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[1] AsmDB: understanding and mitigating front-end stalls in warehouse-scale computers, ISCA 2019
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Existing Techniques & Why They Fall Short?

Compiler Optimizations

• Automatically improve data locality 
via program transformation

• No run-time overhead

• Rely on static heuristics

• Can sometimes even hurt 
performance

Dynamic Profilers

• Help developers identify and 
resolve poor data locality

• Accurate execution information

• Mostly manual repair

• High profiling overhead when used 
to detect data locality issues
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DMon’s Contributions

• Selective profiling to detect data locality problems accurately and 
efficiently
• Apply specific compiler optimizations based on profiling results
• Evaluation showing the efficiency of selective profiling and  

effectiveness of targeted optimizations
• Negligible (less than 2%) overhead
• 17% average speedup for popular benchmarks from PARSEC, SPLASH, NPB
• 7% average speedup for PostgreSQL
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DMon’s Design

• Continuous in-production 
monitoring to identify data 
locality problems
• In-house static analysis to 

identify memory access 
pattern
• In-house static 

transformations to optimize 
locality
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Targeted Monitoring
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• Leverage the 
hierarchical Top-
down approach 
from Intel
• Not all problems 

are related to 
data locality
• Only focus on a 

small subtree 
related to data 
locality
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Collect 
cache miss 

samples

• Monitor the program 
execution in short time 
slices
• Incrementally enable 

more detailed profiling
• Can identify even 

different locality 
problems at various 
program phases
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Offline Analysis and Transformations
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Evaluation Summary

• Efficiency
• On average 1.36% overhead
• 9x lower overhead than state-of-the-art data locality profiler

• Effectiveness
• Accurately detect data locality problems for benchmarks from PARSEC, 

SPLASH-2X, and NPB suites
• On average 16.83% and up to 53.14% speedup
• 20% more speedup than state-of-the-art profile-guided data locality optimizer

• Real-world case studies
• PostgreSQL, Apache-spark page-rank, and others
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Performance Speedup on PostgreSQL
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DMon speeds up PostgreSQL by 7% on average
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DMon: Data Locality Optimizations via 
Selective Profiling

• Selective profiling to detect 
data locality problems 
accurately and efficiently
• Apply specific optimizations 

based on profiling results
• 17% speedup with 

negligible (less than 2%) 
overhead

github.com/efeslab/DMon-AE
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