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ML needs fresh and large real-life datasets
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• On-device machine learning helps 
• Reduce data migration/privacy risk
• Learn on fresh real-world data
• …

• Federated training and testing
• Run model across millions of edge clients

TensorFlow 
Federated

NVIDIA Clara PyTorch Mobile

Apple CoreML

Many others …



Execution of Federated Learning (FL)

4

Coordinator

Execution 
Driver

Client  
Manager

Submit Job

Model Config

Better time to accuracy:
- Less time for target acc. 

under the same setting

Primary Objective



Execution of Federated Learning (FL)

4

Coordinator

Execution 
Driver

Client  
Manager

…

Client Pool

…

Submit Job

Model Config

Better time to accuracy:
- Less time for target acc. 

under the same setting

Primary Objective



O(100) Rounds:

In-situ Execution

Result aggregation

R
ou

nd
 i

Execution of Federated Learning (FL)

5

…

Submit Job

Client Pool

Coordinator

Execution 
Driver

Client  
Manager

…

Model Config
Client selection

① Client Selection



Execution of Federated Learning (FL)

6

…

Submit Job

② Execution

Client Pool

Coordinator

Execution 
Driver

Client  
Manager

…

Model Config

O(100) Rounds:

In-situ Execution

Result aggregation

R
ou

nd
 i

Client selection



Execution of Federated Learning (FL)

6

…

Submit Job

② Execution

Client Pool

Coordinator

Execution 
Driver

Client  
Manager

…

Model Config

O(100) Rounds:

In-situ Execution

Result aggregation

R
ou

nd
 i

Client selection



Execution of Federated Learning (FL)

7

…

Client Pool

Coordinator

Execution 
Driver

Client  
Manager

…

③ Aggregation

Submit Job

Model Config

O(100) Rounds:

In-situ Execution

Result aggregation

R
ou

nd
 i

Client selection



Execution of Federated Learning (FL)

7

…

Client Pool

Coordinator

Execution 
Driver

Client  
Manager

…

③ Aggregation

Submit Job

Model Config

O(100) Rounds:

In-situ Execution

Result aggregation

R
ou

nd
 i

Client selection



O(100) Rounds:

In-situ Execution

Result aggregation

R
ou

nd
 i Client selection

Primary Objective
Better time to accuracy:

- Less time for target acc. 
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FL In-cluster ML

System Heterogeneous Homogeneous

Data Heterogeneous Homogeneous 
via shuffling

Scale O(1M) O(10) 

Dynamics Client can drop 
out/rejoin

Few

… … …

• Existing work optimize for better
• System efficiency
• Reduce round duration
• Statistical efficiency
• Reduce # of rounds needed
• …

Existing federated learning relies on 
random participant selection
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Image classification task on OpenImage dataset

Existing Client Selection: Suboptimal Efficiency

[1]

[2] }FL settings
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ShuffleNet Model



 [1] “Adaptive Federated Optimization”, ICLR’21
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Suboptimal training 
convergence

Image classification task on OpenImage dataset

Existing Client Selection: Suboptimal Efficiency
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Existing Client Selection: Unable for Selection Criteria
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• Enforcing selection criteria is crucial in FL testing
• “Give me 4k representative samples”
• “Give me x samples of class y”
• …
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• Enforcing selection criteria is crucial in FL testing
• “Give me 4k representative samples”
• “Give me x samples of class y”
• …

Existing Client Selection: Unable for Selection Criteria
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?

• Enforcing selection criteria is crucial in FL testing
• “Give me 4k representative samples”
• “Give me x samples of class y”
• …

Existing Client Selection: Unable for Selection Criteria
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: how data helps round to accuracy?
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Heterogeneity Scalability Dynamics Robustness

Challenge 1: Identify Heterogeneous Client Utility

• Statistical utility
• Capture how the client data can help to improve the model

18

• Metric: aggregate training loss of client data
• Higher loss       higher stats utility (proof in paper)

Stats. utility

System utility

• Utility of a client =

• i.e., speed of accumulating stats utility in round i

stats_util (i)
round_duration (i) AND
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• How to identify high-utility clients from millions of clients?
• Spatiotemporal variation: heterogeneous utility across clients over rounds
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• Exploration + Exploitation
• Explore not-tried clients
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Challenge 2: Select High-Utility Clients at Scale

• How to identify high-utility clients from millions of clients?
• Spatiotemporal variation: heterogeneous utility across clients over rounds

20

• Exploration + Exploitation
• Explore not-tried clients
• Exploit known high-utility clients

Client Pool

Exploitation
Oort

Exploration

Heterogeneity Dynamics Robustness
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Challenge 3: Select High-Utility Clients Adaptively

• How to account for stale utility since last participation?
• Utility changes due to dynamics

21

1. Aging: add uncertainty to utility
• current_utility = last_observed_utility + observation_age

Re-discover missed good clients

2. Probabilistic selection by utility values
• Prioritize high-utility clients
• Robust to outliers and uncertainties

…

Exploited Clients

Probabilistic sampling by utility

0.010.1 0.08 0.02

Heterogeneity Scalability Dynamics Robustness



More in Our Paper
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• How to respect privacy

• How to be robust to corrupted clients

• How to enforce diverse selection criteria
• Fairness, data distribution for FL testing

Heterogeneity Scalability Dynamics Robustness
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Evaluation
Oort as a lib to support 

TensorFlow Federated / PySyft

Experiment setting
• Testbed w/ 68 GPUs 
• Realistic FL Benchmark[1]

• Heter.  speed/data
• Dynamics of devices
• 1300 participants/round

[1] FedScale: Benchmarking Model and System Performance 
of Federated Learning

https://github.com/SymbioticLab/FedScale
https://github.com/SymbioticLab/FedScale
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Image classification (OpenImage dataset)

Oort improves TTA by 14X and final accuracy by 9%
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Zoom into Statistical Performance
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Image classification (ShuffleNet Model)
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Oort
https://github.com/SymbioticLab/Oort

Participant selection framework for
• Faster convergence in FL training
• Interpretable data selection in FL testing

Client selection for{
utility-aware FL training w/ adaptive exploration-exploitation

criteria-aware FL testing to enforce specified data selection

26
Thank you!

https://github.com/SymbioticLab/Oort
https://github.com/SymbioticLab/Oort

