
MAGE: Nearly Zero-Cost Virtual 
Memory for Secure Computation

Sam Kumar, David E. Culler, Raluca Ada Popa

University of California, Berkeley

1



Secure Computation (SC)

Secure Multi-Party Computation (SMPC) [Yao86, GMW87]

Alice Bob

𝑥 𝑦

Cryptographic
Protocol

𝑥𝑦 𝑓 𝑥, 𝑦

2



Application: Password Reuse Detection [WR19, PKY+21]

Alice: Password A
Sam: Password B
Bob: Password C

…

Users Who Reused Passwords
• Sam
• …

David: Password D
Sam: Password B
Alice: Password E

…

Cryptographic
Protocol

Company #1 Company #2

3



Potential SC Applications

Bank #1 Bank #2

Hospital #1 Hospital #2

Cryptographic
Protocol

Cryptographic
Protocol

Suspicious Transactions

Patient Health Patterns

Company #1 Company #2

Cryptographic
Protocol

Users Who Reused Passwords

SC has high memory 
overhead for these 

applications

4

Our system, MAGE, 
addresses the SC 

memory bottleneck



Memory Overhead of Secure Computation

• SC requires computation on encrypted data (ciphertexts)

• Ciphertexts can be much larger than plaintexts
• 128× expansion factor for garbled circuits (type of SMPC)

Data

Encrypted Data
5

Memory Size



Memory Can Be a Bottleneck for SC

• “[SMPC] in practice only scales to a few thousand input records” [VSG+19]

• Existing framework cannot even join 30,000 records due to memory size

• 16-party set intersection (equi-join) scales to 10,000 integers [PKY+21]

• “We observed a stark increase in runtime … due to the exhaustion of available 
memory”

6



What Makes OS Virtual Memory Slow?

Based on heuristics
(doesn’t always work well)

Reactive procedure
(reacts to page faults)

7



Our system, MAGE, runs SC at nearly 
the same speed as if the machine 
had unbounded physical memory.

8



Key Observation: SC Programs are Oblivious
Normal Program (Unsuitable for SC)
uint a = input(“alice”);

uint b = input(“bob”);

uint c;

if (a < b) {

c = a;

} else {

c = b;

}

Oblivious Program (Suitable for SC)
uint a = input(“alice”);

uint b = input(“bob”);

uint less = a < b;

uint cond = 0 – less;

uint c = ((a ^ b) & cond) ^ b;

• This property is inherent to SC’s privacy guarantees.
• Given an SC program, we can pre-compute its memory 

access pattern to pre-plan memory management.
9



SC Example: Password Reuse Detection

Alice: Password A
Sam: Password B
Bob: Password C

…

Users Who Reused Passwords
• Sam
• …

David: Password D
Sam: Password B
Alice: Password E

…

Cryptographic
Protocol

Company #1 Company #2

10



SC Example: Password Reuse Detection

Alice: Password A
Sam: Password B
Bob: Password C

…

David: Password D
Sam: Password B
Alice: Password E

…

Company #1 Company #2

11



SC Example: Password Reuse Detection

Alice: Password A
Bob: Password C
Sam: Password B

…

Alice: Password E
David: Password D
Sam: Password B

…

Company #1 Company #2

12

(Sort locally by username) (Sort locally by username)



SC Example: Password Reuse Detection

Alice: A
Bob: C
Sam: B

…

Alice: E
David: D
Sam: B

…
Company #1 Company #2

13

Secret Key

Alice: A
Bob: C
Sam: B

…

Alice: E
David: D
Sam: B

…

Computation Computation

Users Who 
Reused Passwords
• Sam
• …

Garbled Gates



SC Example: Password Reuse Detection

Company #1 Company #2

14

Secret Key

Users Who 
Reused Passwords
• Sam
• …

Garbled Gates

Alice: A
Bob: C
Sam: B

…

Alice: E
David: D
Sam: B

…

Alice: A
Bob: C
Sam: B

…

Alice: E
David: D
Sam: B

…

Computation Computation

Sort-Merge Join

Alice: A
Bob: C
Sam: B

…

Alice: E
David: D
Sam: B

…

Not Oblivious



SC Example: Password Reuse Detection

Company #1 Company #2

15

Secret Key

Users Who 
Reused Passwords
• Sam
• …

Garbled Gates

Alice: A
Bob: C
Sam: B

…

Alice: E
David: D
Sam: B

…

Alice: A
Bob: C
Sam: B

…

Alice: E
David: D
Sam: B

…

Computation Computation

Sort-Merge Join
Bitonic Sort + Linear Scan

Alice: A
Bob: C
Sam: B

…
Sam: B

David: D
Alice: E

…

MAGE can predict the access pattern in advance.



SC Example: Password Reuse Detection

Company #1 Company #2

16

Secret Key

Users Who 
Reused Passwords
• Sam
• …

Garbled Gates

Alice: A
Bob: C
Sam: B

…

Alice: E
David: D
Sam: B

…

Alice: A
Bob: C
Sam: B

…

Alice: E
David: D
Sam: B

…

Computation Computation



MAGE’s Workflow
Program

…
while (…) {
a[i] = b[i] + c[i]

}
…

MAGE’s Planner
(Memory Programming)

Bytecode
…
add 32, 64, 96
add 108, 120, 152
…

MAGE’s Interpreter
Inputs

Outputs

Memory Program

Paging Schedule

17

Target Memory Size, etc.



Paging Schedule

Generating a Memory Program
Program

…
while (…) {
a[i] = b[i] + c[i]

}
…

Bytecode
…
add 32, 64, 96
add 108, 120, 152
…

MAGE’s Interpreter
Inputs

Outputs

Memory Program

18

Target Memory Size, etc.

MAGE’s Planner
(Memory Programming)

1. Use Belady’s algorithm (MIN)
• Optimizes storage bandwidth

2. Prefetch using the access pattern
• Masks storage latency



What Makes OS Virtual Memory Slow?

Based on heuristics
(doesn’t always work well)

Reactive procedure
(reacts to page faults)

19

Prefetch using the 
access pattern

Belady’s algorithm (MIN)



MAGE’s Planner

20

Program
…
while (…) {
a[i] = b[i] + c[i]

}
…

Paging Schedule

Virtual Bytecode
…
add 160, 192, 224
add 256, 288, 320
…

Analyze/Execute DSL

Place variables in 
“virtual” address space

Annotations
…
Page 1 next used 
at Instr. 12
…

Reverse Pass

Analyzes when 
pages are used

Replacement Pass

Use Belady’s Algorithm

Physical Bytecode
…
add 32, 64, 96
add 108, 120, 152
…

Scheduling Pass

Determine when to 
initiate memory-
storage transfers



Additional Challenges
How to cope with the size of the memory access pattern?

How to extract the memory access pattern from the DSL?

How to incorporate prefetching into Belady’s algorithm?

How to parallelize/distribute the computation?

How to extend MAGE with support for new SC protocols?

21

See paper for details



Implementation

• 11,000 lines of C++

• Supports:
• Garbled circuits (type of SMPC)

• CKKS (type of Fully Homomorphic Encryption) 

• User program (runs on unmodified Linux)

22



Evaluation

• We compare three setups:

: Get enough memory to fit the entire computation

: Use our system MAGE

: Rely on OS swapping

23



Workloads

24

• For 7 workloads, MAGE performs within 10% of Unbounded
• For 7 workloads, MAGE outperforms OS by at least 4×
• MAGE outperforms OS by up to an order of magnitude



Password Reuse Application

25

• MAGE can process up to 100 million user/password records
• For a given time budget, MAGE can handle a 3× larger problem



Conclusion

MAGE is a planner and runtime for secure computation. It:

• Leverages SC’s obliviousness to rethink memory management for SC

• Pre-plans data transfers between storage and memory

• In many cases, runs SC at nearly in-memory speeds

MAGE’s techniques could also potentially benefit:

26



Conclusion

MAGE is a planner and runtime for secure computation. It:

• Leverages SC’s obliviousness to rethink memory management for SC

• Pre-plans data transfers between storage and memory

• In many cases, runs SC at nearly in-memory speeds

27

This material is based on work supported by the National Science Foundation Graduate Research Fellowship Program 
under Grant No. DGE-1752814. Any opinions, findings, and conclusions or recommendations expressed in this material 
are those of the authors and do not necessarily reflect the views of the National Science Foundation.

https://github.com/ucbrise/mage
https://github.com/ucbrise/mage-scripts

Sam Kumar
samkumar@cs.berkeley.edu

https://github.com/ucbrise/mage
https://github.com/ucbrise/mage-scripts
mailto:samkumar@cs.berkeley.edu

