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Suppose we want to write a correct file system

Correct: file-system operations atomically follow
specification, even on crash

Performant: take advantage of concurrent operations to
efficiently use CPU and I/0



GoJournal gives a storage system efficient,
atomic writes

atomic writes of multiple objects

disk



GoJournal gives a storage system efficient,
atomic writes

performant NFS server

GoJournal atomic writes of multiple objects

disk



GoJournal gives a storage system efficient,
atomic writes
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GoJournal is a verified journaling system

performant NFS server

atomic writes of multiple objects
comes with a machine-checked proof

disk



GoJournal has a practical implementation
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Current approaches cannot handle a system of
this complexity

Crash-safe but sequential file systems
-SCQ, Ygadrasil, VeriBetrkS

Concurrent systems
CertiKOS, Atomks, ...



Current approaches cannot handle a system of
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Crash-safe but sequential file systems
-SCQ, Ygadrasil, VeriBetrkS

Concurrent systems
CertiKOS, Atomks, ...

Crash safety and concurrency
Perennial 1.0



Contributions

GoJournal, the first verified concurrent journal
Perennial 2.0, a new verification framework
SimpleNFS to evaluate specification

Evaluation showing GoJournal achieves good
performance
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GoJournal writes operations atomically to disk

var d Disk
jrnl := Opendrnl(d)

Top := jrnl.Begin()

concurrent operations are atomic | buf := op.ReadBut(0, block5z)

caller is responsible for locking gg'gxgﬁwﬁitggér Eﬂg-ggigg

1 op.Commit()




Operations can concurrently manipulate objects
within a block

File system has 128-byte inodes

Sub-block access improves concurrency since caller only
locks the required objects



Specification challenge: what do concurrently
committed operations do?

op := jrnl.Begin()

buf := op.ReadBuf (0, blockSz)
op.OverWrite(1l, buf.Data) op := jrnl.Begin()
op.OverWrite(2, buf.Data) op.OverWrite(/, data)
op.Commit () op.Commit()




Sequential journaling only maintains old and
next state

disk .....=
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Sequential journaling only maintains old and
next state

{ e ...... } precondition
mem: | IS B

Commit ()

{ disk: .n. . } postcondition
mem: |IIIIE|"III ‘III
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An operation’s specification only refers to its
disk footprint

says block at 0 has value bo
0 » bo
disk

12



An operation’s specification only refers to its
disk footprint

0 - bg 1o - 2 b -
disk disk disk

12



An operation’s specification only refers to its
disk footprint

0 » bg
disk disk disk

op := jrnl.Begin()

buf := op.ReadBuf(0, blockSz)
op.OverWrite(1l, buf.Data)
op.OverWrite(2, buf.Data)

op.Commit()
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An operation’s specification only refers to its
disk footprint

0 » bg
disk disk disk \

op := jrnl.Begin()
buf := op.ReadBuf (0, blockSz) implies any other data
op.OverWrite(l, buf.Data) i< not involved

op.OverWrite(2, buf.Data)
op.Commit()
0 » bo 1+ bg 2+ bo

disk disk disk
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Introduce assertion for operation’s view of disk

“disk points-to” “operation points-to”

1w -

- -

disk
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Key idea: operations manipulate an in-memory
view of each object
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Key idea: operations manipulate an in-memory
view of each object

~ Do ReadBuf (0)

» Do
Oop
OverWrite = Do Commit 1w bo
>
| g op disk

crash restores original value
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Key idea: operations manipulate an in-memory
view of each object

0 » bg 1 - 2 -
disk disk disk

op := jrnl.Begin()

buf := op.ReadBuf(0, blockSz)
op.OverWrite(l, buf.Data)
op.0verWrite(2, buf.Data)

op.Commit()
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Key idea: operations manipulate an in-memory
view of each object

0 » bg 1l - 2 b —
disk disk dsk"

op := jrnl.Begin()

buf := op.ReadBuf(0, blockSz)
op.0OverWrite(1, buf Data)
op.0OverWrite(2, buf.Data)

Iliiilll\‘lliiilll IIIIIIII

op.Commit()

0 » bg 1 bg 2 » Do
disk disk disk

IﬁUng
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GoJournal has a modular implementation and
oroof
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GoJournal has a modular implementation and
oroof

~’~’~"’ . SUb-bIOCk ObjeCtS

write-ahead log

-------------------------------------------------------------------
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Write-ahead log implements the core atomicity
of the journal

\og mstall

fixed-size log data
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Writes are buffered before being logged

a write gets buffered
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Writes are buffered before being logged

a write gets buffered

e write gets logged
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Challenge 1.
Reads can observe unstable writes

a write gets buffered

e read returns new data

-~ System crashes here
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Challenge 1.
Reads can observe unstable writes

a write gets buffered

a read returns new data

-~ System crashes here

e read returns old data

. memory

disk

. memory

disk
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Object layer implements sub-block object access

. represents just :
. oneinode :

4096 bytes
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Challenge 2:
Reads and writes can proceed concurrently

reads take subslice of
whole block

4096 bytes
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Challenge 2:
Reads and writes can proceed concurrently

reads take subslice of [ l concurrent writes

whole block don’t affect the read

4096 bytes
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Concurrent writes are unsafe due to read-

modify-write sequence

HE HEN-EE .

| |
e —

4096 bytes
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Verification techniques in Perennial 2.0

See paper for details

Logically atomic crash specifications
Lock-free reasoning with monotonic counters
Lifting to specity Commit

Crash-aware lock specification
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Implementation overview

code is available at
https://github.com/mit-pdos/go-journal
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Implementation overview

code is available at

https://github.com/mit-pdos/go-journal

&)

coq |Irfis

24


https://github.com/mit-pdos/go-journal

Implementation overview

verification framework

model of code

code is available at :
https://github.com/mit-pdos/go-journal : ® Ir%

Coqg

20,000 lines
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Implementation overview

verification framework 20,000 lines

code is available at :
https://github.com/mit-pdos/go-journal . @

Proof of GoJournal 26,000 lines
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Evaluating GONFS's performance

Implemented GoNFS, an (unverified) NFS server, on top
of GoJournal

Compare against Linux kernel NFS server exporting ext4
(with data=journal mode for fair comparison)
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Experimental setup

Hardware: AWS i3.metal
36 cores at 2.3GHz, NVMe SSD

Benchmarks:
e smallfile;: metadata heavy
o |argefile: data heavy

* app:git clone + make

Run using Linux NFS client
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Relative throughput

Linux B GoNFS
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Compare GoNFS throughput to Linux,
running on an in-memory disk
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GONFS gets comparable performance even with
a single client
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smallfile largefile app

Compare GoNFS throughput to Linux,
running on an in-memory disk
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GoJournal allows GoNFS to scale with number of

clients

8000 -

GONFS
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number of clients

Run smallfile with many clients on an NVMe SSD
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Concurrency in the journal matters

files/s

8000 -

GONFS

6400 -

4800 -

3200 -

1600

Serial GoJournal has locks around tricky

| /‘———-————'—'" concurrent parts of WAL
Serial GoJournal

number of clients
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Summary

GoJournal is a verified, concurrent, crash-safe journaling
system

Many concurrency challenges in verification

Demonstrate good performance with GoONFS

for followup questions you can contact Tej (tchajed@mit.edu)
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