Addra: Metadata-private voice communication over fully untrusted infrastructure

Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal, Amr El Abbadi, and Trinabh Gupta

University of California, Santa Barbara

Voice calls are ubiquitous and contain sensitive content

Voice call providers enable end-to-end encryption

Does end-to-end encryption provide enough privacy?

Metadata can be as revealing as content

Metadata absolutely tells you everything about somebody's life.

If you have enough metadata, you don't really need content.

Stewart Baker Ex NSA General Counsel

Metadata can be as revealing as content

Metadata can be as revealing as content

Voice call metadata can be used for mass surveillance

Can we make voice calls hiding metadata from a strong adversary?

Existing works either lack in scalability or privacy

Two key challenges

Challenge 1: Unlinking the caller and callee

Challenge 2: Scaling with low latency

Addra makes two key contributions

Challenge 1: Unlinking the caller and callee

Solution 1: A novel communication architecture exploiting Private Information Retrieval (PIR)

Challenge 2: Scaling with low latency

Solution 2: A new PIR scheme with faster processing time

A brief background on Private Information Retrieval

Untrusted Server

Addra's architecture

Challenge 1: Unlinking the caller and callee

Solution 1: A novel communication architecture exploiting Private Information Retrieval (PIR)

Untrusted Server

Addra's architecture

Challenge 1: Unlinking the caller and callee

Solution 1: A novel communication architecture exploiting Private Information Retrieval (PIR)

Mailboxes

Untrusted Server

The simple architecture provides advantages for voice call

1. Query can be reused over the entire call

The simple architecture provides advantages for voice call

1. Query can be reused over the entire call

The simple architecture provides advantages for voice call

1. Query can be reused over the entire call

2. A voice packet can be transferred in two hops

A new PIR scheme: FastPIR

Challenge 2: Scaling with low latency

Solution 2: A new PIR scheme with faster processing time

Latency breakdown

Existing PIR schemes:

- XPIR [PETS '16]
- SealPIR [S&P '18]

Trade off between processing and receive time!

FastPIR

- Faster than both XPIR and SealPIR
- Small response size

Details available in our paper.

Evaluation

• What is Addra's latency performance?

Setup

Baseline: 2 variants of Pung

- Pung-XPIR [OSDI '16]
- Pung-SealPIR [S&P '18]

Evaluation

• What is Addra's latency performance?

End-to-end latency

Number of users

Evaluation

• How does FastPIR compare to XPIR and SealPIR?

Setup: 1M elements, 256 bytes each

PIR Scheme	Processing time (ms)	Response size (KB)
FastPIR	947	64
XPIR-1	3,389	32
XPIR-2	1,894	288
SealPIR-1	76,216	32
SealPIR-2	2,556	320

Faster than all variants!

Key takeaways from the talk

- Hiding voice call metadata is crucial for privacy
- Addra can hide voice call metadata with two key techniques:
 - A new mailbox architecture
 - A new PIR scheme FastPIR
- Addra can support 32K users with 726ms message latency

Thank You! Ishtiyaque Ahmad Ishtiyaque@ucsb.edu

Addra:<u>https://github.com/ishtiyaque/Addra</u> FastPIR: <u>https://github.com/ishtiyaque/FastPIR</u>