POLYJUICE: High-Performance

Transactions via Learned Concurrency Control

Jiachen Wang, DING DING, Huan Wang, Conrad Christensen,
Zhaoguo Wang, Haibo Chen and Jinyang Li

ddin nyu.edu ARTIFACT ARTIFACT ARTIFACT

EVALUATED EVALUATED EVALUATED
usenix usenix

AAAAAAAAAAAAAAAAAAAAAA

REPRODUCED

AVAILABLE

Concurrency control ensures tx serializability

Tx-1

7

Concurrency control (CC)

Tx-2

4

Tx-3

7

* Transactions provides the
abstraction of ACID.

e Concurrency control (CC)
ensures Isolation (serializability).

CC is crucial to database performance

e CC acts like a scheduler by controling how concurrent executions interleave.
* Maximize interleaving --> better performance.

Tx-2 Tx-2

Read(TABLE1, x) Read(TABLE1, x)

Write(TABLEZ, x, 2)

Write(TABLE2, y, v) Write(TABLE2, y, v)

Write(TABLE2, y, 2)

Write(TABLEL, x, 2)

Write(TABLE2, y, 2)

One interleaving Another more efficient interleaving

No one CC algorithm fits all

* Some CC performs better than others for a specific workload.

IC3 IC3

throughput

high contention low contention

Federated CC?

* A coarse-grained approach to combine a few known CC algorithms.

* Weaknesses
* Cumbersome: requires manually partitioning of the workload.
e Suboptimal: uses a single CC within each partition.

——————————————————————————————————————

Tebaldi [SIGMOD’17] CormCC [ATC’ 18]

Our approach:
CC as a fine-grained learning task

* Model CC as a policy function, inspired by reinforcement learning.
f: state - action

* Ensure correctness separately by validation.

e . state of (\
[\‘, execution

i v = Read(TABLE1, x) L CC pohcy
v=v+l . ~—_—| f:state - action

action K)

Polyjuice: CC as a policy table

* Represent a CC policy as a table.

T \ state of f \/

| v=Read(TABLEL,x) | execution state 1
l > .

L v=v+l | CC policy state 2
' ! ~—_

. Write(TABLE2,y,v) | action

state n

Challenge: designing the policy table

What should be the states?

<

What should be the actions?

A
4 \
O o
C"\o N C‘\o v (’5'\0(\(\
(4 (2 o ()
R S\ =\

state 1

state 2

state n

Goal: design should be able to encode existing CC algorithms.

Polyjuice: state space

@ Goal Solution

State consists of:
Differentiate state that » 1. The type of transaction being executed.
require different CC actions. 2. The data access of the transaction being executed.

Polyjuice: state space

Workload
CC Policy
type: t1 type: t2 & O
e . e . &L o> &L Y %C’S\OZQ
access 1: | v= Read(TABLEL, x) E access 1: ' Write(TABLE1, x, 2) : < < SN
: : . : » Ny : \
i v=v+1 i access 2: :\ erte(TABLEZ, Y, 2) ,: tl’ S
access 21\ Write(TABLE2,y,v) ;| t1, adeiRs 2
____________________ > 4rows

t2, access 1

t2, atcusd2 J

Polyjuice: state space

Tx-1: type tl

v = Read(TABLE1, x)

CC Policy
oS o0
S 0 S
Q Q Q
\.\\ \.\\ \}\

t1, access 1

t1, access 2

t2, access 1

t2, access 2

11

Polyjuice: state space

Tx-1: type tl

V= Read(TABLEl’ X) \
t1, access 1

t1, access 2

t2, access 1

t2, access 2

CC Policy
. o(\ o
=) =) N\

12

Polyjuice: state space

Tx-1: type tl Tx-2: type t2
CC Policy
v = Read(TABLEL, x) @"} ®<:<‘°Zm ®<:<\°°o
Q < 2
= = SN

t1, access 1

Write(TABLEZ, x, 2)

t1, access 2

t2, access 2 ’ ‘ ‘

Polyjuice: action space

@ Goal

Exert control
on the interleaving.

Action space should be able to encode
most existing CC algorithms.

14

Polyjuice: action space

@ Goal Solution

Exert control Expose these knobs of control: .
on the interleaving. » * Whether to wait, and how long:

* Which versions of data to read?
* Whether to make a dirty write visible?
 Whether to validate now, prior to commit?

Wait action choices

Used by OCC.
* No wait. Used by 2PL.

* Wait until dependent transactions commit.

* Wait until dependent transactions finish execution up to some point.

Callas RP[SOSP’15],
DRP[Eurosys’19].

How to realize different wait choices in one implementation?

Used by IC3[SIGMOD’16],

16

Wait choices: wait commit

Tx-1: type t1
]

Tx-2: type t2
Dep=[Tx-1]

Dep=[

Tx tracks its current

v = Read(TABLE1, x) fracks 1 <t
ependencies.

v=v+1

[JY S ——

Read(TABLE1, x)

Write(TABLE2, y,v) |
----------------------- ~ Per-object access list tracks

reads/writes of ongoing txs. Write(TABLE1, x, 2)

——— Tx-1 Tx-2
v
X =0 — | read write=2

AY
~

17

Wait choices: wait commit

v=v+1

AY
~

v = Read(TABLE1, x)

Write(TABLE2, y, v)

Tx-1: type t1 Tx-2: type t2

D EERECEEEEEEEES . Dep=[] Dep=[Tx-1]

-

Tx-1
read

Tx-2
write=2

|

&
Write(TABLE1, x, 2) g Q

t1, access 1 v v
t1, access 2 v v
t2, access 1 v v

Write(TABLE2, y, v)

Write(TABLE2, y, 2)

18

Wait choices: no-wait

Tx-2: type t2
Dep=[Tx-1]

Tx-1: type t1
]

Dep=[

v = Read(TABLE1, x)

v=v+1 Write(TABLE2, v, 2)
M / Read(TABLE1, x) per—
. Write(TABLE2, y,v) | Y
S . &
Write(TABLE1, x, 2) <> <
Database: t1, access 1 % X
— Tx-1 Tx-2
x=0 | read write=2 t1, access 2 X X
S Write(TABLE2, y, 2
y=0 (v, 2) t2, access 1 X X

0 NN
z=0 Write(TABLE2, y, v) t2, access 2

19

Wait choices: fine-grained wait

Tx-1: type t1
]

Tx-2: type t2
Dep=[Tx-1]

Dep=[

v = Read(TABLE1, x)

v=v+1

[JY S ——

| Read(TABLE1, x) i
. Write(TABLE2,y,v) | CC Policy

_______________________ X X
No wait. W Ny
Write(TABLE1, x, 2) > @

AY
~

Database: t1, access 1 [0 1
— Tx-1 Tx-2
\/
X =0 — | read write=2 t1, access 2 0 0
B Write(TABLE2, y, 2
y=0 (v, 2) t2, access 1 O
20
z=0 Write(TABLE2, y, v) t2, access 2
v

Wait for all t1

txs’ access-2
to finish.

20

Read action: 2 choices

Used by OCC.

e Read latest committed version.

* Polyjuice is a single-version database.
Used by IC3[SIGMOD’16],

* Read the latest published dirty version. Callas RP[SOSP'15],
DRP[Eurosys’19].

Write action: 2 choices

» Keep the dirty write in the private buffer.

* Publish the dirty write.
e Cumulative: all buffered are published.

Validation: 2 choices

* Whether or not to validate after this access.
* There is always a final validation prior to commit.
* Polyjuice’s validation is based on Silo[SOSP’13]'s protocol.

Polyjuice: state and action space

CC Policy .
& o eé*
< : o SO
& & ¥ &
& *O’b &(be
t1, access 1
t1, access 2 0 2 X v v

tn, access m

* Can encode most existing CC algorithms.
* Enable novel interleavings not permitted by existing CCs.

Optimize policy for a given workload

CC policy

Workload
trace

7

¥

Emulate
workload

Measure
throughput

CC performance
(throughput)

26

Optimize policy for a given workload

CC policy 1
—) " mmmmp CC-1 throughput i

[]
CCpolicy2 mmmp .’ mmmm) CC-2 throughput ‘ T
[4

=SS0 Do

Evolutionary Algorithm
CC policy n

“‘ mmmm) CC-n throughput /

New generation of CC policies

Evaluation

* How does Polyjuice compare to tradition and federated CC?
* Can Polyjuice find novel interleavings?

Throughput (Ktps)

Polyjuice outperforms existing CCs

under high and moderate contention
* Setup: 48-threads, TPC-C (3 read-write txns)

400

300

200

_B

Polyjuice

2PL

OCC Tebaldi

1 warehouse
(high contention)

IC3

CormCC

Throughput (Ktps)

2000

g
o

b
[=]
o
o

b=
S

0

Polyjuice

2PL OCC Tebaldi

8 warehouse
(moderate contention)

IC3

CormCC

29

Polyjuice finds a more efficient interleaving

NewOrder Payment NewOrder Payment

R(Warehouse) R(Warehouse)

RW(Warehouse) RW(Warehouse)

RW(Stock) RW(Stock)

RW/(Customer)

R(Customer) R(Customer)

RW/(Customer)

IC3’s interleaving Polyjuice’s interleaving

30

Conclusion

 We model CC as a learning task that optimizes policy for a workload

* Polyjuice’s policy table design can:
* encode existing CCs
* allow new interleaving

* Polyjuice can outperform existing fixed and federated CC

https://github.com/derFischer/Polyjuice

https://github.com/derFischer/Polyjuice

