

Efficient Federated Learning via Guided Participant Selection

Fan Lai, Xiangfeng Zhu,

Harsha V. Madhyastha, Mosharaf Chowdhury

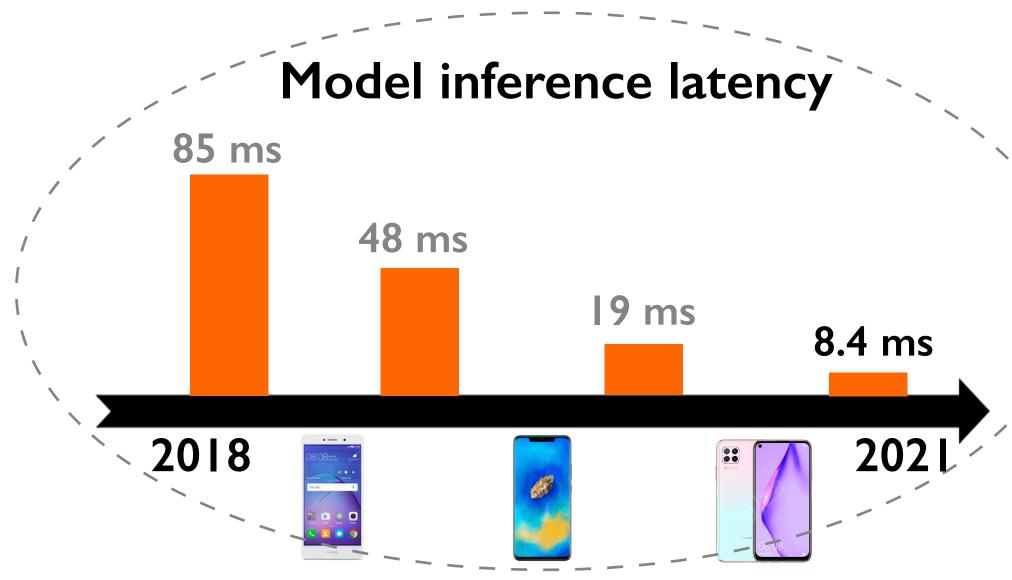
Emerging Trend of Machine Learning

Edge devices generate massive data

Emerging Trend of Machine Learning

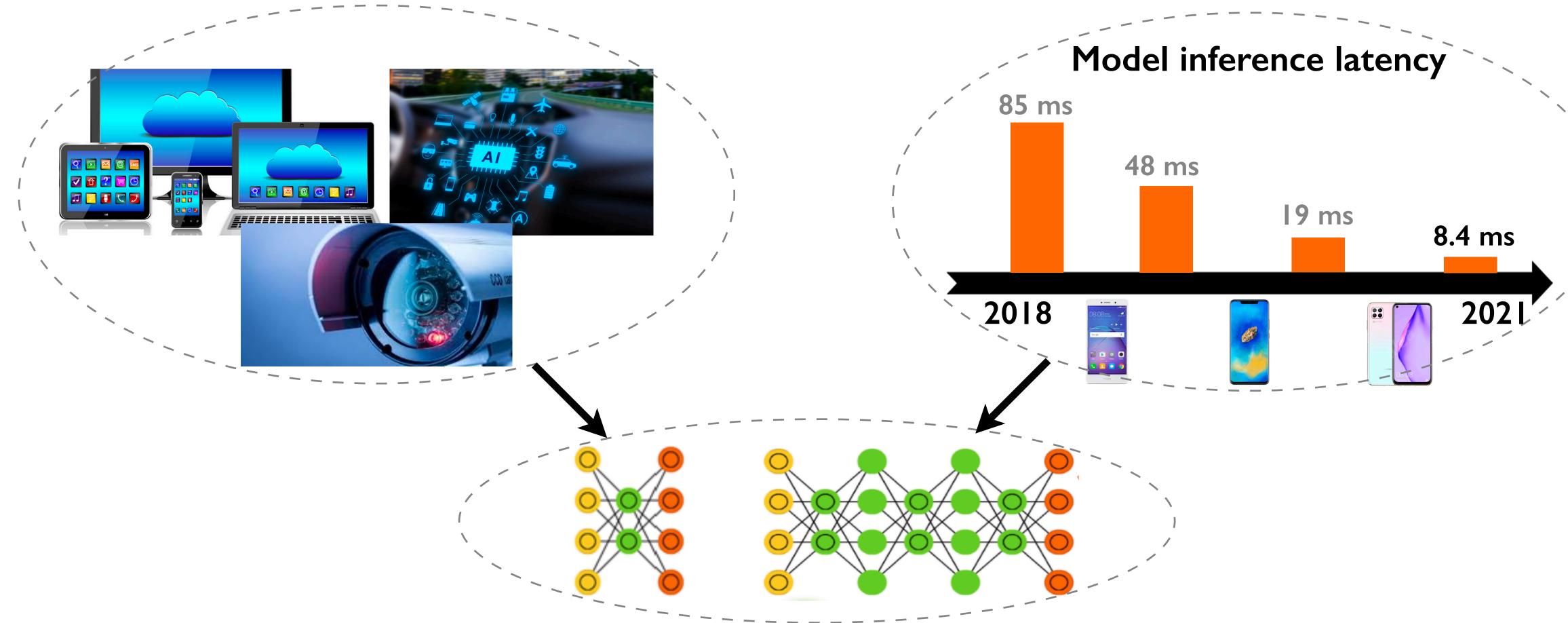
Edge devices generate massive data

Increasing resource on edge device



Emerging Trend of Machine Learning

Edge devices generate massive data



ML needs fresh and large real-life datasets

Emerging Federated Learning on the Edge

• On-device machine learning helps

- Reduce data migration/privacy risk
- Learn on fresh real-world data
- •

Mistify: Automating DNN Model Porting for On-Device Inference at the Edge

TOWARDS FEDERATED LEARNING AT SCALE: SYSTEM DESIGN

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications

APPLIED FEDERATED LEARNING: IMPROVING GOOGLE KEYBOARD QUERY SUGGESTIONS

Many others ...

Emerging Federated Learning on the Edge

On-device machine learning helps

- Reduce data migration/privacy risk
- Learn on fresh real-world data

. . .

- Federated training and testing
 - Run model across millions of edge clients

Mistify: Automating DNN Model Porting for On-Device Inference at the Edge

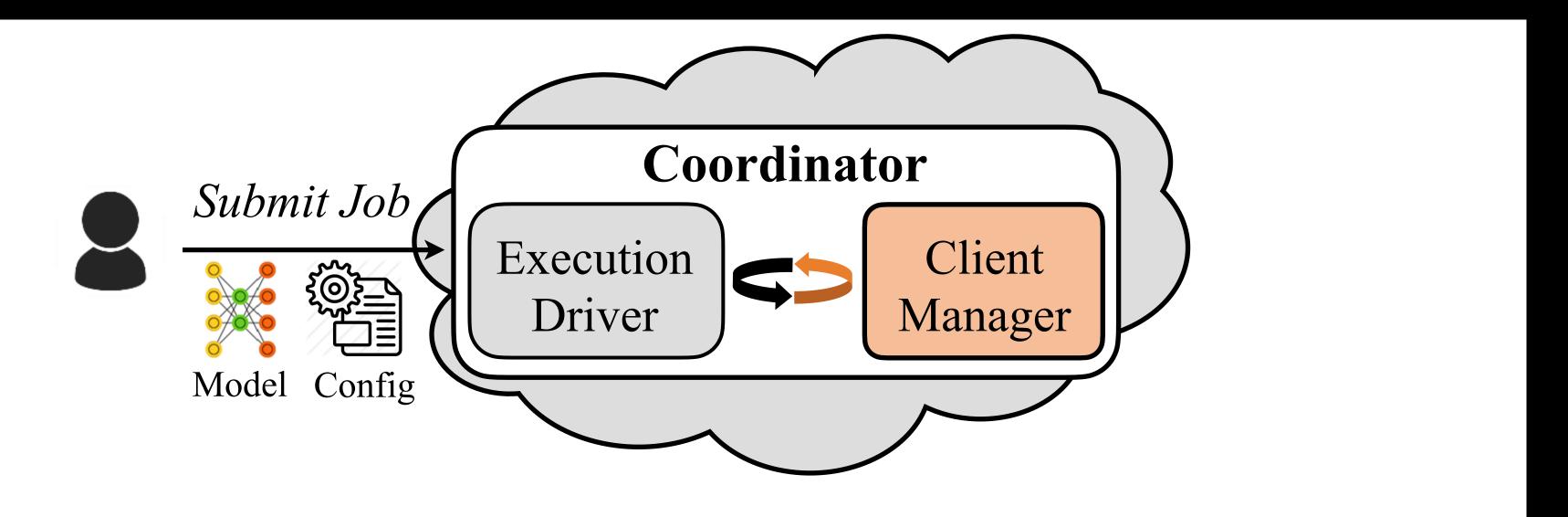
TOWARDS FEDERATED LEARNING AT SCALE: SYSTEM DESIGN

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

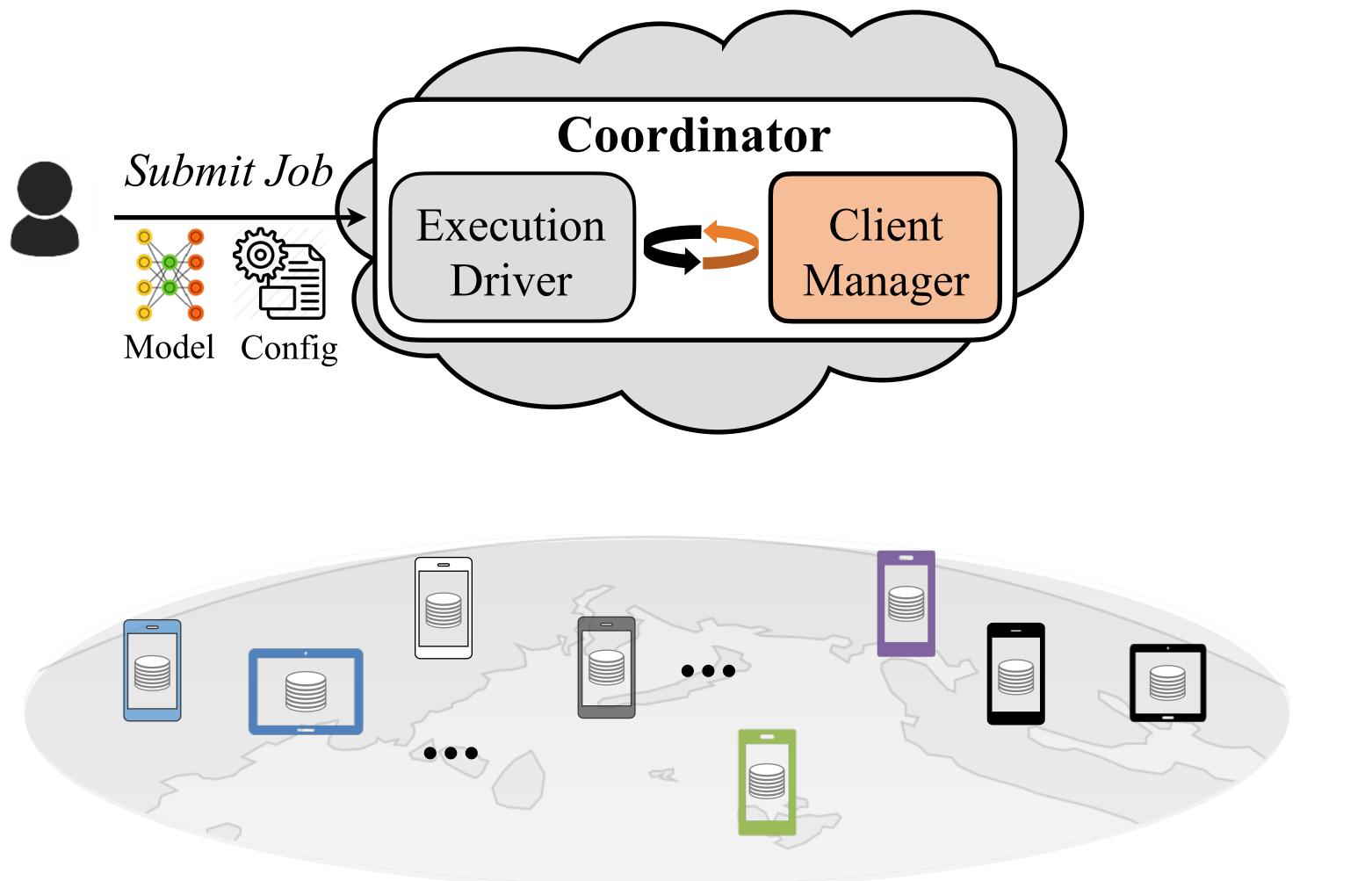
> **APPLIED FEDERATED LEARNING: IMPROVING GOOGLE KEYBOARD QUERY SUGGESTIONS**

> > Many others ...



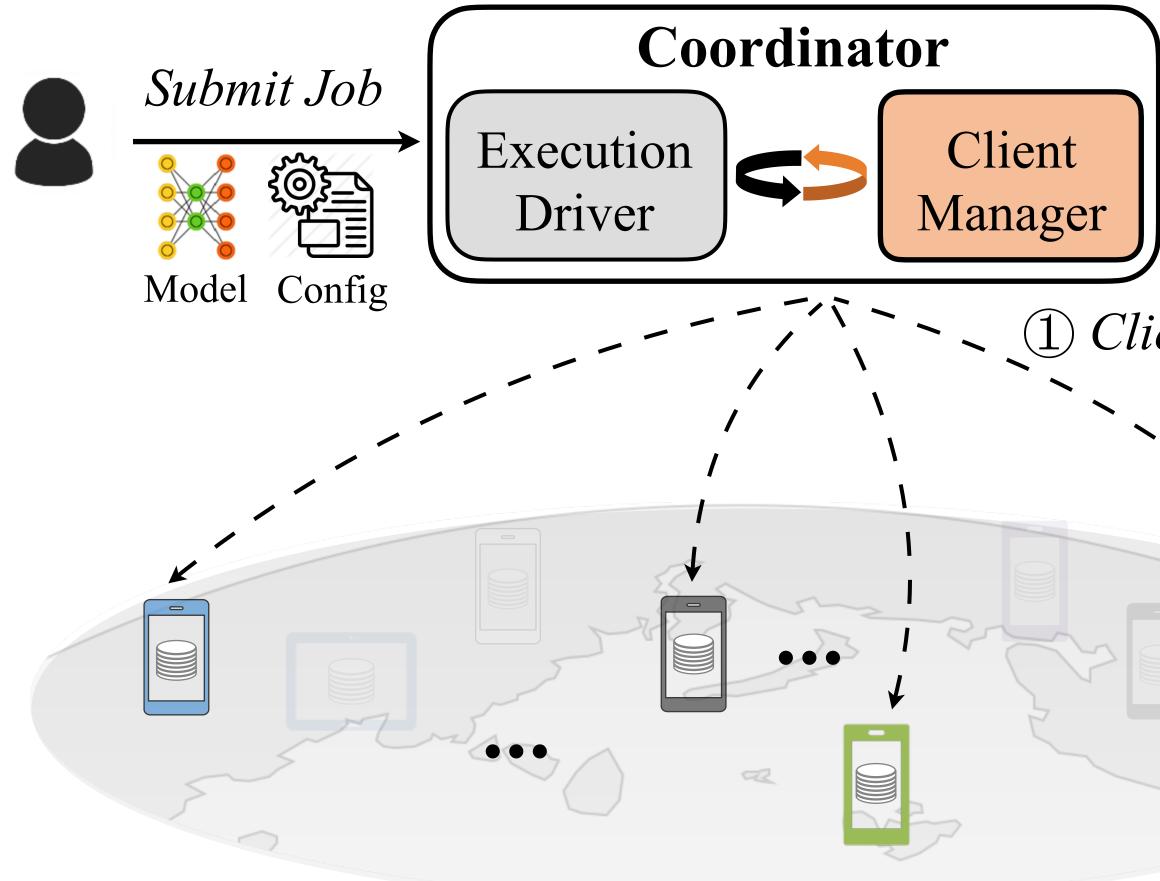


Primary Objective Better time to accuracy: Less time for target acc. under the same setting



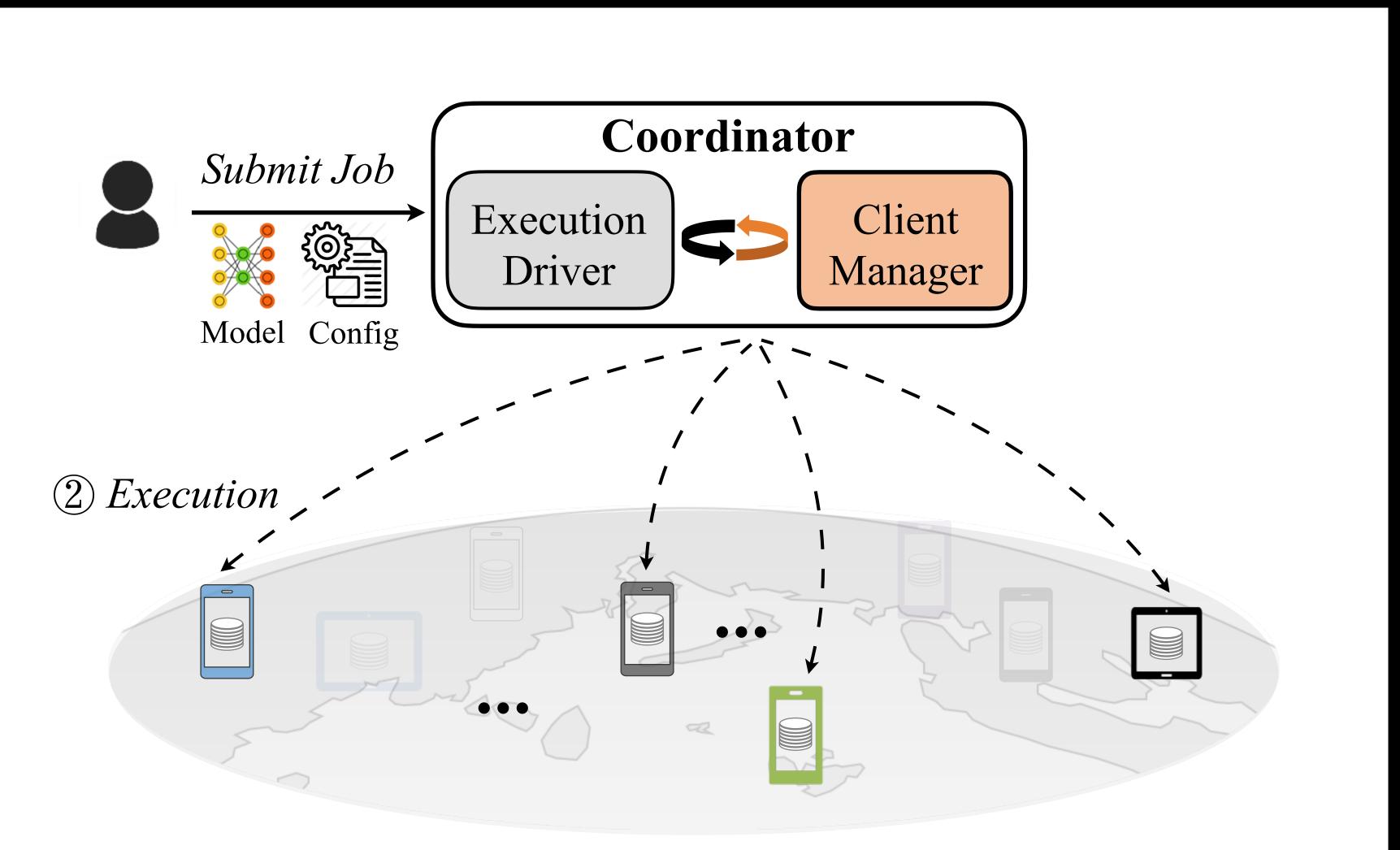
Client Pool

Primary Objective Better time to accuracy: Less time for target acc. under the same setting

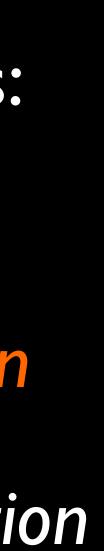


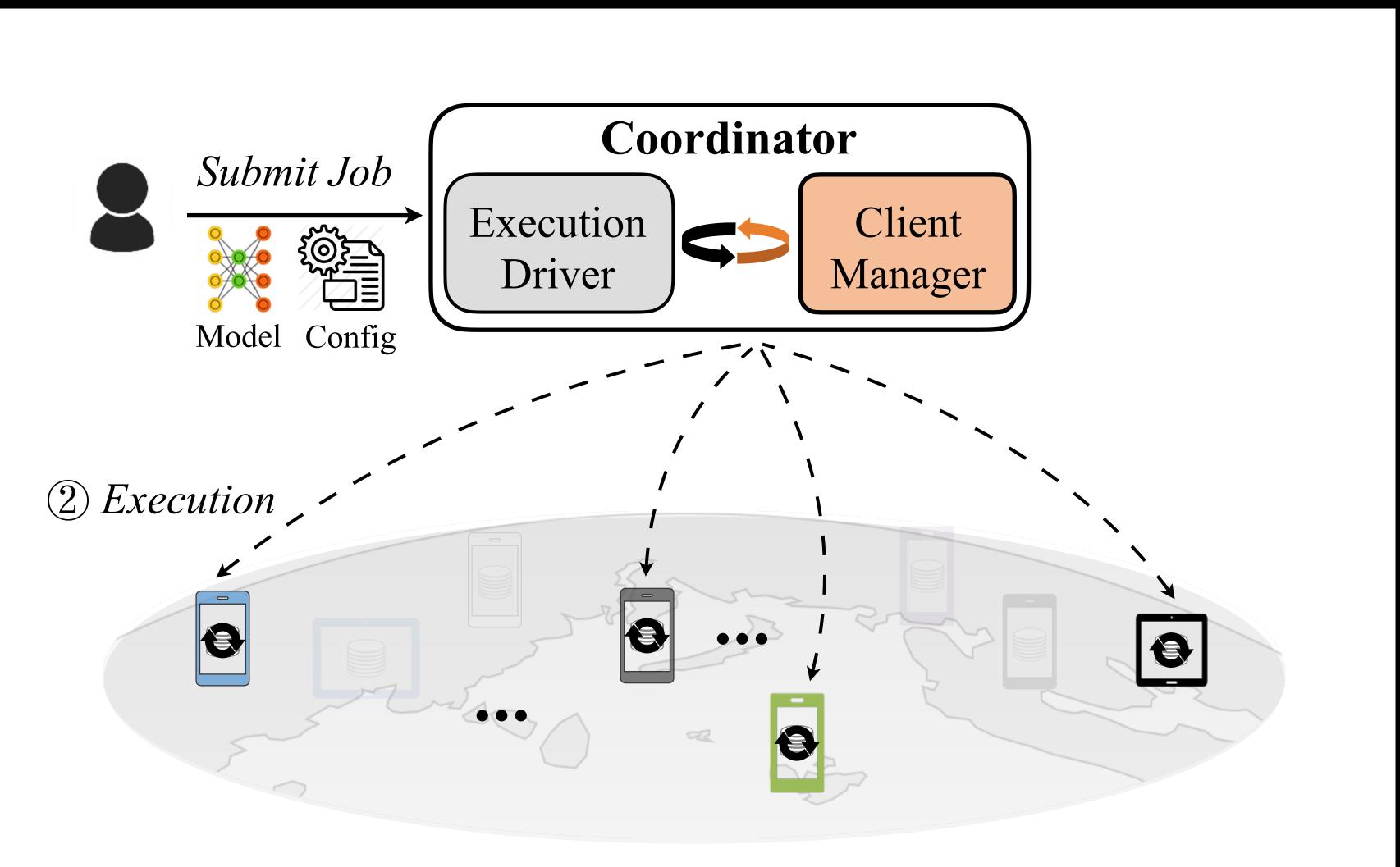
Client Pool

Client Selection

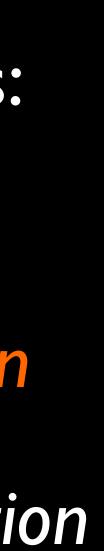


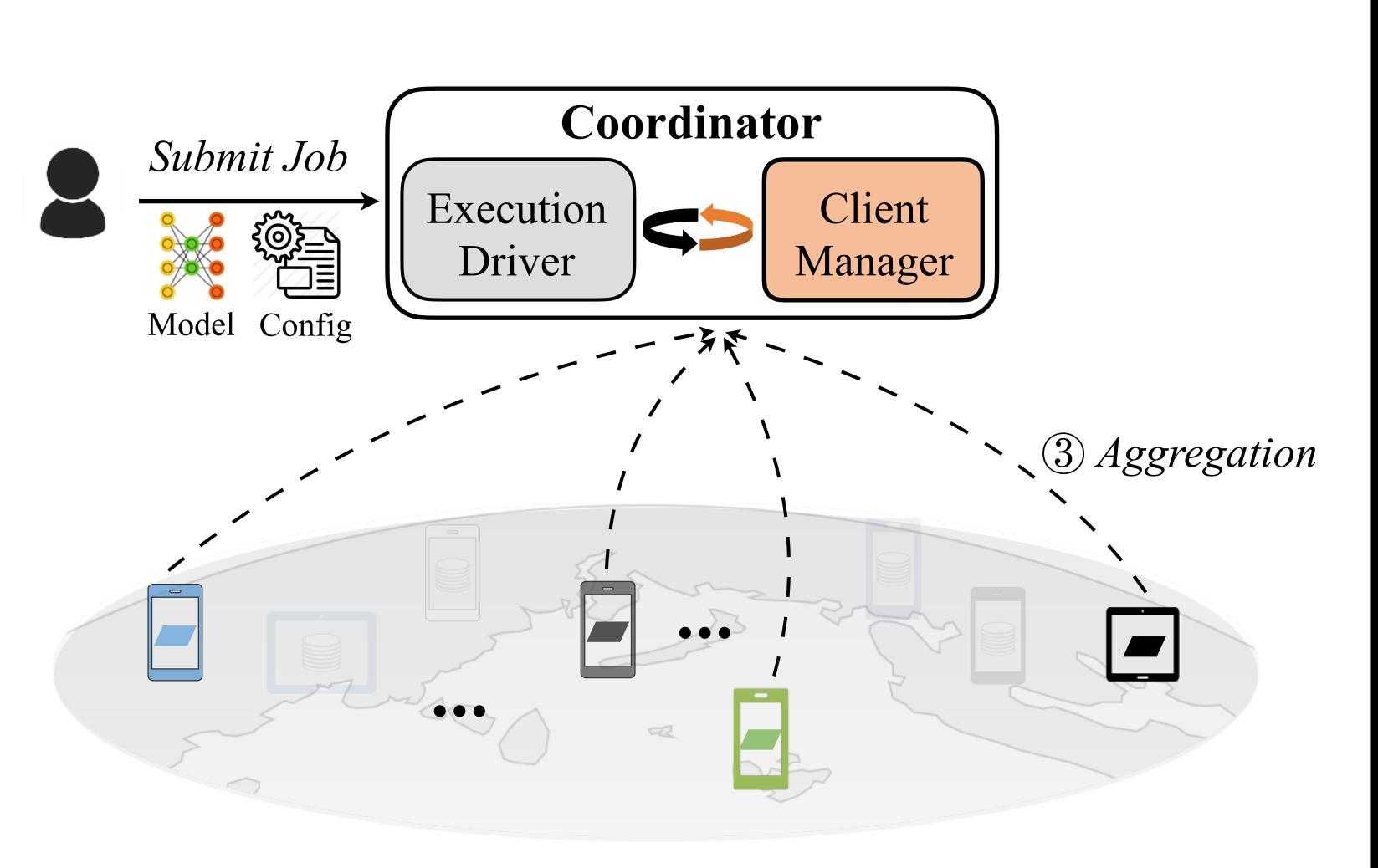
Client Pool



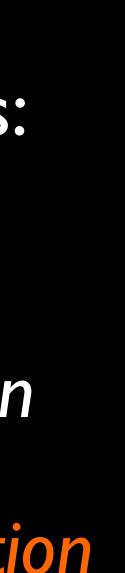


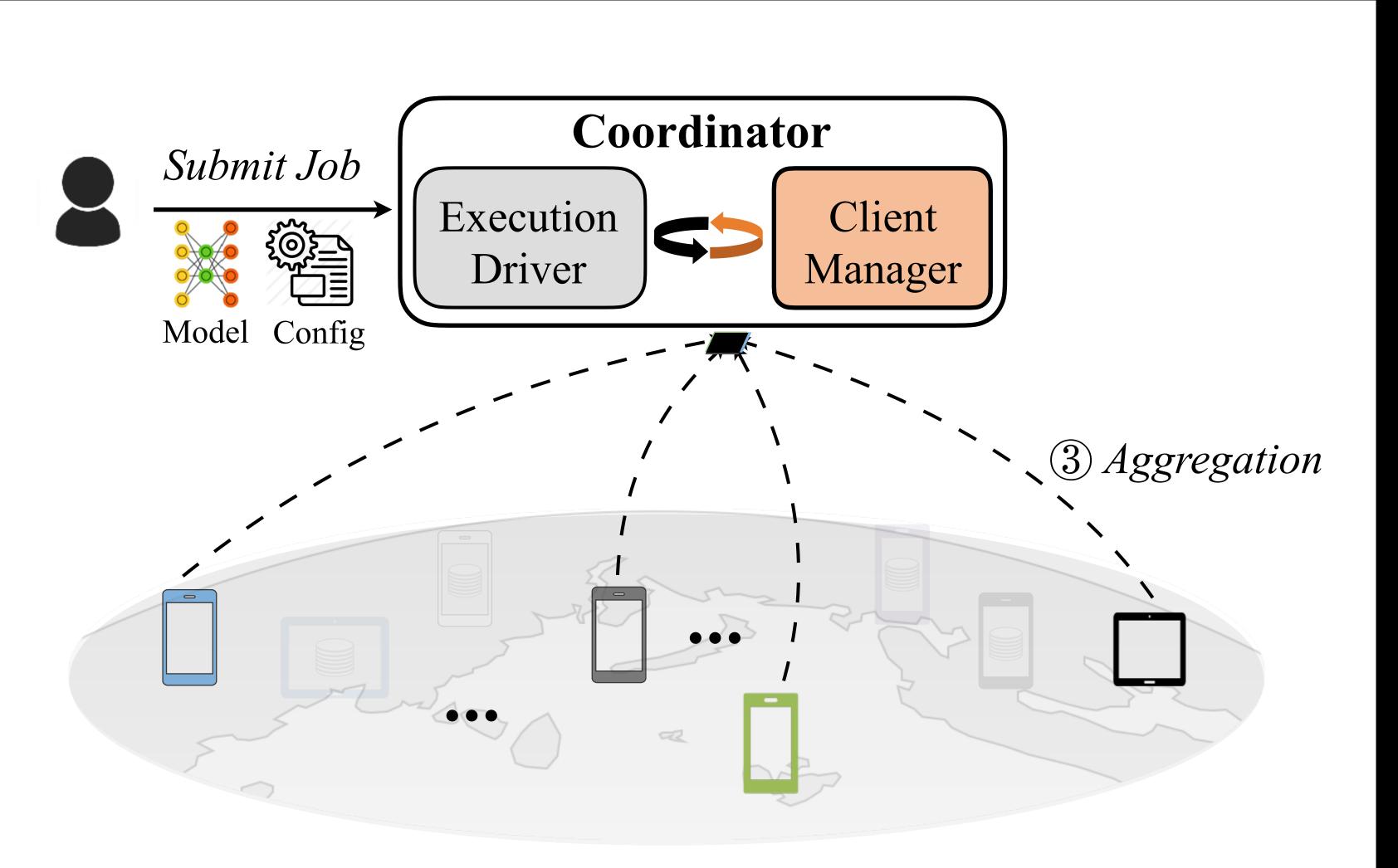
Client Pool



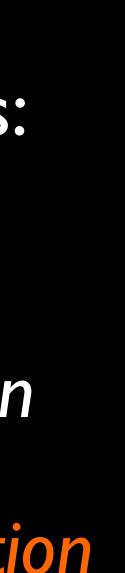


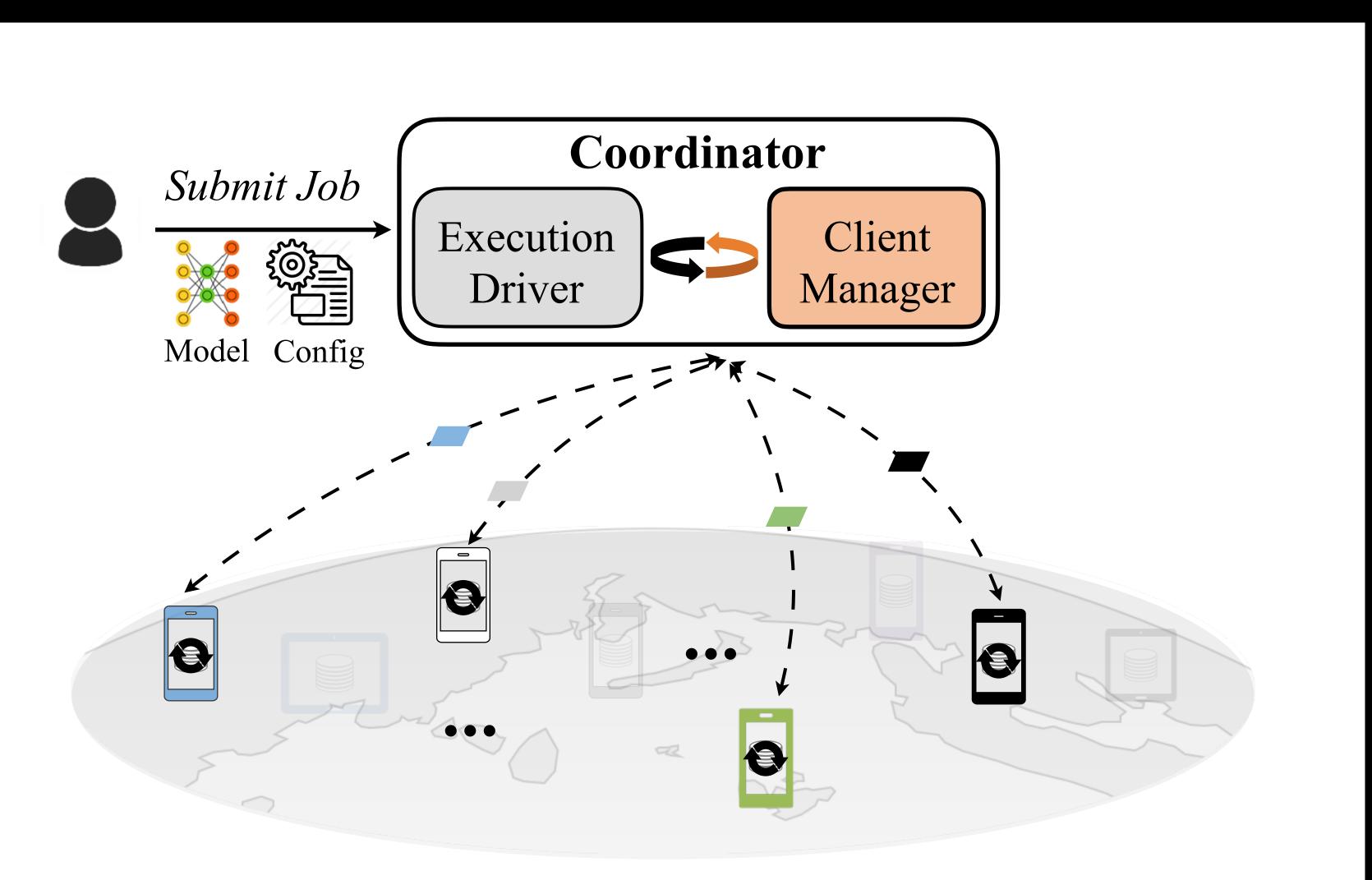
Client Pool





Client Pool





Client Pool

Primary Objective Better time to accuracy: - Less time for target acc. under the same setting

O(100) Rounds: Client selection In-situ Execution - Result aggregation

Round

	FL	In-cluster
System	Heterogeneous	Homogene

eous

Heterogeneous system speed

	FL	In-cluster
System	Heterogeneous	Homogene
Data	Heterogeneous	Homogene via shufflii
Scale	O(IM)	O(10)
Dynamics	Client can drop out/rejoin	Few
• • •	• • •	• • •

Μ		
---	--	--

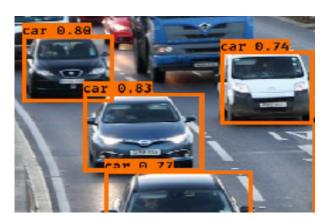
eous

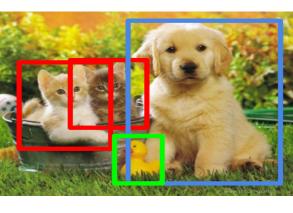
eous

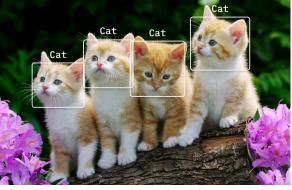
ing

Client A

Client B







Heterogeneous data distribution

	FL	In-cluster
System	Heterogeneous	Homogene
Data	Heterogeneous	Homogene via shufflii
Scale	O(IM)	O(10)
Dynamics	Client can drop out/rejoin	Few
• • •	• • •	• • •

ML

- eous
- eous

. . .

ng

- Existing work optimize for better
 - System efficiency
 - Reduce round duration
 - Statistical efficiency
 - Reduce # of rounds needed

	FL	In-cluster
System	Heterogeneous	Homogene
Data	Heterogeneous	Homogene via shufflii
Scale	O(IM)	O(10)
Dynamics	Client can drop out/rejoin	Few
• • •	• • •	• • •

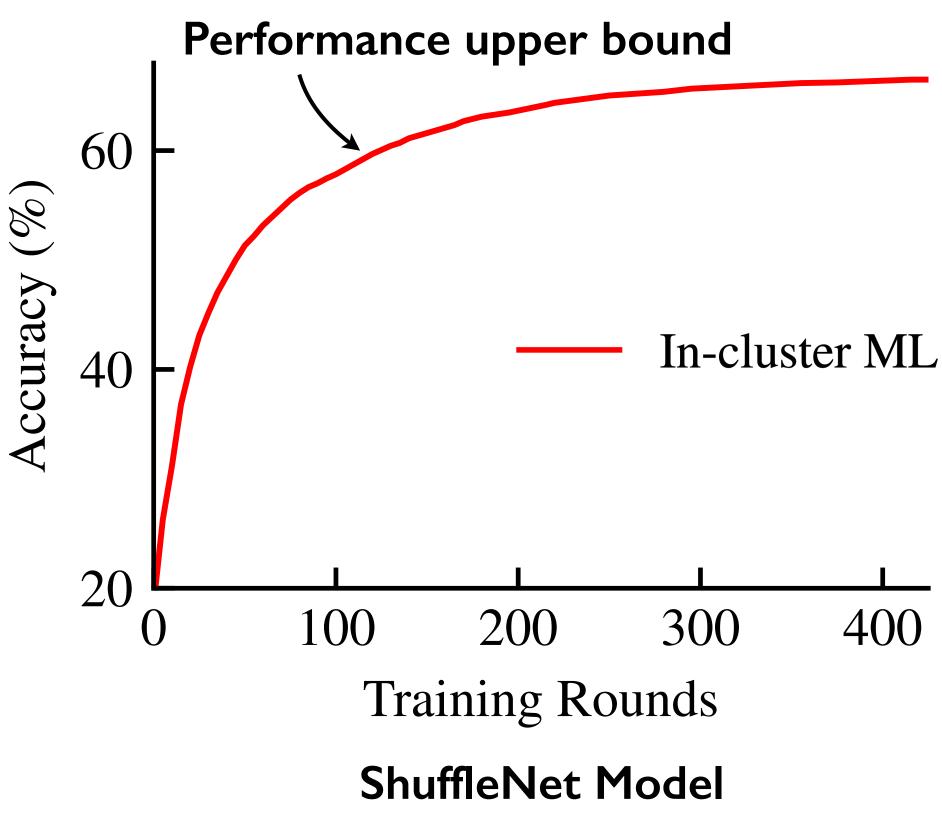
- ML
- eous
- eous ng

Existing federated learning relies on

random participant selection

Existing Client Selection: Suboptimal Efficiency

Image classification task on OpenImage dataset

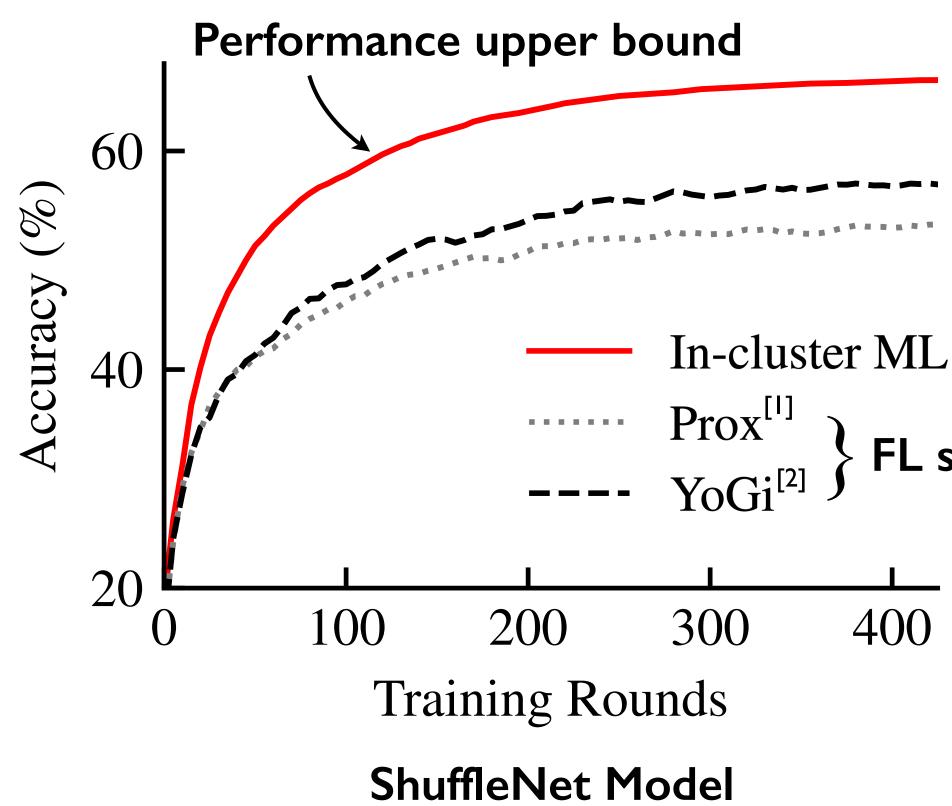


400

Problem #1 Overlook heter. client utility

Existing Client Selection: Suboptimal Efficiency

Image classification task on OpenImage dataset



[1] "Adaptive Federated Optimization", ICLR'21

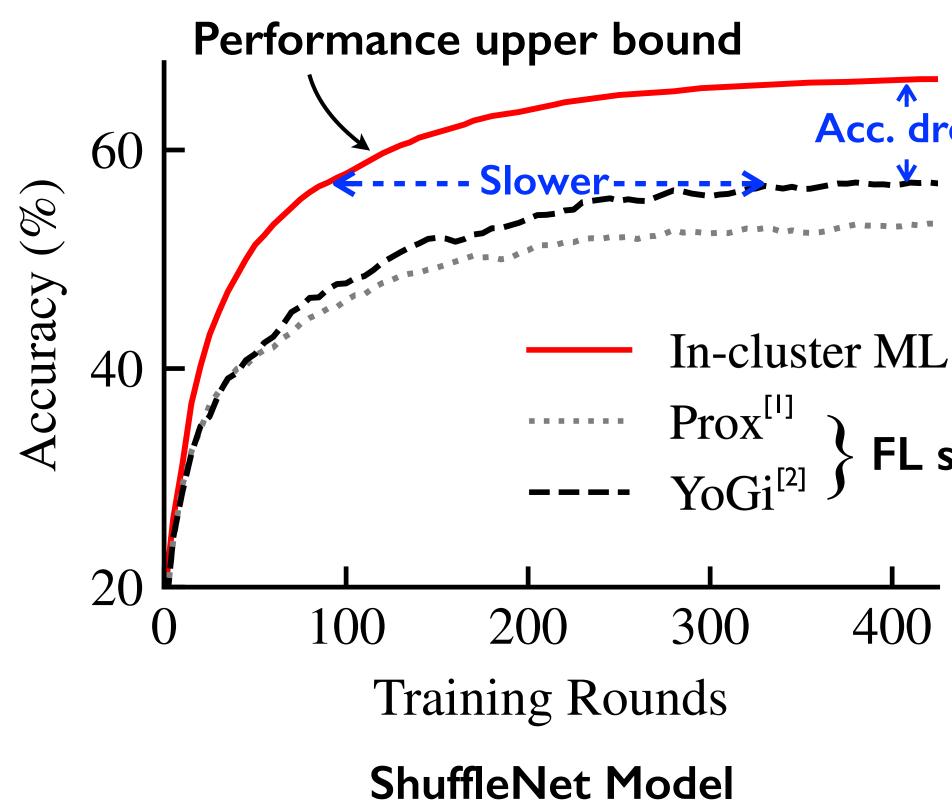
[2] "Federated Optimization in Heterogeneous Networks", MLSys'20

- **FL** settings
- 400

Problem #1 Overlook heter. client utility

Existing Client Selection: Suboptimal Efficiency

Image classification task on OpenImage dataset



[1] "Adaptive Federated Optimization", ICLR'21

[2] "Federated Optimization in Heterogeneous Networks", MLSys'20

Acc. drops

FL settings

400

Problem #1

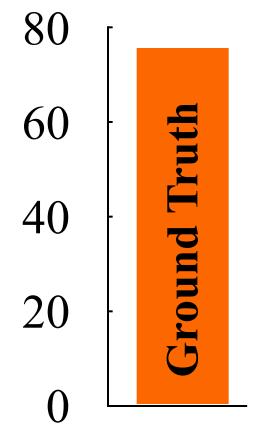
Overlook heter. client utility

Suboptimal training convergence

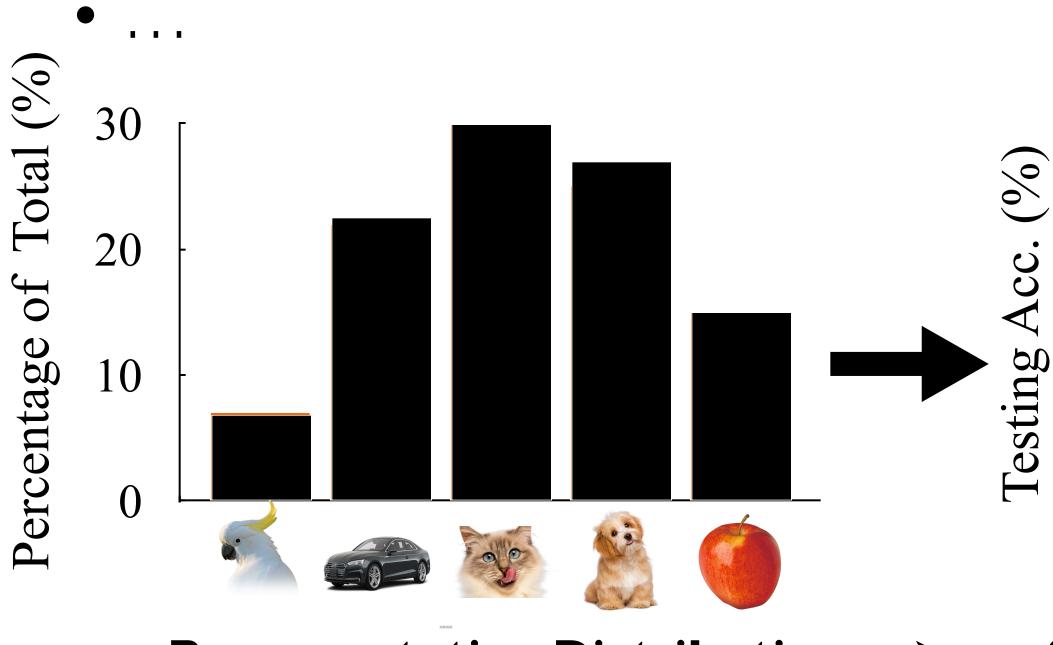
- Enforcing selection criteria is crucial in FL testing
 - "Give me 4k representative samples"
 - "Give me x samples of class y"



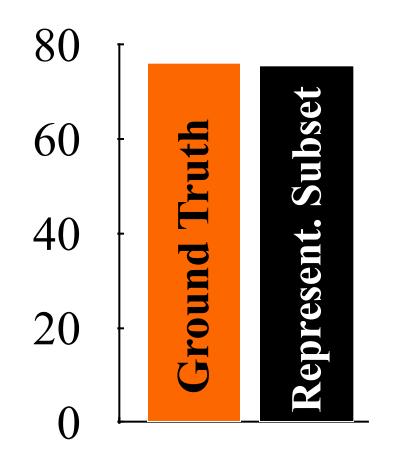
(Hypothetical) model testing on all clients \rightarrow ground truth



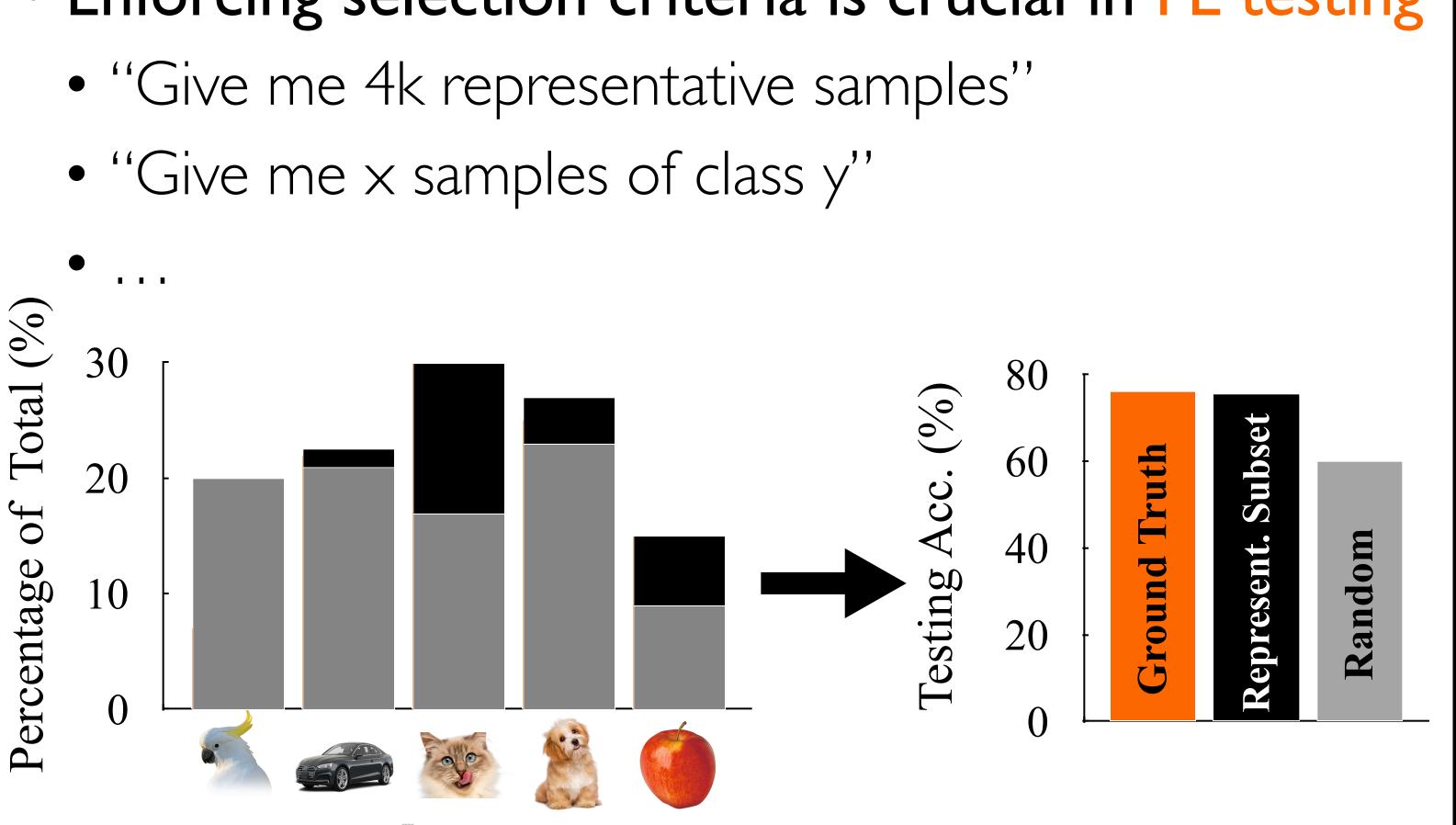
- Enforcing selection criteria is crucial in FL testing
 - "Give me 4k representative samples"
 - "Give me x samples of class y"



Representative Distribution \rightarrow **useful testing result**



- Enforcing selection criteria is crucial in FL testing

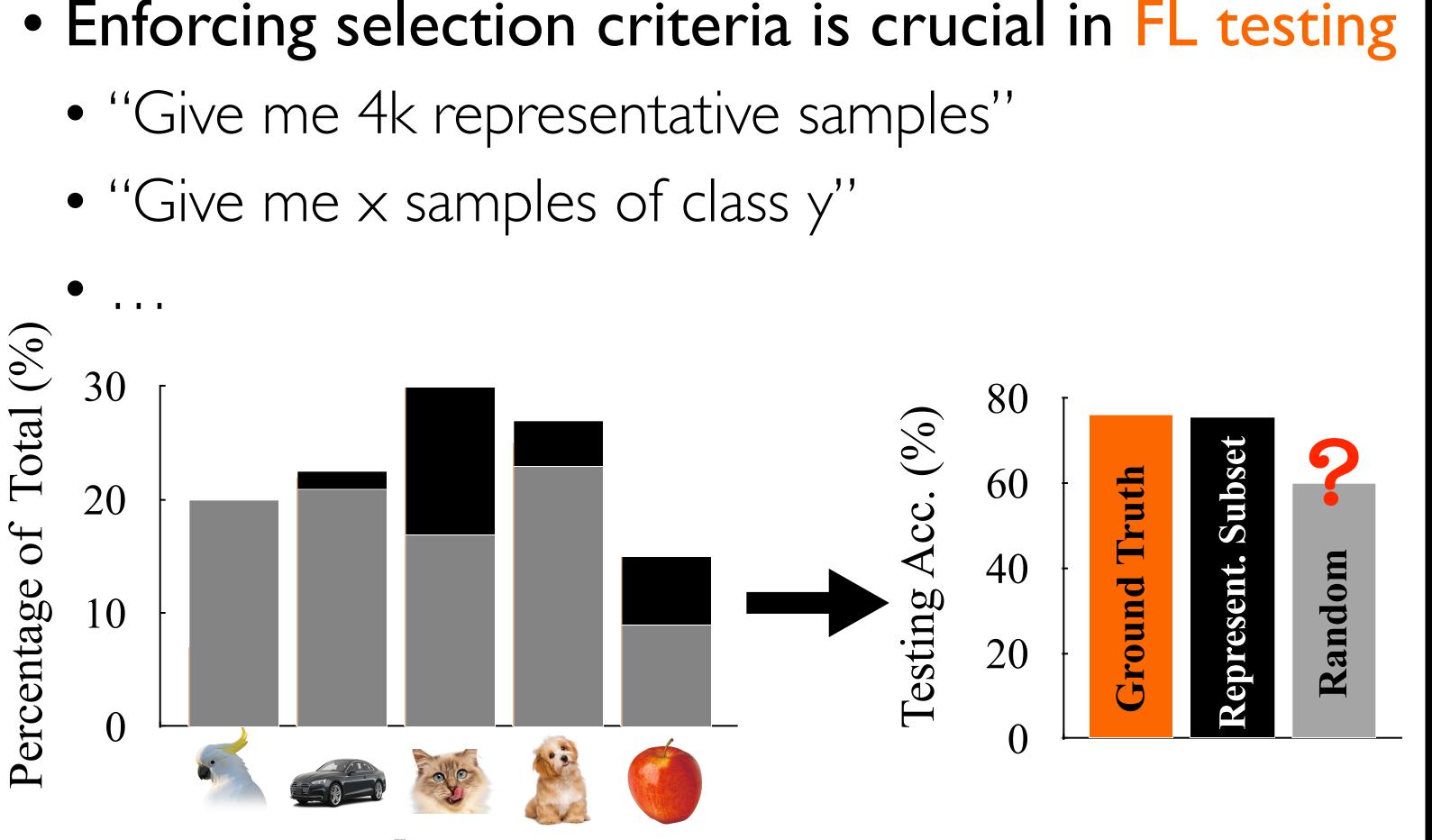


Random selection \longrightarrow arbitrary distribution \longrightarrow useless result

Problem #2

Overlook specified selection criteria

> Useless testing results



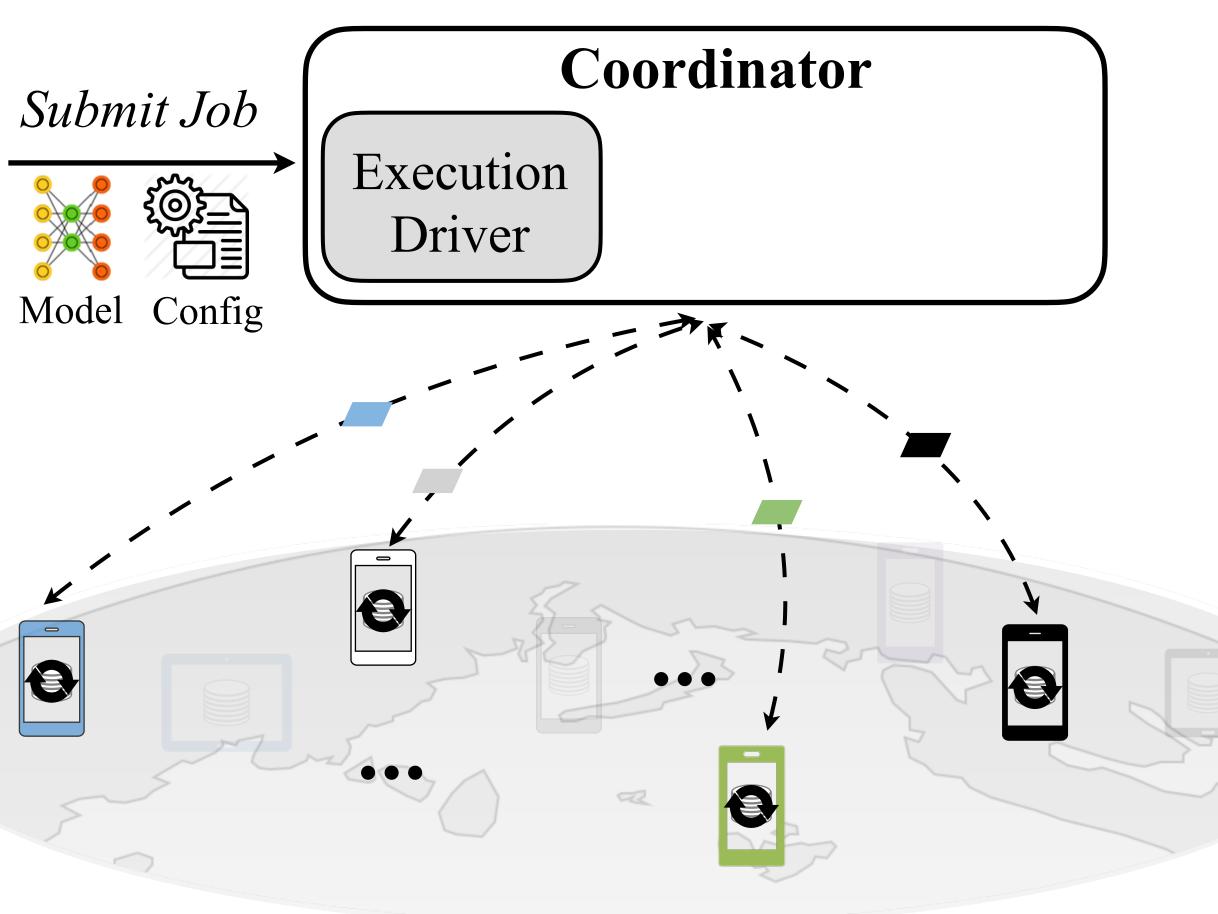
Random selection \longrightarrow arbitrary distribution \longrightarrow useless result

Problem #2

Overlook specified selection criteria

Useless testing results

Oort: Guided Participant Selection for FL

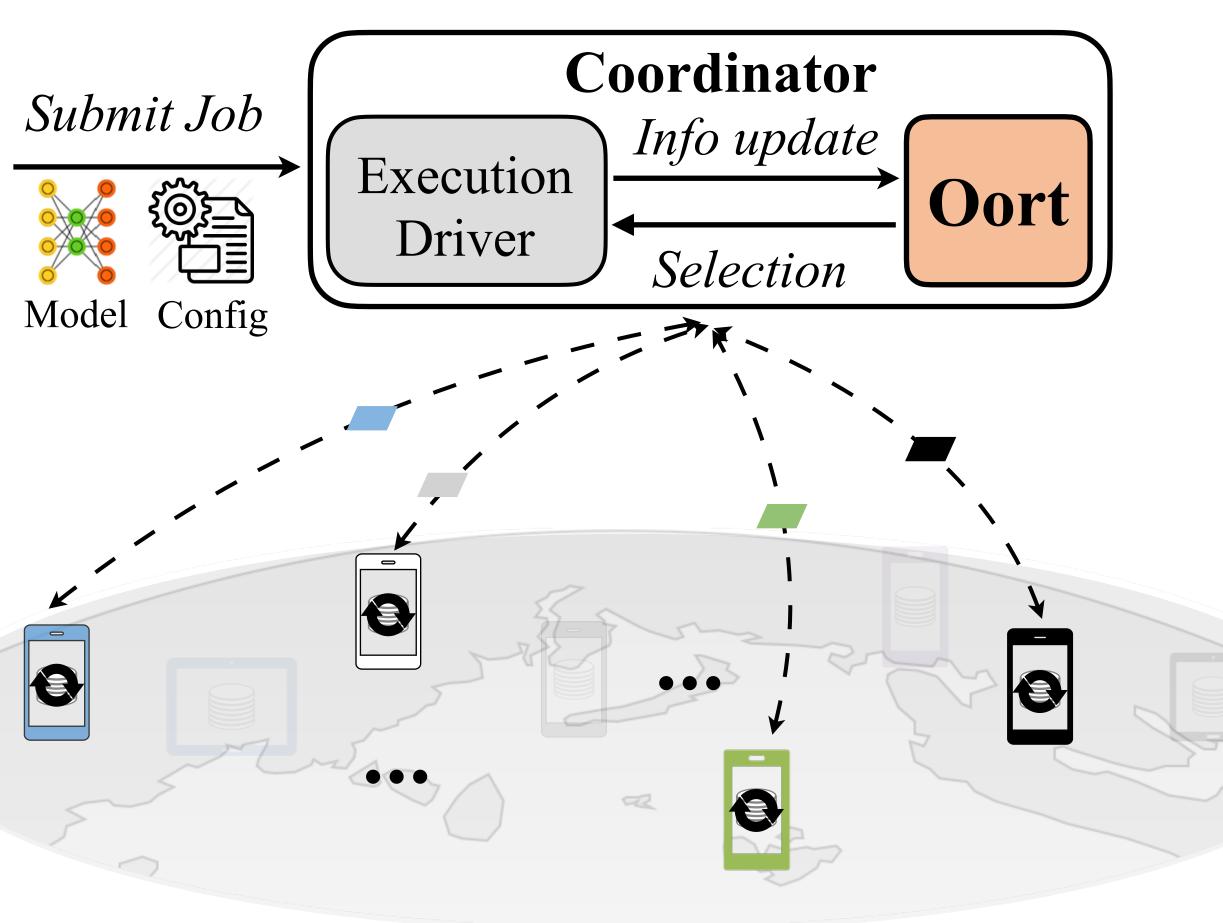


Client Pool

Oort: Guided Participant Selection for FL

Design Overview

- Enable faster FL training
 - Adaptively explore and exploit high-utility clients
- Support interpretable FL testing
 - Enforce developer-specified
 data selection criteria at scale

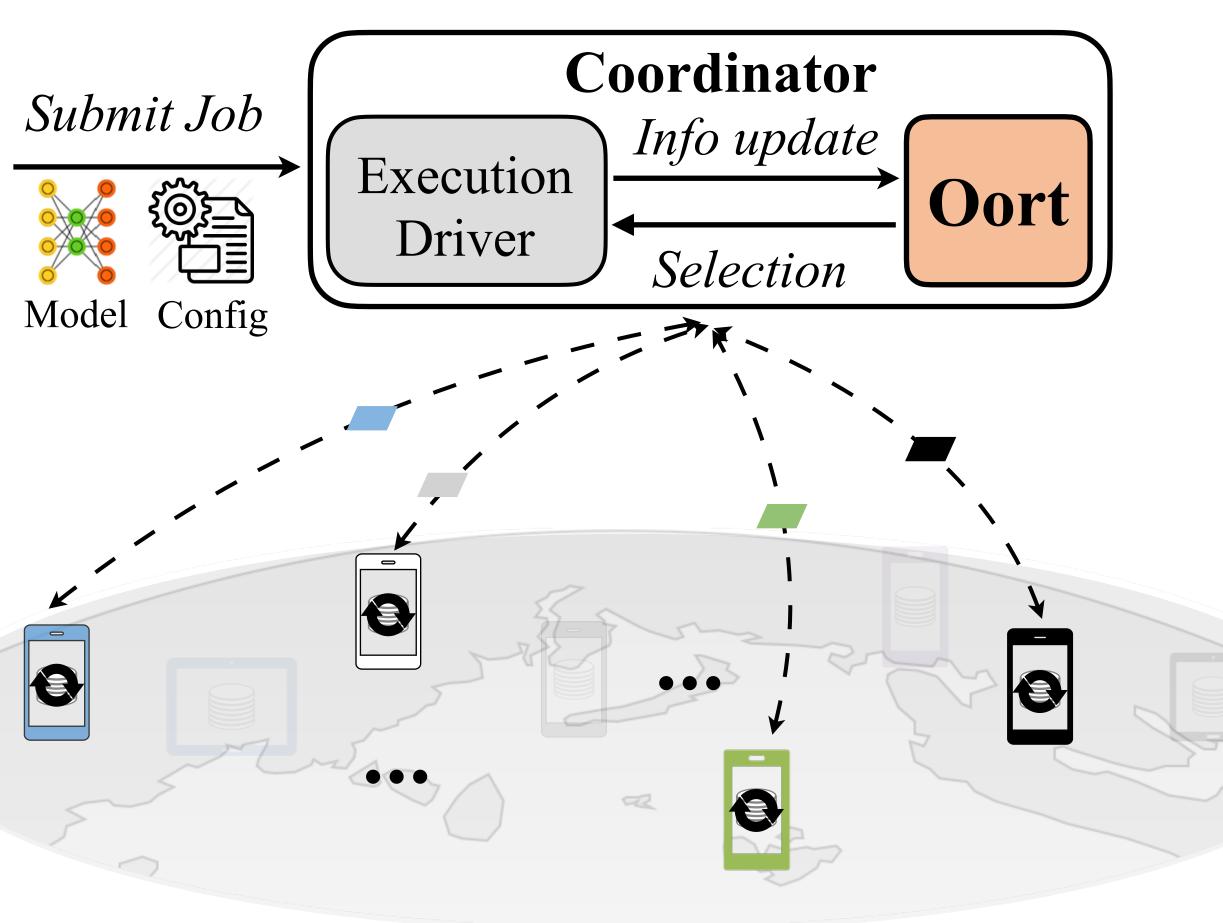


Client Pool

Oort: Guided Participant Selection for FL

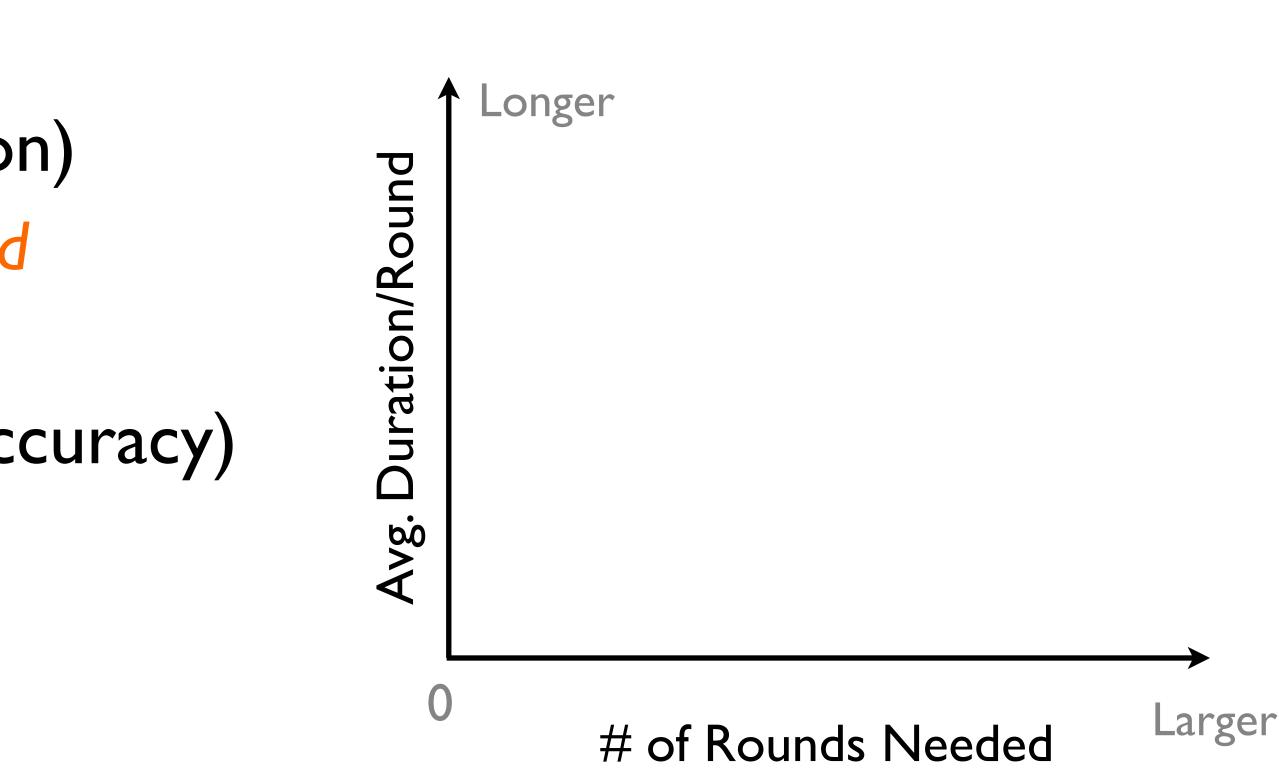
Design Overview

- Enable faster FL training
 - Adaptively explore and exploit high-utility clients
- Support interpretable FL testing
 - Enforce developer-specified
 data selection criteria at scale

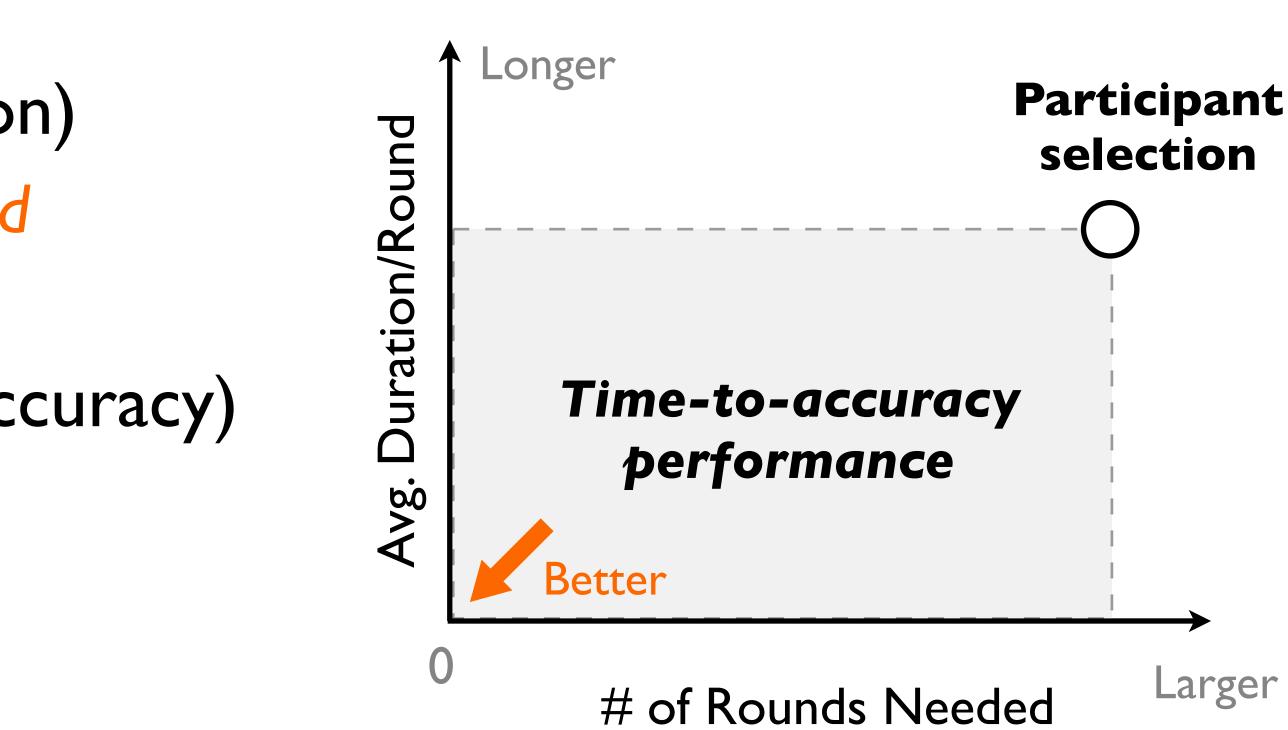


Client Pool

- System efficiency (round duration)
 - Determined by client system speed
- Statistical efficiency (round to accuracy)
 - Determined by client **data**



- System efficiency (round duration)
 - Determined by client system speed
- Statistical efficiency (round to accuracy)
 - Determined by client **data**

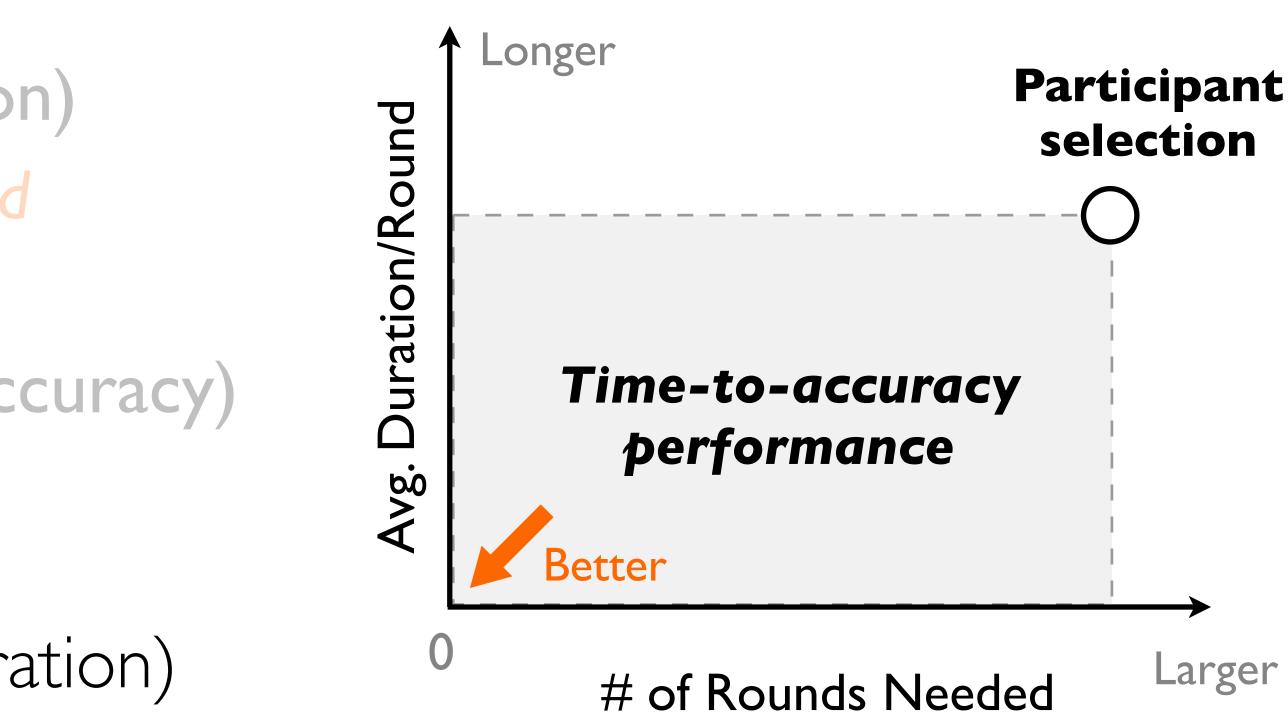


- System efficiency (round duration) • Determined by client system speed
- Statistical efficiency (round to accuracy) • Determined by client **data**

System utility (round duration) Client utility Statistical utility

Heterogeneity

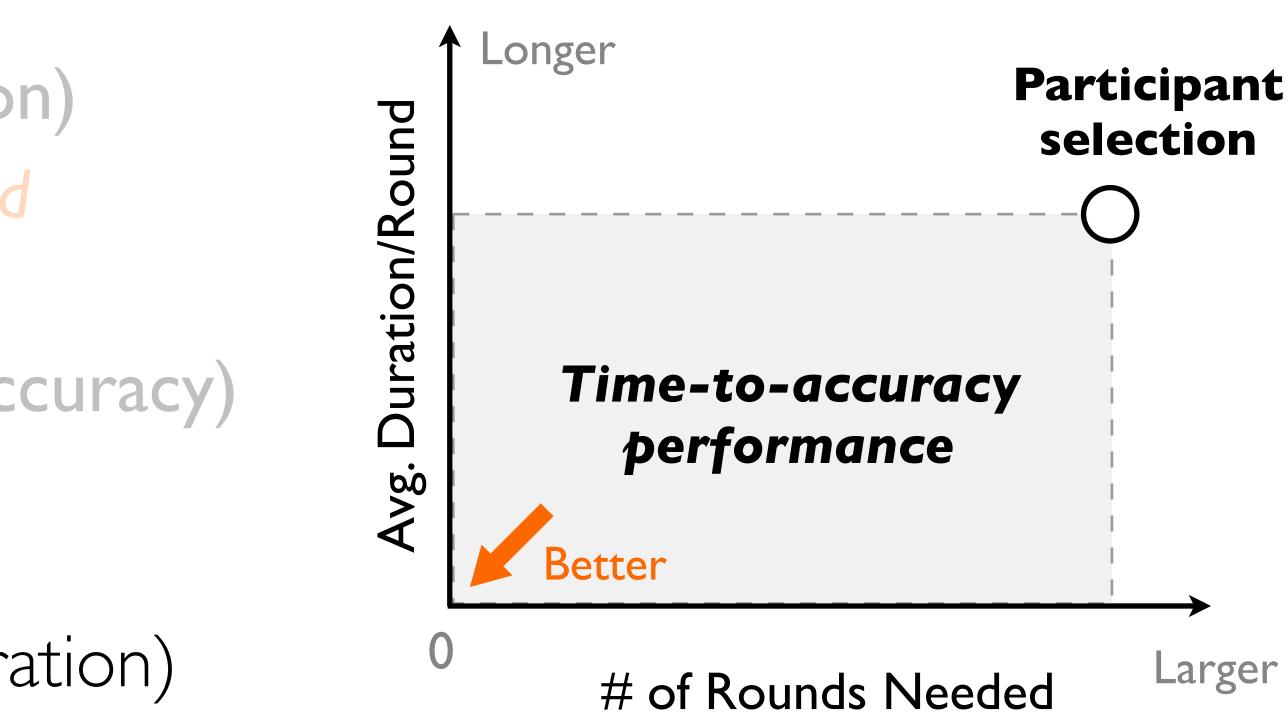
Scalability



- System efficiency (round duration) • Determined by client system speed
- Statistical efficiency (round to accuracy) • Determined by client **data**
- System utility (round duration) Client utility Statistical utility: how data helps round to accuracy?

Heterogeneity

Scalability



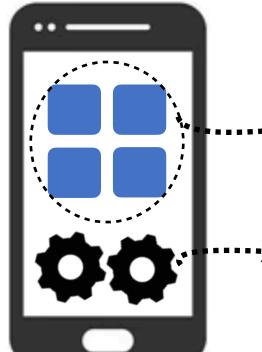
Dynamics

Robustness

Challenge I: Identify Heterogeneous Client Utility

- Statistical utility
 - Capture how the client data can help to improve the model

Scalability



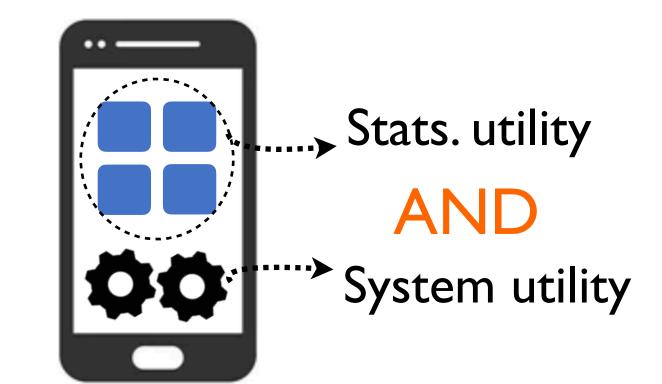
Stats. utility System utility

Robustness

Challenge I: Identify Heterogeneous Client Utility

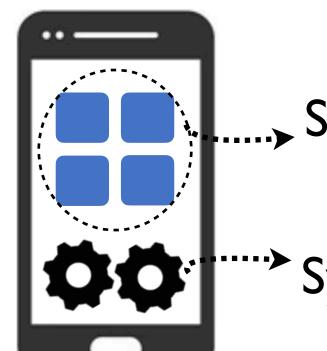
- Statistical utility

 - Capture how the client data can help to improve the model • Metric: aggregate training loss of client data
- Higher loss \longrightarrow higher stats utility (proof in paper)



Challenge I: Identify Heterogeneous Client Utility

- Statistical utility
 - Higher loss \longrightarrow higher stats utility (proof in paper)
 - Capture how the client data can help to improve the model • Metric: aggregate training loss of client data
- round_duration (i) • i.e., speed of accumulating stats utility in round i



Stats. utility System utility

Challenge 2: Select High-Utility Clients at Scale

- How to identify high-utility clients from millions of clients?

• **Spatiotemporal** variation: heterogeneous utility across clients over rounds

Challenge 2: Select High-Utility Clients at Scale

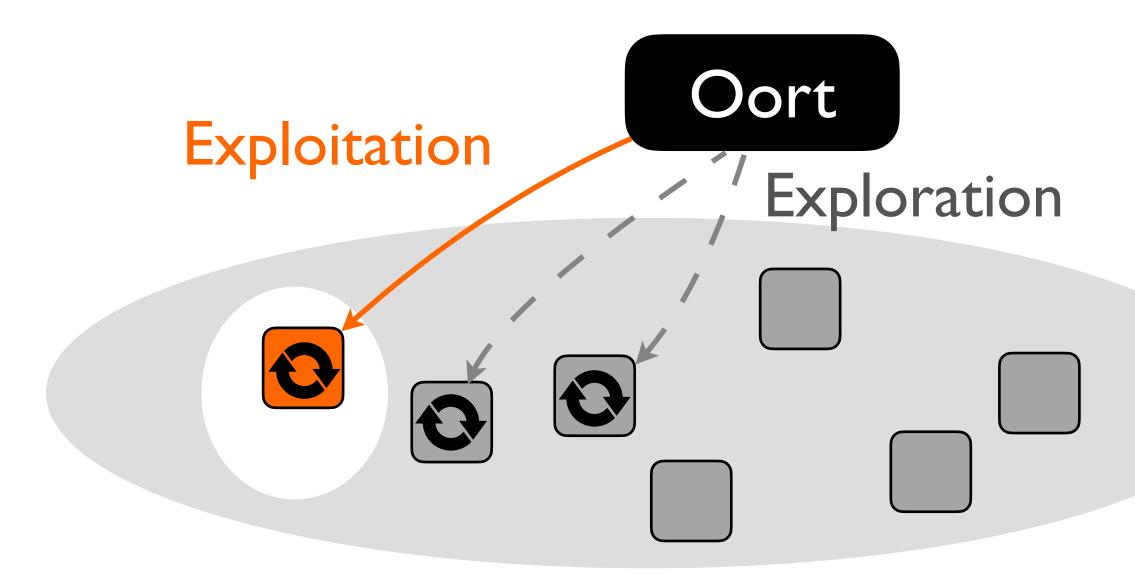
- How to identify high-utility clients from millions of clients?

- Exploration + Exploitation
 - Explore not-tried clients

Heterogeneity



• **Spatiotemporal** variation: heterogeneous utility across clients over rounds



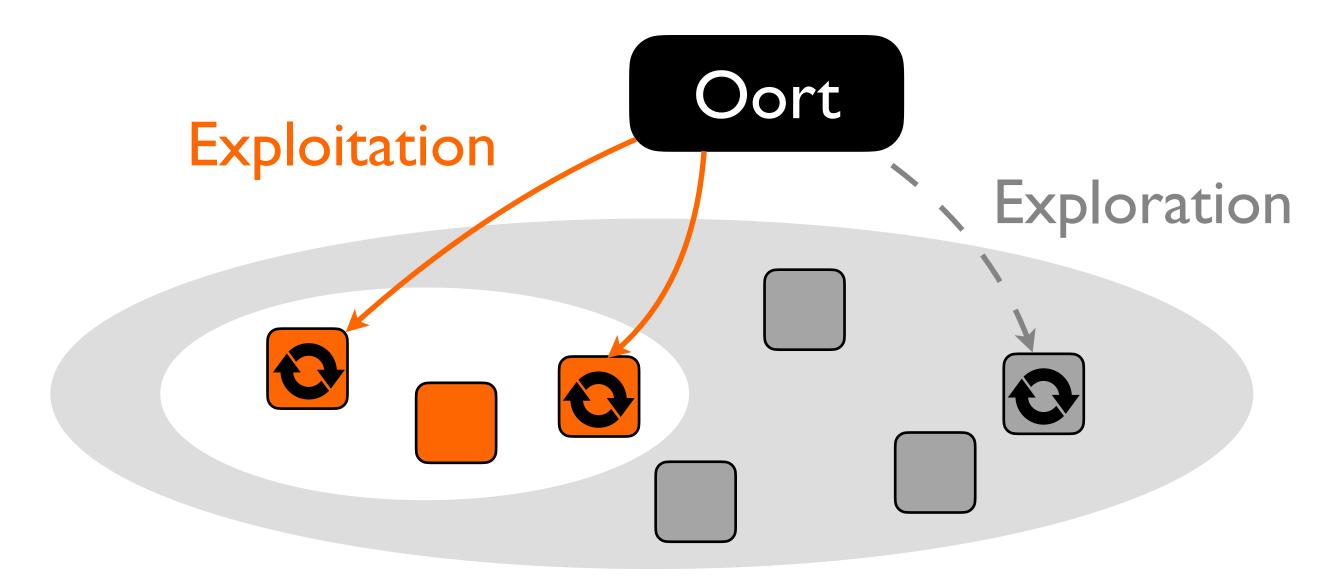
Client Pool

Challenge 2: Select High-Utility Clients at Scale

- How to identify high-utility clients from millions of clients?

- Exploration + Exploitation
 - Explore not-tried clients
 - Exploit known *high-utility* clients

• **Spatiotemporal** variation: heterogeneous utility across clients over rounds

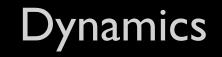


Client Pool

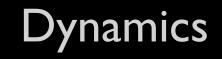
• How to account for stale utility since last participation?

• Utility changes due to dynamics

Heterogeneity



- How to account for stale utility since last participation?
 - Utility changes due to dynamics
- I. Aging: add uncertainty to utility
 - current_utility = last_observed_utility + observation_age

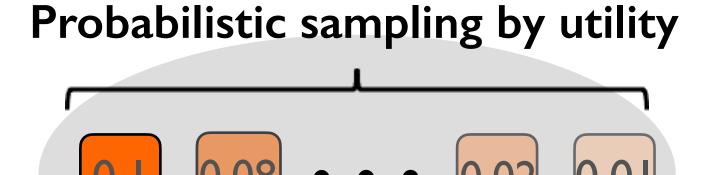


- How to account for stale utility since last participation?
 - Utility changes due to dynamics
- - current_utility = last_observed_utility + observation_age

I. Aging: add uncertainty to utility — Re-discover missed good clients

- How to account for stale utility since last participation?
 - Utility changes due to dynamics
- - current_utility = last_observed_utility + observation_age
- 2. Probabilistic selection by utility values
 - Prioritize high-utility clients
 - Robust to outliers and uncertainties

I. Aging: add uncertainty to utility — Re-discover missed good clients



Exploited Clients

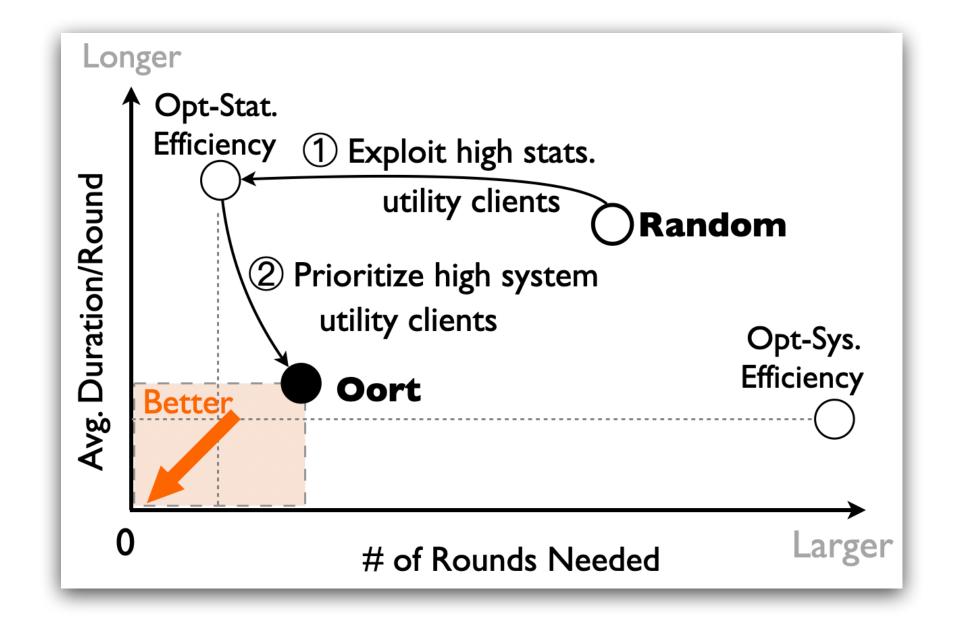
Robustness

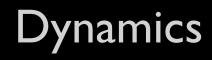
More in Our Paper

- How to respect privacy
- How to be robust to corrupted clients
- How to enforce diverse selection criteria
 - Fairness, data distribution for FL testing

Heterogeneity

Scalability

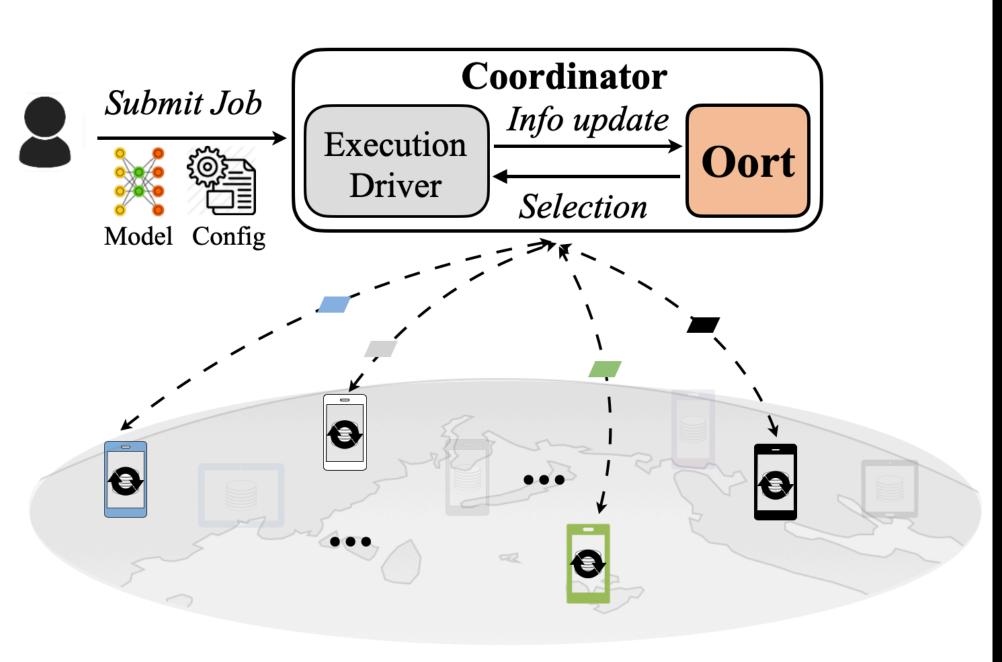




Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, Mosharaf Chowdhury University of Michigan

Evaluation

Oort as a lib to support TensorFlow Federated / PySyft



of Federated Learning

ARTIFACT EVALUATED	ARTIFACT EVALUATED	ARTIFACT EVALUATED
ASSOCIATION		SSOCIATION
AVAILABLE	FUNCTIONAL	REPRODUCED

Oort: Efficient Federated Learning via Guided Participant Selection

Client Pool

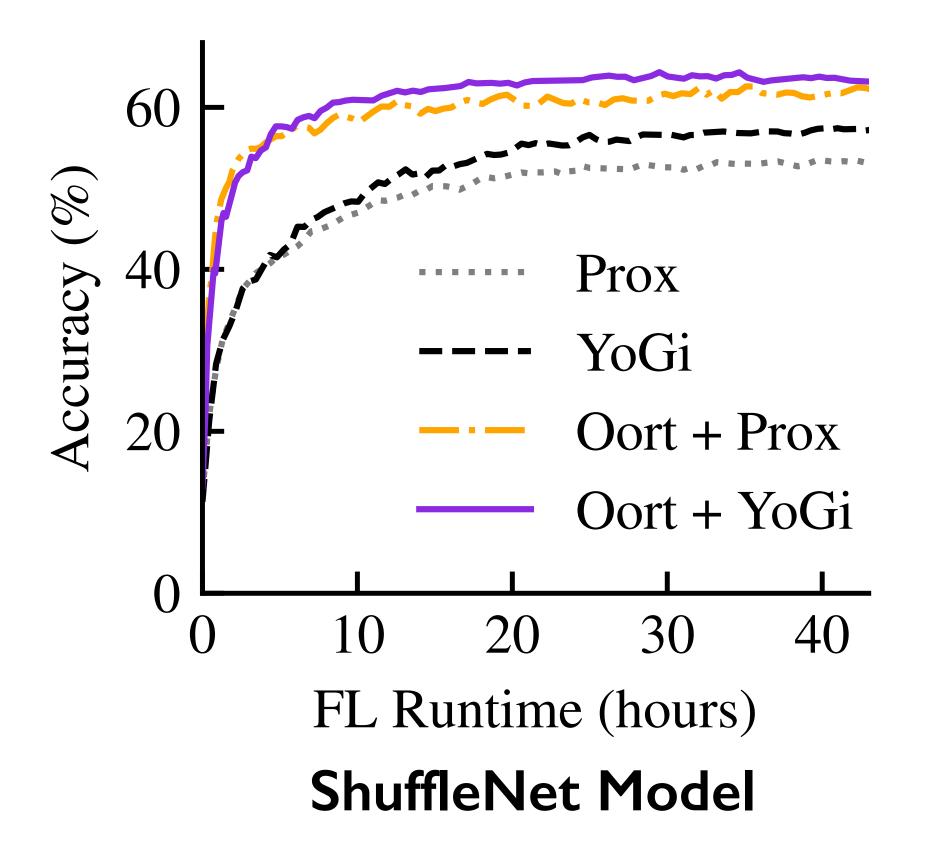
[1] <u>FedScale</u>: Benchmarking Model and System Performance

Experiment setting

- Testbed w/ 68 GPUs
- Realistic FL Benchmark^[1]
 - Heter. speed/data
 - Dynamics of devices
- 300 participants/round

Time-to-Accuracy (TTA) Performance

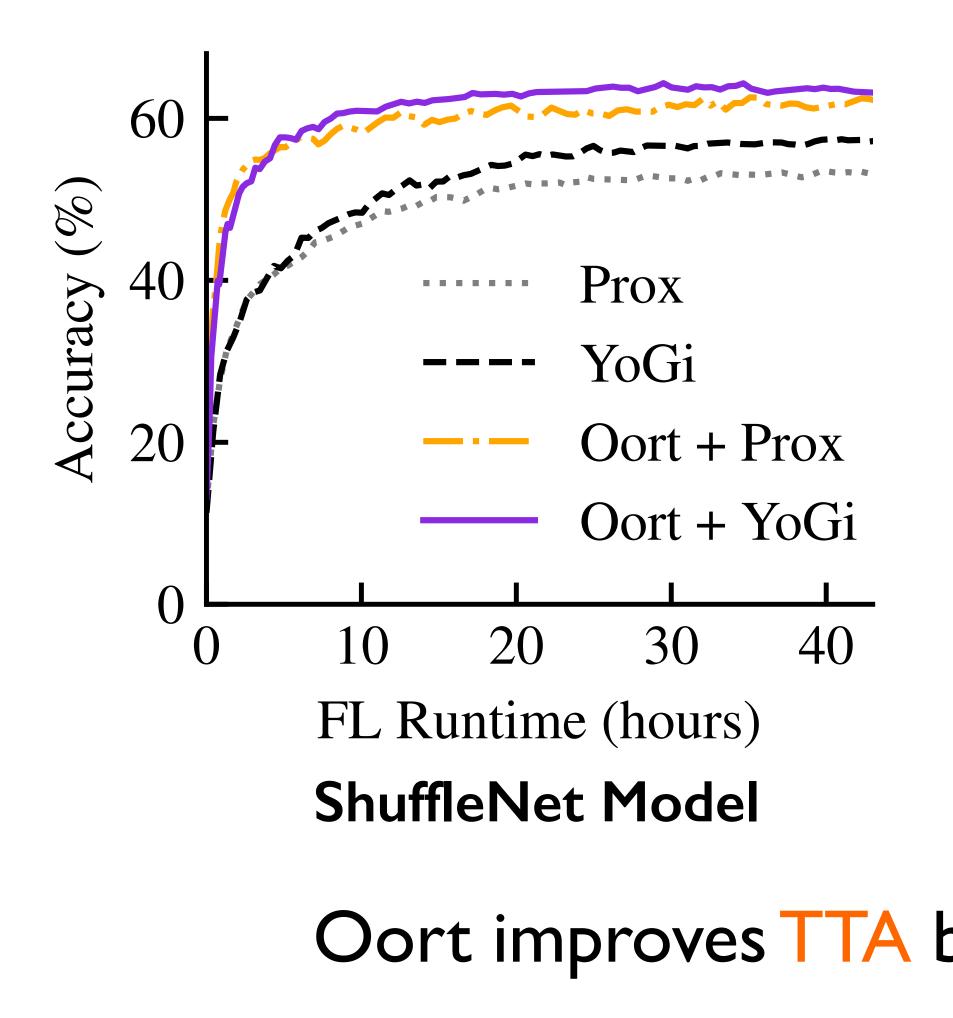
Image classification (OpenImage dataset)



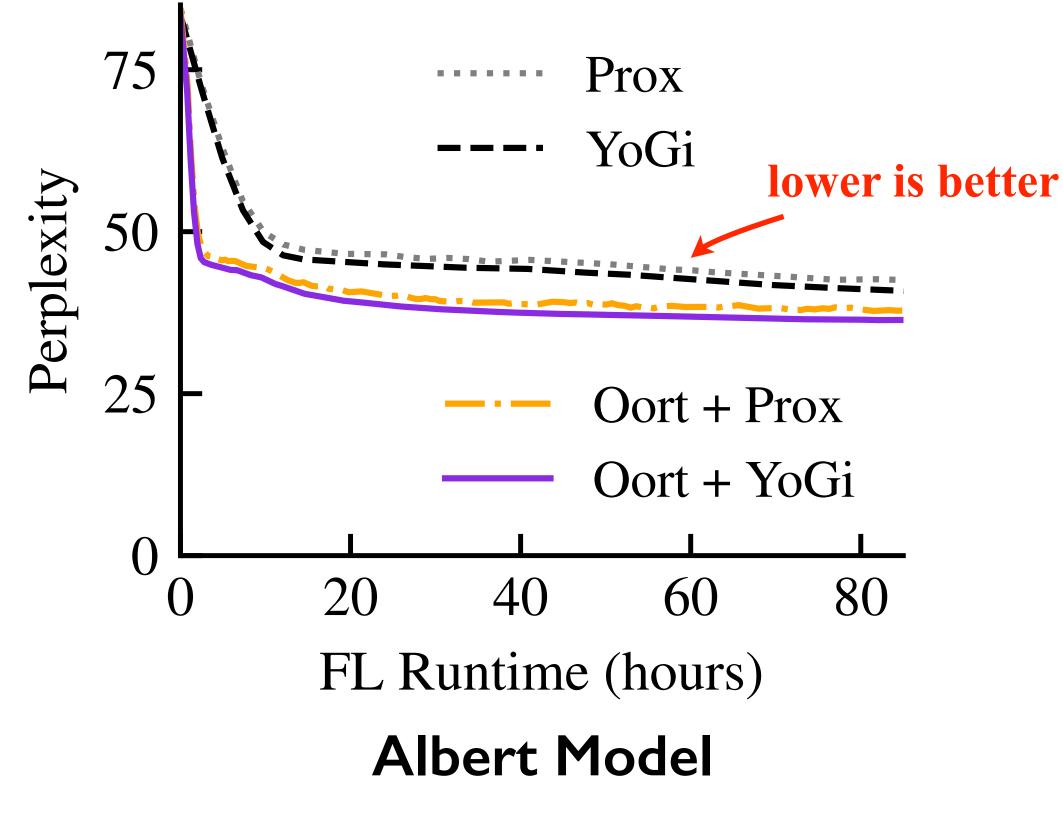
24

lime-to-Accuracy (TTA) Performance

Image classification (OpenImage dataset)



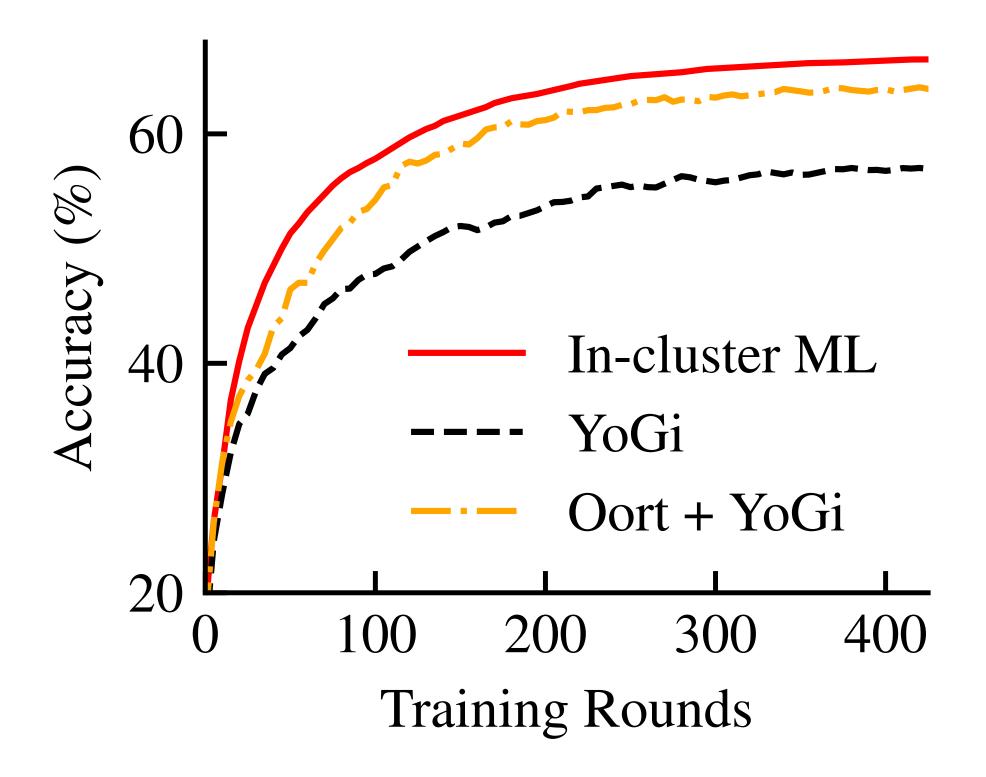
Next-word prediction (Reddit Corpus)



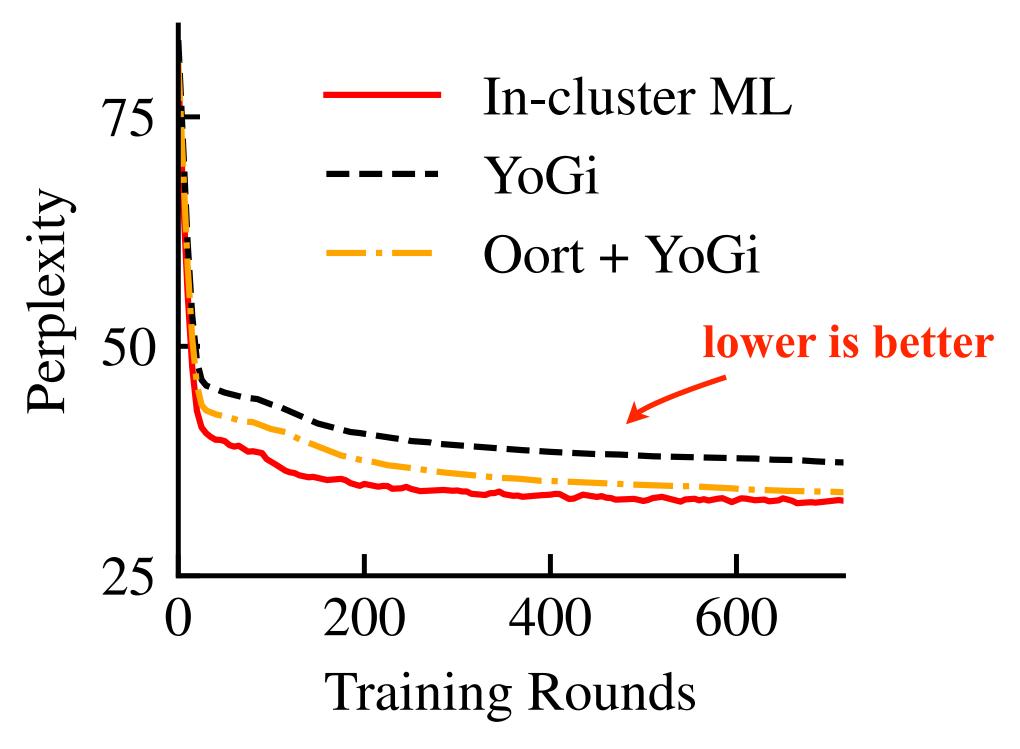
Oort improves TTA by I4X and final accuracy by 9%

Zoom into Statistical Performance

Image classification (ShuffleNet Model)



Oort achieves close to upper-bound statistical performance



https://github.com/SymbioticLab/Oort

Thank you!

Participant selection framework for

- Faster convergence in FL training
- Interpretable data selection in FL testing

