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Suppose we want to write a correct file system

Correct: file-system operations atomically follow 
specification, even on crash 

Performant: take advantage of concurrent operations to 
efficiently use CPU and I/O
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GoJournal gives a storage system efficient, 
atomic writes

GoJournal

disk

atomic writes of multiple objects
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GoJournal gives a storage system efficient, 
atomic writes

GoJournal

disk
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GoNFS
import "github.com/mit-pdos/go-journal/jrnl"

performant NFS server
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GoJournal is a verified journaling system

GoJournal

disk

atomic writes of multiple objects

GoNFS performant NFS server

comes with a machine-checked proof
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GoJournal has a practical implementation
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>95% throughput of Linux with a single client 

 

Throughput scales with number of concurrent clients
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Current approaches cannot handle a system of 
this complexity

Crash-safe but sequential file systems 
FSCQ, Yggdrasil, VeriBetrFS

Concurrent systems 
CertiKOS, AtomFS, …
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Current approaches cannot handle a system of 
this complexity

Crash-safe but sequential file systems 
FSCQ, Yggdrasil, VeriBetrFS

Concurrent systems 
CertiKOS, AtomFS, …

Crash safety and concurrency 
Perennial 1.0
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Contributions

GoJournal, the first verified concurrent journal 

Perennial 2.0, a new verification framework 

SimpleNFS to evaluate specification 

Evaluation showing GoJournal achieves good 
performance
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GoJournal writes operations atomically to disk

// one-time init 
var d Disk 
jrnl := OpenJrnl(d)

concurrent operations are atomic 
caller is responsible for locking

// copy block at 0 to 1 and 2 
op := jrnl.Begin() 
buf := op.ReadBuf(0, blockSz) 
op.OverWrite(1, buf.Data) 
op.OverWrite(2, buf.Data) 
op.Commit()
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Operations can concurrently manipulate objects 
within a block

File system has 128-byte inodes 

Sub-block access improves concurrency since caller only 
locks the required objects
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Specification challenge: what do concurrently 
committed operations do?

op := jrnl.Begin() 
buf := op.ReadBuf(0, blockSz) 
op.OverWrite(1, buf.Data) 
op.OverWrite(2, buf.Data) 
op.Commit()

op := jrnl.Begin() 
op.OverWrite(7, data) 
op.Commit()
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Sequential journaling only maintains old and 
next state

a b c

disk:

mem:



11

Sequential journaling only maintains old and 
next state

Commit()

a b c

disk:

mem:{ {

a b c

disk:

mem:

a b c

{ {

precondition

postcondition
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An operation’s specification only refers to its 
disk footprint

0 ↦ b0

disk

says block at 0 has value b0
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An operation’s specification only refers to its 
disk footprint

buf := op.ReadBuf(0, blockSz) 
op.OverWrite(1, buf.Data) 
op.OverWrite(2, buf.Data)

op := jrnl.Begin()

op.Commit()
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An operation’s specification only refers to its 
disk footprint

buf := op.ReadBuf(0, blockSz) 
op.OverWrite(1, buf.Data) 
op.OverWrite(2, buf.Data)

op := jrnl.Begin()

op.Commit()

0 ↦ b0

disk

1 ↦ –
disk

2 ↦ –
disk

0 ↦ b0

disk

1 ↦ b0

disk

2 ↦ b0

disk

implies any other data 
is not involved

{ {

{ {
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Introduce assertion for operation’s view of disk

1 ↦ –
op

“operation points-to”

1 ↦ –
disk

“disk points-to”
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Introduce assertion for operation’s view of disk

1 ↦ –
op

op’s view of 
block 1

“operation points-to”

1 ↦ –
disk

on-disk value 
of block 1

lifting

“disk points-to”
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Key idea: operations manipulate an in-memory 
view of each object
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disk
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Key idea: operations manipulate an in-memory 
view of each object

1 ↦ –
op

1 ↦ b0

op

OverWrite 1 ↦ b0

disk

Commit

0 ↦ b0

op

ReadBuf(0)
b0

crash restores original value

lifting1 ↦ –
disk
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GoJournal has a modular implementation and 
proof

GoJournal
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GoJournal has a modular implementation and 
proof

GoJournal

jrnl

obj

wal

crash-atomic operations

sub-block objects

write-ahead log
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Write-ahead log implements the core atomicity 
of the journal

…

fixed-size log data

log install



18

Writes are buffered before being logged

memory

disk

write gets buffered1
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Writes are buffered before being logged

memory

disk

log

write gets logged2

write gets buffered1
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Challenge 1: 
Reads can observe unstable writes

memory
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2 read returns new data

system crashes here

write gets buffered1



19

Challenge 1: 
Reads can observe unstable writes

memory

disk

2 read returns new data

system crashes here

write gets buffered1

3 read returns old data memory

disk
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Object layer implements sub-block object access

4096 bytes

represents just 
one inode
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Challenge 2: 
Reads and writes can proceed concurrently

4096 bytes

reads take subslice of 
whole block

2 4
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Challenge 2: 
Reads and writes can proceed concurrently

4096 bytes

reads take subslice of 
whole block

concurrent writes 
don’t affect the read

2 4
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Concurrent writes are unsafe due to read-
modify-write sequence

4096 bytes
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Verification techniques in Perennial 2.0

Logically atomic crash specifications 

Lock-free reasoning with monotonic counters 

Lifting to specify Commit 

Crash-aware lock specification

see paper for details
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Implementation overview

GoJournal1,300 lines

code is available at 
https://github.com/mit-pdos/go-journal

https://github.com/mit-pdos/go-journal
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Implementation overview

GoJournal1,300 lines goose

26,000 linesProof of GoJournal

model of code

verification framework

Coq

20,000 lines

code is available at 
https://github.com/mit-pdos/go-journal

https://github.com/mit-pdos/go-journal
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Evaluating GoNFS’s performance

Implemented GoNFS, an (unverified) NFS server, on top 
of GoJournal 

Compare against Linux kernel NFS server exporting ext4 
(with data=journal mode for fair comparison)
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Experimental setup

Hardware: AWS i3.metal 
36 cores at 2.3GHz, NVMe SSD 

Benchmarks: 

• smallfile: metadata heavy 

• largefile: data heavy 

• app: git clone + make 

Run using Linux NFS client
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GoNFS gets comparable performance even with 
a single client
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GoJournal allows GoNFS to scale with number of 
clients
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Concurrency in the journal matters

Serial GoJournal has locks around tricky 
concurrent parts of WAL1600
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Summary

GoJournal is a verified, concurrent, crash-safe journaling 
system 

Many concurrency challenges in verification 

Demonstrate good performance with GoNFS

for followup questions you can contact Tej (tchajed@mit.edu)


