
POLYJUICE: High-Performance
Transactions via Learned Concurrency Control

Jiachen Wang, DING DING, Huan Wang, Conrad Christensen,
Zhaoguo Wang, Haibo Chen and Jinyang Li

dding@nyu.edu

1

Concurrency control ensures tx serializability

Tx-1 Tx-2 Tx-3

Concurrency control (CC)

database

• Transactions provides the
abstraction of ACID.

• Concurrency control (CC)
ensures Isolation (serializability).

2

CC is crucial to database performance
• CC acts like a scheduler by controling how concurrent executions interleave.
• Maximize interleaving --> better performance.

Read(TABLE1, x)

Tx-1

Write(TABLE1, x, 2)

Write(TABLE2, y, 2)

Tx-2

Write(TABLE2, y, v)

One interleaving

Read(TABLE1, x)

Tx-1

Write(TABLE1, x, 2)

Write(TABLE2, y, 2)

Tx-2

Write(TABLE2, y, v)

Another more efficient interleaving
3

• Some CC performs better than others for a specific workload.

th
ro

ug
hp

ut

low contentionhigh contention

No one CC algorithm fits all

2PL OCC

IC3
2PL

OCC

IC3

4

Federated CC?
• A coarse-grained approach to combine a few known CC algorithms.
• Weaknesses
• Cumbersome: requires manually partitioning of the workload.
• Suboptimal: uses a single CC within each partition.

OCC 2PL

Tebaldi [SIGMOD’17]

Txn-type
t1

Txn-type
t2

CormCC [ATC’ 18]

Data Partition
d2

OCC

2PL

Data Partition
d1

5

Our approach:
CC as a fine-grained learning task
• Model CC as a policy function, inspired by reinforcement learning.

CC policy
state of

execution

actionValidate
before commit

f: state → action

• Ensure correctness separately by validation.

f: state → action

v = Read(TABLE1, x)

v = v + 1

Write(TABLE2, y, v)

6

Polyjuice: CC as a policy table
• Represent a CC policy as a table.

state 1

state 2

…

state n

Actio
n n

Actio
n 2

…
Actio

n 1

CC policy

state of
execution

action

v = Read(TABLE1, x)

v = v + 1

Write(TABLE2, y, v)

7

state 1

state 2

…

state n

actio
n

type nactio
n

type 2 …actio
n

type 1

What should be the states?

What should be the actions?

Goal: design should be able to encode existing CC algorithms.

Challenge: designing the policy table

8

Differentiate state that
require different CC actions.

State consists of:
1. The type of transaction being executed.
2. The data access of the transaction being executed.

SolutionGoal

Polyjuice: state space

9

Polyjuice: state space

actio
n

type nactio
n

type 2 …actio
n

type 1

Workload

4 rows

v = Read(TABLE1, x)

v = v + 1

Write(TABLE2, y, v)

type: t1 type: t2

CC Policy

t1, access 1

t1, access 2

t2, access 1

t2, access 2

Write(TABLE1, x, 2)

Write(TABLE2, y, 2)

access 1:

access 2:

access 1:

access 2: state 1

state 2

…

state n

10

Polyjuice: state space

v = Read(TABLE1, x)

Tx-1: type t1

t1, access 1

actio
n

type nactio
n

type 2 …actio
n

type 1

t1, access 2

t2, access 1

CC Policy

t2, access 2

11

Polyjuice: state space

v = Read(TABLE1, x)

Tx-1: type t1

t1, access 1

actio
n

type nactio
n

type 2 …actio
n

type 1

t1, access 2

t2, access 1

CC Policy

t2, access 2

12

Polyjuice: state space

v = Read(TABLE1, x)

Write(TABLE1, x, 2)

Tx-1: type t1 Tx-2: type t2

t1, access 1

actio
n

type nactio
n

type 2 …actio
n

type 1

t1, access 2

t2, access 1

CC Policy

t2, access 2

13

POLYJUICE

Action space should be able to encode
most existing CC algorithms.

Polyjuice: action space

Exert control
on the interleaving.

Goal

14

Exert control
on the interleaving.

Expose these knobs of control:
• Whether to wait, and how long?
• Which versions of data to read?
• Whether to make a dirty write visible?
• Whether to validate now, prior to commit?

SolutionGoal

Polyjuice: action space

15

Wait action choices

• No wait.
• Wait until dependent transactions commit.
• Wait until dependent transactions finish execution up to some point.

Used by 2PL.

Used by IC3[SIGMOD’16],
Callas RP[SOSP’15],

DRP[Eurosys’19].

Used by OCC.

How to realize different wait choices in one implementation?

16

Read(TABLE1, x)

Database:

z = 0

y = 0

x = 0

Tx-1: type t1 Tx-2: type t2

v = Read(TABLE1, x)

v = v + 1

Write(TABLE2, y, v)

type: t1 type: t2

Write(TABLE1, x, 2)

Write(TABLE2, y, 2)

Per-object access list tracks
reads/writes of ongoing txs.

Tx tracks its current
dependencies.

Dep=[] Dep=[]

Tx-1
read

Write(TABLE1, x, 2)

Tx-2
write=2

Tx-1

Wait choices: wait commit

17

Read(TABLE1, x)

Tx-1: type t1 Tx-2: type t2

v = Read(TABLE1, x)

v = v + 1

Write(TABLE2, y, v)

type: t1 type: t2

Write(TABLE1, x, 2)

Write(TABLE2, y, 2)

Dep=[] Dep=[]

Write(TABLE1, x, 2)

Tx-1

Write(TABLE2, y, 2)

t1, access 1

Wait

t2 Wait

t1

t1, access 2

t2, access 1

CC Policy

t2, access 2

ü ü

ü ü

ü ü
ü ü

Write(TABLE2, y, v)

commit

Database:

z = 0

y = 0

x = 0
Tx-1
read

Tx-2
write=2

18

Wait choices: wait commit

Read(TABLE1, x)

Tx-1: type t1 Tx-2: type t2

v = Read(TABLE1, x)

v = v + 1

Write(TABLE2, y, v)

type: t1 type: t2

Write(TABLE1, x, 2)

Write(TABLE2, y, 2)

Dep=[] Dep=[]

Write(TABLE1, x, 2)

Tx-1

Write(TABLE2, y, 2)

t1, access 1

Wait

t2 Wait

t1

t1, access 2

t2, access 1

CC Policy

t2, access 2

û

Write(TABLE2, y, v)

Database:

z = 0

y = 0

x = 0
Tx-1
read

Tx-2
write=2

û
û û
û û

ûû

19

Wait choices: no-wait

Read(TABLE1, x)

Tx-1: type t1 Tx-2: type t2

v = Read(TABLE1, x)

v = v + 1

Write(TABLE2, y, v)

type: t1 type: t2

Write(TABLE1, x, 2)

Write(TABLE2, y, 2)

Dep=[] Dep=[]Tx-1

Database:

z = 0

y = 0

x = 0
Tx-1
read

Tx-2
write=2

Write(TABLE1, x, 2)

Write(TABLE2, y, 2)

t1, access 1

Wait

t2 Wait

t1

t1, access 2

t2, access 1

CC Policy

t2, access 2

No wait.

Wait for all t1
txs’ access-2
to finish.

0 1
0 0
0 0

22Write(TABLE2, y, v)

20

Wait choices: fine-grained wait

Read action: 2 choices

• Read latest committed version.
• Polyjuice is a single-version database.

Used by OCC.

• Read the latest published dirty version.
Used by IC3[SIGMOD’16],

Callas RP[SOSP’15],
DRP[Eurosys’19].

22

Write action: 2 choices

• Keep the dirty write in the private buffer.
• Publish the dirty write.
• Cumulative: all buffered are published.

23

Validation: 2 choices

• Whether or not to validate after this access.
• There is always a final validation prior to commit.
• Polyjuice’s validation is based on Silo[SOSP’13]'s protocol.

24

CC Policy

read-dirt
y?

write
-visib

le?

va
lid

ate
-early

?

wait t
1

wait …

t1, access 1

t1, access 2

tn, access m

…

wait tn

0 2… û ü

• Can encode most existing CC algorithms.
• Enable novel interleavings not permitted by existing CCs.

Polyjuice: state and action space

ü

25

Workload
trace

CC policy

CC performance
(throughput)

Measure
throughput

Emulate
workload

Optimize policy for a given workload

26

CC-1 throughput

CC-2 throughput

CC-n throughput

…
Evolutionary Algorithm

New generation of CC policies

CC policy 1

CC policy 2

CC policy n

Optimize policy for a given workload

27

Evaluation

• How does Polyjuice compare to tradition and federated CC?
• Can Polyjuice find novel interleavings?

28

Polyjuice outperforms existing CCs
under high and moderate contention

Th
ro

ug
hp

ut
 (K

tp
s)

1 warehouse
(high contention)

45%

Th
ro

ug
hp

ut
 (K

tp
s)

8 warehouse
(moderate contention)

19%

• Setup: 48-threads, TPC-C (3 read-write txns)

29

Polyjuice finds a more efficient interleaving

30

R(Warehouse)

NewOrder

RW(Warehouse)

RW(Customer)

Payment

RW(Stock)

IC3’s interleaving

R(Customer)

R(Warehouse)

NewOrder

RW(Warehouse)

RW(Customer)

Payment

RW(Stock)

Polyjuice’s interleaving

R(Customer)wait

wait

Conclusion

• We model CC as a learning task that optimizes policy for a workload
• Polyjuice’s policy table design can:
• encode existing CCs
• allow new interleaving

• Polyjuice can outperform existing fixed and federated CC

Thank
you

https://github.com/derFischer/Polyjuice

31

https://github.com/derFischer/Polyjuice

