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Tensor Program
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A tensor (i.e., n-dimensional array)

A linear algebra operator (e.g., convolution, matrix mul) 
or a non-linear activation (e.g., relu, sigmoid)



Tensor Program Transformations
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Current Systems Consider only 
Fully Equivalent Transformations
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Fully Equivalent Transformations

Pro: preserve functionality

Con: miss optimization opportunities

Partially Equivalent Transformations

Pro: better performance

• Faster ML operators

• More efficient tensor layouts

• Hardware-specific optimizations

Con: potential accuracy loss
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Current Systems Consider only 
Fully Equivalent Transformations
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Partially Equivalent Transformations

Pro: better performance

• Faster ML operators

• More efficient tensor layouts

• Hardware-specific optimizations

Con: potential accuracy loss
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Fully Equivalent Transformations

Pro: preserve functionality

Con: miss optimization opportunities



Motivating Example
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Motivating Example
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Correcting Results

• Transformation and correction lead to 1.2x speedup for ResNet-18
• Correction preserves end-to-end equivalence



PET

• First tensor program optimizer with partially equivalent transformations

• Larger optimization space by combining fully and partially equivalent 
transformations

• Better performance: outperform existing optimizers by up to 2.5x
• Correctness: automated corrections to preserve end-to-end equivalence

8



PET Overview

9

Optimized
Program

Mutant 
Generator

Mutant
Programs

Mutant 
Corrector

Corrected
Mutants

Program 
Optimizer

Input
Program

… …



Key Challenges

1. How to generate partially equivalent transformations?

2. How to correct them?

Superoptimization

Multi-linearity of DNN computations
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Mutant Generator

Superoptimization adapted from TASO1
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…

Enumerate all possible programs up to a 
fixed size using available operators

1. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.



Mutant Generator

Superoptimization adapted from TASO1
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…

Programs with the same input/output 
shapes are potential mutants

1. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.

Discover both fully and partially 
equivalent transformations
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Challenges: Examine Transformations

1. Which part of the computation is not equivalent?
2. How to correct the results?
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A Strawman Approach

• Step 1: Explicitly consider all 
output positions (m positions)

• Step 2: For each position p, 
examine all possible inputs 
(n inputs)
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Require O(m * n) examinations, but both m and n are too 

large to explicitly enumerate



Multi-Linear Tensor Program (MLTP)

• A program , is multi-linear if the output is linear to all inputs
• , /!, … , 2,… , /" + , /!, … , 4, … , /" = , /!, … , 2 + 4,… , /"
• 5 6 , /!, … , 2,… , /" = , /!, … , 5 6 2,… , /"

• DNN computation = MLTP + non-linear activations
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Majority of the computation

O(m * n) examinations 

in strawman approach

O(1) examinations in 

PET’s approach
MLTP



No Need to Enumerate All Output Positions

Group all output positions with an identical 
summation interval into a region

*Theorem 1: For two MLTPs f and g,  if f=g
for O(1) positions in a region, then f=g for 
all positions in the region

Only need to examine O(1) positions for    
each region.

Complexity: O(m * n) → O(n)
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*Proof details available in the paper
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No Need to Consider All Possible Inputs

Examining equivalence for a single position 
is still challenging

*Theorem 2: If ∃/. 7 / 8 ≠ 9 / 8 , then
the probability that f and g give identical 
results on t random integer inputs is ( !

%!")
&

Run t random tests for each position "
Complexity: O(n) → O(t) = O(1)
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Mutant Corrector

Goal: quickly and efficiently correcting 
the outputs of a mutant program
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Mutant Corrector

Goal: quickly and efficiently correcting 
the outputs of a mutant program

Step 1: recompute the incorrect outputs 
using the original program
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Mutant Corrector

Goal: quickly and efficiently correcting 
the outputs of a mutant program

Step 1: recompute the incorrect outputs 
using the original program

Step 2: opportunistically fuse correction 
kernels with other operators
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Correction introduces less than 
1% overhead



Program Optimizer
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Mutants w/ Corrections

• Beam search
• Optimizing a DNN architecture 

takes less than 30 minutes

Other optimizations:
• Operator fusion
• Constant folding
• Redundancy elimination
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End-to-end Inference Performance (Nvidia V100 GPU)

0

3

6

9

12

15

ResNet-18 CSRNet

R
un

tim
e 

(m
s)

22

0

20

40

60

80

100

120

140

Inception-v3 BERT ResNet3D-18

TensorFlow TensorRT TASO PET

2.5x
1.2x

1.4x

1.2x

1.3x

PET outperforms existing optimizers by 1.2-2.5x 
by combining fully and partially equivalent transformations



More Evaluation in Paper

1. A case study on tensor-, operator-, and graph-level optimizations discovered 
by PET

2. Both fully and partially equivalent transformations are critical to performance

3. PET consistently outperforms existing optimizers on various backends 
(cuDNN/cuBLAS, TVM, Ansor)

4. Partially equivalent transformations w/ corrections can directly benefit 
existing optimizers
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PET

• A tensor program optimizer with partially equivalent transformations and 
automated corrections

• Larger optimization space by combining fully and partially equivalent 
transformations

• Better performance: outperform existing optimizers by up to 2.5x
• Correctness: automated corrections to preserve end-to-end equivalence
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Available at: https://github.com/thu-pacman/PET

zhihao@cmu.edu


