P3: Distributed Deep Graph
Learning at Scale

Swapnil Gandhi, Anand lyer

Microsoft Research

OSDI 2021

Graph Neural Networks

Graph Convolution Graph Convolution ?
4) 4)
?
?
Node
Classification

RelU SoftMax
/ > —— 7

Link Prediction

Graph
_ Y, N\ / Classification

Graph Neural Networks
Graph Structure: What (to propagate?)

Neural Network: How (information is transformed)

Input Graph 2-hop computation graph of A

2

GNN Training

Large Graphs New Models
Millions of nodes, Several proposals: GCN,
billions of edges GAT, GIN, ...

Hundreds or More sophisticated,
thousands of features complex architectures

Significant interest in distributed GNN training

Distributed Graph
Neural Networks

Distributed Graph Processing
Techniques

|

Distributed Neural Network
Techniques

Graph

Partitioning

—— LocalEdge --- CutEdge °

Distributed Graph
Processing
Techniques

Graph

Partitioning

\ M,

Edge-cut, vertex-cut, h

o

ybrid, .

N

—— Local Edge ---

Cut Edge °

|
4)
M
N
Gradient
Synchronization

- h
| 2@2 M4
\
1

Data
Samples

Data-parallel

Training

Distributed Neural
Network Processing
Techniques

/

Distributed Graph Neural Networks

O%O GNN Computational Graph Input Features —» Forward Pass <--Backward Pass <= Gradient Sync Embedding

4)

o

Partitioned

1 Graph Features/

. 552
20

J

\

J

.

Network overhead dominates epoch time,
rendering GPUs underutilized ~80% of the time

Partitioning is ineffective, and in many cases
counterproductive

P3 proposes push-pull parallelism, a new
technique for distributed GNN training that

effectively eliminatesthese overheads

P3: Pipelined Push Pull

Feature movements cause
dominant network traffic

Graph structure can be
compactly represented

Reduce data communicated
by avoiding feature movement

Existing systems consider
graph & features indivisible

Partition them as
single-entity

Independent Partitioning of
Graph & Features

10

Independent Partitioning

Graph Structure: Partitioned using random hash func
Features: Partitioned along feature dimension

M, M, M M,

Graph Structure Features
11

Independent Partitioning

Graph Structure: Partitioned using random hash func
Features: Partitioned along feature dimension

4 N)
M, 0 / M d /
4 4 9

Lo

Computation Graph Creation

—> | ocal .- » Remote

Structure moved
over network

Features not moved
over network

GetInNeighbors(E) GetInNeighbors(B)

- . gy,
- ~~

[/ b |

™

Hybrid Parallelism

I I N S S S -y

”’

Cannot use data
parallelism

Model parallelism

incurs overheads

P3 combines data
and model

I S S S S S S S .

Use Data
Parallelism

- s -

parallelism

I I
© ©
4
8
@@ﬁ,
$ o
m)
Q\ I
; \®

P3: Distributed Graph Neural Networks

P3: Distributed Graph Neural Networks

O\%/O GNN Computational Graph Input Features

— Forward Pass

<--Backward Pass

<=» Gradient Sync

Embedding

- ————

N

- ————

———— -

| D 2

Intra-Layer Model Parallelism

16

GNNs typically use small ' small intermediate
hidden dimensions activations

100
T M Feature @ Activation

S
m
<
2 "
(o JF=

<
58 50
= O
T o
=
€ 0
2 ©
£
S il |{-20

OGB-Product OGB-Paper OGB-Product OGB-Paper
GCN GraphSAGE

Enables faster training across range of GNN models and datasets

P3: Distributed Graph Neural Networks

O\%/O GNN Computational Graph

M,

=

=

Input Features —» Forward Pass <--Backward Pass <= Gradient Sync

Embedding

040 000 AT, (BE)
iEC

|
—
Q
<
D
=
—
<

0P oo =N
{ G

Layer 1y

Intra-Layer Model Parallelism

Data Parallelism

|
|
|
J

8

23: GNN Training

Hybrid Parallelism requires communication in
forward and backward pass

. Forward Pass Backward Pass —— Data Dependency

Mini-Batch B; Mini-Batch B,

P3: GNN Training

Communication results in computation stall

= Forward Pass

Backward Pass

i Stall —— Data Dependency

Mini-Batch B,

20

P3: Pipelining
Overlaps computation with communication
Improves performance by up to 50%

 Forward Pass Backward Pass

i Stall — Data Dependency

Weight Versions

e o)
e o)

(Y4 Y4)

W,

O e M M
bt e e e e

2

Stead; State

P3: Caching

Cache graph structure and/or features
Improves performance by up to 1.7x

jsijied]

sl

Structure : Partitioned
Feature : Partitioned

ol Tl
ol Sl

Structure : Cached
Feature : Partitioned

22

P3: API

P3 exposes a simple API for developers

partition()

scatter()
gather()
transform()
sync()
apply()

Independently partition graph and features,

and cache if possible
Generate message vector

Aggregate message vector

Compute partial activation

Accumulate partial activation

ompute output activation

P3: Distributed Deep Graph Learning at Scale

Swapnil Gandhi*
Microsoft Research

Abstract
Graph Neural Networks (GNNs) have gained significant atten-

Anand Padmanabha Iyer
Microsoft Research

of a graph) [8]. To do these tasks, GNNs combine feature in-
formation with graph structure o leam representations—low-
dimensional vector embeddings—of nodes. Thus, learning

tion in the recent past, and become one of the fastest growing
subareas While architee-
tares have been proposed, th scale of real-world graphs—in
many cases billions of nodes and
during model training. In this paper, we present P, a sys-
tem that focuses on scaling GNN model training 1o large
real-world graphs in a distributed seting. We observe that
scalability challenges in ‘GNNs are fundamentall;

different from that in rsining classical deep neural networks
and distributed graph processing; and that commonly used
Lechniques,sucha gt partionng o the eraph do ot
yield desired results. Based on this observation, P* proposes
anew approach for distrbuted GNN training. Our approach

is the key goal of GNNs. Several novel
‘GNN architectures exist today, including GraphSAGE [24],
Graph Convolution Networks (GCNs) [17,41] and Graph
Autention Networks (GATS) [59], While cach have their own
unique advantages,they fundamentaly differ in how the graph
learn the embeddings and wh

ork transformations are used to aggregate
information [64],

Ata high level, GNNs learn embeddings by combining
iterative graph propagation and DNN aperations (e.&.. ma-
i mulplicaton a convoluion. The gaph s

o propagate and neural networks

i neural et
ighborhood

effectively eliminates high
overheads, and couples it it anew pipelined push pull p.\.,
allelism based exccution strategy for fast model training. P
exposes a simple AP that captures many different classes
of GNN architeetures for generality. When further combined
withaa simple caching

able

rategy, our evaluation shows that P is

e done. Fach nod creates a k-hop
computation graph based on its neighborhood. and uses their
features to leam its embeding. One of the key diffeent

betwween training GNNs and DNNs i the presence of depen
dencies among data samples: while traditional DNNs train
on sampls thtare unILymv(k of exch oer (.- g
u ected struct ur

tors

frameworks by up o 7.
1 Introduction

ecp aming. i he fom of Deep Nurl Ntworks (DNNS),

has become the de-facto tool for several chall

ber, s common 1o have a ke mumber o dene fs
ncociated wih cvry node—ranging from 1008 t0 several
1000 [29,66,65]—in th Duc o thi, the k-hop com-
sraphs created by cach node can be prohibitively

i 1241 help

oms i diverse fldssuch as compuner viion 27, Wm
seogntion 25 s el epageprocesin 15, e
they have produced results on par with human experts [9].
I e vechny pa thre hs bien 3 sigificant eret
‘Graph Neural Networks (GNNs)—neural networks that op-
erate on graph simuctured data—which has made them one
of the fastst growing subarcas i decp learning [25]. Due to

the expressiveness of graphs in capturing the rich telational
information between input clements, GNNs have enabled
breskhroughsin many imporant domainsinclin recom

10 some extend, but depending on the eraph structure, even
‘a sampled computation graph and associated features may
not fit i the memory of asingle GPU, making scalabilit
e in training GNNs [71], With the prevale
of btk o, i billns of e s, I acdein
e st 155, cabling GNN g v 3 ited
fashion' is an important and challenging probl
T his pape, . ropone P s sy that enabls -
ficient distributed taining of GNNs on large input grap
P is motiated by thee key observarions. First, due to the
we find that

fundamental iss

mendaton sy (5 53], and drug.
Geovery 116,58
he nodes in the input

T ONN.
it s ad bl Typcl ks n GNNs nclue o
classification (predicting the class label of a node) [41], link
preicion prdictng the oty of ink brwcen given

ph are associated

@ major fraction of fime is spent in network communication
10 generate the embedding computation graph with features
‘Second, we notice that relying on distributed graph processing
techniques such as advanced partiioning schemes, while use.
ful in the context of graph processing, do not benefit GNNs

nodes) [70 the class el

Using more tha one machin, cach with o mars GPUs

23

Implementation & Evaluation

* Implemented on Deep Graph Library (DGL) v0.5
* Uses PyTorch v1.6

* Evaluated using 16 NVIDIA Tesla P100 GPUs
* OGN-Product: 123M edges, |[F|=100
= OGN-Paper: 1.6B edges, |F|=128
» UK-2006-05: 2.9B edges, |F|=256

e Several GNN architectures

* GCN [NeurlPS "16]
* GraphSAGE [NeurlPS "17]

24

P3 Performance

_____ \\\\

(s) awi] yood3 abesany

P3 Scaling

GraphSAGE | OGB-Paper

30
2 =#DGL &P 26.38
0 |
E -
= 20 -
a— i
v
o _
Q. i
m —
2 10 -
E _
o 1 3.14
2 : y S e — A 4‘/5.‘53
0 1 548 232 249 311 37/
16 32 64 128 256 512

Features

P3 Shortcomings

Average Epoch Time (s)

150

Y
(=
o

n
o

GraphSAGE | OGB-Paper | Feature Size: 128

=DGL 4P 123.72
114.67

97.21

t [[= = —1i - —— —
1 8936 8935 8987 9054 90.7 90.18 90.73 91.29
| -

11.67 13.86

16 32 48 64 80 96 112 128

#Hidden Dimension

More evaluation in the paper

* GNN Models: GAT [ICLR"18], SGCN [ICML'19]

* Larger Datasets: UK-Union (|E|=5.5B), Facebook (|[E|=10B

* Study impact of
Sampling

Partitioning Strategies
Number of Layers
Pipelining

Caching

* Scaling Characteristics
« Comparison with ROC [MLSys'20]

P

Swapnil Gandhi*
Microsoft Research

Abstract

Graph Neural r\emmk\ (GNNs) have gained significant atten-
tion in the
bareas i deep earing, W hile severl new GNN rehiee.
tures have been proposed, the s world graphs—in
nany cases billons of ndes and eds poscs challenges
during model training. In this paper, we present P
tem that focuscs on scaling GNN model training to large
real-world graphs in a distributed setting. We observe that
scalability challenges in training GNNs are fundamentally
different from that n training classical deep neural networks
and distributed graph processing; and that commonly used
techniques, such as intelligent partitioning of the graph do not
yield desired results. Based on this observation, P* proposes
anew approach for distributed GNN 1 ur approach
effectively eliminates high communication and partitioni
overheads, and couples it with a new pipelined push-pull par-
allelism based execution strategy for fast model training. P
exposes a smple AP tht captures many difrent clsses
of GNN architectures for generality. When further combined
with a simple caching strateg
ble 10 utperform exising aae-of-he
works by up t0 7

ourevaluation shows that P is
distributed GNN.

1 Introduction

learning, in the form of Deep Neural Networks (DNN)
has become the de-facto tool for several challengi

o in divere felds such s computer ision [27], speech
recognition [28] and natural lang ssing [1

they have produced resuls on e \wl\ human experts (9]
In the recent past, there has b cant interest in
Graph Neuril Networke (GNNay ncurd] networks that op-
erate on graph siructured data—which has made them one
of the fastest growing subareas in deep learing [25]. Due to
the expressivenes of graphs ncaptring th i elatiosl
information between input elements, GNNs have enabled
breakihroughs in many important domains mkludmg recom-
mendation systems [51,66], knowledge graphs [
discovery 146,5)

In a GNN, the nodes in the input graph are associated
‘with features and labels. Typical tasks in GNNs include node
classification (predicting the class label of a node) [41], link
prediction (predicting the possibility of a link between given
nodes) (70] and graph classification (predicting the class label

pplica-

Work done dur arch

Sotcenship st Miceosof Res

: Distributed Deep Graph Learning at Scale

Anand Padmanabha Iyer
Microsoft Research

of a graph) [8]. To do these tasks, GNNs combine feature in-
formation with graph structure to lean represeniations—low-
dimensional vector embeddings—of nodes. Thus, leari
such deep encodingsis the key goal of GNNs. Several novel
GNN architectures exist today, including GraphSAGE [24],
Graph Convolution Networks (GCNs) [17, 411 and Graph
Attention Networks (GAT) [59]. While e their own
unique advantages, they fundamentally differin how the graph
smeture s e 0 leam the cmbeddings and it neurl et
e neighborhood

work transformations are used t
information [64]

ta high level, GNNs leam embeddings by combining
iterative graph propagation and DNN operations (e.g.. ma-
trix multiplication and convolution). The graph structure is
used to determine what 1o propagate and neural networks
direct how aggregations are done. Each node creates a k-hop
computation graph based on it neighborhood, and uses their
features o lean its rmbeddmg One of the key differentiators
between training GNNs and DNN is the prasence of depen-
dencies among data mmph\ while traditional DNNs train
on samples that are independent of each other (¢.g., images),

structure of graj Fur.

ther, itis common to m»e a large number of dense features
associated with ever ing from 100s to several
10000 25.66,65-—in the e graph. Due to this, the k-hop com-
putation graphs created by each node can be prohibitively
lurge. Techniques such as neighborhood sampling [24] help
to some extend, but depending on the graph structure, even
a sampled computation graph and associated features may
not fitin the memory of a single GPU, making scalability a
Hnul,\me\mﬂ e nrning GNN:
of large

s an important and ch
ln this paper, we propose 7%, a system that enables ef-
ficient distributed training of GNNs on large input graphs.
P is motivated by three key observations. First, due to the
data dependency, we find that in distributed raining of GNN,
a major fraction of time is spent in network communication
10 generate the embedding computation graph with features
Second, we notice that relying on distributed graph processing
techniques such as advanced partitioning schemes, while use-
fulin the context of graph processing, do not benefit GNNs

Using more than one machine, each with | or more GPUs
tor ipelined Push-al

28

Takeaway

= Distributed training of graph neural networks increasingly
Important

* Frameworks = Graph Processing + DNN Training
* Incur high network communication and partitioning overhead

= P3 eliminates the overheads with distributed GNN training
 Independent partitioning of graph structure and features
* Hybrid parallelism combined with pipelining and caching
« Simple API for users

Thank you!
https://swapnilgandhi.com

29

