
DMon: Efficient Detection and
Correction of Data Locality

Problems Using Selective Profiling
Tanvir Ahmed Khan, Ian Neal, Gilles Pokam, Barzan Mozafari, Baris Kasikci

~700 ms

Running that
single search

query requires 8
processor cores1!

[1] Memory Hierarchy for Web Search, HPCA 2018

Active usage of
millions of

processor cores to
serve the planet!

Millions of dollars in
management and

energy cost
+

Planet-scale carbon
footprint

2

32%

14%
10%

15%

8%

21%

[1] AsmDB: understanding and mitigating front-end stalls in warehouse-scale computers, ISCA 2019

CPU Performance of Google Web Search1

Memory stalls
due to poor
data locality

3

Doing useful work

Fetching instructions

Decoding instructions

Bad speculation

Execution units unavailable

Memory stalls

Existing Techniques & Why They Fall Short?

Compiler Optimizations

• Automatically improve data locality
via program transformation

• No run-time overhead

• Rely on static heuristics

• Can sometimes even hurt
performance

Dynamic Profilers

• Help developers identify and
resolve poor data locality

• Accurate execution information

• Mostly manual repair

• High profiling overhead when used
to detect data locality issues

4

DMon’s Contributions

• Selective profiling to detect data locality problems accurately and
efficiently
• Apply specific compiler optimizations based on profiling results
• Evaluation showing the efficiency of selective profiling and

effectiveness of targeted optimizations
• Negligible (less than 2%) overhead
• 17% average speedup for popular benchmarks from PARSEC, SPLASH, NPB
• 7% average speedup for PostgreSQL

5

DMon’s Design

• Continuous in-production
monitoring to identify data
locality problems
• In-house static analysis to

identify memory access
pattern
• In-house static

transformations to optimize
locality

Static Memory
Access Pattern

Analysis

Automated/Manual
Locality

Optimizations
3

Offline

2

101011
010110
010101

Source
Code

Selective Profiling

101100
010110
100101

In Production

1

Targeted
Monitoring

Incremental
Monitoring Sampling

6

Targeted Monitoring

Front-end
Bound

Back-end
Bound

Bad
Speculation

Core
Bound

Memory
Bound

L1 Bound L3 BoundL2 Bound DRAM
Bound

L1 cache
misses

L2 cache
misses

L3 cache
misses

La
ye

r 1
La

ye
r 2

La
ye

r 3

Data
Locality

TreeLa
ye

r 4

7

• Leverage the
hierarchical Top-
down approach
from Intel
• Not all problems

are related to
data locality
• Only focus on a

small subtree
related to data
locality

Time
0 p (100 ms) 2p 3p

Layer 1

Back-end
Bound
>10% Memory

Bound
>10% L2 or L3 or

DRAM
Bound
>10%

Layer 2

Layer 3

Layer 4

Incremental Monitoring

Collect
cache miss

samples

• Monitor the program
execution in short time
slices
• Incrementally enable

more detailed profiling
• Can identify even

different locality
problems at various
program phases

8

Offline Analysis and Transformations

Determine
Structure Access

Pattern

Indirect
Addressing

Direct
Addressing

Direct
Prefetching

Indirect
Prefetching

Instruction

Structure
Splitting

Determine
Addressing

Mode

Pointer
Chasing

Unbalanced
Access

Structure
Merging

OptimizationsAnalysis

9

Evaluation Summary

• Efficiency
• On average 1.36% overhead
• 9x lower overhead than state-of-the-art data locality profiler

• Effectiveness
• Accurately detect data locality problems for benchmarks from PARSEC,

SPLASH-2X, and NPB suites
• On average 16.83% and up to 53.14% speedup
• 20% more speedup than state-of-the-art profile-guided data locality optimizer

• Real-world case studies
• PostgreSQL, Apache-spark page-rank, and others

10

Performance Speedup on PostgreSQL

TPC-H Queries

better

Speedup
(%)

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

DMon speeds up PostgreSQL by 7% on average
11

DMon: Data Locality Optimizations via
Selective Profiling

• Selective profiling to detect
data locality problems
accurately and efficiently
• Apply specific optimizations

based on profiling results
• 17% speedup with

negligible (less than 2%)
overhead

github.com/efeslab/DMon-AE

Static Memory
Access Pattern

Analysis

Automated/Manual
Locality

Optimizations
3

Offline

2

101011
010110
010101

Source
Code

Selective Profiling

101100
010110
100101

In Production

1

Targeted
Monitoring

Incremental
Monitoring Sampling

takh@umich.edu

12

