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Graph Neural Networks
Graph Structure: What (to propagate?)

Neural Network: How (information is transformed)

Input Graph 2-hop computation graph of A
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GNN Training

Large Graphs New Models
Millions of nodes, Several proposals: GCN,
billions of edges GAT, GIN, ...

Hundreds or More sophisticated,
thousands of features complex architectures

Significant interest in distributed GNN training
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Distributed Graph Neural Networks

O%O GNN Computational Graph Input Features —» Forward Pass <--Backward Pass <= Gradient Sync Embedding
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Network overhead dominates epoch time,
rendering GPUs underutilized ~80% of the time

Partitioning is ineffective, and in many cases
counterproductive

P3 proposes push-pull parallelism, a new
technique for distributed GNN training that

effectively eliminatesthese overheads




P3: Pipelined Push Pull

Feature movements cause
dominant network traffic

Graph structure can be
compactly represented

Reduce data communicated
by avoiding feature movement

Existing systems consider
graph & features indivisible

Partition them as
single-entity

Independent Partitioning of
Graph & Features
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Independent Partitioning

Graph Structure: Partitioned using random hash func
Features: Partitioned along feature dimension
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Independent Partitioning

Graph Structure: Partitioned using random hash func
Features: Partitioned along feature dimension
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Computation Graph Creation
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Hybrid Parallelism
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Cannot use data
parallelism

Model parallelism

incurs overheads

P3 combines data
and model
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P3: Distributed Graph Neural Networks




P3: Distributed Graph Neural Networks

O\%/O GNN Computational Graph Input Features

— Forward Pass
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GNNs typically use small ' small intermediate
hidden dimensions activations
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Enables faster training across range of GNN models and datasets



P3: Distributed Graph Neural Networks

O\%/O GNN Computational Graph
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23: GNN Training

Hybrid Parallelism requires communication in
forward and backward pass

. Forward Pass Backward Pass —— Data Dependency

Mini-Batch B;  Mini-Batch B,



P3: GNN Training

Communication results in computation stall

= Forward Pass

Backward Pass

i Stall —— Data Dependency

Mini-Batch B,
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P3: Pipelining
Overlaps computation with communication
Improves performance by up to 50%

 Forward Pass Backward Pass

i Stall — Data Dependency
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P3: Caching

Cache graph structure and/or features
Improves performance by up to 1.7x
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P3: API

P3 exposes a simple API for developers

partition()

scatter()
gather()
transform()
sync()
apply()

Independently partition graph and features,

and cache if possible
Generate message vector

Aggregate message vector

Compute partial activation

Accumulate partial activation

ompute output activation
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Graph Neural Networks (GNNs) have gained significant atten-
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of a graph) [8]. To do these tasks, GNNs combine feature in-
formation with graph structure o leam representations—low-
dimensional vector embeddings—of nodes. Thus, learning

tion in the recent past, and become one of the fastest growing
subareas While architee-
tares have been proposed, th scale of real-world graphs—in
many cases billions of nodes and
during model training. In this paper, we present P, a sys-
tem that focuses on scaling GNN model training 1o large
real-world graphs in a distributed seting. We observe that
scalability challenges in ‘GNNs are fundamentall;

different from that in rsining classical deep neural networks
and distributed graph processing; and that commonly used
Lechniques,sucha gt partionng o the eraph do ot
yield desired results. Based on this observation, P* proposes
anew approach for distrbuted GNN training. Our approach

is the key goal of GNNs. Several novel
‘GNN architectures exist today, including GraphSAGE [24],
Graph Convolution Networks (GCNs) [17,41] and Graph
Autention Networks (GATS) [59], While cach have their own
unique advantages,they fundamentaly differ in how the graph
learn the embeddings and wh

ork transformations are used to aggregate
information [64],

Ata high level, GNNs learn embeddings by combining
iterative graph propagation and DNN aperations (e.&.. ma-
i mulplicaton a convoluion. The gaph s

o propagate and neural networks

i neural et
ighborhood

effectively eliminates high
overheads, and couples it it anew pipelined push pull p.\.,
allelism based exccution strategy for fast model training. P
exposes a simple AP that captures many different classes
of GNN architeetures for generality. When further combined
withaa simple caching

able

rategy, our evaluation shows that P is
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features to leam its embeding. One of the key diffeent
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Implementation & Evaluation

* Implemented on Deep Graph Library (DGL) v0.5
* Uses PyTorch v1.6

* Evaluated using 16 NVIDIA Tesla P100 GPUs
* OGN-Product: 123M edges, |[F|=100
= OGN-Paper: 1.6B edges, |F|=128
» UK-2006-05: 2.9B edges, |F|=256

e Several GNN architectures

* GCN [NeurlPS "16]
* GraphSAGE [NeurlPS "17]

24



P3 Performance
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P3 Scaling

GraphSAGE | OGB-Paper
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P3 Shortcomings
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More evaluation in the paper

* GNN Models: GAT [ICLR"18], SGCN [ICML'19]

* Larger Datasets: UK-Union (|E|=5.5B), Facebook (|[E|=10B

* Study impact of
Sampling

Partitioning Strategies
Number of Layers
Pipelining

Caching

* Scaling Characteristics
« Comparison with ROC [MLSys'20]
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tion in the
bareas i deep earing, W hile severl new GNN rehiee.
tures have been proposed, the s world graphs—in
nany cases billons of ndes and eds poscs challenges
during model training. In this paper, we present P
tem that focuscs on scaling GNN model training to large
real-world graphs in a distributed setting. We observe that
scalability challenges in training GNNs are fundamentally
different from that n training classical deep neural networks
and distributed graph processing; and that commonly used
techniques, such as intelligent partitioning of the graph do not
yield desired results. Based on this observation, P* proposes
anew approach for distributed GNN 1 ur approach
effectively eliminates high communication and partitioni
overheads, and couples it with a new pipelined push-pull par-
allelism based execution strategy for fast model training. P
exposes a smple AP tht captures many difrent clsses
of GNN architectures for generality. When further combined
with a simple caching strateg
ble 10 utperform exising aae-of-he
works by up t0 7

ourevaluation shows that P is
distributed GNN.

1 Introduction

learning, in the form of Deep Neural Networks (DNN)
has become the de-facto tool for several challengi

o in divere felds such s computer ision [27], speech
recognition [28] and natural lang ssing [1

they have produced resuls on e \wl\ human experts (9]
In the recent past, there has b cant interest in
Graph Neuril Networke (GNNay ncurd] networks that op-
erate on graph siructured data—which has made them one
of the fastest growing subareas in deep learing [25]. Due to
the expressivenes of graphs ncaptring th i elatiosl
information between input elements, GNNs have enabled
breakihroughs in many important domains mkludmg recom-
mendation systems [51,66], knowledge graphs [
discovery 146,5)

In a GNN, the nodes in the input graph are associated
‘with features and labels. Typical tasks in GNNs include node
classification (predicting the class label of a node) [41], link
prediction (predicting the possibility of a link between given
nodes) (70] and graph classification (predicting the class label
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of a graph) [8]. To do these tasks, GNNs combine feature in-
formation with graph structure to lean represeniations—low-
dimensional vector embeddings—of nodes. Thus, leari
such deep encodingsis the key goal of GNNs. Several novel
GNN architectures exist today, including GraphSAGE [24],
Graph Convolution Networks (GCNs) [17, 411 and Graph
Attention Networks (GAT) [59]. While e their own
unique advantages, they fundamentally differin how the graph
smeture s e 0 leam the cmbeddings and it neurl et
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work transformations are used t
information [64]

ta high level, GNNs leam embeddings by combining
iterative graph propagation and DNN operations (e.g.. ma-
trix multiplication and convolution). The graph structure is
used to determine what 1o propagate and neural networks
direct how aggregations are done. Each node creates a k-hop
computation graph based on it neighborhood, and uses their
features o lean its rmbeddmg One of the key differentiators
between training GNNs and DNN is the prasence of depen-
dencies among data mmph\ while traditional DNNs train
on samples that are independent of each other (¢.g., images),

structure of graj Fur.

ther, itis common to m»e a large number of dense features
associated with ever ing from 100s to several
10000 25.66,65-—in the e graph. Due to this, the k-hop com-
putation graphs created by each node can be prohibitively
lurge. Techniques such as neighborhood sampling [24] help
to some extend, but depending on the graph structure, even
a sampled computation graph and associated features may
not fitin the memory of a single GPU, making scalability a
Hnul,\me\mﬂ e nrning GNN:
of large

s an important and ch
ln this paper, we propose 7%, a system that enables ef-
ficient distributed training of GNNs on large input graphs.
P is motivated by three key observations. First, due to the
data dependency, we find that in distributed raining of GNN,
a major fraction of time is spent in network communication
10 generate the embedding computation graph with features
Second, we notice that relying on distributed graph processing
techniques such as advanced partitioning schemes, while use-
fulin the context of graph processing, do not benefit GNNs

Using more than one machine, each with | or more GPUs
tor ipelined Push-al
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Takeaway

= Distributed training of graph neural networks increasingly
Important

* Frameworks = Graph Processing + DNN Training
* Incur high network communication and partitioning overhead

= P3 eliminates the overheads with distributed GNN training
 Independent partitioning of graph structure and features
* Hybrid parallelism combined with pipelining and caching
« Simple API for users

Thank you!
https://swapnilgandhi.com
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