
GoJournal: a verified, concurrent,
crash-safe journaling system

Tej Chajed
MIT CSAIL

Mark Theng
MIT CSAIL

Frans Kaashoek
MIT CSAIL

Nickolai Zeldovich
MIT CSAIL

Joseph Tassarotti
Boston College

Ralf Jung
MPI-SWS

2

Suppose we want to write a correct file system

Correct: file-system operations atomically follow
specification, even on crash

Performant: take advantage of concurrent operations to
efficiently use CPU and I/O

3

GoJournal gives a storage system efficient,
atomic writes

GoJournal

disk

atomic writes of multiple objects

3

GoJournal gives a storage system efficient,
atomic writes

GoJournal

disk

atomic writes of multiple objects

GoNFS performant NFS server

3

GoJournal gives a storage system efficient,
atomic writes

GoJournal

disk

atomic writes of multiple objects

GoNFS
import "github.com/mit-pdos/go-journal/jrnl"

performant NFS server

4

GoJournal is a verified journaling system

GoJournal

disk

atomic writes of multiple objects

GoNFS performant NFS server

comes with a machine-checked proof

5

GoJournal has a practical implementation

0.2
0.4
0.6
0.8

1
1.2
1.4

Linux GoNFS

>95% throughput of Linux with a single client

Throughput scales with number of concurrent clients

4 12 20 28 36

GoNFS

Linux

number of clients

6

Current approaches cannot handle a system of
this complexity

Crash-safe but sequential file systems
FSCQ, Yggdrasil, VeriBetrFS

Concurrent systems
CertiKOS, AtomFS, …

6

Current approaches cannot handle a system of
this complexity

Crash-safe but sequential file systems
FSCQ, Yggdrasil, VeriBetrFS

Concurrent systems
CertiKOS, AtomFS, …

Crash safety and concurrency
Perennial 1.0

7

Contributions

GoJournal, the first verified concurrent journal

Perennial 2.0, a new verification framework

SimpleNFS to evaluate specification

Evaluation showing GoJournal achieves good
performance

7

Contributions

GoJournal, the first verified concurrent journal

Perennial 2.0, a new verification framework

SimpleNFS to evaluate specification

Evaluation showing GoJournal achieves good
performance

8

GoJournal writes operations atomically to disk

// one-time init
var d Disk
jrnl := OpenJrnl(d)

8

GoJournal writes operations atomically to disk

// one-time init
var d Disk
jrnl := OpenJrnl(d)

// copy block at 0 to 1 and 2
op := jrnl.Begin()
buf := op.ReadBuf(0, blockSz)
op.OverWrite(1, buf.Data)
op.OverWrite(2, buf.Data)
op.Commit()

8

GoJournal writes operations atomically to disk

// one-time init
var d Disk
jrnl := OpenJrnl(d)

concurrent operations are atomic
caller is responsible for locking

// copy block at 0 to 1 and 2
op := jrnl.Begin()
buf := op.ReadBuf(0, blockSz)
op.OverWrite(1, buf.Data)
op.OverWrite(2, buf.Data)
op.Commit()

9

Operations can concurrently manipulate objects
within a block

File system has 128-byte inodes

Sub-block access improves concurrency since caller only
locks the required objects

10

Specification challenge: what do concurrently
committed operations do?

op := jrnl.Begin()
buf := op.ReadBuf(0, blockSz)
op.OverWrite(1, buf.Data)
op.OverWrite(2, buf.Data)
op.Commit()

op := jrnl.Begin()
op.OverWrite(7, data)
op.Commit()

11

Sequential journaling only maintains old and
next state

a b c

disk:

mem:

11

Sequential journaling only maintains old and
next state

Commit()

a b c

disk:

mem:{ {

a b c

disk:

mem:

a b c

{ {

precondition

postcondition

12

An operation’s specification only refers to its
disk footprint

0 ↦ b0

disk

says block at 0 has value b0

12

An operation’s specification only refers to its
disk footprint

0 ↦ b0

disk

1 ↦ –
disk

2 ↦ –
disk

12

An operation’s specification only refers to its
disk footprint

buf := op.ReadBuf(0, blockSz)
op.OverWrite(1, buf.Data)
op.OverWrite(2, buf.Data)

op := jrnl.Begin()

op.Commit()

0 ↦ b0

disk

1 ↦ –
disk

2 ↦ –
disk

0 ↦ b0

disk

1 ↦ b0

disk

2 ↦ b0

disk

{ {

{ {

12

An operation’s specification only refers to its
disk footprint

buf := op.ReadBuf(0, blockSz)
op.OverWrite(1, buf.Data)
op.OverWrite(2, buf.Data)

op := jrnl.Begin()

op.Commit()

0 ↦ b0

disk

1 ↦ –
disk

2 ↦ –
disk

0 ↦ b0

disk

1 ↦ b0

disk

2 ↦ b0

disk

implies any other data
is not involved

{ {

{ {

13

Introduce assertion for operation’s view of disk

1 ↦ –
op

“operation points-to”

1 ↦ –
disk

“disk points-to”

13

Introduce assertion for operation’s view of disk

1 ↦ –
op

op’s view of
block 1

“operation points-to”

1 ↦ –
disk

on-disk value
of block 1

“disk points-to”

13

Introduce assertion for operation’s view of disk

1 ↦ –
op

op’s view of
block 1

“operation points-to”

1 ↦ –
disk

on-disk value
of block 1

lifting

“disk points-to”

14

Key idea: operations manipulate an in-memory
view of each object

1 ↦ –
op

lifting1 ↦ –
disk

14

Key idea: operations manipulate an in-memory
view of each object

1 ↦ –
op

1 ↦ b0

op

OverWritelifting1 ↦ –
disk

14

Key idea: operations manipulate an in-memory
view of each object

1 ↦ –
op

1 ↦ b0

op

OverWrite

0 ↦ b0

op

ReadBuf(0)
b0

lifting1 ↦ –
disk

14

Key idea: operations manipulate an in-memory
view of each object

1 ↦ –
op

1 ↦ b0

op

OverWrite 1 ↦ b0

disk

Commit

0 ↦ b0

op

ReadBuf(0)
b0

lifting1 ↦ –
disk

14

Key idea: operations manipulate an in-memory
view of each object

1 ↦ –
op

1 ↦ b0

op

OverWrite 1 ↦ b0

disk

Commit

0 ↦ b0

op

ReadBuf(0)
b0

crash restores original value

lifting1 ↦ –
disk

15

Key idea: operations manipulate an in-memory
view of each object

buf := op.ReadBuf(0, blockSz)
op.OverWrite(1, buf.Data)
op.OverWrite(2, buf.Data)

op := jrnl.Begin()

op.Commit()

0 ↦ b0

disk

1 ↦ –
disk

2 ↦ –
disk

0 ↦ b0

disk

1 ↦ b0

disk

2 ↦ b0

disk

15

Key idea: operations manipulate an in-memory
view of each object

buf := op.ReadBuf(0, blockSz)
op.OverWrite(1, buf.Data)
op.OverWrite(2, buf.Data)

op := jrnl.Begin()

op.Commit()

0 ↦ b0

disk

1 ↦ –
disk

2 ↦ –
disk

0 ↦ b0

disk

1 ↦ b0

disk

2 ↦ b0

disk

0 ↦ b0

op

1 ↦ –
op

2 ↦ –
op

lifting

15

Key idea: operations manipulate an in-memory
view of each object

buf := op.ReadBuf(0, blockSz)
op.OverWrite(1, buf.Data)
op.OverWrite(2, buf.Data)

op := jrnl.Begin()

op.Commit()

0 ↦ b0

disk

1 ↦ –
disk

2 ↦ –
disk

0 ↦ b0

disk

1 ↦ b0

disk

2 ↦ b0

disk

0 ↦ b0

op

1 ↦ –
op

2 ↦ –
op

0 ↦ b0

op

1 ↦ b0

op

2 ↦ b0

op

lifting

16

GoJournal has a modular implementation and
proof

GoJournal

16

GoJournal has a modular implementation and
proof

GoJournal

jrnl

obj

wal

crash-atomic operations

sub-block objects

write-ahead log

17

Write-ahead log implements the core atomicity
of the journal

…

fixed-size log data

log install

18

Writes are buffered before being logged

memory

disk

write gets buffered1

18

Writes are buffered before being logged

memory

disk

log

write gets logged2

write gets buffered1

19

Challenge 1:
Reads can observe unstable writes

memory

disk

2 read returns new data

system crashes here

write gets buffered1

19

Challenge 1:
Reads can observe unstable writes

memory

disk

2 read returns new data

system crashes here

write gets buffered1

3 read returns old data memory

disk

20

Object layer implements sub-block object access

4096 bytes

represents just
one inode

21

Challenge 2:
Reads and writes can proceed concurrently

4096 bytes

reads take subslice of
whole block

2 4

21

Challenge 2:
Reads and writes can proceed concurrently

4096 bytes

reads take subslice of
whole block

concurrent writes
don’t affect the read

2 4

22

Concurrent writes are unsafe due to read-
modify-write sequence

4096 bytes

23

Verification techniques in Perennial 2.0

Logically atomic crash specifications

Lock-free reasoning with monotonic counters

Lifting to specify Commit

Crash-aware lock specification

see paper for details

24

Implementation overview

GoJournal1,300 lines

code is available at
https://github.com/mit-pdos/go-journal

https://github.com/mit-pdos/go-journal

24

Implementation overview

GoJournal1,300 lines

verification framework

Coq

20,000 lines

code is available at
https://github.com/mit-pdos/go-journal

https://github.com/mit-pdos/go-journal

24

Implementation overview

GoJournal1,300 lines goose
model of code

verification framework

Coq

20,000 lines

code is available at
https://github.com/mit-pdos/go-journal

https://github.com/mit-pdos/go-journal

24

Implementation overview

GoJournal1,300 lines goose

26,000 linesProof of GoJournal

model of code

verification framework

Coq

20,000 lines

code is available at
https://github.com/mit-pdos/go-journal

https://github.com/mit-pdos/go-journal

25

Evaluating GoNFS’s performance

Implemented GoNFS, an (unverified) NFS server, on top
of GoJournal

Compare against Linux kernel NFS server exporting ext4
(with data=journal mode for fair comparison)

26

Experimental setup

Hardware: AWS i3.metal
36 cores at 2.3GHz, NVMe SSD

Benchmarks:

• smallfile: metadata heavy

• largefile: data heavy

• app: git clone + make

Run using Linux NFS client

27

0.2

0.4

0.6

0.8

1

1.2

1.4

smallfile largefile app

Linux GoNFS

Re
la

tiv
e

th
ro

ug
hp

ut

Compare GoNFS throughput to Linux,
running on an in-memory disk

27

GoNFS gets comparable performance even with
a single client

0.2

0.4

0.6

0.8

1

1.2

1.4

smallfile largefile app

Linux GoNFS

2370 files/s

260 MB/s

0.5 runs/s
Re

la
tiv

e
th

ro
ug

hp
ut

Compare GoNFS throughput to Linux,
running on an in-memory disk

28

1600

3200

4800

6400

8000

4 8 12 16 20 24 28 32 36

number of clients

fil
es

/s

Run smallfile with many clients on an NVMe SSD

28

GoJournal allows GoNFS to scale with number of
clients

1600

3200

4800

6400

8000

4 8 12 16 20 24 28 32 36

number of clients

fil
es

/s
GoNFS

Linux

Run smallfile with many clients on an NVMe SSD

29

Concurrency in the journal matters

Serial GoJournal has locks around tricky
concurrent parts of WAL1600

3200

4800

6400

8000

4 8 12 16 20 24 28 32 36

GoNFS

Linux

Serial GoJournal

number of clients

fil
es

/s

30

Summary

GoJournal is a verified, concurrent, crash-safe journaling
system

Many concurrency challenges in verification

Demonstrate good performance with GoNFS

for followup questions you can contact Tej (tchajed@mit.edu)

