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Concurrency control ensures tx serializability
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* Transactions provides the
abstraction of ACID.

e Concurrency control (CC)
ensures Isolation (serializability).



CC is crucial to database performance

e CC acts like a scheduler by controling how concurrent executions interleave.
* Maximize interleaving --> better performance.
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No one CC algorithm fits all

* Some CC performs better than others for a specific workload.
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Federated CC?

* A coarse-grained approach to combine a few known CC algorithms.

* Weaknesses
* Cumbersome: requires manually partitioning of the workload.
e Suboptimal: uses a single CC within each partition.
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Tebaldi [SIGMOD’17] CormCC [ATC’ 18]



Our approach:
CC as a fine-grained learning task

* Model CC as a policy function, inspired by reinforcement learning.
f: state - action

* Ensure correctness separately by validation.
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Polyjuice: CC as a policy table

* Represent a CC policy as a table.

T \ state of f \/

| v=Read(TABLEL,x) | execution state 1
l > .

L v=v+l | CC policy state 2
' ! ~—_

. Write(TABLE2,y,v) |  action

state n




Challenge: designing the policy table

What should be the states?
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What should be the actions?
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Goal: design should be able to encode existing CC algorithms.



Polyjuice: state space

@ Goal Solution

State consists of:
Differentiate state that » 1. The type of transaction being executed.
require different CC actions. 2. The data access of the transaction being executed.



Polyjuice: state space
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Polyjuice: state space

Tx-1: type tl

v = Read(TABLE1, x)
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Polyjuice: state space

Tx-1: type tl
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Polyjuice: state space

Tx-1: type tl Tx-2: type t2
CC Policy
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Polyjuice: action space

@ Goal

Exert control
on the interleaving.

Action space should be able to encode
most existing CC algorithms.

14



Polyjuice: action space

@ Goal Solution

Exert control Expose these knobs of control: .
on the interleaving. » * Whether to wait, and how long:

* Which versions of data to read?
* Whether to make a dirty write visible?
 Whether to validate now, prior to commit?



Wait action choices

Used by OCC.
* No wait. Used by 2PL.

* Wait until dependent transactions commit.

* Wait until dependent transactions finish execution up to some point.

Callas RP[SOSP’15],
DRP[Eurosys’19].

How to realize different wait choices in one implementation?

Used by IC3[SIGMOD’16],
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Wait choices: wait commit

Tx-1: type t1
]

Tx-2: type t2
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Wait choices: wait commit
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Wait choices: no-wait
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Wait choices: fine-grained wait
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Read action: 2 choices

Used by OCC.

e Read latest committed version.

* Polyjuice is a single-version database.
Used by IC3[SIGMOD’16],

* Read the latest published dirty version. Callas RP[SOSP'15],
DRP[Eurosys’19].



Write action: 2 choices

» Keep the dirty write in the private buffer.

* Publish the dirty write.
e Cumulative: all buffered are published.



Validation: 2 choices

* Whether or not to validate after this access.
* There is always a final validation prior to commit.
* Polyjuice’s validation is based on Silo[SOSP’13]'s protocol.



Polyjuice: state and action space
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* Can encode most existing CC algorithms.
* Enable novel interleavings not permitted by existing CCs.



Optimize policy for a given workload

CC policy

Workload
trace
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CC performance
(throughput)
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Optimize policy for a given workload

CC policy 1
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New generation of CC policies



Evaluation

* How does Polyjuice compare to tradition and federated CC?
* Can Polyjuice find novel interleavings?



Throughput (Ktps)

Polyjuice outperforms existing CCs

under high and moderate contention
* Setup: 48-threads, TPC-C (3 read-write txns)
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Polyjuice finds a more efficient interleaving

NewOrder Payment NewOrder Payment

R(Warehouse) R(Warehouse)

RW(Warehouse) RW(Warehouse)

RW(Stock) RW(Stock)

RW/(Customer)

R(Customer) R(Customer)

RW/(Customer)

IC3’s interleaving Polyjuice’s interleaving

30



Conclusion

 We model CC as a learning task that optimizes policy for a workload

* Polyjuice’s policy table design can:
* encode existing CCs
* allow new interleaving

* Polyjuice can outperform existing fixed and federated CC

https://github.com/derFischer/Polyjuice
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