
PET:
Optimizing Tensor Programs with Partially Equivalent 

Transformations and Automated Corrections

Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang,

Liyan Zheng, Yuanzhi Li, Kaiyuan Rong, Yuanyong Chen, Zhihao Jia

Tsinghua University        Carnegie Mellon University        Facebook

1



Tensor Program

2

conv3x3 conv1x1

pool

conv3x3

add

relu

relu relu

A tensor (i.e., n-dimensional array)

A linear algebra operator (e.g., convolution, matrix mul) 
or a non-linear activation (e.g., relu, sigmoid)



Tensor Program Transformations

3

conv3x3
+ relu

conv1x1
+ relu

pool

conv3x3

add

relu

…
Program Transformations

conv conv

pool

conv

add

relu

relu relu

Input Program Optimized Program

Fuse conv + relu

conv

relu

conv
+ relu

Fuse convs

conv

add

add

conv

conv



Current Systems Consider only 
Fully Equivalent Transformations

4

∀". $["] = (["]

Fully Equivalent Transformations

Pro: preserve functionality

Con: miss optimization opportunities

Partially Equivalent Transformations

Pro: better performance

• Faster ML operators

• More efficient tensor layouts

• Hardware-specific optimizations

Con: potential accuracy loss

∃". $["] ≠ (["]

X

Dilated 
Conv

Y

W X

Conv

Z

W

Conv

W1 W2 X

Conv Add

Conv

W1 W2 X

Y Z

Add



Current Systems Consider only 
Fully Equivalent Transformations

5

∀". $["] = (["]

Partially Equivalent Transformations

Pro: better performance

• Faster ML operators

• More efficient tensor layouts

• Hardware-specific optimizations

Con: potential accuracy loss

∃". $["] ≠ (["]

X

Dilated 
Conv

Y

W X

Conv

Z

W

Conv

W1 W2 X

Conv Add

Conv

W1 W2 X

Y Z

AddIs it possible to exploit partially equivalent transformations to 

improve performance while preserving equivalence?

Fully Equivalent Transformations

Pro: preserve functionality

Con: miss optimization opportunities



Motivating Example

6

conv

T1

T2
conv

reshape & transpose

reshape & transpose

correction

Input Program

Partially Equivalent Transformation

Correcting Results

Incorrect results



Motivating Example

7

conv

T1

T2
conv

reshape & transpose

reshape & transpose

correction

Input Program

Partially Equivalent Transformation

Correcting Results

• Transformation and correction lead to 1.2x speedup for ResNet-18
• Correction preserves end-to-end equivalence



PET

• First tensor program optimizer with partially equivalent transformations

• Larger optimization space by combining fully and partially equivalent 
transformations

• Better performance: outperform existing optimizers by up to 2.5x
• Correctness: automated corrections to preserve end-to-end equivalence

8



PET Overview

9

Optimized
Program

Mutant 
Generator

Mutant
Programs

Mutant 
Corrector

Corrected
Mutants

Program 
Optimizer

Input
Program

… …



Key Challenges

1. How to generate partially equivalent transformations?

2. How to correct them?

Superoptimization

Multi-linearity of DNN computations

10



Mutant Generator

Superoptimization adapted from TASO1

11

Mutant 
Generator

Mutant 
Corrector

Program 
Optimizer

Mutant 
Generator

Input 
(Sub)program

Operators supported by 
hardware backend

…

Enumerate all possible programs up to a 
fixed size using available operators

1. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.



Mutant Generator

Superoptimization adapted from TASO1

12

Mutant 
Generator

Mutant 
Corrector

Program 
Optimizer

Mutant 
Generator

Input 
(Sub)program

Operators supported by 
hardware backend

…

Programs with the same input/output 
shapes are potential mutants

1. TASO: Optimizing Deep Learning Computation with Automated Generation of Graph Substitutions. SOSP’19.

Discover both fully and partially 
equivalent transformations



13

Challenges: Examine Transformations

1. Which part of the computation is not equivalent?
2. How to correct the results?

Program f Program g

Mutant 
Generator

Mutant 
Corrector

Program 
Optimizer



A Strawman Approach

• Step 1: Explicitly consider all 
output positions (m positions)

• Step 2: For each position p, 
examine all possible inputs 
(n inputs)

14

Program f Program g

p p

∀+. , + " = - + " ?

Require O(m * n) examinations, but both m and n are too 

large to explicitly enumerate



Multi-Linear Tensor Program (MLTP)

• A program , is multi-linear if the output is linear to all inputs
• , /!, … , 2,… , /" + , /!, … , 4, … , /" = , /!, … , 2 + 4,… , /"
• 5 6 , /!, … , 2,… , /" = , /!, … , 5 6 2,… , /"

• DNN computation = MLTP + non-linear activations

15

Majority of the computation

O(m * n) examinations 

in strawman approach

O(1) examinations in 

PET’s approach
MLTP



No Need to Enumerate All Output Positions

Group all output positions with an identical 
summation interval into a region

*Theorem 1: For two MLTPs f and g,  if f=g
for O(1) positions in a region, then f=g for 
all positions in the region

Only need to examine O(1) positions for    
each region.

Complexity: O(m * n) → O(n)

16

conv

+# +$

!"#$ !, &,' = )
!"#

$%&
)
'"%&

&
)
("%&

& *& +, & + -,' + .
× *)(+, !, -, .)

Summation interval
*Proof details available in the paper

region



No Need to Consider All Possible Inputs

Examining equivalence for a single position 
is still challenging

*Theorem 2: If ∃/. 7 / 8 ≠ 9 / 8 , then
the probability that f and g give identical 
results on t random integer inputs is ( !

%!")
&

Run t random tests for each position "
Complexity: O(n) → O(t) = O(1)

17

Program f Program g

p p

∀+. , + " = - + " ?

*Proof details available in the paper



Mutant Corrector

Goal: quickly and efficiently correcting 
the outputs of a mutant program

18

conv

reshape & transpose

reshape & transpose

Mutant Program



Mutant Corrector

Goal: quickly and efficiently correcting 
the outputs of a mutant program

Step 1: recompute the incorrect outputs 
using the original program

19

conv

reshape & transpose

reshape & transpose

conv

Mutant Program

Correction Kernel 



Mutant Corrector

Goal: quickly and efficiently correcting 
the outputs of a mutant program

Step 1: recompute the incorrect outputs 
using the original program

Step 2: opportunistically fuse correction 
kernels with other operators

20

conv

reshape & transpose

reshape & transpose

conv

Kernel Fusion

Correction introduces less than 
1% overhead



Program Optimizer

21

Search-Based 
Program 
Optimizer

Input 
Program

Optimized
Program

Mutant 
Generator & 

Corrector

MLTP

…

Mutants w/ Corrections

• Beam search
• Optimizing a DNN architecture 

takes less than 30 minutes

Other optimizations:
• Operator fusion
• Constant folding
• Redundancy elimination

Mutant 
Generator

Mutant 
Corrector

Program 
Optimizer



End-to-end Inference Performance (Nvidia V100 GPU)

0

3

6

9

12

15

ResNet-18 CSRNet

R
un

tim
e 

(m
s)

22

0

20

40

60

80

100

120

140

Inception-v3 BERT ResNet3D-18

TensorFlow TensorRT TASO PET

2.5x
1.2x

1.4x

1.2x

1.3x

PET outperforms existing optimizers by 1.2-2.5x 
by combining fully and partially equivalent transformations



More Evaluation in Paper

1. A case study on tensor-, operator-, and graph-level optimizations discovered 
by PET

2. Both fully and partially equivalent transformations are critical to performance

3. PET consistently outperforms existing optimizers on various backends 
(cuDNN/cuBLAS, TVM, Ansor)

4. Partially equivalent transformations w/ corrections can directly benefit 
existing optimizers

23



PET

• A tensor program optimizer with partially equivalent transformations and 
automated corrections

• Larger optimization space by combining fully and partially equivalent 
transformations

• Better performance: outperform existing optimizers by up to 2.5x
• Correctness: automated corrections to preserve end-to-end equivalence

24

Available at: https://github.com/thu-pacman/PET

zhihao@cmu.edu


