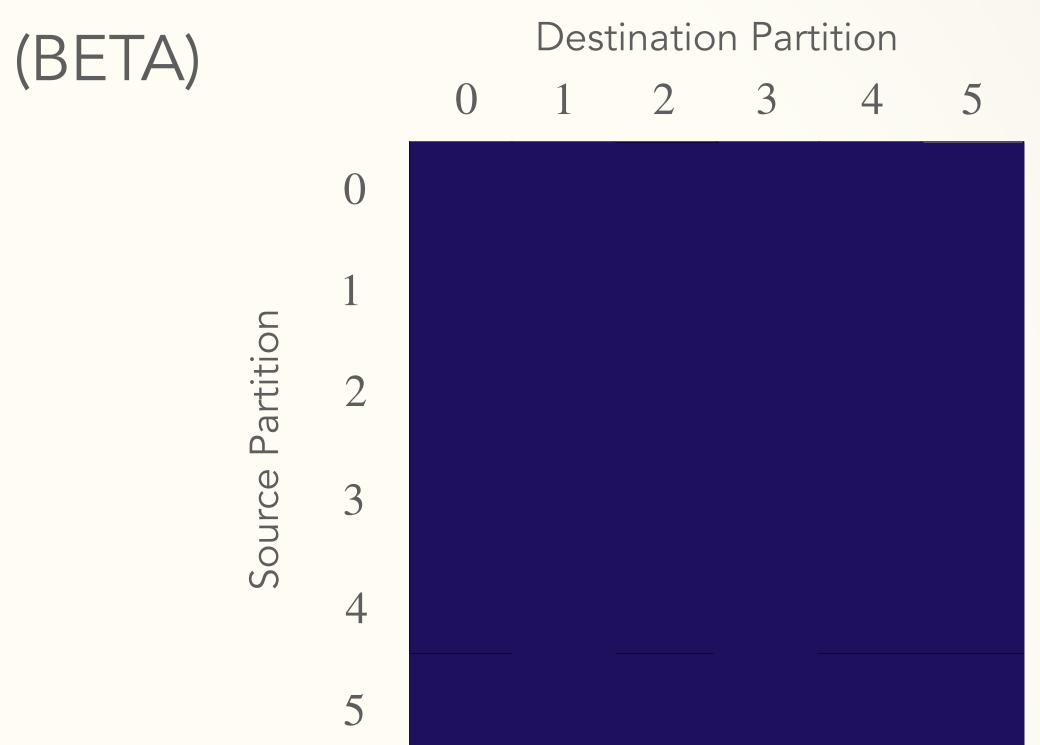




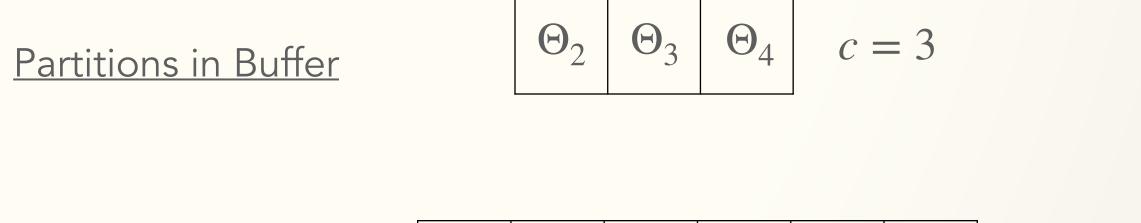
BETA Ordering

- 1. Randomly initialize buffer
- 2. Use the last spot in the buffer to cycle through the rest of the partitions, processing their corresponding edge buckets
- 3. Fix a new c 1 partitions and repeat until all edge buckets have been processed

Close to the 6 swap lower bound!



Partitions on disk



 $\left| \begin{array}{c|c} \Theta_0 \end{array} \right| \left| \begin{array}{c|c} \Theta_1 \end{array} \right| \left| \begin{array}{c|c} \Theta_2 \end{array} \right| \left| \begin{array}{c|c} \Theta_3 \end{array} \right| \left| \begin{array}{c|c} \Theta_4 \end{array} \right| \left| \begin{array}{c|c} \Theta_5 \end{array} \right| \left| \begin{array}{c|c} p = 6 \end{array} \right| \right|$

Open sourced system: marius-project.org

Built on PyTorch

~15,000 lines of C++ and growing

Installation from source with Pip

1. Install latest version of PyTorch for your CUDA version:

Linux:

- CUDA 10.1: python3 -m pip install torch==1.7.1+cu101 -f https://download.pytorch.org/whl/torch_stable.html
- CUDA 10.2: python3 -m pip install torch==1.7.1
- CPU Only: python3 -m pip install torch==1.7.1+cpu -f https://download.pytorch.org/whl/torch_stable.html

MacOS:

- CPU Only: python3 -m pip install torch==1.7.1
- 2. Clone the repository git clone https://github.com/marius-team/marius.git
- 3. Build and install Marius cd marius; python3 -m pip install .

Marius in Docker

Marius can be deployed within a docker container. Here is a sample ubuntu dockerfile (loca examples/docker/dockerfile) which contains the necessary dependencies preinstalled f

Building and running the container

Build an image with the name marius and the tag example : docker build -t marius:example -f examples/docker/dockerfile examples/docker

Python API

O PyTorch Compatible

docker

🕆 Marius
Search docs
CONTENTS
Introduction
Quick Start
Build
System Overview
Configuration
IO Format
Training
Models
Loss Functions
Evaluation
Storage Backends
API
Batch
Buffer
Config
DataSet
Datatypes
Decoder
Encoder
Evaluator
Ю
Logger
Marius
Model
Ordering
Pipeline
Storage
Trainer
Util

🔺 » Batch

Batch

class Batch

Contains metadata, edges and embeddings for a single batch.

Subclassed by PartitionBatch

Public Functions

Batch(bool train)

Constructor

~Batch()

void localSample()

Destructor Construct additional negative samples and neighborhood information from the batch

void accumulateUniqueIndices()

Populates the unique_<>_indices tensors

void embeddingsToDevice(int device_id)

Transfers embeddings, optimizer state, and indices to specified device

void prepareBatch()

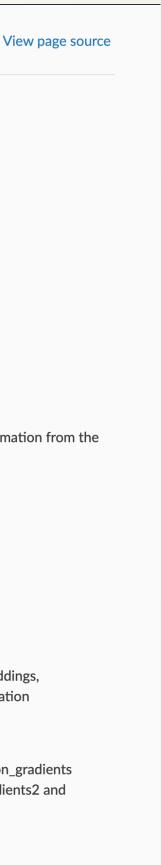
Populates the src_pos_embeddings, dst_post_embeddings, relation_embeddings, src_neg_embeddings, and dst_neg_embeddings tensors for model computation

void accumulateGradients()

Accumulates gradients into the unique_node_gradients and unique_relation_gradients tensors, and applies optimizer update rule to create the unique_node_gradients2 and unique_relation_gradients2 tensors

void embeddingsToHost()

Transfers gradients and embedding updates to host



Experimental evaluation

Datasets

- Freebase86m knowledge graph
- Twitter social graph
- LiveJournal
- Freebase15k

Presented here

- Large scale single-GPU comparison with PBG (Facebook) and DGL-KE (Amazon)
- BETA ordering runtime and IO reduction vs. existing orderings and lower bound

More in the paper

- System comparisons on two small/medium sized benchmark datasets
- Cost comparisons with multi-GPU and distributed configurations of DGL-KE and PBG
- The impact of asynchronous training and IO
- Scaling to configurations that are order(s) of magnitude larger than GPU and CPU capacity

Models Hardware - Dot

- ComplEx
- DistMult

- Amazon EC2 p3.2xlarge - V100 GPU, 61GB DRAM

Accuracy and Runtime Comparisons

System	Model	MRR	Runtime		
PBG	Dot Product	0.313	5h15m		
DGL-KE	Dot Product	0.220	35h3m		
Marius	Dot Product	0.310	<u>3h28m</u>		

Twitter

Marius up to **10x** faster than DGL-KE on large social graphs

<u>Twitter</u>

1.46 billion edges
41.6 million nodes
1 edge-type
d = 50

All systems are trained to 10 epochs, reaching convergence at near the same time

Freebase86m

System	Model	MRR	Runtime
PBG	ComplEx	0.725	7h27m
Marius	ComplEx	0.726	<u>2h1m</u>

Marius up to **3.7x** faster than PBG on large knowledge graphs

Freebase86m 338 million edges 86 million nodes 15,000 edge-types d = 100

Compared Orderings

Lower bound

- Minimum number of swaps possible for a configuration

Hilbert

- Uses a Hilbert space filling curve to generate an ordering of the edge buckets

Hilbert Symmetric

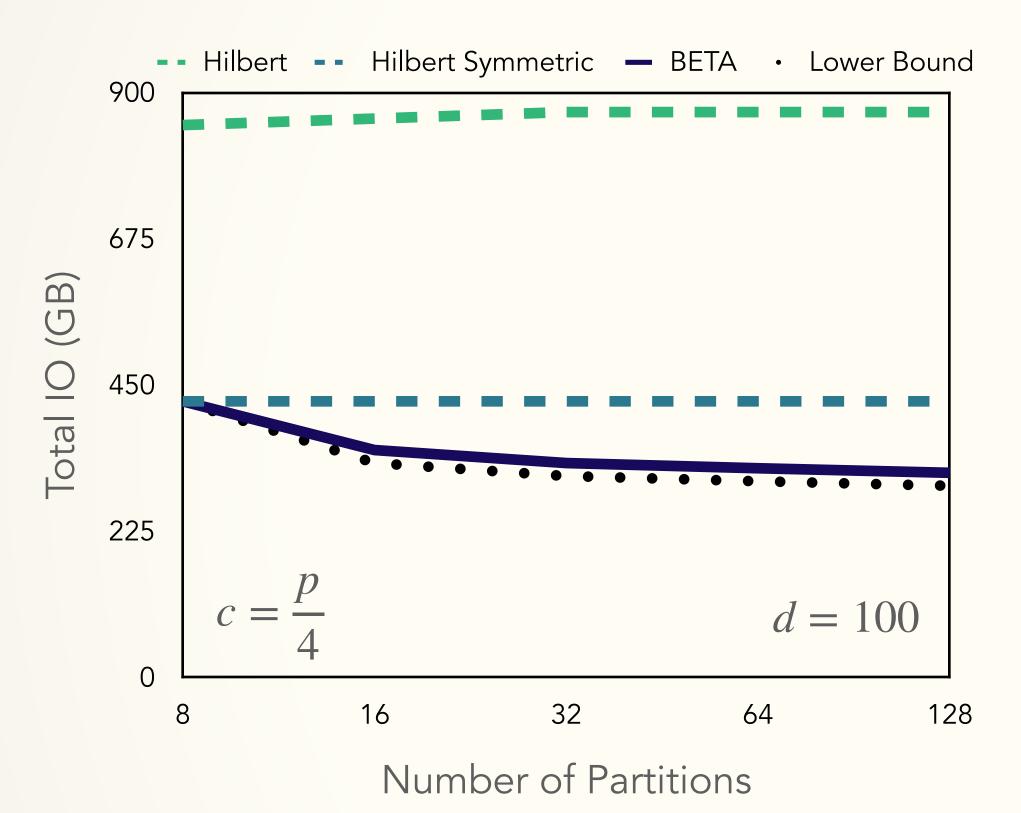
- Modified Hilbert ordering which reduces swaps by 2x
- Processes edge buckets (j,i) and (i,j) together

Random

- Not evaluated, impractical to run as swaps scale quadratically with increasing partitions

BETA

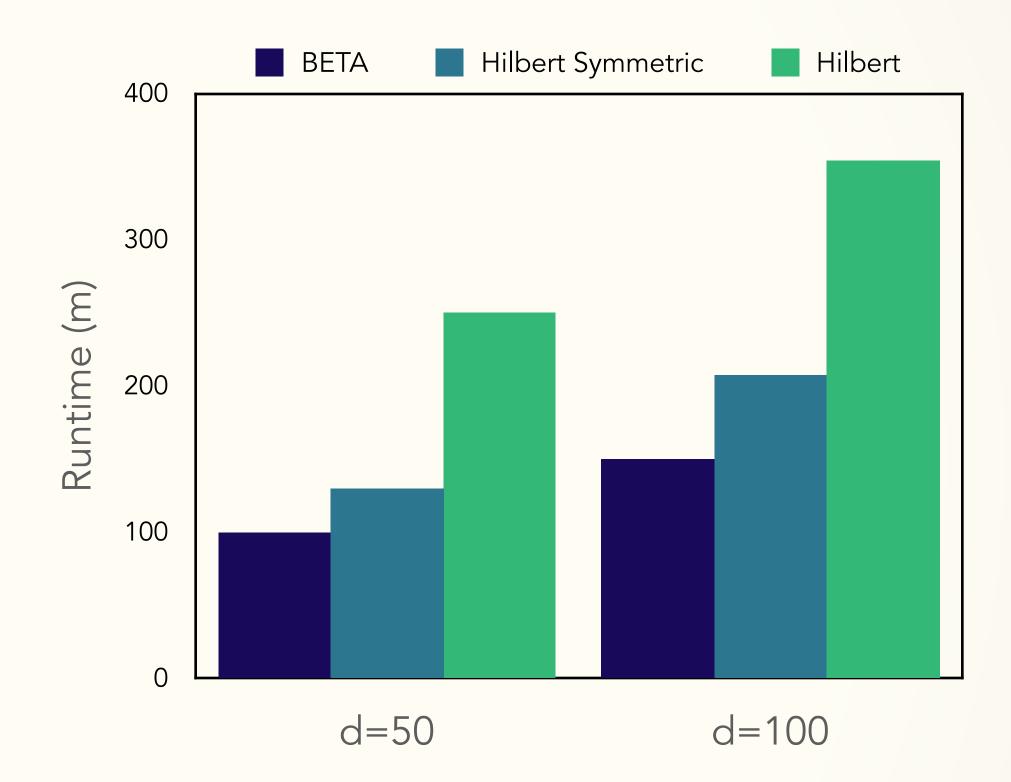
- Our approach



BETA ordering leads to 33% reduction in IO over locality based orderings

Near the lower bound

Freebase86m



Reduction in IO corresponds directly with ~33% reduction in runtime

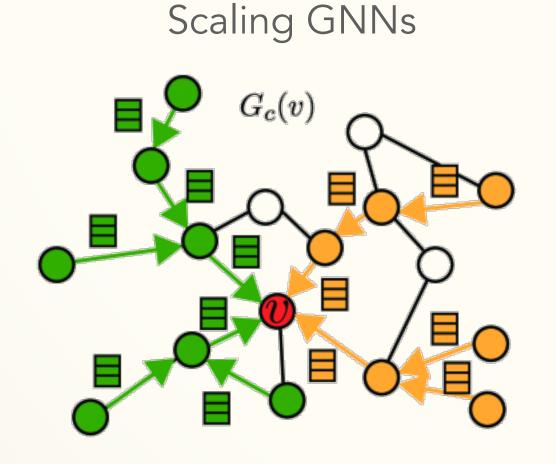
c: buffer capacity, p: num partitions, d: embedding size

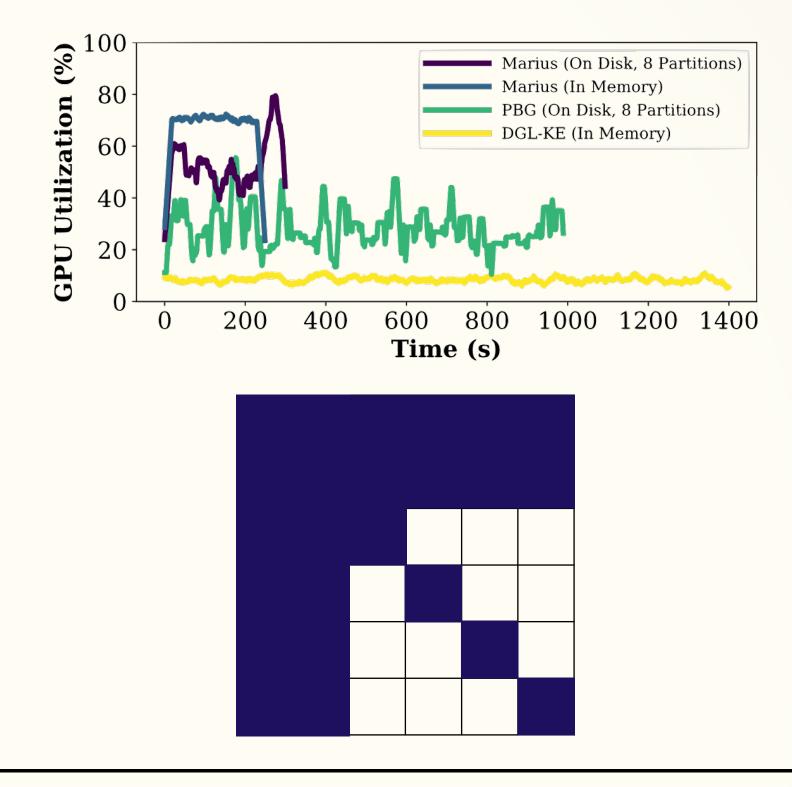
Conclusion & Future Work

Existing systems bottlenecked by data movement

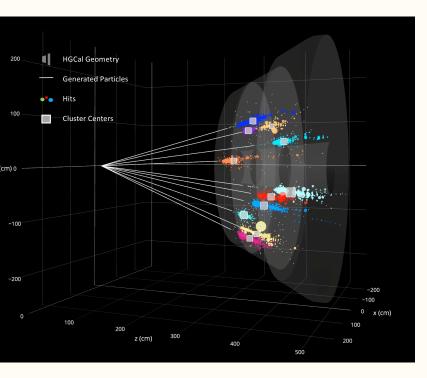
Marius alleviates data movement bottlenecks

- Pipelining/Async IO
- Partition Buffer
- **BETA Ordering**

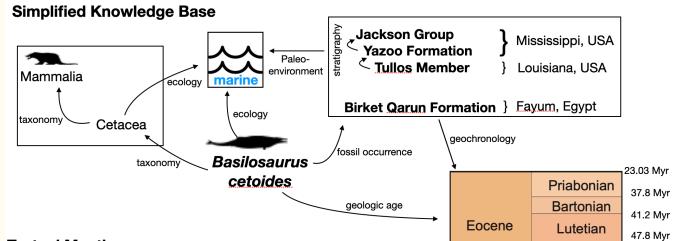




High Energy Physics



Paleobiology (VLDB Demo 2021)



Textual Mentions

Fossils from an extinct toothed (Archaeocete) whale, *Basilosaurus cetoides*, were found in a surface exposure of the **Pachuta Marl Member** of the **late Eocene Yazoo Clay** near the Matherville community in **Wayne County, Mississippi**.

The **Yazoo Clay Formation** makes up the upper half of the **Jackson Group** in the central **Gulf Coastal Plain**, representing deposition during the TAGC4.3 **marine** transgression.

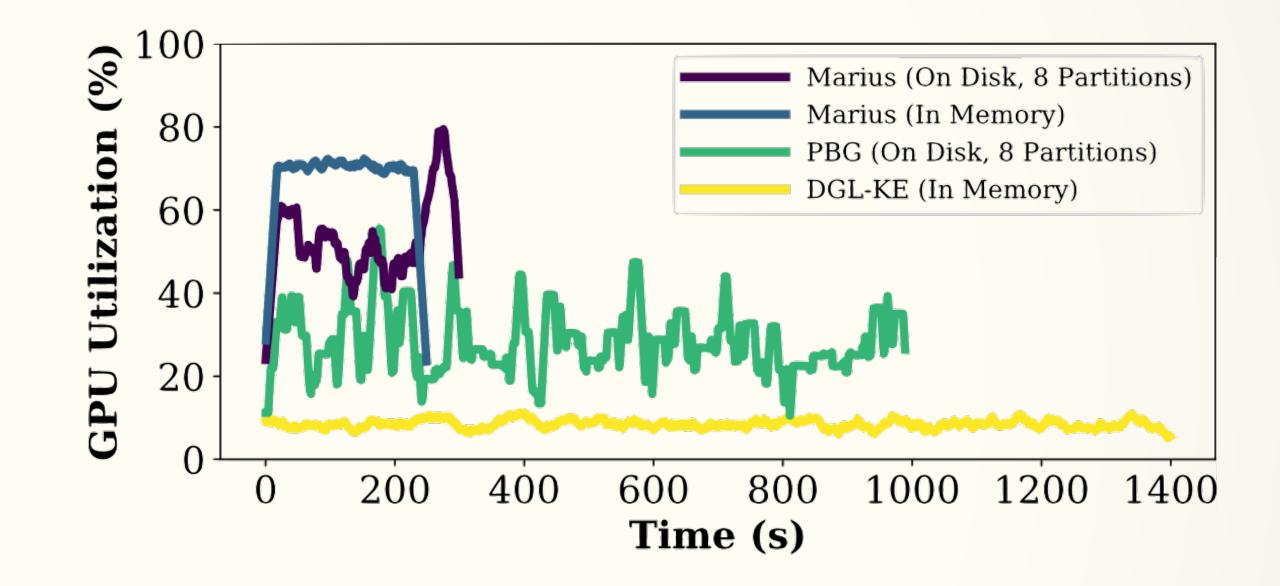


marius

Learning Massive Graph Embeddings on a Single Machine

Jason Mohoney*, Roger Waleffe, Yiheng Xu, Theodoros Rekatsinas, Shivaram Venkataraman

* Email: <u>mohoney2@wisc.edu</u>



Open-source at marius-project.org Thank you!

