‘- DATA-INTENSIVE

COMPUTING SYSTEMS

N LABORATORY

Modernizing File System
through In-Storage Indexing

Jinhyung Koo, Junsu Im, Jooyoung Song, Juhyung Park,
Eunji Leel, Bryan S. Kim?, and Sungjin Lee

DGIST tfSoongsil University *Syracuse University

I5th USENIX Symposium on Operating Systems Design and Implementation
July 14-16, 2021

Overview

Traditional File System

S 1LA0

File System

Block ﬁ
Interface

A

Storage

Idle 5}

Mﬁ.ﬁ

r

Kevin (Proposed)

Lightweight o
File System

Key-value

Interface

e—

Smarter

Storage . g
e

Does the performance of a FS scale with faster SSDs?

» Performance evaluation on EXT4 using 5 SSDs with different performance
Rand-R/W (50:50): data-intensive

creat, rmdir: metadata-intensive
Varmail: fsync-intensive Normalized IOPS

Rand-R/W =»creat =*~rmdir -~Varmail

SSD | SSD 2 SSD 3 SSD 4 SSD 5

e
slowest fastest

3 Faster devices cannot make file systems perform better!

What does a file system do?

» Abstract files and directories over block devices
Metadata management
Space management

Crash consistency

» Incur extra I/O overhead

Metadata Management Space Management Crash Consistency
I
1 B Metadata
— S
inode disk pointer dir.entry bitmaps journal barrier checkpoint!
(e.g., extent)
1/O Amplification Fragmentation Journaling 1/O

(double-writes, I/O delay)

Why does file system have to do such tasks?

» Fundamental limitation of block interface?

A linear array of fixed-sized blocks FS Application

Simple I/O primitives: read, write, and trim File System
Block-level atomicity

Disk Dir.

Inode = Bitmap :
pointer entry

Journal

» File systems take care of too many things

Block
Interface

Metadata management

Index files and directories over blocks
Device

Logical-to-Physical Indexing

Space management

Allocate and free blocks The interface

v
Crash consistency should be changed!

NAND Flash

Ensure consistency on multiple blocks

Prior studies — Extended block interface

» Extended block interface

BarrierFS, OPTR, SCFTL [FAST’ 18, ATC'19, OSDI'20]

Offload journaling into the SSD

Checklist

Reducing Meta I/O Amp.? Q
Resilient to Fragmentation? 8
Reducing FS Journaling I/O?o

Cannot address all the problems at once

FS Application

File System

Virtual File System

Disk Dir. Journal

Inode = Bitmap :
pointer entry = Mgmt.

Ext. Block

Interface A~
Device ‘
Extended L2P
. Journal
Indexing

NAND Flash ‘

Performing journaling inside the storage
=> No journaling traffic between the FS and the device

Prior studies - File interface

» File system interface

DevFS, INSIDER, CrossFS [FAST’ 18, ATC'19, 0SDI'20]

Checklist FS L#ary
Reducing Meta I/O Amp.? o
Resilient to Fragmentation? o Perform FS operations in storage

- Decrease data traffic to index files and

Reducing Journaling I/0? o .
ensure consistency

File
High cost for maintaining all FS capabilities Interface

Caching " Device
Back
ackup Embedded File System
Snapshot, ... po S
ACT Y >\ NAND Flash

Kevin = KevinFS + KevinSSD

» What KevinFS does!?

File System

1 2

File-to-KV Mapping Ops-to-KV Translation

Mapping files and directories to KV objects
Translate POSIX syscalls to KV commands
Ensure consistency with a KV-SSD

KevinFS

Transaction Management

.) Kevin
» What KevinSSD does! KV Tnterface

Indexing KV objects in storage Device

3 4
KV Object Transaction
gy

NAND Flash

Support transaction over multiple KV objects

KevinSSD

Data transfer for indexing KV objects occurs in storage
9 - Lightweight FS with low FS traffic

INDEX

4

» Kevin
File-to-KV mapping
Operation-to-KV translation
KV object indexing algorithm
Transaction management

<

File-to-KV mapping

» Map files/directories to two types of KV objects (meta & data objects)

‘Inode number’ based key naming name
i : (inode #)
cf. full-path based naming
Complicated algo. for handling rename | Name | Inode # | / M0/ | Vv
. 50 2) *
Longer key length "xz . @)
cat 00 (_"_\
dog 101 Pet/ M 2 I
. . . . No dir. ent :2:pet
» Meta object: store file’s information o aEEntY | (50) P

Key: ‘M’ + parent’s inode # + name

» Data object: store file’s contents

Key: ‘D’ + file’s inode # V - | M:50:dog

v |\ [D:roi

11

Operation-to-KV translation

» All POSIX-compliant syscalls can be translated into KV operations

12

KevinFS supports 86 syscalls out of 102 currently

Syscalls

mkdir ()
creat ()
write ()
rmdir ()
lookup ()
read ()

readdir ()

KV

SET (meta)
SET (meta)
SET (data)
DELETE (meta)
GET (meta)
GET (data)

ITERATE (meta)

Operation-to-KV translation (Cont.)

» There are smaller number of I/O requests than block-based file systems
because there are no updates on bitmaps, directory entries, and disk pointers

Syscalls Block KV

mkdir () WRITE (bitmap+inode+dir) SET (meta)
creat () WRITE (bitmap+inode+dir) SET (meta)
write () WRITE (bitmap+ptr+data) SET (data)
rmdir () WRITE (bitmap+ptr+dir) DELETE (meta)
lookup () READ (ptr+dir+inode) GET (meta)
read () READ (ptr+data) GET (data)

readdir () READ (ptr+dir+inode) ITERATE (meta)

13

Operation-to-KV translation — Example

:

creat (“/pet/£fish”)

KevinFS

KV Object Pool SET (I;leta)

1
v

M:50:cat | V M:50:dog | V M:50:fish | V
D:100 v D:101 \'

M:0/ | V M:2:pet/ | V

14

Operation-to-KV translation — Example
/

|

write (“/pet/£fish” b6 4KB)

KevinFS
KV Object Pool SET (data)
|
M:50:cat | V M:50:dog | V M:50:ﬂ'sh \'
D:100 v D:101 v D:102 v

M:0/ | V M:2:pet/ | V

14

Operation-to-KV translation — Example

KevinFS

|

/

readdir (“/pet/"”)

ITERATE (‘M:50')

KV Object Pool

14

I
|
|
|
v

M:50:cat

M:50:dog

M:50:fish | V

D:100

D:101 A\

D:102 A\

M:0/] |V

M:2:pet/

Operation-to-KV translation — Example

readdir (“/pet/"”)

ITERATE (‘M:50')

KevinFS

KV Object Pool

M:50:cat | V M:50:dog | V M:50:fish | V

D:100 \' D:101 A\ D:102 A\

M:0/ | V M:2:pet/ | V

14

Operation-to-KV translation — Advantages

» KevinFS performs file operations on meta and data objects only
Modifications on bitmaps, dir. entry, and disk pointers are unnecessary
Metadata traffic between the file system and the device decreases greatly

Checklist
Reducing Meta I/O Amp.? o

Resilient to Fragmentation?

Reducing Journaling I/0?

Q How are KV objects mapped to NAND flash pages!?

15

KV object indexing algorithm

» LSM-tree with KV separation

Keys are sorted in key pages, and values are logged in value pages

KevinSSD

M:50:cat | V M:50:dog | V M:50:fish | V
D:100 \' D:101 \' D:102 A\
KV Object Pool M:0/ | V M:Z.‘PEtI \"4
NAND Flash . - .
Sorting «mKey pages ! Value pages= Logging
Physical NAND Page 0) i §
4 | 9
. |

16

KV object indexing algorithm (Cont.)

» Manage meta and data objects separately

KevinSSD M:50:cat | V M:50:dog | V M:50:fish | V
D:100 \' D:101 \' D:102 \'/
KV Object Pool M:0/ | vV M:2:petl | V
NAND Flash
S &4 ;ainq =SS 3 2
I g i
S

17

KV object indexing algorithm (Cont.)

» Manage meta and data objects separately

sub-objects for a data object

KevinSSD

M:50:cat | V M:50:dog | V M:50:fish | V
D:100 \' D:101 \' D:102 \'
KV Object Pool M0/ | V M:2:petl \"4
NAND Flash Sub-object key : ‘D’ + file’s inode # + block #
- e |
: | b0l : : : : :
= g O | — | R () 0. o (0] (1)
L 232 E (gidizigid| 35353 Value (4KB)
sidinig 9| [SIRIZISIZ|TITITiTiT
I Q;Q:46:4:04 g
S : 4
]

17 l -- _—

KV object indexing algorithm (Cont.)

» Meta object keys are sorted by parent’s inode number = directory entries
» Data object keys are sorted by file’s inode number = disk pointers

KevinSSD s T T mmmmm—m—m———em 1
[g e | I
; IlI ; - - q V
1 H -0 -1 = — == e S:S:8: S S
_ &8 2 E||sgsizisis| |33 33 Value (4KB)
S |l wniwn . wn - === = I
> -~ Q:Q: Q. Q: Q |
! ! ! !) X X X X
Same Same
18

directory file

KV object indexing algorithm (Cont.)

» Process KV commands efficiently thanks to the sorted keys

t/
readdir (“/pet/”) (Pseo)
!

ITERATE (‘M:50") { cat J i d;g) [fish J

! (100) | | (101) | | (102)
KevinFS \
KevinSSD I READ at once
N [
B8 i E] | = =l gigigigig
- & & 2 5[|8 288|333 83 Value (4KB)
S: | !n:iwn:un 2:2:%5253 =i : s sa =
i Q;Q:46:4:04 '
| | L
Same
19

directory

KV object indexing algorithm (Cont.)

» Process KV commands efficiently thanks to the sorted keys

The compaction operation of LSM-tree sorts keys periodically

KevinFS
KevinSSD
TP R T S i
w1 8 0 u - N = =N g8 880
- & &85l |8 28| |3 S ZIST Value (4KB)
S i iwn: wn: - = === I
LT 222 = QA QaQaiqa;ag
<€ > <€ >

19 Sorted by the compaction

KV object indexing algorithm = Advantages
» KevinSSD performs FS-friendly KV object mapping

Exploit locality of file system requests with fewer NAND flash accesses
Same directory — Meta object keys (directory entries) are sorted
Same file — Data object keys (disk pointers) are sorted

All keys are automatically sorted by the LSM-tree compaction

Resilient to file system aging and metadata fragmentation

Checklist

Reducing Meta I/O Amp.? o

Resilient to Fragmentation?

Reducing Journaling I/0?

20

Q: Indexing overhead of LSM-tree?

» Overhead of LSM-tree based indexing algorithm

21

Compaction cost
Level lookup cost

> KV separation + Key compression

- Filtering + Caching + Key compression

Fragmented tree cost => Compaction + Offline-defragmentation

Please refer to our paper

3.3 Mitigating Indexing Overhead

As mentioned in §3.2, putting the LSM-tree indexing onto the
storage hardware causes extra I/Os, which never happen in
typical FTLs using a simple L2P indexing table (which is en-
tirely loaded in DRAM). We introduce three main causes that
create internal I/Os and explain how we solve them (see Fig-
ure 6). Note that garbage collection occurs both in KEVIN
and existing SSD controllers, so it is not explained here.

Compaction cost. Compaction is an unavoidable process
and may involve many reads and writes [28]. KEVINSSD
manages meta and data objects in a manner that minimizes
compaction I/Os by separating keys and values. Particularly,
our inode-based naming policy that assigns short keys to data
objects lowers the compaction cost because it enables us to
pack many subobject keys into flash pages. We go one step
further by compressing K2V indices for data objects. Subob-
ject keys have regular patterns (e.g., *d:100:0°, *d:100:1",
...), so they are highly compressible even with naive delta-
compression requiring negligible CPU cycles. This reduces
the amount of data read and written during compaction. Ac-
cording to our analysis with write-heavy workloads, the write
amplification factor (WAF) of the compaction was less than
1.19x under the steady-state condition (see §6.2).

Level lookup cost. The LSM-tree inevitably involves mul-
tiple lookups on levels until it finds a wanted KV object (see

Fragmented tree cost. The LSM-tree allows each level
to have overlapped key ranges with other levels. Therefore,
K2V indices belonging to the same parent directory or file
can be fragmented across multiple levels, even they have the
same prefix. To retrieve a full list of directory entries or disk
pointers, multiple flash pages on different levels must be read.
This problem is implicitly resolved by compaction that merges
and sorts K2V indices in adjacent levels. KEVIN also provides
an offline user-level tool that explicitly triggers compaction
in storage. Unlike traditional tools (e.g., e4defrag [14]), this
does not involve moving the entire file system’s metadata and
data and is thus much more efficient.

£ LSM+Filter =3 +CACHE

= +Comprass B +E-Defrag

of K2V Page Reads

Rand Rand

Locality Seq
GET GET GET GET GET GET

Locality Seq

Fragmented Sorted

Figure 6: The number of reads per KV request to retrieve
a key-index page. The LSM-tree with bloom filters is our
default setting. We add each optimization technique one by
one to understand their impact. The size of bloom filters is
set to 6.5 MB for 40M objects. The cache size is 110 MB.

Transaction management

» Lightweight crash consistency with in-storage transaction support
KevinSSD provides transaction APls: Atomicity & Durability over multiple KV objects
KevinFS performs a syscall atomically by wrapping KV commands: FS consistency

unlink ()

22

Transaction management

» Lightweight crash consistency with in-storage transaction support
KevinSSD provides transaction APls: Atomicity & Durability over multiple KV objects
KevinFS performs a syscall atomically by wrapping KV commands: FS consistency

unlink ()
=l
o e A
DELETE (meta)
DELETE (data) -
Durable!
EndTx ()

22

Transaction management

» Lightweight crash consistency with in-storage transaction support
KevinSSD provides transaction APls: Atomicity & Durability over multiple KV objects
KevinFS performs a syscall atomically by wrapping KV commands: FS consistency

KevinFS does not perform journaling for crash consistency

Checklist
Reducing Meta I/0 Amp.?

Resilient to Fragmentation?

<1<

Reducing Journaling I/0?

22

Transaction management

» Lightweight crash consistency with in-storage transaction support
KevinSSD provides transaction APls: Atomicity & Durability over multiple KV objects

22

KevinFS performs a syscall atomically by wrapping KV commands: FS consistency

KevinFS does not perform journaling for crash consistency

Please refer to our paper

5 Crash Consistency

We describe how KEVIN implements transactions to main-
tain consistency. KEVINFS issues fine-grained transactions
by tracking dependency among KV objects so that they are
updated atomically (see §5.1), and KEVINSSD supports trans-
action commands exploited by KEVINFS (see §5.2).

5.1 Maintaining Consistency in KEVINFS

Although an ideal file system would immediately persist data
upon a write without any consistency problems, current file

TxTable TxLogs Memtahle Skiplist

i+, checkpointed

: Controller DRAM

w [B Flash

9 101
COMMITTED

T
SIS | Value
A |-

24 298 1 (4-KB)

TxRecovery TxLogs

(Unsorted)

Key-index page
(Sored)

Figure 8: Transaction management of KEVINSSD

5.2 Transaction Processing in KEVINSSD

We now explain how KEVINSSD supports transaction com-
mands. Our design is essentially based on journaling but we
further optimize it to perform well with KEVINSSD.
Transaction management. Figure & shows the transaction
management in KEVINSSD. We employ three data structures:
a transaction table (TxTable), transaction logs (TxLogs), and
a recovery log (TxRecovery). The TxTable keeps the infor-
mation of transactions, while the TxLogs keep K2V indices
of transaction objects. The TxLogs are stored either in the
DRAM or in the flash. They are also used to keep track of
K2V indices committed to L, in the tree. The TxRecovery is
used to recover or abort transactions during the recovery.
When BeginTx (TID) comes, KEVINSSD creates a new
entry in the TxTable, where each entry keeps a TID, its status,
and locations of K2V indices associated with the transaction.
Many transactions can be activated simultaneously as there
exist multiple entries in the table. Initially, the status of the
transaction is RUNNING, which means that it can be aborted in
the event of a crash (see @) in Figure 8). When subsequent
commands belonging to the transaction arrive, KEVINSSD
keeps KV indices in the DRAM-resident TxLogs and buffers
associated values in the memtable. Once the TxLogs or the
memtable becomes full, KV indices or values are logged into
the in-flash TxLogs or the flash. All of them are not applied to
the LSM-tree yet as they can be aborted. When EndTx (TID)
is received, the associated transaction is committed, and its
status is changed to COMMITTED (see @). KEVINSSD then
notifies KEVINFS that the transaction is committed. Even

INDEX

>
>
» Experiments
>

Kevin prototype
» KevinFS

Implemented in Linux v4.15.18 kernel

» KevinSSD
Based on Xilinx-VCU 108 with custom flash cards

24

Objectives

(1) How does Kevin perform under metadata-intensive workloads!?
(2) Is Kevin resilient to fragmentation?

(3) How does Kevin perform under fsync-intensive workloads?

Please check our paper for more results!

25

Experimental results: metadata-intensive

_.450
v BEEXT4 O XFS 6BTRFS mF2FS mKEVIN
2 360
:% 270 In-storage metadata management
5
2180
(@)}
3 90 H
mkdir rmdir creat unlink
Performance x6.2 higher on average
128 m Data Read m Data Write m Metadata Read m Metadata Write @ Journaling 1/0O

FS Traffic (GB)

90
60
30
0 — s ﬁﬁﬁ f_\

EXBFKEXBFKEXBFKEXBFK

mkdir unlink

rmdir creat

FS trafﬁc 74% lower traffic

26

Experimental results: aged file system

50
40
30
20
10

0

Throughput
Degradation (%)

850

800

750

700

Throughput (MB/s)

650

27

mEXT4 mKEVIN
12% drop 8% drop

> R I—

mkdir rmdir creat unlink Varmail

Write-dominant workloads

—~ 0

OLTP Fileserver

— 250

) —o—EXT4 ——KEVIN
—— e — é 200

%)

c | 150

g

© {100

£l 50
~~EXT4 —-KEVIN £

c>t<5 0O L-e ° ® ° ® -
0 1 2 3 4 5 p= / 1 2 3 4 5

of Run Compaction # of Run

Sequential read Fragmentation Readdir

Experimental results: fsync-intensive

& 10 250
- @) = Data Read m Data Write
Q In-storage O 200
g 120 transaction support b
= PP tILE) 150
2 80 _ £ 100
=
> 9 50
S 40 0
a SRR ETLRQE
> >
0 _ = XX 2§ als X EQ g
Varmalil OLTP o8] X 0 X
Performance FS traffic
68% higher on average No FS journaling 1/O

28

Conclusion

» Traditional file systems cannot exploit fast storage performance because of

fundamental limitations of the block interface

. KevinFS
» Kevin Virtual File System
Offloading indexing capability to the storage device File-to-KV Mapping | Ops-to-KV Translation
VES-to-KV translation Transaction Management

In-storage KV indexing
i Kevin
Transaction support KV Interface

KevinSSD

KV Object Transaction
Indexing Support

NAND Flash

29

Thank You !

Jinhyung Koo (jhk536 | @dgist.ac.kr)

