GojJournal: a verified, concurrent,
crash-safe journaling system

Tej Chajed Joseph Tassarotti Mark Theng Ralf Jung
MIT CSAIL Boston College MIT CSAIL MPI-SWS

Frans Kaashoek Nickolai Zeldovich
MIT CSAIL MIT CSAIL

Suppose we want to write a correct file system

Correct: file-system operations atomically follow
specification, even on crash

Performant: take advantage of concurrent operations to
efficiently use CPU and I/0

GoJournal gives a storage system efficient,
atomic writes

atomic writes of multiple objects

disk

GoJournal gives a storage system efficient,
atomic writes

performant NFS server

GoJournal atomic writes of multiple objects

disk

GoJournal gives a storage system efficient,
atomic writes

import "github.com/mit-pdos/go-]
performant NFS server

GoJournal atomic writes of multiple objects

disk

GoJournal is a verified journaling system

performant NFS server

atomic writes of multiple objects
comes with a machine-checked proof

disk

GoJournal has a practical implementation

Linux B GoNFS

1.4
1.2

1
0.8

08 I I [>95% throughput of Linux with a single client

0.2

_ GONFS

Throughput scales with number of concurrent clients

4 12 20 28 36
number of clients

Current approaches cannot handle a system of
this complexity

Crash-safe but sequential file systems
-SCQ, Ygadrasil, VeriBetrkS

Concurrent systems
CertiKOS, Atomks, ...

Current approaches cannot handle a system of
this complexity

Crash-safe but sequential file systems
-SCQ, Ygadrasil, VeriBetrkS

Concurrent systems
CertiKOS, Atomks, ...

Crash safety and concurrency
Perennial 1.0

Contributions

GoJournal, the first verified concurrent journal
Perennial 2.0, a new verification framework
SimpleNFS to evaluate specification

Evaluation showing GoJournal achieves good
performance

Contributions

GoJournal, the first verified concurrent journal
Perennial 2.0, a new verification framework
SimpleNFS to evaluate specification

Evaluation showing GoJournal achieves good
performance

GoJournal writes operations atomically to disk

var d Disk
jrnl := OpenJrnl(d)

GoJournal writes operations atomically to disk

var d Disk
jrnl := OpenJrnl(d)

op := jrnl.Begin()

buf := op.ReadBuf (0, blockSz)
op.0verWrite(1l, buf.Data)
op.0OverWrite(2, buf.Data)
op.Commit()

GoJournal writes operations atomically to disk

var d Disk
jrnl := Opendrnl(d)

Top := jrnl.Begin()

concurrent operations are atomic | buf := op.ReadBut(0, block5z)

caller is responsible for locking gg'gxgﬁwﬁitggér Eﬂg-ggigg

1 op.Commit()

Operations can concurrently manipulate objects
within a block

File system has 128-byte inodes

Sub-block access improves concurrency since caller only
locks the required objects

Specification challenge: what do concurrently
committed operations do?

op := jrnl.Begin()

buf := op.ReadBuf (0, blockSz)
op.OverWrite(1l, buf.Data) op := jrnl.Begin()
op.OverWrite(2, buf.Data) op.OverWrite(/, data)
op.Commit () op.Commit()

Sequential journaling only maintains old and
next state

disk=

ner: 1 N ET

11

Sequential journaling only maintains old and
next state

{ e } precondition
mem: | IS B

Commit ()

{ disk: .n. . } postcondition
mem: |IIIIE|"III ‘III

11

An operation’s specification only refers to its
disk footprint

says block at 0 has value bo
0 » bo
disk

12

An operation’s specification only refers to its
disk footprint

0 - bg 1o - 2 b -
disk disk disk

12

An operation’s specification only refers to its
disk footprint

0 » bg
disk disk disk

op := jrnl.Begin()

buf := op.ReadBuf(0, blockSz)
op.OverWrite(1l, buf.Data)
op.OverWrite(2, buf.Data)

op.Commit()

0 » bg 1 » bg 2 » Do
disk disk disk

12

An operation’s specification only refers to its
disk footprint

0 » bg
disk disk disk \

op := jrnl.Begin()
buf := op.ReadBuf (0, blockSz) implies any other data
op.OverWrite(l, buf.Data) i< not involved

op.OverWrite(2, buf.Data)
op.Commit()
0 » bo 1+ bg 2+ bo

disk disk disk

12

Introduce assertion for operation’s view of disk

“disk points-to” “operation points-to”

1w -

- -

disk

13

Introduce assertion for operation’s view of disk

“disk points-to” “operation points-to”

1w -

- -

disk

Op

__ on-disk value k |
Of blOCk 1 Op’S view Of

block 1

13

Introduce assertion for operation’s view of disk

“disk points-to” “operation points-to”

__ on-disk value k |
Of blOCk 1 Op’S view Of

block 1

13

Key idea: operations manipulate an in-memory
view of each object

14

Key idea: operations manipulate an in-memory
view of each object

OverWrite = Do
>

Op

14

Key idea: operations manipulate an in-memory
view of each object

~ Do ReadBuf (0)
Op

» Do

OverWrite = Do
>

Op

14

Key idea: operations manipulate an in-memory
view of each object

~ Do ReadBuf (0)
Op

» Do

~ bo Commit 1+ bg
>
op disk

OverWrite
>

14

Key idea: operations manipulate an in-memory
view of each object

~ Do ReadBuf (0)

» Do
Oop
OverWrite = Do Commit 1w bo
>
| g op disk

crash restores original value

14

Key idea: operations manipulate an in-memory
view of each object

0 » bg 1 - 2 -
disk disk disk

op := jrnl.Begin()

buf := op.ReadBuf(0, blockSz)
op.OverWrite(l, buf.Data)
op.0verWrite(2, buf.Data)

op.Commit()

0~ bg 1 e bg 2+ bg
disk disk disk

15

Key idea: operations manipulate an in-memory
view of each object

0 » bg 1l - 2 b —
disk disk dsk"

op := jrnl.Begin()

buf := op.ReadBuf(0, blockSz)
op.0OverWrite(1, buf Data)
op. Overerte(Z buf.Data)

Iﬁnng

op.Commit()

0 » bg 1+ bo
disk disk disk

15

Key idea: operations manipulate an in-memory
view of each object

0 » bg 1l - 2 b —
disk disk dsk"

op := jrnl.Begin()

buf := op.ReadBuf(0, blockSz)
op.0OverWrite(1, buf Data)
op.0OverWrite(2, buf.Data)

Iliiilll\‘lliiilll IIIIIIII

op.Commit()

0 » bg 1 bg 2 » Do
disk disk disk

IﬁUng

15

GoJournal has a modular implementation and
oroof

16

GoJournal has a modular implementation and
oroof

~’~’~"’ . SUb-bIOCk ObjeCtS

write-ahead log

16

Write-ahead log implements the core atomicity
of the journal

\og mstall

fixed-size log data

17

Writes are buffered before being logged

a write gets buffered

18

Writes are buffered before being logged

a write gets buffered

e write gets logged

18

Challenge 1.
Reads can observe unstable writes

a write gets buffered

e read returns new data

-~ System crashes here

19

Challenge 1.
Reads can observe unstable writes

a write gets buffered

a read returns new data

-~ System crashes here

e read returns old data

. memory

disk

. memory

disk

19

Object layer implements sub-block object access

. represents just :
. oneinode :

4096 bytes

20

Challenge 2:
Reads and writes can proceed concurrently

reads take subslice of
whole block

4096 bytes

21

Challenge 2:
Reads and writes can proceed concurrently

reads take subslice of [l concurrent writes

whole block don’t affect the read

4096 bytes

21

Concurrent writes are unsafe due to read-

modify-write sequence

HE HEN-EE .

| |
e —

4096 bytes

22

Verification techniques in Perennial 2.0

See paper for details

Logically atomic crash specifications
Lock-free reasoning with monotonic counters
Lifting to specity Commit

Crash-aware lock specification

23

Implementation overview

code is available at
https://github.com/mit-pdos/go-journal

24

https://github.com/mit-pdos/go-journal

Implementation overview

code is available at

https://github.com/mit-pdos/go-journal

&)

coq |Irfis

24

https://github.com/mit-pdos/go-journal

Implementation overview

verification framework

model of code

code is available at :
https://github.com/mit-pdos/go-journal : ® Ir%

Coqg

20,000 lines

24

https://github.com/mit-pdos/go-journal

Implementation overview

verification framework 20,000 lines

code is available at :
https://github.com/mit-pdos/go-journal . @

Proof of GoJournal 26,000 lines

24

https://github.com/mit-pdos/go-journal

Evaluating GONFS's performance

Implemented GoNFS, an (unverified) NFS server, on top
of GoJournal

Compare against Linux kernel NFS server exporting ext4
(with data=journal mode for fair comparison)

25

Experimental setup

Hardware: AWS i3.metal
36 cores at 2.3GHz, NVMe SSD

Benchmarks:
e smallfile;: metadata heavy
o |argefile: data heavy

* app:git clone + make

Run using Linux NFS client

20

Relative throughput

Linux B GoNFS

1.4

1.2

0.8
0.6
0.4

0.2

smallfile largefile app

Compare GoNFS throughput to Linux,
running on an in-memory disk

27

GONFS gets comparable performance even with
a single client

—i
AN

-
N

Relative throughput
X~ o o -

O
N

smallfile largefile app

Compare GoNFS throughput to Linux,
running on an in-memory disk

27

8000 -

6400 -

4800 -

files/s

3200 -

1600 -

number of clients

Run smallfile with many clients on an NVMe SSD

283

GoJournal allows GoNFS to scale with number of

clients

8000 -

GONFS
6400 -

4800 -

files/s

3200 -

1600 -

4 38 12 16 20 24 28 32 36

number of clients

Run smallfile with many clients on an NVMe SSD

283

Concurrency in the journal matters

files/s

8000 -

GONFS

6400 -

4800 -

3200 -

1600

Serial GoJournal has locks around tricky

| /‘———-————'—'" concurrent parts of WAL
Serial GoJournal

number of clients

29

Summary

GoJournal is a verified, concurrent, crash-safe journaling
system

Many concurrency challenges in verification

Demonstrate good performance with GoONFS

for followup questions you can contact Tej (tchajed@mit.edu)

30

