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cmerging Irend of Machine Learning

Edge devices generate massive Increasing on edge device

Model inference latency

ML needs fresh and large real-life datasets
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Challenges In Federated Learning

In-cluster ML

YAl Heterogeneous Homogeneous
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Challenge 3: Select High-Ultility Clients Adaptively

* How to account for utility since last participation?
o Utility changes due to dynamics

. : add uncertainty to utility —> Re-discover missed good clients
* current_utility = last_observed_utility +

: . Probabilistic sampling by utility
2. selection by utility values

» Prioritize high-utility clients oo

e Robust to outliers and uncertainties

Exploited Clients

Dynamics Robustness



More In Our Paper

* How to respect privacy
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. 0 : Random
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* Fairness, data distribution for # of Rounds Needed

Heterogeneity Scalability Dynamics Robustness
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Experiment setting
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Time-to-Accuracy (I TA) Performance

Image classification (Openlmage dataset) Next-word prediction (Reddit Corpus)
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/Zoom Into Statistical Performance

Image classification (ShuffleNet Model) Next-word prediction (Albert Model)
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Oort achieves close to upper-bound statistical performance



0 t Participant selection framework for
0 r * Faster convergence In FL training

* Interpretable data selection in FL testing

https://github.com/SymbioticLab/Oort

utility-aware FL training w/ adaptive exploration-exploitation

Client selection for

criteria-aware FL testing to enforce specified data selection
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