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Graphs are universal representations of rich semantics about

entities (nodes) and their relationships (edges)



Graph Embeddings

Objective: Apply modern ML on graphs
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Learning Graph Embeddings
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Training requires iterating over all edges and
retrieving/updating embedding vectors
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Learning Graph Embeddings

Borders .
Training requires iterating over all edges and

retrieving/updating embedding vectors ‘ Located in
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Batched Training Facu@

// E randomly grouped into batches
for batch 1n E:

John
Bardeen

Born in

// compute loss of model for a batch

computeloss (batch)

Awarded Awarded

// apply updates to embeddings in a batch
update (batch)
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Learning Graph Embeddings

Training requires iterating over all edges and
retrieving/updating embedding vectors

Batched Training: single iteration

batch = [ (JB, Born, M), (M, Capital,
// load embeddings
computelLoss (batch)

// update embeddings
update (batch)
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Learning Graph Embeddings

Training requires iterating over all edges and
retrieving/updating embedding vectors

Batched Training: single iteration
batch = [(JB, Born, M), (M, Capital, W)]

// load embeddings and compute loss
computeloss (batch)

// update embeddings
update (batch)
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Learning Graph Embeddings

Training requires iterating over all edges and
retrieving/updating embedding vectors

Batched Training: single iteration

batch = [(JB, Born, M), (M, Capital, W)]
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Learning Graph Embeddings
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Training requires iterating over all edges and
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Training requires efficient access to embedding parameters



Key Challenge: Data Movement

Large Datasets Moving embeddings to compute
Freebase86m: How to scale?
- 338 million edges, 86 million nodes, 15,000 edge types 1. Store embeddings in CPU memory and transfer to GPU(s)
- Bottlenecked by transfer overheads
- Size of node embedding table for d = 400: - Limited scalability DGL-KE

86 million x 400 x 4 bytes = 138 GB

2. Partition node embeddings and store on disk
- Limited by disk throughput PyTorch Big-Graph (PBG)

AWS P3.2xLarge instance:

3. Distribute embeddings across multiple machines

- Bottlenecked by transfer overheads
- Expensive PBG & DGL-KE

- 16 GB GPU Memory

- 61 GB CPU Memory

Embedding table unable to fit in GPU memory! Can the data movement bottlenecks be mitigated?



Scaling to Large Graphs: @marius

Design Goal: Eliminate data movement overheads inherent in graph embedding training

Method Results
- Use pipelining and async |0 to hide data movement - 10x reduction in runtime vs. DGL-KE on Twitter
- Utilize the tull memory hierarchy with a partition bufter - 3.7x runtime reduction vs. PBG on Freebase86m

- Minimize 10 with Buffer-aware Edge Traversal Algorithm (BETA) - 2x higher utilization than PBG, 6-8x higher
utilization than DGL-KE
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Scaling to Large Graphs: @marius

Method

- Use pipelining and async IO hide data movement
- Utilize the tull memory hierarchy with a partition bufter
- Minimize 10 with Buffer-aware Edge Traversal Algorithm (BETA)
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Partitioned Embeddings

Marius Architecture




Scaling to Large Graphs: @mdrius

Method

- Use pipelining and async IO hide data movement
- Utilize the tull memory hierarchy with a partition bufter
- Minimize 10 with Buffer-aware Edge Traversal Algorithm (BETA)

Maximize GPU utilization
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Memory ?_> f
'
v
CPU N )
Memory Partition Buffer

Partitioned Embeddings

Marius Architecture




Scaling to Large Graphs: @mdrius

Method

- Use pipelining and async IO hide data movement

- Utilize the full memory hierarchy with a partition buffer

- Minimize 10 with Buffer-aware Edge Traversal Algorithm (BETA)

Minimize 10 through partition caching

GPU L f N
Memory 2
t
CPU \ )
Memory Partition Buffer

Partitioned Embeddings

Marius Architecture




Scaling to Large Graphs: @morius

GPU
Memory ?_> f
*
Method '
- Use pipelining and async IO hide data movement ‘ :
- Utilize the tull memory hierarchy with a partition bufter
- Minimize 10 with Buffer-aware Edge Traversal Algorithm (BETA) CPU \ /
Memory Partition Buffer
Minimize 1O to lower bound
Disk Partitioned Embeddings

Marius Architecture




Processing Partitions

Node Embedding Partitions Oy

Node embeddings are partitioned uniformly into p v
disjoint partitions.

| VI
Node embedding table Partitioned node embedding table (p = 6)

Destination Partition
0 1 2 3 4 5

Edge Buckets v ...

Edge bucket (i,j) contains all edges with a source in

partition i and a destination in partition j

Source Partition

. . TORE L
4 ‘ll l““‘ “Q“
To iterate over all edges, we need to iterate 5 ‘

over all edge buckets

Adjacency Matrix



Edge bucket orderings and |O

The order in which edge buckets are processed
has an impact on 10

Size of partitions: 138 GB/ 6 = 23 GB

23 GB / 400 MBps = ~57 seconds

Costly swaps!

Example: After processing edge bucket (3, 2)

Processing (2, 3): Requires no extra swaps
Processing (2, 4): Requires one swap

Processing (4, 5): Requires two swaps
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Partitions on disk
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Edge bucket Qrderings and |O ; Dlestlnz;tlon F;artl’uc;n :

0
A Lower Bound
1
-
Can never process more than 2c - 1 edge buckets per swap 2
E 2
2 _ 2 2 _ 72
p-—c¢ 6-—3 -
[ =1 | =6 o 3
2¢c — 1 2%3 -1 2
0
4
6 swaps
S
Random Ordering ~23 swaps
Hilbert Curve Ordering 12 swaps Partitions in Buffer c=3
BETA Ordering 7 swaps

Partitions on disk Q)| 0,10, 0;] O, O




Buffer-aware Edge Traversal Algorithm (BETA)

BETA Ordering

1. Randomly initialize bufter

2. Use the last spot in the bufter to cycle through the
rest of the partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed
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Buffer-aware Edge Traversal Algorithm (BETA)

BETA Ordering

1. Randomly initialize buffer

2. Use the last spot in the bufter to cycle through the
rest of the partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed
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Buffer-aware Edge Traversal Algorithm (BETA)

BETA Ordering

1. Randomly initialize bufter
2. Use the last spot in the buffer to cycle through
the rest of the partitions, processing their

corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until all edge
buckets have been processed

0 swaps*

* Not counting initialized bufter, as with the previous orderings
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Buffer-aware Edge Traversal Algorithm (BETA)

BETA Ordering

1. Randomly initialize bufter
2. Use the last spot in the buffer to cycle through
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3. Fix a new c - 1 partitions and repeat until all edge
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Buffer-aware Edge Traversal Algorithm (BETA)

BETA Ordering

1.

2.

Randomly initialize buffer

Use the last spot in the buffer to cycle through
the rest of the partitions, processing their
corresponding edge buckets

. Fix a new c - 1 partitions and repeat until all edge

buckets have been processed

2 swaps
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Buffer-aware Edge Traversal Algorithm (BETA) ; DleSti”a;O” F;artit‘j‘ 5

0
BETA Ordering -1
0O
E 2
1. Randomly initialize bufter &
S 3
2. Use the last spot in the buffer to cycle through =
W

. Fix a new c - 1 partitions and repeat until all edge

the rest of the partitions, processing their 4
corresponding edge buckets

buckets have been processed

Partitions in Buffer
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Buffer-aware Edge Traversal Algorithm (BETA) ; DleSti”a;O” F;artit‘j‘ 5
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3. Fix a new c - 1 partitions and repeat until all
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Close to the 6 swap lower bound!




Open sourced system: marius-project.org

Built on PyTorch

~15,000 lines of C++ and growing

Python API

O PyTorch

Installation from source with Pip Compatible

1. Install latest version of PyTorch for your CUDA version:
Linux:

o CUDA 10.1: python3 -m pip install torch==1.7.1+cul@l -f
https://download.pytorch.org/whl/torch_stable.html

o CUDA 10.2: python3 -m pip install torch==1.7.1

o CPU Only: python3 -m pip install torch==1.7.1+cpu -f
https://download.pytorch.org/whl/torch_stable.html

MacOS:
o CPU Only: python3 -m pip install torch==1.7.1
2. Clone the repository git clone https://github.com/marius—team/marius.git

3. Build and install Marius cd marius; python3 -m pip install

Marius in Docker dOCker

Marius can be deployed within a docker container. Here is a sample ubuntu dockerfile (loca
examples/docker/dockerfile ) which contains the necessary dependencies preinstalled f

Building and running the container

Build an image with the name marius and the tag example :
docker build -t marius:example —-f examples/docker/dockerfile examples/docker

A Marius

Search docs

Introduction
Quick Start
Build

System Overview

Configuration
IO Format
Training
Models

Loss Functions
Evaluation

Storage Backends

Batch
Buffer
Config
DataSet
Datatypes
Decoder
Encoder
Evaluator
10
Logger
Marius

Model

Ordering

Pipeline
Storage
Trainer

Util

@ » Batch View page source

Batch

class Batch
Contains metadata, edges and embeddings for a single batch.
Subclassed by PartitionBatch

Public Functions

Batch(bool train)

Constructor

~Batch()

void LocalSample()

Destructor Construct additional negative samples and neighborhood information from the
batch

void accumulateUniquelIndices|()

Populates the unique_<>_indices tensors

void embeddingsToDevice(int device_id)

Transfers embeddings, optimizer state, and indices to specified device

void prepareBatch()

Populates the src_pos_embeddings, dst_post_embeddings, relation_embeddings,
src_neg_embeddings, and dst_neg_embeddings tensors for model computation

void accumulateGradients|()

Accumulates gradients into the unique_node_gradients and unique_relation_gradients
tensors, and applies optimizer update rule to create the unique_node_gradients2 and
unique_relation_gradients2 tensors

void embeddingsToHost()

Transfers gradients and embedding updates to host
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Experimental evaluation

Datasets

Models

- Freebase86m knowledge graph
- Twitter social graph

- LiveJournal
- Freebase15k

Presented here

- Large scale single-GPU comparison with PBG (Facebook) and DGL-KE (Amazon)
- BETA ordering runtime and 1O reduction vs. existing orderings and lower bound

More in the paper

- Dot

- ComplEx
- DistMult

ardware

- Amazon EC2 p3.2xlarge
- V100 GPU, 61GB DRAM

- System comparisons on two small/medium sized benchmark datasets

- Cost comparisons with multi-GPU and distributed configurations of DGL-KE and PBG

- The impact of asynchronous training and 10

- Scaling to configurations that are order(s) of magnitude larger than GPU and CPU capacity
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Accuracy and Runtime Comparisons

Twitter Freebase86m
System  Model MRR Runtime System  Model MRR  Runtime
PBG | | D;’t .| 0.313 | 5h15m
oot PBG |ComplEx| 0.725 | 7h27m
DGLKE | _ %' | 0.220 | 35h3m
Product
Mari I /2 2h1
Marius | _ 00" | 0310 | 3h28m arius | ComplEx| - 0.726 m
Product
Marius up to 10x faster than DGL- Marius up to 3.7x faster than PBG
KE on large social graphs on large knowledge graphs
) Freebase86m

witter

1 edge-type
d =50

1.46 billion edges
41.6 million nodes

All systems are trained to 10 epochs, reaching
convergence at near the same time a

338 million edges
86 million nodes
15,000 edge-types

= 100




Compared Orderings

Lower bound
- Minimum number of swaps possible for a configuration

Hilbert
- Uses a Hilbert space filling curve to generate an ordering of the edge buckets

Hilbert Symmetric
- Modified Hilbert ordering which reduces swaps by 2x
- Processes edge buckets (j,i) and (i,j) together

Random
- Not evaluated, impractical to run as swaps scale quadratically with increasing partitions

BETA
- Our approach



Buffer-aware Edge Traversal Algorithm (BETA)

- = Hilobert == Hilbert Symmetric == BETA :- Lower Bound

900

675

o)
)
©
O
225
P
C = — —
1 d = 100
0
8 16 32 64 128
Number of Partitions
BETA ordering leads to 33% reduction
in |O over locality based orderings
Near the lower bound
Freebase86m

B BETA B Hilbert Symmetric " Hilbert

400

300

200

Runtime (m)

100

d

50 d=100

Reduction in 1O corresponds directly
with ~33% reduction in runtime

c: bufter capacity, p: num partitions, d: embedding size




Conclusion & Future Work

100

Existing systems bottlenecked by data movement

GPU Utilization (%)

)

Marius alleviates data movement bottlenecks
- Pipelining/Async 1O
- Partition Buffer
- BETA Ordering
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Future work

Paleobiology (VLDB Demo 2021)

Simplified Knowledge Base

} Mississippi, USA

} Louisiana, USA

‘g Jackson Group
- A | e ramaten
Mammalia ﬁg'y TN environment | % 1ullos
Birket Qarun Formation } Fayum, Egypt

taxonomy Basilosaurus
cetoides

geologic age

Textual Mentions

taxonomk ecology
Y Cetacea
N geochronology
fossil occurrence

Eocene

Priabonian

Bartonian

Lutetian

23.03 Myr
37.8 Myr
41.2 Myr
47.8 Myr

Pachuta Marl Member of the late Eocene Yazoo Clay near the Matherville community in Wayne County, Mississippi.

The Yazoo Clay Formation makes up the upper half of the Jackson Group in the central Gulf Coastal Plain,

representing deposition during the TAGC4.3 matine transgression.
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