
beyond malloc efficiency to
fleet efficiency
a hugepage-aware memory allocator

A.H. Hunter, Chris Kennelly,
Paul Turner, Darryl Gove,
Tipp Moseley, Partha Ranganathan

1

malloc can get slower,
while the program gets faster.

2

3

normally reducing malloc cycles is good

business logic changes, infrastructure does not

Indexing, Tensorflow model training, Gmail

storage, web frontends, Youtube transcode,

Bigtable, Colossus, ad model training, ad model

serving, interns running mapreduces, streetview,

front-end web servers, load balancers, Spanner,

memcache, search leaves, search caches, search

rankers, log aggregation, real time monitoring,

deprecated products, build farms, web crawlers, ...

protobuffers, compression, RPCs, hashing,

memcpy and memory allocation

“DATACENTER TAX”

4

malloc cycles do not matter.

$$$ spent on hardware matter.

Search QPS matters.

Target QPS/($$=core).

5

most cpu cycles do nothing

“Profiling a WSC”, ibid.

6

pagetable walks are expensive (and cached)

Source:
https://os.phil-opp.com/
page-tables/ 7

hugepages cheapen the page table walk

● 4 level tree selects 4 KiB page -> 3 level tree selects 2 MiB page

● Shorter dependency chain, smaller physical table

8

hugepages make the TLB bigger!

0x1000 -> 0x422a7000 (4 KiB)
0x2000 -> 0x24acc000 (4 KiB)
0x3000 -> 0x32a07000 (4 KiB)
0x4000 -> 0xdf38b000 (4 KiB)
0x5000 -> 0xaf689000 (4 KiB)
0x6000 -> 0xb0cd3000 (4 KiB)

0x200000 -> 0xbad6400000 (2
MiB)
0x400000 -> 0xcff0e00000 (2
MiB)
0x600000 -> 0xddf9000000 (2
MiB)
0x800000 -> 0xd123800000 (2
MiB)
0xa00000 -> 0x23f3400000 (2
MiB)
0xc00000 -> 0x079a000000 (2
MiB)

= 24 KiB = 12 MiB

9

actually, a hugepage aware allocator is trivial

1. Allocate memory in 2 MiB chunks.

2. Use transparent hugepages to back those chunks with 2 MiB

3. Never talk to the kernel again.

(This is practical--sometimes!)

10

space efficient hugepage aware allocators are hard

11

challenge #1: demand oscillates wildly

12

challenge #2: emptying + density -> binpacking

13

challenge #3: mistakes can live forever

14

tcmalloc structure

15

stacked caches

16

spans back everything

17

most allocations are small, and so are most spans

18

change nothing but the page heap

● New(n) allocates a span of N pages

● Delete(S) returns a New’d span to the

allocator.

● Release(N) gives >=N unused pages

back to the OS

● All called rarely -> we have time to think

● Singlethreaded (and serialized!)

● Most allocators have an interface like this!

19

Temeraire: the design

20

even more stacked caches

21

slack and donation

22

how does the HugeFiller make decisions?

Goals:

● max P(hugepage becomes free) (return

memory to OS!)

● min fragmentation on page (each new

allocation creates slack!)

Values:

● Nearly-empty hugepages are precious

● Long free ranges are precious

● (very long free range -> emptier!)

23

HugeFiller tracks metadata per hugepage

● L, longest free range in pages

● A, total number of allocations
● U, total number of pages used

These are only inputs to the decision problem!

Note: a request K requires L>=K!

Prioritizing high A or high U promotes using full

pages

Prioritizing L promotes defragmentation!

24

A or U: which empties more pages?

Radioactive decay model says:

● Each object has independent halflife
● Dies with some probability p
● Allocation size is irrelevant
● (model is false, but highly useful)

L, longest free range in pages

A, total number of allocations

U, total number of pages used

Conclusion:

● p^5 << p

● A=1, U=10 is much more likely to empty than

A=5, U=5

We should favor A (backed by experimentation)

25

we favor fragmentation over fullness

26

best-fit: not just expensive, also a bad idea

For allocation of size 2, this is better:

than this:

not a new theoretical result!

Still surprised us.

27

results

28

staged rollout

● application case studies

● Global A/B test

● full gradual rollout

29

saved ~1.3% of cycles

30

saving memory in the process

31

virtuous cycles: hugepage coverage

Note: with periodic
release off, Temeraire
can’t do anything locally.

Systemwide effects:
● Less kernel-level

fragmentation
● Aggressive return at

hugepage level

32

thank you!

Thanks to: Tom Anderson, Atul Adya, Sanjay Ghemawat, Arvind Krishnamurthy, Martin Maas, Petros Maniatis,
Phil Miller, and many others

Contact us:

andrewhhunter@gmail.com

ckennelly@google.com

33

Temeraire Hunter, 2010-2021

34

