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Biochemistry Knowledge Graphs High-Energy Physics

Graphs are universal representations of rich semantics about 

entities (nodes) and their relationships (edges)
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Learning Graph Embeddings

Node embeddings Table

Edge-type embeddings
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Training Process

// E ordered randomly 
for (s, r, d) in E: 

    // compute loss of model for an edge 
    computeLoss(s, r, d) 

// apply updates to embeddings of edge 
    update(s, r, d)    

G = (V, R, E)

Training requires iterating over all edges and 
retrieving/updating embedding vectors
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Batched Training

// E randomly grouped into batches 
for batch in E: 

    // compute loss of model for a batch 
    computeLoss(batch) 

// apply updates to embeddings in a batch 
    update(batch)    

G = (V, R, E)

Training requires iterating over all edges and 
retrieving/updating embedding vectors
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Edge-type embeddings

0 d

0 d

|V |

|R |

Madison

Capital of

Wisconsin

Born in John 
Bardeen

Borders
Illinois

Faculty at
UIUC

Awarded

Nobel 
Prize in 
Physics 
(1956)

Nobel 
Prize in 
Physics 
(1972)

Awarded

Located in

Batched Training: single iteration
batch = [(JB, Born, M),(M, Capital, W)] 

// load embeddings 
computeLoss(batch) 

// update embeddings 
update(batch)    

G = (V, R, E)

Training requires iterating over all edges and 
retrieving/updating embedding vectors
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batch = [(JB, Born, M),(M, Capital, W)] 

// load embeddings and compute loss 
computeLoss(batch) 

// update embeddings 
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Read
Training requires iterating over all edges and 
retrieving/updating embedding vectors
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Learning Graph Embeddings
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Node embeddings Table
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Batched Training: single iteration
batch = [(JB, Born, M),(M, Capital, W)] 

// load embeddings and compute loss 
computeLoss(batch) 

// update embeddings 
update(batch)    

Training requires iterating over all edges and 
retrieving/updating embedding vectors Write

Write

Training requires efficient access to embedding parameters Irregular Access 



Key Challenge: Data Movement

Large Datasets Moving embeddings to compute

AWS P3.2xLarge instance: 

- 16 GB GPU Memory 

- 61 GB CPU Memory

Embedding table unable to fit in GPU memory! Can the data movement bottlenecks be mitigated? 

How to scale? 

1. Store embeddings in CPU memory and transfer to GPU(s) 
- Bottlenecked by transfer overheads 
- Limited scalability DGL-KE

PyTorch Big-Graph (PBG)

PBG & DGL-KE

3.  Distribute embeddings across multiple machines 
 - Bottlenecked by transfer overheads 
 - Expensive

2.  Partition node embeddings and store on disk 
 - Limited by disk throughput

Freebase86m: 

- 338 million edges, 86 million nodes, 15,000 edge types 

- Size of node embedding table for d = 400: 

86 million x 400 x 4 bytes = 138 GB



Scaling to Large Graphs:

Design Goal: Eliminate data movement overheads inherent in graph embedding training  

Results   
- 10x reduction in runtime vs. DGL-KE on Twitter 
- 3.7x runtime reduction vs. PBG on Freebase86m 
- 2x higher utilization than PBG, 6-8x higher 

utilization than DGL-KE

Method   
- Use pipelining and async IO to hide data movement 
- Utilize the full memory hierarchy with a partition buffer 
- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)



GPU  
Memory

CPU  
Memory

Scaling to Large Graphs:

f

Marius Architecture 

Method   
- Use pipelining and async IO hide data movement 
- Utilize the full memory hierarchy with a partition buffer 
- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)

Partitioned Embeddings

Partition Buffer

Disk



GPU  
Memory

CPU  
Memory

Disk

Scaling to Large Graphs:

f

Pipeline

Marius Architecture 

Method   
- Use pipelining and async IO hide data movement 
- Utilize the full memory hierarchy with a partition buffer 
- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)

Partitioned Embeddings

Partition Buffer

Maximize GPU utilization 

Async IO
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Method   
- Use pipelining and async IO hide data movement 
- Utilize the full memory hierarchy with a partition buffer 
- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)

Partitioned Embeddings

Partition Buffer

Disk

Minimize IO through partition caching 
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Method   
- Use pipelining and async IO hide data movement 
- Utilize the full memory hierarchy with a partition buffer 
- Minimize IO with Buffer-aware Edge Traversal Algorithm (BETA)

Partitioned Embeddings

Partition Buffer

Disk

Minimize IO to lower bound 



Processing Partitions

Node Embedding Partitions 

Node embeddings are partitioned uniformly into p 
disjoint partitions. 

Edge Buckets 

Edge bucket (i,j) contains all edges with a source in 
partition i and a destination in partition j 
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Edge bucket orderings and IO
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The order in which edge buckets are processed 
has an impact on IO

Example: After processing edge bucket (3, 2)  

Processing (2, 3): Requires no extra swaps 

Processing (2, 4): Requires one swap 

Processing (4, 5): Requires two swaps 

c = 3

p = 6Θ2 Θ3

Size of partitions: 138 GB / 6 = 23 GB

23 GB / 400 MBps = ~57 seconds

Costly swaps!



Edge bucket orderings and IO
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Random Ordering

Hilbert Curve Ordering

~23 swaps

12 swaps c = 3

p = 6

Partitions in Buffer

A Lower Bound

Can never process more than 2c - 1 edge buckets per swap

⌈
p2 − c2

2c − 1
⌉ = ⌈

62 − 32

2 * 3 − 1
⌉ = 6

BETA Ordering 7 swaps

6 swaps

1 2 3 4 50



Buffer-aware Edge Traversal Algorithm (BETA)
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BETA Ordering 

1. Randomly initialize buffer 

2. Use the last spot in the buffer to cycle through the 
rest of the partitions, processing their 
corresponding edge buckets 

3. Fix a new c - 1 partitions and repeat until all edge 
buckets have been processed
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Compatible


Open sourced system: marius-project.org 

Built on PyTorch 

~15,000 lines of C++ and growing 

Python API 

http://marius-project.org


Experimental evaluation

More in the paper 
- System comparisons on two small/medium sized benchmark datasets 
- Cost comparisons with multi-GPU and distributed configurations of DGL-KE and PBG  
- The impact of asynchronous training and IO  
- Scaling to configurations that are order(s) of magnitude larger than GPU and CPU capacity

Presented here 
- Large scale single-GPU comparison with PBG (Facebook) and DGL-KE (Amazon) 
- BETA ordering runtime and IO reduction vs. existing orderings and lower bound 

Datasets 
- Freebase86m knowledge graph 
- Twitter social graph 
- LiveJournal 
- Freebase15k

Models 
- Dot  
- ComplEx 
- DistMult

Hardware 
- Amazon EC2 p3.2xlarge  
- V100 GPU, 61GB DRAM



Marius up to 10x faster than DGL-
KE on large social graphs

Accuracy and Runtime Comparisons

All systems are trained to 10 epochs, reaching 
convergence at near the same time

Twitter
1.46 billion edges
41.6 million nodes
1 edge-type 
d = 50

System Model MRR Runtime

PBG
Dot 

Product
0.313 5h15m

DGL-KE
Dot 

Product
0.220 35h3m

Marius
Dot 

Product
0.310 3h28m

Twitter

Freebase86m
338 million edges
86 million nodes
15,000 edge-types 
d = 100 

Marius up to 3.7x faster than PBG 
on large knowledge graphs

System Model MRR Runtime

PBG ComplEx 0.725 7h27m

Marius ComplEx 0.726 2h1m

Freebase86m



Compared Orderings 

Lower bound 
- Minimum number of swaps possible for a configuration  

Hilbert 
 - Uses a Hilbert space filling curve to generate an ordering of the edge buckets 

Hilbert Symmetric  
 - Modified Hilbert ordering which reduces swaps by 2x  
 - Processes edge buckets (j,i) and (i,j) together 

Random 
 - Not evaluated, impractical to run as swaps scale quadratically with increasing partitions 

BETA 
 - Our approach



BETA ordering leads to 33% reduction 
in IO over locality based orderings

Buffer-aware Edge Traversal Algorithm (BETA)

Near the lower bound
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Conclusion & Future Work

Existing systems bottlenecked by data movement 

Marius alleviates data movement bottlenecks  
- Pipelining/Async IO 
- Partition Buffer 
- BETA Ordering 

Future work

High Energy Physics Paleobiology (VLDB Demo 2021)Scaling GNNs
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